JP6995206B2 - How to increase the yield of extracellular polysaccharides of edible and medicinal fungi by adding phenylalanine - Google Patents

How to increase the yield of extracellular polysaccharides of edible and medicinal fungi by adding phenylalanine Download PDF

Info

Publication number
JP6995206B2
JP6995206B2 JP2020535638A JP2020535638A JP6995206B2 JP 6995206 B2 JP6995206 B2 JP 6995206B2 JP 2020535638 A JP2020535638 A JP 2020535638A JP 2020535638 A JP2020535638 A JP 2020535638A JP 6995206 B2 JP6995206 B2 JP 6995206B2
Authority
JP
Japan
Prior art keywords
fermentation
phenylalanine
yield
medium
edible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535638A
Other languages
Japanese (ja)
Other versions
JP2021512589A (en
Inventor
丁重陽
馬忠宝
徐萌萌
王瓊
許正宏
趙麗▲てい▼
劉高強
顧正華
石貴陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Publication of JP2021512589A publication Critical patent/JP2021512589A/en
Application granted granted Critical
Publication of JP6995206B2 publication Critical patent/JP6995206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、フェニルアラニンの添加により食用・薬用真菌の細胞外多糖の収量を高める方法に関し、微生物発酵分野に属する。 The present invention belongs to the field of microbial fermentation with respect to a method for increasing the yield of extracellular polysaccharides of edible and medicinal fungi by adding phenylalanine.

食用菌は重要な食料源の1つであり、多種のビタミン、ミネラルおよび食物繊維に富み、高タンパク質、低脂肪、低カロリーで、老若に適している食品であり、また、21世紀の人類食料ではめったにないグリーンフードでもある。食用・薬用真菌に含まれる真菌多糖、ポリペプチド類及びその他の極めて豊富な生物活性成分には、抗腫瘍、血中脂質低下、生体の免疫調節、心臓・脳血管保護など、さまざまな薬用価値がある。たとえば、霊芝(Ganoderma lucidum)は、優れた栄養機能及び薬用価値を備えた貴重な食用・薬用真菌である。霊芝多糖は霊芝の主要な生物活性物質の一つであり、免疫調節、抗腫瘍、抗酸化、血糖低下、肝臓保護などの活性を有する。これらの生物活性は、霊芝多糖が食品、医薬及び化粧品の分野に巨大な応用可能性を有することになる。 Edible fungi are one of the important food sources, rich in various vitamins, minerals and dietary fiber, high in protein, low in fat, low in calories, suitable for young and old, and human food in the 21st century. It's also a rare green food. Fungal polysaccharides, polypeptides and other extremely abundant bioactive ingredients contained in edible and medicinal fungi have various medicinal values such as antitumor, blood lipid lowering, biological immunomodulation, and cardiovascular protection. be. For example, Ganoderma lucidum is a valuable edible and medicinal fungus with excellent nutritional function and medicinal value. Reishi polysaccharide is one of the major bioactive substances of Reishi, and has activities such as immunomodulation, antitumor, antioxidant, hypoglycemic, and liver protection. These biological activities will allow Reishi polysaccharides to have enormous potential in the fields of food, medicine and cosmetics.

現在、液体深部発酵技術による食用・薬用真菌の培養は、食用・薬用の真菌多糖を得るための主な発酵方式となっており、固相発酵に比べて発酵サイクルが短く、抽出コストが低くなるものの、多糖の収量は比較的低く、食用・薬用真菌多糖の発酵収量を如何に大幅に増加させて製造コストをさらに低減し、上記分野での幅広い用途を達成することは、食用・薬用真菌の液体発酵において解決すべき急務となっている。 Currently, culturing edible and medicinal fungi using deep liquid fermentation technology is the main fermentation method for obtaining edible and medicinal fungal polysaccharides, and the fermentation cycle is shorter and the extraction cost is lower than solid-phase fermentation. However, the yield of polysaccharides is relatively low, and how to significantly increase the fermentation yield of edible and medicinal fungi polysaccharides to further reduce manufacturing costs and achieve a wide range of applications in the above fields is the ability of edible and medicinal fungi. There is an urgent need to solve this in liquid fermentation.

本発明の第1目的は、真菌発酵の初期又は発酵中にフェニルアラニンを添加する真菌細胞外多糖の収量を高める方法を提供することである。 A first object of the present invention is to provide a method for increasing the yield of fungal extracellular polysaccharides to which phenylalanine is added in the early stage of fungal fermentation or during fermentation.

