JP6994780B2 - Hydrogen water generator - Google Patents

Hydrogen water generator Download PDF

Info

Publication number
JP6994780B2
JP6994780B2 JP2020090527A JP2020090527A JP6994780B2 JP 6994780 B2 JP6994780 B2 JP 6994780B2 JP 2020090527 A JP2020090527 A JP 2020090527A JP 2020090527 A JP2020090527 A JP 2020090527A JP 6994780 B2 JP6994780 B2 JP 6994780B2
Authority
JP
Japan
Prior art keywords
water
electrode plates
electrolytic cell
hydrogen
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090527A
Other languages
Japanese (ja)
Other versions
JP2020121314A (en
JP2020121314A5 (en
Inventor
三夫 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMOS ENTERPRISE CO., LTD.
Original Assignee
COSMOS ENTERPRISE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMOS ENTERPRISE CO., LTD. filed Critical COSMOS ENTERPRISE CO., LTD.
Priority to JP2020090527A priority Critical patent/JP6994780B2/en
Publication of JP2020121314A publication Critical patent/JP2020121314A/en
Publication of JP2020121314A5 publication Critical patent/JP2020121314A5/ja
Application granted granted Critical
Publication of JP6994780B2 publication Critical patent/JP6994780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、水の電気分解により水素水を生成する水素水生成装置に関する。 The present invention relates to a hydrogen water generator that produces hydrogen water by electrolysis of water.

電解槽の水中に電極を配置し、電気分解により水素を含有する水素水を生成する装置が知られている。例えば特許文献1に記載の電解水生成装置は、水を電気分解する電解部と、この電解部に電力を供給する電源部とを備え、電解部は互いに並列に接続された電解槽を含むことから、野菜栽培等のように大量の電解還元水が必要な場合であっても、汎用の電解槽を複数備えた電解水生成装置を利用して安価に大量の電解還元水を生成できるというものである。 A device is known in which an electrode is placed in the water of an electrolytic cell and hydrogen water containing hydrogen is generated by electrolysis. For example, the electrolytic water generator described in Patent Document 1 includes an electrolytic unit that electrolyzes water and a power supply unit that supplies power to the electrolytic unit, and the electrolytic unit includes an electrolytic tank connected in parallel with each other. Therefore, even when a large amount of electrolytically reduced water is required, such as in vegetable cultivation, a large amount of electrolytically reduced water can be generated inexpensively by using an electrolytic water generator equipped with a plurality of general-purpose electrolytic tanks. Is.

また、文献2に記載の水素水製造装置は、水を電気分解して水素と酸素とを発生させる水電気分解装置と、電気分解により生成された電気分解水中に水素及び酸素のナノバブルを発生させるナノバブル発生装置と、を備え、このナノバブル発生装置は、電気分解水を貯留するとともに密閉された耐圧容器で形成された液体貯留槽と、電気分解により発生した気体を液体貯留槽内の電気分解水中に高圧で放出する気体放出手段等、を備えるというものである。 Further, the hydrogen water production apparatus described in Document 2 is a water electrolysis apparatus that electrolyzes water to generate hydrogen and oxygen, and a hydrogen and oxygen nanobubbles are generated in the electrolyzed water generated by the electrolysis. It is equipped with a nanobubble generator, which stores electrolyzed water and has a liquid storage tank formed of a closed pressure-resistant container, and the gas generated by electrolysis is stored in the electrolyzed water in the liquid storage tank. It is equipped with a gas discharge means for discharging at high pressure.

特開2016-131963号公報Japanese Unexamined Patent Publication No. 2016-131963 特開2015-150512号公報Japanese Unexamined Patent Publication No. 2015-150512

さて、上記特許文献1の電解水生成装置は、電解部に複数(ここでは3つ)の電解槽を設けて、大量の電解還元水を生成することとしているが、より多くの電解水を得るためにはさらに電解槽の数を増やす必要があり、このため装置が大型化し、また場所の確保などで拡張性、汎用性等に欠けるという問題がある。
また、特許文献2の水素水製造装置は、水電気分解装置とナノバブル発生装置とを備え、また耐圧容器等を用いること等から装置が複雑化し、また経済性にも欠けるという問題がある。
By the way, in the electrolyzed water generator of Patent Document 1, a plurality of (three in this case) electrolytic cells are provided in the electrolytic unit to generate a large amount of electrolytically reduced water, but more electrolyzed water can be obtained. Therefore, it is necessary to further increase the number of electrolytic cells, which causes a problem that the device becomes large and lacks expandability, versatility, etc. due to securing a place.
Further, the hydrogen water production apparatus of Patent Document 2 is provided with a water electrolysis apparatus and a nanobubble generator, and has a problem that the apparatus is complicated and economical because it uses a pressure resistant container or the like.

本発明は上記問題点に鑑みてなされたものであり、効率的に大量の水素水を生成し、また機能性、経済性にも優れた水素水生成装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen water generator which efficiently generates a large amount of hydrogen water and is also excellent in functionality and economy.

以上の技術的課題を解決するため、本発明に係る水素水生成装置は図1等に示すように、網状の電極板6と、上記電極板6を、所定間隔をおいて3枚以上互いに向い合せに配置し、これら電極板6の並びの一方側に水の注入口30を、また他方側に水の排出口32をそれぞれ設けた電解槽4と、上記各電極板6に電圧を印加し、隣り合う電極板6間及び他の電極板6を介在させた電極板6間に電流を流して電気分解を行わせる電源回路部11と、を有し、上記電解槽4の上記注入口30から水を注入し、この水を上記注入口30側から上記排出口32側に移動させ、この移動する水を上記電極板6により電気分解し、水中に水素を含有する水溶液を生成し、これを上記排出口32から排出する構成である。 In order to solve the above technical problems, as shown in FIG. 1 and the like, the hydrogen water generator according to the present invention has three or more mesh-like electrode plates 6 and the above-mentioned electrode plates 6 facing each other at predetermined intervals. A voltage is applied to the electrolytic tank 4 and each of the electrode plates 6 which are arranged together and have a water inlet 30 on one side of the array of the electrode plates 6 and a water discharge port 32 on the other side. , A power supply circuit unit 11 in which a current is passed between the adjacent electrode plates 6 and between the electrode plates 6 interposed therebetween to perform electrolysis, and the injection port 30 of the electrolytic tank 4 is provided. Water is injected into the water, and the water is moved from the injection port 30 side to the discharge port 32 side, and the moving water is electrolyzed by the electrode plate 6 to generate an aqueous solution containing hydrogen in the water. Is discharged from the discharge port 32.

本発明に係る水素水生成装置は、上記電極板6の数を、4枚以上16枚以下の範囲とした構成である。 The hydrogen water generator according to the present invention has a configuration in which the number of the electrode plates 6 is in the range of 4 or more and 16 or less.

本発明に係る水素水生成装置の上記電源回路部11は、上記電極板6の内の特定の電極板6間に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6には直流電圧を印加し、電気分解を行わせる構成である。 The power supply circuit unit 11 of the hydrogen water generator according to the present invention applies an AC voltage between specific electrode plates 6 in the electrode plate 6, and applies to electrode plates 6 other than the specific electrode plate 6. It is configured to apply a DC voltage to perform electrolysis.