本発明の一実施形態では、前記真菌は食用・薬用真菌である。 In one embodiment of the invention, the fungus is an edible / medicinal fungus.

本発明の一実施形態では、前記食用・薬用真菌には、霊芝、キクラゲ、シイタケ、チョレイマイタケ、シロキクラゲ、マイタケ、マツホド、カワラタケ、ヤマブシタケ、冬虫夏草及び通常の生物分類学的に近縁種である又は形質が近い食用・薬用真菌の子実体又は菌糸体が含まれるが、これらに制限されない。 In one embodiment of the present invention, the edible and medicinal fungi include Reishi, Kikurage, Shiitake, Choreimaitake, White fungus, Maitake, Matsuhodo, Kawaratake, Yamabushitake, Fuyu-mushi summer grass and ordinary bioclassical relatives. Includes, but is not limited to, fruiting bodies or mycelia of edible / medicinal fungi with or with similar traits.

本発明の一実施形態では、前記真菌には、霊芝(Ganoderma lucidum)、アギタケ(Pleurotus ferulae)、アラゲカワラタケ(Coriolushisutus)、スエヒロタケ(Schizophyllumcommune)が含まれるが、これらに制限されない。 In one embodiment of the invention, the fungus includes, but is not limited to, Ganoderma lucidum, Pleurotus ferulae, Coriolus siustus, and Schizophyllum commune.

本発明の一実施形態では、前記方法において、発酵の0~96hでフェニルアラニンを添加する。 In one embodiment of the invention, in the above method, phenylalanine is added from 0 to 96 hours of fermentation.

本発明の一実施形態では、前記フェニルアラニンの最終濃度が0.05~3.5g/Lである。 In one embodiment of the invention, the final concentration of phenylalanine is 0.05-3.5 g / L.

本発明の一実施形態では、前記方法では、真菌を発酵培地に接種して、発酵培地にフェニルアラニンを添加する。 In one embodiment of the invention, in the method, the fungus is inoculated into the fermentation medium and phenylalanine is added to the fermentation medium.

本発明の一実施形態では、発酵培地は、食用・薬用真菌によく使用される液体発酵培地である。 In one embodiment of the invention, the fermentation medium is a liquid fermentation medium often used for edible and medicinal fungi.

本発明の一実施形態では、前記液体発酵培地1Lあたり、グルコース20g、トリプトン5g、アミノ酸不含酵母(YNB)5g、リン酸二水素カリウム4.5g、硫酸マグネシウム七水和物2gが含まれ、この培地は自然pHである。 In one embodiment of the present invention, 20 g of glucose, 5 g of tryptone, 5 g of amino acid-free yeast (YNB), 4.5 g of potassium dihydrogen phosphate, and 2 g of magnesium sulfate heptahydrate are contained in 1 L of the liquid fermentation medium. This medium has a natural pH.

本発明の第2目的は、真菌細胞外多糖の製造方法を提供し、前記方法では、真菌を発酵培地に接種し、真菌発酵の初期又は発酵中に発酵培地へフェニルアラニンを添加し、25~33℃、150~200r・min-1で5~7日間、発酵させる。 A second object of the present invention is to provide a method for producing a fungal extracellular polysaccharide, in which the fungus is inoculated into a fermentation medium and phenylalanine is added to the fermentation medium in the early stage or during fermentation of the fungus, 25-33. Ferment at 150-200 r · min -1 at ° C for 5-7 days.

本発明の一実施形態では、3~6g菌糸体湿重量/L培地の接種量で接種する。 In one embodiment of the present invention, the inoculation amount is 3 to 6 g of mycelium wet weight / L medium.

本発明は、細胞外多糖を含む製品を製造するための、前記方法の使用をさらに提供する。 The present invention further provides the use of said method for producing products comprising extracellular polysaccharides.

有益な効果は以下のとおりである。本発明では、発酵中にフェニルアラニンを添加することにより、元の発酵サイクルを延ばすことなく、食用・薬用真菌の細胞外多糖の収量を著しく増加させ、最大では40%以上向上させ、食用・薬用真菌多糖の製造コストを大幅に低減させ、工業的生産や製品の応用に寄与する。 The beneficial effects are: In the present invention, the addition of phenylalanine during fermentation significantly increases the yield of extracellular polysaccharides of edible and medicinal fungi without prolonging the original fermentation cycle, improving by up to 40% or more, and edible and medicinal fungi. It significantly reduces the cost of producing polysaccharides and contributes to industrial production and product application.