本発明に係る水素水生成装置の上記電源回路部11は、上記電極板6の内、他の電極板6を介在させた特定の電極板6間に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6には直流電圧を印加し、この直流電圧の極性を定期的に切り替え、電気分解を行わせる構成である。 The power supply circuit unit 11 of the hydrogen water generator according to the present invention applies an AC voltage between specific electrode plates 6 intervening with other electrode plates 6 among the electrode plates 6, and the specific electrodes. A DC voltage is applied to the electrode plates 6 other than the plate 6, and the polarity of the DC voltage is periodically switched so that electrolysis is performed.

本発明に係る水素水生成装置の上記電源回路部11は、上記電極板6を、連続する4枚を一組とし、各一組の上記電極板6の内、他の電極板6を介在させた特定の電極板6間に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6(上記他の電極板6を含む)には直流電圧を印加し、電気分解を行わせる構成である。
ここで、例えば、低い直流電圧(グラウンド)を電極板6に印加した場合、この(全ての)電極板6に向けて、交流電圧の高い時点の電位(V+)が印加された特定の電極板6から電流(直流)を流すようにする。
また、例えば直流電圧の極性を切り替え、高い直流電圧(V+)を電極板6に印加した場合、この(全ての)電極板から、交流電圧の低い電位(グラウンド)が印加された時点の特定の電極板に向けて電流(直流)を流すようにする。
In the power supply circuit unit 11 of the hydrogen water generator according to the present invention, the electrode plates 6 are made into a set of four consecutive electrodes, and the other electrode plates 6 are interposed in each set of the electrode plates 6. A configuration in which an AC voltage is applied between the specific electrode plates 6 and a DC voltage is applied to the electrode plates 6 other than the specific electrode plates 6 (including the above-mentioned other electrode plates 6) to perform electrical decomposition. Is.
Here, for example, when a low DC voltage (ground) is applied to the electrode plate 6, a specific electrode plate to which the potential (V +) at a high time point of the AC voltage is applied toward the (all) electrode plates 6 Make the current (direct current) flow from 6.
Further, for example, when the polarity of the DC voltage is switched and a high DC voltage (V +) is applied to the electrode plate 6, a specific time point when a low potential (ground) of the AC voltage is applied from the (all) electrode plates is specified. Make a current (direct current) flow toward the electrode plate.

本発明に係る水素水生成装置は、上記注入口30を上記電解槽4の下部近傍に設けて水を注入する一方、上記排出口32を上記電解槽4の上部近傍に設けて、上記注入された水を注入口30から排出口32方向へ移動させるとともに、下方から上方へと移動させ、この移動する水を上記各電極板6により電気分解し、上記排出口32から排出する構成である。 In the hydrogen water generator according to the present invention, the injection port 30 is provided near the lower part of the electrolytic cell 4 to inject water, while the discharge port 32 is provided near the upper part of the electrolytic cell 4 to inject water. The water is moved from the injection port 30 toward the discharge port 32 and from the bottom to the top, and the moving water is electrolyzed by each of the electrode plates 6 and discharged from the discharge port 32.

本発明に係る水素水生成装置は、上記排出口32と連通する切替弁を設け、上記排出口32から排出された水溶液の濾過器12を通過する流路と、この濾過器12を通過しない流路とを切り換え可能とした構成である。 The hydrogen water generator according to the present invention is provided with a switching valve that communicates with the discharge port 32, and has a flow path through which the aqueous solution discharged from the discharge port 32 passes through the filter 12 and a flow that does not pass through the filter 12. It is a configuration that can be switched between the road and the road.

本発明に係る水素水生成装置は、上記電解槽4の排出口32から排出された水溶液を溜める貯留タンク16と、この貯留タンク16内の水溶液を吸引し、これを上記電解槽4へ流通させるポンプ14と、を有し、上記ポンプ14により、上記電解槽4で電気分解された水溶液を上記貯留タンク16へ供給する一方、上記貯留タンク16内の水溶液を吸引して上記電解槽4に送り、これを再度電気分解する循環流路62を駆動させ、水溶液中の水素濃度を高める構成である。
ここで、水素水生成装置の運転状況を管理する制御部10を設け、この制御部10に上記循環流路62の循環時間として、ポンプ14を稼働させて循環流路を流通させる時間を登録することで、この循環時間により水素濃度の調節を行うことができる。
The hydrogen water generator according to the present invention sucks the storage tank 16 for storing the aqueous solution discharged from the discharge port 32 of the electrolytic tank 4 and the aqueous solution in the storage tank 16 and distributes the aqueous solution to the electrolytic tank 4. It has a pump 14, and the aqueous solution electrolyzed in the electrolytic tank 4 is supplied to the storage tank 16 by the pump 14, while the aqueous solution in the storage tank 16 is sucked and sent to the electrolytic tank 4. The circulation flow path 62 for electrolyzing this is driven again to increase the hydrogen concentration in the aqueous solution.
Here, a control unit 10 for managing the operating status of the hydrogen water generator is provided, and the time for operating the pump 14 to circulate the circulation flow path is registered in the control unit 10 as the circulation time of the circulation flow path 62. Therefore, the hydrogen concentration can be adjusted by this circulation time.

本発明に係る水素水生成装置によれば、網状の電極板を3枚以上互いに向い合せに配置し、一方側に注入口を他方側に排出口をそれぞれ設けた電解槽、及び隣り合う電極板間等に電流を流して電気分解を行わせる電源回路部を有し、電解槽を移動する水を電極板により電気分解し、水素を含有する水溶液を生成する構成を採用したから、効率的に水素を含有する水溶液(水素水)を大量に得ることができ、また装置の小型化が図れ、経済的にも優れるという効果を奏する。 According to the hydrogen water generator according to the present invention, three or more reticulated electrode plates are arranged facing each other, an electrolytic tank having an inlet on one side and an outlet on the other side, and adjacent electrode plates. It has a power supply circuit unit that allows current to flow between them to perform electrolysis, and adopts a configuration that electrolyzes the water moving in the electrolytic tank with an electrode plate to generate an aqueous solution containing hydrogen, so it is efficient. A large amount of hydrogen-containing aqueous solution (hydrogen water) can be obtained, the device can be miniaturized, and it is economically excellent.

本発明に係る水素水生成装置によれば、電源回路部は、特定の電極板間に交流電圧を、これ以外の電極板には直流電圧を印加し、電気分解を行わせる構成を採用したから、電極板間で効率的に電気分解が行なえて、電解槽等の装置の小型化が図れ、機能的にも優れた水素水生成装置が得られるという効果がある。 According to the hydrogen water generator according to the present invention, the power supply circuit unit adopts a configuration in which an AC voltage is applied between specific electrode plates and a DC voltage is applied to other electrode plates to perform electrolysis. There is an effect that electrolysis can be efficiently performed between the electrode plates, the device such as an electrolytic tank can be miniaturized, and a functionally excellent hydrogen water generation device can be obtained.

本発明に係る水素水生成装置によれば、電源回路部は、他の電極板を介在させた特定の電極板間に交流電圧を、これ以外の電極板には直流電圧を印加し、この直流電圧の極性を定期的に切り替え、電気分解を行わせる構成としたから、全ての電極板間で効率的に電気分解が行えることから、電解槽等の装置の小型化が図れ、また電極板の付着物(無機物質等)も除去され、機能的にも優れた水素水生成装置が得られるという効果がある。 According to the hydrogen water generator according to the present invention, the power supply circuit unit applies an AC voltage between specific electrode plates interposed with other electrode plates and a DC voltage to the other electrode plates, and this DC is applied. Since the polarity of the voltage is switched periodically and electrolysis is performed, the electrolysis can be efficiently performed between all the electrode plates, so that the equipment such as the electrolytic tank can be miniaturized and the electrode plate can be used. It also has the effect of removing deposits (inorganic substances, etc.) and obtaining a functionally superior hydrogen water generator.

本発明に係る水素水生成装置によれば、4枚一組の電極板の内、他の電極板を介在させた特定の電極板6間に交流電圧を、これ以外の電極板には直流電圧を印加し、電気分解を行わせる構成としたから、隣り合う全ての電極板間で電流(直流)を流すことができ、効率よく電気分解が行える。また4枚一組の組み合わせでは、電極板間で交流電圧の印加と直流電圧の印加とが交互となり、他の組の電極板6との組同士間でも電流を流して電気分解を行うことが出来て効率がよい。 According to the hydrogen water generator according to the present invention, an AC voltage is applied between specific electrode plates 6 having another electrode plate interposed therebetween in a set of four electrode plates, and a DC voltage is applied to the other electrode plates. Is configured to perform electrolysis, so that current (DC) can flow between all adjacent electrode plates, and electrolysis can be performed efficiently. Further, in the combination of four plates, the application of AC voltage and the application of DC voltage are alternated between the electrode plates, and a current may be passed between the pairs of the other pairs of the electrode plates 6 to perform electrolysis. It can be done and is efficient.

本発明に係る水素水生成装置によれば、注入口を電解槽の下部近傍に設ける一方、排出口を電解槽の上部近傍に設け、注入され下方から上方へ移動する水を各電極板により電気分解する構成を採用したから、電解槽内の水の移動が淀みなく満遍に行えて良好に電気分解が行なえ、また水の滞留も防止できるという効果がある。 According to the hydrogen water generator according to the present invention, the injection port is provided near the lower part of the electrolytic cell, while the discharge port is provided near the upper part of the electrolytic cell, and the water that is injected and moves from the lower side to the upper side is electrified by each electrode plate. Since the structure that decomposes is adopted, the water in the electrolytic cell can be moved evenly without stagnation, the electrolysis can be performed well, and the retention of water can be prevented.

本発明に係る水素水生成装置によれば、排出口と連通する切替弁を設け、濾過器を通過する流路と通過しない流路とを切り替え可能としたから、必要に応じ選択的に濾過器による塩素系物質等の除去が行えるという効果がある。 According to the hydrogen water generator according to the present invention, a switching valve that communicates with the discharge port is provided so that the flow path that passes through the filter and the flow path that does not pass through can be switched. It has the effect of being able to remove chlorine-based substances and the like.

本発明に係る水素水生成装置によれば、ポンプにより、電解槽で電気分解された水溶液を貯留タンクへ供給する一方、貯留タンク内の水溶液を吸引して電解槽に送り、これを再度電気分解する循環流路を駆動させる構成を採用したから、容易に高濃度の水溶液(水素水)を得ることができ、また水溶液中の水素濃度の管理が容易であるという効果がある。 According to the hydrogen water generator according to the present invention, the aqueous solution electrolyzed in the electrolytic tank is supplied to the storage tank by a pump, while the aqueous solution in the storage tank is sucked and sent to the electrolytic tank, which is electrolyzed again. Since the configuration for driving the circulation flow path is adopted, it is possible to easily obtain a high-concentration aqueous solution (hydrogen water), and there is an effect that the hydrogen concentration in the aqueous solution can be easily controlled.

実施の形態に係り、水素水生成装置の内部構造を正面からみた説明図である。It is explanatory drawing which concerns on embodiment and looked at the internal structure of the hydrogen water generation apparatus from the front. 実施の形態に係り、水素水生成装置の内部構造を上からみた説明図である。It is explanatory drawing which | 実施の形態に係り、水素水生成装置の筐体を正面からみた外観図である。FIG. 5 is an external view of the housing of the hydrogen water generator as viewed from the front according to the embodiment. 水素水生成装置の電源回路部の一部回路図及び電極板との接続形態を示す図である。It is a figure which shows a part circuit diagram of the power circuit part of a hydrogen water generation apparatus, and the connection form with an electrode plate. 電源回路部の各部における電圧の波形を示す図である。It is a figure which shows the waveform of the voltage in each part of a power supply circuit part. 電源回路部と電極板(8枚中の4枚(一組))との接続及び電流(直流、交流)の流れを示す第一の図である。It is the first figure which shows the connection between a power-source circuit part and an electrode plate (4 out of 8 (a set)), and the flow of a current (direct current, alternating current). 電源回路部と電極板(8枚中の4枚(一組))との接続及び電流(直流、交流)の流れを示す第二の図である。It is a second figure which shows the connection between a power-source circuit part and an electrode plate (4 out of 8 (a set)), and the flow of a current (direct current, alternating current). 実施の形態に係り、水素水生成装置に貯留タンクを加えた循環流路の構成を示す図である。FIG. 5 is a diagram showing a configuration of a circulation flow path in which a storage tank is added to a hydrogen water generator according to an embodiment. 水素水生成装置を用いて行なった試験1の結果を示す図(グラフ)である。It is a figure (graph) which shows the result of the test 1 performed using the hydrogen water generation apparatus. 水素水生成装置を用いて行なった試験2の結果を示す図(グラフ)である。It is a figure (graph) which shows the result of the test 2 performed using the hydrogen water generation apparatus. 水素水生成装置を用いて行なった試験3の結果を示す図(グラフ)である。It is a figure (graph) which shows the result of the test 3 performed using the hydrogen water generation apparatus. 水素水生成装置により生成された水溶液中の粒子(気泡)径及び粒子濃度を示す図(グラフ)である。It is a figure (graph) which shows the particle (bubble) diameter and the particle concentration in the aqueous solution generated by a hydrogen water generator.

以下、本発明に係る水素水生成装置の実施の形態を説明する。
図1,2は、実施の形態に係る水素水生成装置2を示すものである。
この水素水生成装置2は、電解槽4、この電解槽4内に配置され水を電気分解する電極板6、制御盤8、濾過器12、ポンプ14、及び貯留タンク16等を有する。
また、図3に示すように制御盤8には、操作パネル9が設けられ、装置の制御及び運転管理等を行う制御部10、及び上記電極板6に電気を供給する電源回路部11等が内蔵されている。
Hereinafter, embodiments of the hydrogen water generator according to the present invention will be described.
FIGS. 1 and 2 show the hydrogen water generation device 2 according to the embodiment.
The hydrogen water generation device 2 includes an electrolytic cell 4, an electrode plate 6 arranged in the electrolytic cell 4 for electrolyzing water, a control panel 8, a filter 12, a pump 14, a storage tank 16, and the like.
Further, as shown in FIG. 3, the control panel 8 is provided with an operation panel 9, and a control unit 10 for controlling and operating the device, a power supply circuit unit 11 for supplying electricity to the electrode plate 6, and the like are provided. It is built-in.