多糖の抽出
発酵液のろ液を100mL採取し、4倍の95%アルコールを加え、20min撹拌して、4000r・min-1で5min遠心分離し、タンパク質を除去して、上澄み液に2.25倍の95%アルコールを加え、20min撹拌後、4℃で一晩静置した。溶液を10000r・min-1で5min遠心分離し、上澄みを除去して、沈殿に蒸留水30mLを加えて振とうして溶解させ、10000r・min-1で10min遠心分離し、透明液として水溶性多糖溶液を得た。
多糖の測定
多糖の含有量測定には、フェノール硫酸法が使用され、測定系は、サンプル溶液2mL、6%フェノール1mL、濃硫酸5mLである。反応終了後、冷却し、その後、490nm波長でOD値を測定した。
Extraction of polysaccharides Collect 100 mL of the filtrate of the fermentation broth, add 4 times 95% alcohol, stir for 20 min, centrifuge at 4000 r · min -1 for 5 min, remove the protein, and add 2.25 to the supernatant. Twice as much 95% alcohol was added, and the mixture was stirred for 20 minutes and then allowed to stand at 4 ° C. overnight. Centrifuge the solution at 10000 r · min -1 for 5 min, remove the supernatant, add 30 mL of distilled water to the precipitate, shake to dissolve, centrifuge at 10000 r · min -1 for 10 min, and water-soluble as a clear solution. A polysaccharide solution was obtained.
Measurement of polysaccharide The phenol-sulfuric acid method is used to measure the content of polysaccharide, and the measurement system is 2 mL of sample solution, 1 mL of 6% phenol, and 5 mL of concentrated sulfuric acid. After completion of the reaction, the mixture was cooled, and then the OD value was measured at a wavelength of 490 nm.

実施例1
霊芝のシード培養
サイズ0.5cmの菌塊を採取し、シード培地の液体仕込み量が80mL/250mLの三角フラスコに接種して、150r・min-1、30℃で7日間、培養した。
霊芝の発酵培養
500mL三角フラスコに発酵培地150mLを加え、115℃で20分殺菌した。発酵培地に湿重量0.5gの霊芝菌糸体を接種して、150r・min-1、30℃で7日間、培養した。
前記シード培地と発酵培地の配合は以下のとおりである。1Lあたり、グルコース20g、トリプトン5g、無アミノ基酵母(YNB)5g、リン酸二水素カリウム4.5g、硫酸マグネシウム七水和物2gが含まれ、この培地は自然pHである。
発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、7日間培養した霊芝多糖の収量は0.320g/L発酵上澄み液であった。
Example 1
Reishi seed culture A bacterial mass having a size of 0.5 cm 2 was collected, inoculated into an Erlenmeyer flask having a liquid charge of 80 mL / 250 mL, and cultured at 150 r · min -1 , 30 ° C. for 7 days.
Fermentation culture of Reishi A 150 mL of fermentation medium was added to a 500 mL Erlenmeyer flask and sterilized at 115 ° C. for 20 minutes. The fermentation medium was inoculated with Reishi mycelium having a wet weight of 0.5 g and cultured at 150 r · min -1 at 30 ° C. for 7 days.
The composition of the seed medium and the fermentation medium is as follows. Each L contains 20 g of glucose, 5 g of tryptone, 5 g of amino-free yeast (YNB), 4.5 g of potassium dihydrogen phosphate, and 2 g of magnesium sulfate heptahydrate, and this medium has a natural pH.
During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide cultured for 7 days was 0.320 g / L fermentation supernatant.

実施例2
0hに発酵培地へフェニルアラニンを培地中のフェニルアラニンの最終濃度が0.05g/Lとなるように添加する以外、培地及び培養方法は実施例1と同様であった。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.400g/L発酵上澄み液であり、実施例1よりも25%向上した。
Example 2
The medium and culture method were the same as in Example 1 except that phenylalanine was added to the fermentation medium at 0 h so that the final concentration of phenylalanine in the medium was 0.05 g / L. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.400 g / L fermentation supernatant, which was 25% higher than that of Example 1.