この水素水生成装置2は、上記貯留タンク16を除いた他の電解槽4、電極板6、濾過器12、ポンプ14等の器具は筐体18内に収納され、また制御盤8は筐体18の正面部に取り付けられている。上記電気分解には、水道水、井戸水、及び自然水等の水が用いられる。
ここでは、単に水といった場合には、電気分解前の水、及び電気分解後の水の何れかをさし、また電気分解後の、水素等を含みまた溶存させた水溶液を、水素水又は電解水という。
In the hydrogen water generation device 2, other appliances such as an electrolytic cell 4, an electrode plate 6, a filter 12, and a pump 14 other than the storage tank 16 are housed in a housing 18, and a control panel 8 is a housing. It is attached to the front part of 18. Water such as tap water, well water, and natural water is used for the above electrolysis.
Here, when simply referring to water, it refers to either water before electrolysis or water after electrolysis, and hydrogen water or electrolysis of an aqueous solution containing or dissolved hydrogen or the like after electrolysis. It's called water.

上記筐体18は箱型であり、筐体18の正面部には制御盤8が取り付けられ、筐体18の正面部の右上部には、水の吸入口20、及び水の吐出口22が設けられている。
また、筐体18には、電解槽4内の不要な水を排水する排水コック26、及びポンプ14内の不要な水を抜く水抜コック28が設けられている。通常、装置の運転を行わないときには、上記両コックは開けておき、運転時には閉めておく。
The housing 18 is box-shaped, and a control panel 8 is attached to the front portion of the housing 18, and a water suction port 20 and a water discharge port 22 are located in the upper right portion of the front portion of the housing 18. It is provided.
Further, the housing 18 is provided with a drain cock 26 for draining unnecessary water in the electrolytic cell 4 and a drain cock 28 for draining unnecessary water in the pump 14. Normally, both cocks are opened when the device is not operated and closed when the device is operated.

上記電解槽4は、ステンレス鋼製或いは合成樹脂製等からなる直方体状の容器である。この電解槽4は、平面が矩形状(又は長方形状)であり、電解槽4の向い合う壁面部の一方側(正面側)には注入口30が設けられ、また他方側(背面側)には排出口32が設けられている。この電解槽4の注入口30は、パイプ等の流路及びポンプ14を介して筐体18の吸入口20と連結されている。 The electrolytic cell 4 is a rectangular parallelepiped container made of stainless steel, synthetic resin, or the like. The electrolytic cell 4 has a rectangular (or rectangular) flat surface, and an injection port 30 is provided on one side (front side) of the facing wall surface portions of the electrolytic cell 4, and the other side (rear side). Is provided with a discharge port 32. The injection port 30 of the electrolytic cell 4 is connected to the suction port 20 of the housing 18 via a flow path such as a pipe and a pump 14.

上記注入口30は電解槽4の底面部34近傍に設けられ、また上記排出口32は電解槽4の上部36近傍に設けられており、このため排出口32は注入口30からは斜め上方に位置する。また、電解槽4の上側には、蓋部材38が取り付けられ、この蓋部材38の下部側には8枚の電極板6が取り付けられている。蓋部材38により、電解槽4の上部が密閉、閉塞されている。 The injection port 30 is provided in the vicinity of the bottom surface portion 34 of the electrolytic cell 4, and the discharge port 32 is provided in the vicinity of the upper portion 36 of the electrolytic cell 4. Therefore, the discharge port 32 is obliquely upward from the injection port 30. To position. Further, a lid member 38 is attached to the upper side of the electrolytic cell 4, and eight electrode plates 6 are attached to the lower side of the lid member 38. The upper part of the electrolytic cell 4 is sealed and closed by the lid member 38.

上記電極板6は、金属材料を網目状(縦横形状或いは斜め交差形状)に形成した網体からなり、全体が矩形状又は長方形状(例えば縦260mm・横54.5mm)の板材である。
この電極板6の金属材料としては、ステンレス、チタン、アルミニウム、或いは銅等を用いることができる。特に、ステンレス、チタン等は耐食性、耐久性に優れて良好である。
ここでは、電極板6はステンレス鋼を使用し、目が菱形(パンチングメタル)の網状のラス材を用いている。また、電極板6には、網体に白金、或いは金メッキを施したものを使用している。
The electrode plate 6 is made of a mesh body in which a metal material is formed in a mesh shape (vertical / horizontal shape or diagonal crossing shape), and is a plate material having a rectangular shape or a rectangular shape as a whole (for example, 260 mm in length and 54.5 mm in width).
As the metal material of the electrode plate 6, stainless steel, titanium, aluminum, copper or the like can be used. In particular, stainless steel, titanium and the like are excellent in corrosion resistance and durability.
Here, stainless steel is used for the electrode plate 6, and a mesh-like lath material having diamond-shaped (punching metal) mesh is used. Further, the electrode plate 6 is made of a mesh body plated with platinum or gold.

電極板6を網体としたのは、水の流通を良くし、また表面積を大きくして電気分解の反応効果を高めるためである。電極板6をステンレス(例えばSUS316等)としたのは、耐食性、耐孔食性に優れるからである。
また、電極板6の網体に白金メッキ或いは金メッキを施すことで、何れも導電率が高いため電気分解の反応が良く、また他の物質と化合し難く良好である。
The reason why the electrode plate 6 is made into a net is to improve the flow of water and to increase the surface area to enhance the reaction effect of electrolysis. The electrode plate 6 is made of stainless steel (for example, SUS316 or the like) because it has excellent corrosion resistance and pitting corrosion resistance.
Further, by plating the net body of the electrode plate 6 with platinum or gold, the conductivity is high, so that the reaction of electrolysis is good, and it is difficult to combine with other substances.

上記電極板6は、所定の間隔をおいて8枚を互いに向い合せ、かつ面同士を平行に配置している。ここでは、隣り合う電極板6同士の間隔(電極ピッチ)を一定の7mmとしている。この間隔は、印加電圧にもよるが3~10mm、好ましくは5~8mmの範囲が電気分解の効率がよい。
各電極板6は、その上部が上記蓋部材38の下面部から上向きに取り付けられ、この蓋部材38の上面部には各電極板6の端子7が設けられている。
Eight of the electrode plates 6 face each other at predetermined intervals, and the surfaces are arranged in parallel. Here, the distance (electrode pitch) between the adjacent electrode plates 6 is set to a constant 7 mm. Although this interval depends on the applied voltage, the efficiency of electrolysis is good in the range of 3 to 10 mm, preferably 5 to 8 mm.
The upper portion of each electrode plate 6 is attached upward from the lower surface portion of the lid member 38, and the terminal 7 of each electrode plate 6 is provided on the upper surface portion of the lid member 38.

なお、電極板6の数は、交流及び直流の電圧印加形態、及び隣り合う電極板6同士で効果的に電気分解を行わせるため3枚以上が良い。また、より多量の電気分解を効率的に行わせるためには、電極板6の数は4枚以上、或いは8枚以上とするのが好ましい。なお、電源回路部11の電気供給量或いは電極板6の管理等の点から、電極板6の数は多くても16枚程度が実用的である。 The number of the electrode plates 6 is preferably 3 or more in order to effectively perform electrolysis between the AC and DC voltage application modes and the adjacent electrode plates 6. Further, in order to efficiently perform a larger amount of electrolysis, the number of the electrode plates 6 is preferably 4 or more, or 8 or more. From the viewpoint of the amount of electricity supplied by the power supply circuit unit 11 or the management of the electrode plates 6, the number of the electrode plates 6 is practically about 16 at most.

このように、電極板6の数は自由に増加することができ、このため、所望する大量の水素水量及び水素濃度を得るための設計を行う場合には、電極板6の枚数或いは面積等を変えることにより容易に対応できる。
また一つの電解槽4内に、全て(ここでは8枚)の電極板6を収容する形態であるため、電解槽4等、装置の小型化が図れ、また機能的にも優れる。
In this way, the number of electrode plates 6 can be freely increased. Therefore, when designing to obtain a desired large amount of hydrogen water and hydrogen concentration, the number or area of the electrode plates 6 and the like can be increased. It can be easily dealt with by changing it.
Further, since all (here, eight) electrode plates 6 are housed in one electrolytic cell 4, the device such as the electrolytic cell 4 can be miniaturized and is functionally excellent.

電解槽4の上部に、下部側に8枚の電極板6を取り付けた蓋部材38を配置する。この状態で、電解槽4の上面部が蓋部材38で被われ、ネジ等で蓋部材38を電解槽4の縁部に固定すると、蓋部材38により電解槽4は密閉される。
また、各電極板6を電解槽4の内部に収納すると、8枚の電極板6は互いに向い合せの状態で配置され、これら電極板6の並びの一方側の近傍に注入口30が設けられ、また他方側に排出口32が設けられた状態となる。この注入口30は、電解槽4の底面部34の上部近傍に形成されており、一方、各電極板6の下部と電解槽4の底面部34との間には少し隙間が設けられ、この隙間を注入口30から注入された水が移動可能である。
A lid member 38 having eight electrode plates 6 attached to the lower side is arranged on the upper part of the electrolytic cell 4. In this state, the upper surface of the electrolytic cell 4 is covered with the lid member 38, and when the lid member 38 is fixed to the edge of the electrolytic cell 4 with a screw or the like, the electrolytic cell 4 is sealed by the lid member 38.
Further, when each of the electrode plates 6 is housed inside the electrolytic cell 4, the eight electrode plates 6 are arranged so as to face each other, and an injection port 30 is provided in the vicinity of one side of the arrangement of the electrode plates 6. In addition, the discharge port 32 is provided on the other side. The injection port 30 is formed near the upper portion of the bottom surface portion 34 of the electrolytic cell 4, while a slight gap is provided between the lower portion of each electrode plate 6 and the bottom surface portion 34 of the electrolytic cell 4. The water injected from the injection port 30 can move through the gap.

このため、注入された水が電極板6の周辺を移動し、この移動とともに電気分解が行なえる。また、電解槽4内の水の移動(下方の注入口30から上方の排出口32)に伴って、電気分解で生成された気泡状の粒子(ナノバブル)の上昇移動(比重の関係による)も発生し、このため上方の排出口32への移動が淀みなく良好に行え、また水の滞留も防止できる。また、上記水の移動とともに満遍なく均一に水の電気分解が行なえ、このため比較的大量の水の移動が可能となる。このような電解槽4の構造(水の移動形態等)と相まって、電極板6の数の増設等により、大量の電解水として水素水を生産することが可能となる。 Therefore, the injected water moves around the electrode plate 6, and electrolysis can be performed along with this movement. In addition, with the movement of water in the electrolytic cell 4 (from the lower injection port 30 to the upper discharge port 32), the ascending movement of bubble-like particles (nano bubbles) generated by electrolysis (due to the relationship of specific gravity) also occurs. Since it is generated, it can be smoothly moved to the upper discharge port 32 without stagnation, and water retention can be prevented. In addition, the water can be electrolyzed evenly and uniformly with the movement of the water, so that a relatively large amount of water can be moved. Coupled with such a structure of the electrolytic cell 4 (movement form of water, etc.), hydrogen water can be produced as a large amount of electrolyzed water by increasing the number of electrode plates 6 and the like.

上記電極板6は、全8枚を電解槽4の中央部寄りにまとめて配置している。このため、電解槽4の開口部(通常は蓋部材38で閉塞)を中央に配置でき、電極板6の手入れ及び交換が容易でメンテナンスがし易い。
また、上記電極板6の配置により、注入口30が設けられた電解槽4の前側の壁部と電極板6(最前部)との間、及び排出口32が設けられた後側の壁部と電極板6(最後部)との間、にそれぞれ隙間が形成される。
このため、電解槽4の中央部に配置された電極板6と電解槽4の周囲の壁面との間には、水の流通が可能な隙間(空間部)が形成され、水の自由な流通が可能となって水の移動が良好に行われ、滞留等の防止にもなる。
A total of eight electrode plates 6 are arranged together near the center of the electrolytic cell 4. Therefore, the opening of the electrolytic cell 4 (usually closed by the lid member 38) can be arranged in the center, and the electrode plate 6 can be easily maintained and replaced, and maintenance is easy.
Further, due to the arrangement of the electrode plate 6, between the front wall portion of the electrolytic cell 4 provided with the injection port 30 and the electrode plate 6 (frontmost portion), and the rear wall portion provided with the discharge port 32. A gap is formed between the electrode plate 6 and the electrode plate 6 (rearmost portion).
Therefore, a gap (space) through which water can flow is formed between the electrode plate 6 arranged in the center of the electrolytic cell 4 and the wall surface around the electrolytic cell 4, and water can freely flow. This makes it possible to move water well and prevent stagnation.

上記制御盤8内には、マイクロコンピューター(CPU)を中心に構成された電子回路基板等が内蔵され、この基板には、制御部10及び電源回路部11などが組み込まれている。また、制御盤8の操作パネル9には、操作ボタン、LED表示器、表示ランプ等が取り付けられている。 An electronic circuit board or the like configured around a microcomputer (CPU) is built in the control panel 8, and a control unit 10 and a power supply circuit unit 11 are incorporated in the board. Further, an operation button, an LED display, an indicator lamp, and the like are attached to the operation panel 9 of the control panel 8.

上記制御部10は、主に、装置の運転時刻等の設定管理、及び運転状況の管理等を行う。また、制御部10及び電源回路部11には、高周波発信部及び変調部が設けられ、ソフトウエアにより変調等を実現している。この場合、例えば高周波の発信周波数約25kHzの基礎周波数に、変動幅・2~8kHz、好ましくは・3~5kHzの周波数変調(FM)を行なう。そして、制御部10で生成された高周波信号が電源回路部11に出力され電気分解用の電力を発生させる。 The control unit 10 mainly manages the setting of the operation time of the device, the operation status, and the like. Further, the control unit 10 and the power supply circuit unit 11 are provided with a high frequency transmission unit and a modulation unit, and modulation and the like are realized by software. In this case, for example, frequency modulation (FM) with a fluctuation range of 2 to 8 kHz, preferably 3 to 5 kHz is performed on the basic frequency of a high frequency transmission frequency of about 25 kHz. Then, the high frequency signal generated by the control unit 10 is output to the power supply circuit unit 11 to generate electric power for electrolysis.