実施例3
0hに発酵培地へフェニルアラニンをその最終濃度が3.5g/Lとなるように添加する以外、培地及び培養方法は実施例1と同様であった。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.384g/L発酵上澄み液であり、実施例1よりも20%向上した。
Example 3
The medium and culture method were the same as in Example 1 except that phenylalanine was added to the fermentation medium at 0 h so that the final concentration was 3.5 g / L. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.384 g / L fermentation supernatant, which was 20% higher than that of Example 1.

実施例4
0hに発酵培地へフェニルアラニンをその最終濃度が1g/Lとなるように添加する以外、培地及び培養方法は実施例1と同様であった。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.432g/L発酵上澄み液であり、実施例1よりも35%向上した。
Example 4
The medium and culture method were the same as in Example 1 except that phenylalanine was added to the fermentation medium at 0 h so that the final concentration was 1 g / L. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.432 g / L fermentation supernatant, which was 35% higher than that of Example 1.

実施例5
48hの発酵でフェニルアラニンをその最終濃度が2g/Lとなるように添加する以外、培地及び培養方法は実施例1と同様であった。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.448g/L発酵上澄み液であり、実施例1よりも40%向上した。
Example 5
The medium and culture method were the same as in Example 1 except that phenylalanine was added so as to have a final concentration of 2 g / L in the fermentation for 48 hours. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.448 g / L fermentation supernatant, which was 40% higher than that of Example 1.

実施例6
96hの発酵でフェニルアラニンをその最終濃度が1g/Lとなるように添加する以外、培地及び培養方法は実施例1と同様であった。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.416g/L発酵上澄み液であり、実施例1よりも30%向上した。
Example 6
The medium and culture method were the same as in Example 1 except that phenylalanine was added so as to have a final concentration of 1 g / L in the fermentation for 96 hours. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.416 g / L fermentation supernatant, which was 30% higher than that of Example 1.

実施例7
霊芝のシード培養
サイズ0.5cmの菌塊を採取し、シード培地の液体仕込み量が80mL/250mLの三角フラスコに接種して、150r・min-1、30℃で7日間、培養した。
霊芝の発酵培養
500mLの三角フラスコに発酵培地150mLを加え、115℃で20分殺菌した。発酵培地に湿重量0.5gの霊芝菌糸体を接種して、150r・min-1、30℃で7日間、培養した。
前記シード培地と発酵培地の配合は以下のとおりである。1Lあたり、グルコース20g、トウモロコシ粉10g、ふすま10g、リン酸二水素カリウム3g、硫酸マグネシウム七水和物2gが含まれ、この培地は自然pHである。
発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、7日間、発酵させたとき、霊芝多糖の収量は0.368g/L発酵上澄み液であった。
Example 7
Reishi seed culture A bacterial mass having a size of 0.5 cm 2 was collected, inoculated into an Erlenmeyer flask having a liquid charge of 80 mL / 250 mL, and cultured at 150 r · min -1 , 30 ° C. for 7 days.
Fermentation culture of Reishi A 150 mL of fermentation medium was added to a 500 mL Erlenmeyer flask and sterilized at 115 ° C. for 20 minutes. The fermentation medium was inoculated with Reishi mycelium having a wet weight of 0.5 g and cultured at 150 r · min -1 at 30 ° C. for 7 days.
The composition of the seed medium and the fermentation medium is as follows. Each liter contains 20 g of glucose, 10 g of corn flour, 10 g of bran, 3 g of potassium dihydrogen phosphate and 2 g of magnesium sulfate heptahydrate, and this medium has a natural pH.
During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, when fermented for 7 days, the yield of Reishi polysaccharide was 0.368 g / L fermented supernatant.

実施例8
0hに発酵培地へフェニルアラニンをその最終濃度が1g/Lとなるように添加する以外、培地及び培養方法は実施例7と同様であった。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.442g/L発酵上澄み液であり、実施例7よりも20%向上した。
Example 8
The medium and culture method were the same as in Example 7 except that phenylalanine was added to the fermentation medium at 0 h so that the final concentration was 1 g / L. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.442 g / L fermentation supernatant, which was 20% higher than that of Example 7.

実施例9
霊芝のシード培養
サイズ0.5cmの菌塊を採取し、シード培地の液体仕込み量が80mL/250mLの三角フラスコに接種して、150r・min-1、30℃で7日間、培養した。
霊芝の発酵培養
5L発酵タンクに発酵培地3Lを加え、115℃で20分殺菌した。湿重量10gの霊芝菌糸体を接種し、150r・min-1、通気量1.5L・min-1、30℃で7日間、培養した。
前記シード培地と発酵培地の配合は以下のとおりである。1Lあたり、グルコース20g、トウモロコシ粉10g、ふすま10g、リン酸二水素カリウム3g、硫酸マグネシウム七水和物2gが含まれ、この培地は自然pHである。
24~96時間の発酵中には、濃度20g/Lのフェニルアラニンを連続流加して、7日間、発酵させ、合計160mL流加し、その最終濃度が1g/Lとなるようにした。発酵中に、霊芝細胞外多糖の収量を測定した。その結果から明らかなように、霊芝多糖の収量は0.471g/Lであり、実施例7よりも28%向上した。
Example 9
Reishi seed culture A bacterial mass having a size of 0.5 cm 2 was collected, inoculated into an Erlenmeyer flask having a liquid charge of 80 mL / 250 mL, and cultured at 150 r · min -1 , 30 ° C. for 7 days.
Fermentation culture of Reishi A 3L fermentation medium was added to a 5L fermentation tank and sterilized at 115 ° C. for 20 minutes. Reishi mycelium having a wet weight of 10 g was inoculated and cultured at 150 r · min -1 with an aeration rate of 1.5 L · min -1 at 30 ° C. for 7 days.
The composition of the seed medium and the fermentation medium is as follows. Each liter contains 20 g of glucose, 10 g of corn flour, 10 g of bran, 3 g of potassium dihydrogen phosphate and 2 g of magnesium sulfate heptahydrate, and this medium has a natural pH.
During the 24-96 hours fermentation, phenylalanine at a concentration of 20 g / L was continuously fed and fermented for 7 days, and a total of 160 mL was fed so that the final concentration was 1 g / L. During fermentation, the yield of Reishi extracellular polysaccharide was measured. As is clear from the results, the yield of Reishi polysaccharide was 0.471 g / L, which was 28% higher than that of Example 7.

実施例10
アギタケのシード培養
サイズ0.5cmの菌塊を採取し、シード培地の液体仕込み量が80mL/250mLの三角フラスコに接種して、150r・min-1、28℃で7日間、培養した。
アギタケの発酵培養
500mLの三角フラスコに発酵培地150mLを加え、115℃で20分殺菌した。発酵培地に湿重量0.5gの菌糸体を接種して、150r・min-1、28℃で7日間、培養した。
前記シード培地と発酵培地1の配合は以下のとおりである。1Lあたり、グルコース20g、トリプトン5g、無アミノ基酵母(YNB)5g、リン酸二水素カリウム4.5g、硫酸マグネシウム七水和物2gが含まれ、この培地は自然pHである。
発酵中に、アギタケ細胞外多糖の収量を測定し、その結果から明らかなように、アギタケ細胞外多糖の収量は0.201g/L発酵上澄み液であった。
Example 10
Seed culture of Agitake A bacterial mass having a size of 0.5 cm 2 was collected, inoculated into an Erlenmeyer flask having a liquid charge of 80 mL / 250 mL, and cultured at 150 r · min -1 at 28 ° C. for 7 days.
Fermentation culture of Agitake 150 mL of fermentation medium was added to a 500 mL Erlenmeyer flask and sterilized at 115 ° C. for 20 minutes. The fermentation medium was inoculated with mycelium having a wet weight of 0.5 g and cultured at 150 r · min -1 , 28 ° C. for 7 days.
The composition of the seed medium and the fermentation medium 1 is as follows. Each L contains 20 g of glucose, 5 g of tryptone, 5 g of amino-free yeast (YNB), 4.5 g of potassium dihydrogen phosphate, and 2 g of magnesium sulfate heptahydrate, and this medium has a natural pH.
During the fermentation, the yield of Agitake extracellular polysaccharide was measured, and as is clear from the results, the yield of Agitake extracellular polysaccharide was 0.201 g / L fermentation supernatant.

実施例11
0hに発酵培地へフェニルアラニンをその最終濃度が1g/Lとなるように添加する以外、培地及び培養方法は実施例10と同様であった。発酵中に、アギタケ細胞外多糖の収量を測定し、その結果から明らかなように、アギタケ細胞外多糖の収量は0.264g/L発酵上澄み液であり、実施例10よりも31%向上した。
Example 11
The medium and culture method were the same as in Example 10 except that phenylalanine was added to the fermentation medium at 0 h so that the final concentration was 1 g / L. During the fermentation, the yield of Agitake extracellular polysaccharide was measured, and as is clear from the results, the yield of Agitake extracellular polysaccharide was 0.264 g / L fermentation supernatant, which was 31% higher than that of Example 10.