上記高周波の基礎(中心)周波数は、ここでは25kHzの高周波を使用しているが、他にこの周波数としては、15kHzから35kHz、好ましくは20kHzから30kHzの範囲が適当である。このような高周波の周波数の範囲において、水素を含有する気泡状(ナノバブル)の水溶液(水素水)が多く得られる。また、この水溶液には、同時に酸素を含有する気泡状(ナノバブル)の酸素水も含まれる。 As the basic (center) frequency of the high frequency, a high frequency of 25 kHz is used here, but as this frequency, a range of 15 kHz to 35 kHz, preferably 20 kHz to 30 kHz is suitable. In such a high frequency range, a large amount of bubble-like (nano bubble) aqueous solution (hydrogen water) containing hydrogen can be obtained. In addition, this aqueous solution also contains bubble-like (nano bubble) oxygenated water containing oxygen at the same time.

図4の電源回路部11に関する電気接続形態に示すように、電源回路部11では、制御部10からの高周波信号(SG1及びSG2)に基づき、この信号を増幅して水の電気分解が可能な電力を発生させる。
そして、電解槽4内の8枚の電極板6(第1~第8)の各端子7には、電源回路部11からの配線が接続され、電源回路部11から、各電極板(第1~第8)に交流及び直流の電気が印加される。
As shown in the electrical connection form of the power supply circuit unit 11 of FIG. 4, the power supply circuit unit 11 can amplify this signal based on the high frequency signals (SG1 and SG2) from the control unit 10 to electrolyze water. Generate electricity.
Then, wiring from the power supply circuit unit 11 is connected to each terminal 7 of the eight electrode plates 6 (first to eighth) in the electrolytic cell 4, and each electrode plate (first) is connected from the power supply circuit unit 11. AC and DC electricity is applied to the 8th).

上記電源回路部11は、トランジスター回路等で構成された第1出力回路44及び第2出力回路46からなり、これら両出力回路の構成は同じである(第2出力回路の詳細は省略)。
上記第1及び第2の2つの出力回路を設けたのは、十分な電力を確保し、電気分解に必要な電力を全電極板6(第1~第8)に出力し供給するためである。このため、第1出力回路44は第1~第4の電極板6に電気を供給し、第2出力回路は第5~第8の電極板6に電気を供給する。
The power supply circuit unit 11 includes a first output circuit 44 and a second output circuit 46 composed of a transistor circuit or the like, and the configurations of both output circuits are the same (details of the second output circuit are omitted).
The reason why the first and second output circuits are provided is to secure sufficient electric power and to output and supply the electric power required for electrolysis to all the electrode plates 6 (1st to 8th). .. Therefore, the first output circuit 44 supplies electricity to the first to fourth electrode plates 6, and the second output circuit supplies electricity to the fifth to eighth electrode plates 6.

電源回路部11では、電気分解に必要な交流(パルス状波形の交互方向流)、及び直流(一方向流)の電力を出力する。
そして上記第1出力回路44からは、パルス状の電気信号AC1及びAC2が出力され、上記第2出力回路46からは、パルス状の電気信号AC3及びAC4が出力される。また、直流電源として、電気信号OUTには、GND(グラウンド)又は正電位(V+)の電圧が加えられている。この正電位(V+)は、AC1~AC4(V+)と同電位である。
The power supply circuit unit 11 outputs alternating current (alternate directional flow of pulsed waveform) and direct current (one-way flow) required for electrolysis.
Then, the pulse-shaped electric signals AC1 and AC2 are output from the first output circuit 44, and the pulse-shaped electric signals AC3 and AC4 are output from the second output circuit 46. Further, as a direct current power source, a voltage of GND (ground) or a positive potential (V +) is applied to the electric signal OUT. This positive potential (V +) is the same potential as AC1 to AC4 (V +).

図5に示すように、上記高周波信号(SG1及びSG2)はパルス状波形を有する信号である。信号AC1(GND~V+の電位)は、パルス状の信号であり、信号AC2(V+~GNDの電位)についても、パルス状の信号である。また、信号AC1-AC2(V+~V-の電位)は、パルス状波形の高周波交流である。 As shown in FIG. 5, the high frequency signals (SG1 and SG2) are signals having a pulsed waveform. The signal AC1 (potential of GND to V +) is a pulse-shaped signal, and the signal AC2 (potential of V + to GND) is also a pulse-shaped signal. Further, the signals AC1-AC2 (potentials of V + to V-) are high-frequency alternating currents having a pulsed waveform.

ここで、図4に基づき、電源回路部11から電極板6に印加される電気の接続形態について説明する。
第1の電極板6にはAC1が、また第3の電極板6にはAC2がそれぞれ接続(印加)され、また第5の電極板6にはAC3が、第7の電極板6にはAC4がそれぞれ接続される。一方、第2、第4、第6及び第8の電極板6には、OUT信号が接続(印加)される。
このOUT信号は、GND(グラウンド)レベルの電位の時と、V+(正電位)と同電位の時とがあり、一定周期ごとにOUT信号はGNDとV+に切替えられる。この周期は、数分、例えば1分~3分程度がよく、ここでは2分としている。この周期の切り替えにより、電極板6の極性が変化して電気の流れが切り替わり、電極板6に付着する無機物資(カルシウム、マグネシウム)等を除去することができる。
Here, based on FIG. 4, the connection form of electricity applied from the power supply circuit unit 11 to the electrode plate 6 will be described.
AC1 is connected (applied) to the first electrode plate 6, AC2 is connected (applied) to the third electrode plate 6, AC3 is connected to the fifth electrode plate 6, and AC4 is connected to the seventh electrode plate 6. Are connected respectively. On the other hand, an OUT signal is connected (applied) to the second, fourth, sixth and eighth electrode plates 6.
This OUT signal has a potential at the GND (ground) level and a potential at the same potential as V + (positive potential), and the OUT signal is switched between GND and V + at regular intervals. This cycle is preferably several minutes, for example, about 1 to 3 minutes, and is set to 2 minutes here. By switching this cycle, the polarity of the electrode plate 6 changes and the flow of electricity is switched, and inorganic substances (calcium, magnesium) and the like adhering to the electrode plate 6 can be removed.

そして、第1、第3、第5及び第7の各電極板6には、SG1、SG2に基づきV+と同電位に増幅(電源回路部11により)された信号AC1~AC4が印加される。
電源回路部11からの信号は、ここでは25kHz程度を基準の周波数とし、これにランダムに周波数が変化する周波数変調が加えられている。この周波数変調は、制御部10においてソフトウエア(プログラム)により行なわれる。
Then, signals AC1 to AC4 amplified (by the power supply circuit unit 11) to the same potential as V + based on SG1 and SG2 are applied to the first, third, fifth, and seventh electrode plates 6.
The signal from the power supply circuit unit 11 has a reference frequency of about 25 kHz here, and frequency modulation in which the frequency changes randomly is added to the reference frequency. This frequency modulation is performed by software (program) in the control unit 10.

なお、第1出力回路44と第2出力回路46とは同等の回路であり、また電極板6への接続形態も同じであるため、ここでは第1出力回路44と第1~第4の電極板6との接続形態について説明し、第2出力回路に関するものは説明を省略する。
ここで、上記AC1とAC2との信号の基本特性(波形)は図5のタイムチャートのようになる。これらAC1とAC2とは、ON(V+)、OFF(GND)が反転する。また、AC1-AC2間においては、交流(高周波)波形となるよう制御されている。
Since the first output circuit 44 and the second output circuit 46 are equivalent circuits and have the same connection form to the electrode plate 6, the first output circuit 44 and the first to fourth electrodes are used here. The connection form with the plate 6 will be described, and the description of the second output circuit will be omitted.
Here, the basic characteristics (waveforms) of the signals of AC1 and AC2 are as shown in the time chart of FIG. ON (V +) and OFF (GND) of these AC1 and AC2 are reversed. Further, between AC1 and AC2, the waveform is controlled to be an alternating current (high frequency) waveform.