実施例12
実験菌株にはアラゲカワラタケが使用される以外、培地及び培養方法は実施例10と同様であった。発酵中に、アラゲカワラタケ細胞外多糖の収量を測定し、その結果から明らかなように、アラゲカワラタケ細胞外多糖の収量は0.280g/L発酵上澄み液であった。
Example 12
The medium and culture method were the same as in Example 10 except that Aragekawaratake was used as the experimental strain. During fermentation, the yield of Aragekawaratake extracellular polysaccharide was measured, and as is clear from the results, the yield of Aragekawaratake extracellular polysaccharide was 0.280 g / L fermentation supernatant.

実施例13
実験菌株にはアラゲカワラタケが使用され、且つ、0hに発酵培地へフェニルアラニンをその最終濃度が2g/Lとなるように添加する以外、培地及び培養方法は実施例10と同様であった。発酵中に、アラゲカワラタケ細胞外多糖の収量を測定し、その結果から明らかなように、アラゲカワラタケ細胞外多糖の収量は0.322g/L発酵上澄み液であり、実施例12よりも15%向上した。
Example 13
The medium and culture method were the same as in Example 10 except that Aragekawaratake was used as the experimental strain and phenylalanine was added to the fermentation medium at 0 h so that the final concentration was 2 g / L. During fermentation, the yield of Aragekawaratake extracellular polysaccharide was measured, and as is clear from the results, the yield of Aragekawaratake extracellular polysaccharide was 0.322 g / L fermentation supernatant, which was 15% higher than that of Example 12. did.

実施例14
実験菌株にはスエヒロタケが使用される以外、培地及び培養方法は実施例10と同様であった。発酵中に、スエヒロタケ細胞外多糖の収量を測定し、その結果から明らかなように、スエヒロタケ細胞外多糖の収量は0.452g/L発酵上澄み液であった。
Example 14
The medium and culture method were the same as in Example 10 except that Schizophyllum communis was used for the experimental strain. During fermentation, the yield of exopolysaccharide of Schizophyllum communis was measured, and as is clear from the results, the yield of exopolysaccharide of Schizophyllum communis was 0.452 g / L fermentation supernatant.

実施例15
実験菌株にはスエヒロタケが使用され、且つ、0hに発酵培地へフェニルアラニンをその最終濃度が3g/Lとなるように添加する以外、培地及び培養方法は実施例10と同様であった。発酵中に、スエヒロタケ細胞外多糖の収量を測定し、その結果から明らかなように、スエヒロタケ細胞外多糖の収量は0.563g/L発酵上澄み液であり、実施例14よりも25%向上した。
Example 15
The medium and culture method were the same as in Example 10 except that Schizophyllum communis was used as the experimental strain and phenylalanine was added to the fermentation medium at 0 h so that the final concentration was 3 g / L. The yield of exopolysaccharide of Schizophyllum communis was measured during fermentation, and as is clear from the results, the yield of exopolysaccharide of Schizophyllum communis was 0.563 g / L fermentation supernatant, which was 25% higher than that of Example 14.

実施例16
実施例1~15と同様な方策によって、キクラゲ、シイタケ、チョレイマイタケ、シロキクラゲ、マツホド、カワラタケ、ヤマブシタケ、冬虫夏草などの食用・薬用真菌の発酵中にフェニルアラニンをそれぞれ添加し、その結果から明らかなように、細胞外多糖の収量は、異なる程度の向上を有する。
比較例1
発酵液にアミノ酸を最終濃度が1g/Lとなるようにそれぞれ添加する以外、実施例1と同様にして、細胞外多糖の収量を測定し、結果を下記表1に示した。本比較例では、実施例1と比較して、添加したアミノ酸をトリプトファン、アルギニン、ヒスチジン、リジン、イソロイシン、プロリン、バリンに変えた。