図6(a)(b)は、OUT信号がGNDの場合の、第1~第4の電極板6に印加される電気(交流、直流)の流れを示したものである。
ここで、OUT信号がGNDと同電位の信号を出力しており、AC1がON(V+)、AC2がOFF(GND)の時は同図(a)のように電流が流れる。また、OUT信号がGNDと同電位であり、AC1がOFF(GND)、AC2がON(V+)の時は同図(b)のように電流が流れる。
6 (a) and 6 (b) show the flow of electricity (alternating current, direct current) applied to the first to fourth electrode plates 6 when the OUT signal is GND.
Here, the OUT signal outputs a signal having the same potential as GND, and when AC1 is ON (V +) and AC2 is OFF (GND), a current flows as shown in FIG. Further, when the OUT signal has the same potential as GND, AC1 is OFF (GND), and AC2 is ON (V +), a current flows as shown in FIG.

即ち、第1の電極板6と第3の電極板6との間は、電流の方向が常に変わる交流(高周波)となる。また、第1の電極板6と第3の電極板6は、第2及び第4の電極板6に対しては、電流の方向が一定の直流(パルス状波形)としての電流が流れる。
このように、第1の電極板6と第3の電極板6とは陽極として、第2の電極板6及び第4の電極板6は陰極としてそれぞれ機能する。
That is, an alternating current (high frequency) in which the direction of the current constantly changes is formed between the first electrode plate 6 and the third electrode plate 6. Further, in the first electrode plate 6 and the third electrode plate 6, a current as a direct current (pulse-like waveform) in which the direction of the current is constant flows with respect to the second and fourth electrode plates 6.
In this way, the first electrode plate 6 and the third electrode plate 6 function as anodes, and the second electrode plate 6 and the fourth electrode plate 6 function as cathodes, respectively.

図7(c)(d)は、OUT信号がV+の場合の、第1~第4の電極板6に印加される電気(交流、直流)の流れを示したものである。
ここで、OUT信号がV+と同電位の信号を出力しており、AC1がON(V+)、AC2がOFF(GND)の時は、同図(c)のように電流が流れる。また、OUT信号がV+と同電位であり、AC1がOFF(GND)、AC2がON(V+)の時は、同図(d)のように電流が流れる。
7 (c) and 7 (d) show the flow of electricity (alternating current, direct current) applied to the first to fourth electrode plates 6 when the OUT signal is V +.
Here, when the OUT signal outputs a signal having the same potential as V + and AC1 is ON (V +) and AC2 is OFF (GND), a current flows as shown in FIG. Further, when the OUT signal has the same potential as V +, AC1 is OFF (GND), and AC2 is ON (V +), a current flows as shown in FIG.

即ち、第1の電極板6と第3の電極板6との間は、上記のOUT信号がGNDの時と同様に、電流の方向が常に変わる交流となる。また、第2の電極板6及び第4の電極板6からは、第1の電極板6と第3の電極板6に対して、電流の方向が一定の直流の電流が流れる。
このように、第1の電極板6と第3の電極板6は陰極として、第2の電極板6及び第4の電極板6は陽極としてそれぞれ機能する。
That is, between the first electrode plate 6 and the third electrode plate 6, the alternating current is always in the direction of the current, as in the case where the OUT signal is GND. Further, from the second electrode plate 6 and the fourth electrode plate 6, a direct current having a constant current direction flows through the first electrode plate 6 and the third electrode plate 6.
In this way, the first electrode plate 6 and the third electrode plate 6 function as cathodes, and the second electrode plate 6 and the fourth electrode plate 6 function as anodes, respectively.

したがって、図6(a)(b)の状態から図7(c)(d)の状態へと電気の流れが切り替わるときは、直流電源の極性の切り替えにより逆方向に電流が流れる。この極性(直流)の切り替えにより、全ての(4枚)の電極板6について、陽極と陰極との切り替えが交互に行われる。このように、電極板6に印加する直流の極性を交互に切り替えるのは、電極板6に付着する無機化合物等を除去するためである。
また上記のように、第1の電極板6には交流、第2の電極板6には直流、第3の電極板6には交流、また第4の電極板6には直流と、交互に交流と直流を入れ変えた接続の配線としたのは、バランス良く、且つ効率的に直流を流して、各電極板6で良好に電気分解を行なわせるためである。
Therefore, when the flow of electricity is switched from the state of FIGS. 6 (a) and 6 (b) to the state of FIGS. 7 (c) and 7 (d), the current flows in the opposite direction due to the switching of the polarity of the DC power supply. By switching the polarity (direct current), the anode and the cathode are alternately switched for all (4) electrode plates 6. In this way, the polarities of the direct current applied to the electrode plate 6 are alternately switched in order to remove the inorganic compounds and the like adhering to the electrode plate 6.
Further, as described above, alternating current is applied to the first electrode plate 6, direct current is applied to the second electrode plate 6, alternating current is applied to the third electrode plate 6, and direct current is applied to the fourth electrode plate 6. The reason why the connection wiring is such that alternating current and direct current are exchanged is that the direct current flows in a well-balanced and efficient manner so that each electrode plate 6 can perform good electrolysis.

次に、第1出力回路44に係る第4の電極板6と、第2出力回路46に係る第5の電極板6との間の、両出力回路に跨る第4の電極板6と第5の電極板6間の電気の流れについて説明する。
ここで、第4の電極板6にはOUT信号が印加され、第5の電極板6は第2出力回路46からAC3が印加されている。また、第1出力回路44のOUT信号と、第2出力回路46とOUT信号とは、一体化(接続)されている。
また、第5の電極板6からみれば、第4の電極板6は第6の電極板6と等価(接続)であるため、OUT信号がGNDの時には第5の電極板6から第4の電極板6へと直流が流れ、OUT信号がV+の時には第4の電極板6から第5の電極板6へと直流が流れる。
このため、第1~第8の電極板6について、隣接するすべての電極板6間には電流が流れ、電気分解が行われることになる。
Next, the fourth electrode plate 6 and the fifth electrode plate 6 straddling both output circuits between the fourth electrode plate 6 according to the first output circuit 44 and the fifth electrode plate 6 according to the second output circuit 46. The flow of electricity between the electrode plates 6 of the above will be described.
Here, an OUT signal is applied to the fourth electrode plate 6, and AC3 is applied to the fifth electrode plate 6 from the second output circuit 46. Further, the OUT signal of the first output circuit 44 and the second output circuit 46 and the OUT signal are integrated (connected).
Further, from the viewpoint of the fifth electrode plate 6, the fourth electrode plate 6 is equivalent (connected) to the sixth electrode plate 6, so that when the OUT signal is GND, the fifth electrode plate 6 to the fourth electrode plate 6 is used. Direct current flows to the electrode plate 6, and when the OUT signal is V +, direct current flows from the fourth electrode plate 6 to the fifth electrode plate 6.
Therefore, with respect to the first to eighth electrode plates 6, a current flows between all the adjacent electrode plates 6, and electrolysis is performed.