Figure 0006995206000001
Example 16
By the same measures as in Examples 1 to 15, phenylalanine was added during the fermentation of edible and medicinal fungi such as fungus, shiitake mushroom, polyporus umbellatus, white fungus, pine root, coriolus versicolor, lion's mane, and winter worm summer grass, respectively, as is clear from the results. In addition, the yield of extracellular polysaccharides has different degrees of improvement.
Comparative Example 1
The yield of extracellular polysaccharide was measured in the same manner as in Example 1 except that amino acids were added to the fermentation broth so that the final concentration was 1 g / L, and the results are shown in Table 1 below. In this comparative example, the added amino acids were changed to tryptophan, arginine, histidine, lysine, isoleucine, proline, and valine as compared with Example 1.
Figure 0006995206000001

本願に記載の食用・薬用真菌は、今のところ知られている細胞外多糖を産生するための食用・薬用真菌に限定されず、既知の食用・薬用真菌に類似性のある既知又は未知の属種の真菌は、いずれも本願の方法に適用でき、細胞外多糖の収量向上には類似した効果を達成することができる。 The edible / medicinal fungi described in the present application are not limited to the edible / medicinal fungi for producing extracellular polysaccharides known so far, and the known or unknown genus having similarities to the known edible / medicinal fungi. All of the fungi of the species can be applied to the methods of the present application and can achieve similar effects in improving the yield of extracellular polysaccharides.

以上、本発明を好適な実施例により開示したが、これらは本発明を限定するものではなく、当業者であれば、本発明の趣旨及びその範囲から逸脱することなく、様々な変更や修飾を行うことができるため、本発明の特許範囲は、特許請求の範囲によって定められるものとする。 Although the present invention has been disclosed by preferred embodiments as described above, these are not limited to the present invention, and those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. The scope of the invention of the present invention shall be determined by the scope of claims.

Claims (8)

真菌発酵の初期又は発酵中にフェニルアラニンを添加すること、及び
前記真菌が、霊芝(Ganoderma lucidum)、アギタケ(Pleurotus ferulae)、アラゲカワラタケ(Coriolus hirsutus)又はスエヒロタケ(Schizophyllum commune)を含むことを特徴とする真菌細胞外多糖の収量を高める方法。
Adding phenylalanine early in or during fungal fermentation , and
A method for increasing fungal exopolysaccharide, characterized in that the fungus comprises Ganoderma lucidum, Pleurotus ferulae, Coriolus hirsutus or Schizophyllum commune .
フェニルアラニンの最終濃度が0.05~3.5g/Lであることを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the final concentration of phenylalanine is 0.05 to 3.5 g / L. フェニルアラニンは発酵の0~96hで添加されることを特徴とする請求項に記載の方法。 The method according to claim 2 , wherein phenylalanine is added in 0 to 96 hours of fermentation. フェニルアラニンはバッチ添加又は連続流加により添加されることを特徴とする請求項1~のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3 , wherein phenylalanine is added by batch addition or continuous pouring. 真菌を発酵培地に接種して発酵を行い、発酵の0~96時間で発酵培地にフェニルアラニンを添加すること、及び
前記真菌が、霊芝(Ganoderma lucidum)、アギタケ(Pleurotus ferulae)、アラゲカワラタケ(Coriolus hirsutus)又はスエヒロタケ(Schizophyllum commune)を含むことを特徴とする食用・薬用真菌の細胞外多糖の製造方法。
Fermentation is performed by inoculating the fungus into the fermentation medium, and phenylalanine is added to the fermentation medium in 0 to 96 hours of fermentation, and
An edible / medicinal fungus for producing an edible / medicinal fungus, wherein the fungus contains Ganoderma lucidum, Pleurotus ferulae, Coriolus hirsutus, or Schizophyllum commune .
真菌発酵の初期又は発酵中に、フェニルアラニンを最終濃度が0.05~3.5g/Lとなるように発酵培地に添加し、25~33℃、150~200r・min-1で5~7日間、発酵させることを特徴とする請求項に記載の方法。 Phenylalanine is added to the fermentation medium to a final concentration of 0.05-3.5 g / L during the initial or during fermentation of the fungus and at 25-33 ° C., 150-200 r · min -1 for 5-7 days. , The method according to claim 5 , characterized in that it is fermented. 3~6gの菌糸体湿重量/L培地の接種量で食用・薬用真菌を接種することを特徴とする請求項又はに記載の方法。 The method according to claim 5 or 6 , wherein the edible / medicinal fungus is inoculated with an inoculation amount of 3 to 6 g of mycelium wet weight / L medium. 細胞外多糖を含む製品を製造するための、請求項1~のいずれか1項に記載の方法の使用。 Use of the method according to any one of claims 1 to 7 for producing a product containing extracellular polysaccharide.
JP2020535638A 2018-02-01 2018-02-01 How to increase the yield of extracellular polysaccharides of edible and medicinal fungi by adding phenylalanine Active JP6995206B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074935 WO2019148418A1 (en) 2018-02-01 2018-02-01 Method for increasing yield of extracellular polysaccharides of edible and medicinal fungus by adding phenylalanine

Publications (2)

Publication Number Publication Date
JP2021512589A JP2021512589A (en) 2021-05-20
JP6995206B2 true JP6995206B2 (en) 2022-01-14

Family

ID=67478547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535638A Active JP6995206B2 (en) 2018-02-01 2018-02-01 How to increase the yield of extracellular polysaccharides of edible and medicinal fungi by adding phenylalanine

Country Status (2)

Country Link
JP (1) JP6995206B2 (en)
WO (1) WO2019148418A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020944A2 (en) 2001-09-03 2003-03-13 Medimush Aps Production of fungal extracellular immune stimulating compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722056B2 (en) * 2003-10-03 2014-05-13 Tcm Biotech International Corp. Methods for making and compositions comprising fermentation products of cordyceps sinensis
CN102311469B (en) * 2011-09-16 2014-06-04 陕西科技大学 Method for producing scutelloside by use of Scutellaria baicalensis Georgi hairy roots

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020944A2 (en) 2001-09-03 2003-03-13 Medimush Aps Production of fungal extracellular immune stimulating compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Northwest A&F University, 2010, Vol.38, No.11, pp.156-160
World J Microbiol Biotechnol, 2009, Vol.25, pp.2187-2193

Also Published As

Publication number Publication date
WO2019148418A1 (en) 2019-08-08
JP2021512589A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
Shih et al. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa
CN105255964B (en) A kind of production method of beta glucan
Lin et al. Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnamomea using complex media
Lin et al. Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture
Luo et al. Optimization of medium composition for the production of exopolysaccharides from Phellinus baumii Pilát in submerged culture and the immuno-stimulating activity of exopolysaccharides
TWI422680B (en) Culture medium for culturing fruiting bodies of antrodia cinnamomea and method for culturing the same
JP6995206B2 (en) How to increase the yield of extracellular polysaccharides of edible and medicinal fungi by adding phenylalanine
TWI595088B (en) A medium for mycelia of antrodia cinnamomea
CN108588142B (en) Method for improving polysaccharide content of ganoderma lucidum mycelia by utilizing fungal polysaccharide and ganoderma lucidum product obtained by method
CN105886412A (en) Liquid fermentation culture medium for cordyceps sinensis
CN106520579B (en) A kind of Serratieae fermentation liquid culture medium promoting the gill fungus growth and development of spot jade
CN117551563A (en) Composite fungus glycopeptide manufacturing process, liquid culture medium and preparation method of solid culture medium
CN108103122B (en) Method for increasing yield of edible and medicinal fungus exopolysaccharide by adding phenylalanine
WO2019148419A1 (en) Method for improving yield of edible and medicinal fungus exopolysaccharide by adding tyrosine
CN110423788B (en) Method for producing grifola frondosa polysaccharide by using grifola frondosa strains generated by mutagenesis
CN108384820B (en) Method for increasing yield of edible and medicinal fungus exopolysaccharide by adding tyrosine
KR101062272B1 (en) Culture medium of Ganoderma neo-japonicum for increasing ergothioneine and culture method of Ganoderma neo-japonicum
CN112189512A (en) Culture method and application of cordyceps militaris mycelium for increasing content of cordycepin and adenosine
CN101182443B (en) Production method of polyporus umbellatus wine
KR20070070944A (en) Cultivation method of fomitopsis pinicola mycelium using citrus peel extract or green tea extract and fomitopsis pinicola mycelium thereof
KR20200108748A (en) The cultivation method of sang hwang mushroom mycelium with high content of beta-glucan
RU2787269C1 (en) Method for production of fungal exopolysaccharides
CN109777847B (en) Method for producing polysaccharide with strong antioxidant activity by co-fermentation of somatic cell compatible ganoderma lucidum strain pair
JPH11209301A (en) Protein polysaccharide 0041
Lee et al. Factors influencing the production of water-soluble endopolysaccharides and exopolysaccharides from Lentinus lepideus and their effects on immune cytokine production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6995206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150