上記電極板6間での電気分解により、陰極では水素(ガス)、また陽極では酸素(ガス)が発生する。この水素(ガス)は、一部が分子状態(H2)又他が原子状態(H)で水中に溶け込んでいるものと考えられる。上記酸素(ガス)は、一部が水中に溶け込み、飽和状態になれば大気中に放出される。また、酸素に比べて水素が増加すること等から、酸化還元電位が低下し、還元電位になるものと考えられる。 Due to the electrolysis between the electrode plates 6, hydrogen (gas) is generated at the cathode and oxygen (gas) is generated at the anode. It is considered that this hydrogen (gas) is partially dissolved in water in a molecular state (H 2 ) and in an atomic state (H). Part of the oxygen (gas) dissolves in water and is released into the atmosphere when saturated. Further, it is considered that the redox potential is lowered to become the reduction potential because hydrogen is increased as compared with oxygen.

さらに、交流として、上記基準周波数に周波数変調を加えたことから、周波数の変動がもたらされ、この変動が急激な変動点に達したときに衝撃波が発生し、この時に電気分解により発生した水素(ガス)及び酸素(ガス)の気泡が微小化され、気泡の径が微細となりナノ単位のナノバブルにまで小さくなると考えている。水素の気泡が、ナノバブル程度に小さくなると水中での滞留時間が長くなる。 Furthermore, since frequency modulation was applied to the reference frequency as alternating current, frequency fluctuations were brought about, and when this fluctuation reached a sudden fluctuation point, a shock wave was generated, and hydrogen generated by electrolysis at this time was generated. It is thought that the bubbles of (gas) and oxygen (gas) will be miniaturized, and the diameter of the bubbles will become finer, even to nanobubbles in nano units. When the hydrogen bubbles become as small as nano bubbles, the residence time in water becomes long.

このように、電解槽4では、電極板6(第1~第8)を用いた水の電気分解により、水素(ガス)及び酸素(ガス)等を含有し溶存する水溶液として、所謂、水素水(ナノバブル水素水)が生成される。
また、電気信号OUTの切り替えにより、直流の極性を反転させることで、電極板6に付着する無機物質等を除去することができ、電極板の機能が持続し耐久性にも優れる。
As described above, in the electrolytic tank 4, so-called hydrogen water is used as a dissolved aqueous solution containing hydrogen (gas), oxygen (gas) and the like by electrolysis of water using the electrode plates 6 (1st to 8th). (Nano bubble hydrogen water) is generated.
Further, by inverting the polarity of the direct current by switching the electric signal OUT, the inorganic substance and the like adhering to the electrode plate 6 can be removed, the function of the electrode plate is maintained, and the durability is excellent.

上記のように、ここでは第1の電極板6と第3の電極板6との間に交流電圧を印加することとし、上記交流電圧を印加した電極板6(第1又は第3)とこれ以外の電極板6(第2又は第4)に、電流を流して電気分解を行う。
なお、他に、第2の電極板6と第4の電極板6との間に交流電圧を印加することとしてもよく、この場合、上記交流電圧を印加した電極板6(第2又は第4)と、これ以外の電極板6(第1又は第3)に、電流を流して電気分解を行う。
As described above, here, an AC voltage is applied between the first electrode plate 6 and the third electrode plate 6, and the electrode plate 6 (first or third) to which the AC voltage is applied and this. An electric current is passed through the electrode plates 6 (second or fourth) other than the above to perform electrolysis.
In addition, an AC voltage may be applied between the second electrode plate 6 and the fourth electrode plate 6, and in this case, the electrode plate 6 (second or fourth) to which the AC voltage is applied may be applied. ) And the other electrode plates 6 (first or third), an electric current is passed through them to perform electrolysis.

このように、特にここでは、電極板6を連続する4枚(第1~第4の電極板6)を一組とし、各一組の上記電極板6の内、他の電極板6(例えば第2の電極板6)を介在させた特定の電極板6間(例えば第1と第3の電極板6間)に交流電圧を印加し、且つ当該特定の電極板6以外の電極板6(第2と第4の電極板6)には直流電圧を印加する。
そして、特定の電極板6とこれ以外の電極板6間(例えば第1と第2の電極板6間、第1と第4の電極板6間、第3と第2の電極板6間、第3と第4の電極板間)には直流電流を流し、電気分解を行わせる。この場合、各組の電極板に対する交流電圧、及び直流電圧等の印加形態は、何れの組も同一形態としてもよい。
As described above, particularly here, four consecutive electrode plates 6 (first to fourth electrode plates 6) are set as a set, and among the above-mentioned electrode plates 6 of each set, the other electrode plate 6 (for example, for example). An AC voltage is applied between the specific electrode plates 6 (for example, between the first and third electrode plates 6) interposed therebetween the second electrode plate 6), and the electrode plates 6 other than the specific electrode plate 6 (for example, between the first and third electrode plates 6) are applied. A DC voltage is applied to the second and fourth electrode plates 6).
Then, between the specific electrode plate 6 and the other electrode plates 6 (for example, between the first and second electrode plates 6, between the first and fourth electrode plates 6, and between the third and second electrode plates 6, A direct current is passed between the third and fourth electrode plates) to cause electrolysis. In this case, the form of applying the AC voltage, DC voltage, or the like to each set of electrode plates may be the same for any set.

上記電極板6が4枚一組の組み合せでは、上記のように隣り合う全ての電極板6間で電流(直流)を流すことができ、効率よく電気分解が行える。また、上記4枚一組の組み合わせでは、交流電圧の印加と直流電圧の印加とが交互となり、他の組の電極板6との組同士間でも電流を流して電気分解を行うことが出来て効率がよい。上記組の数は一組でもよいが、二組以上とするとより効率化が図れる。
要は、各電極板6に交流電圧の印加と直流電圧の印加をバランス良く行い、全ての電極板6において効率的に電気分解が行われるような接続形態を採用する。そして、少なくとも隣り合う電極板6間では電気分解が行えるよう配線を行なうことで、電気分解の効率化が図れる。
In the combination of four electrode plates 6 as described above, a current (direct current) can be passed between all the adjacent electrode plates 6 as described above, and electrolysis can be efficiently performed. Further, in the combination of the above four plates, the application of the AC voltage and the application of the DC voltage are alternated, and current can be passed between the pairs of the electrode plates 6 of the other pairs to perform electrolysis. It is efficient. The number of the above sets may be one, but if two or more sets are used, more efficiency can be achieved.
In short, a connection form is adopted in which AC voltage and DC voltage are applied to each electrode plate 6 in a well-balanced manner, and electrolysis is efficiently performed in all the electrode plates 6. Then, by wiring so that electrolysis can be performed at least between the adjacent electrode plates 6, the efficiency of electrolysis can be improved.

なお、ここでは電極板6を8枚用いたが、これは3枚以上であれば何枚でも可能である。例えば電極板6が3枚の場合は、上記第1~第3の電極板の配線接続により電気分解を行い、これと同様に、電極板6の数により上記配線に準じた配線接続により電気分解を行なえばよい。
また、電気分解の効率及び電源回路部11の電力供給能力を考慮した場合、電極板6の数は、この実施の形態に準じた枚数として4枚、8枚、12枚或いは16枚等と4の倍数としてもよい。
Although eight electrode plates 6 are used here, any number of electrode plates 6 can be used as long as they are three or more. For example, when there are three electrode plates 6, electrolysis is performed by the wiring connection of the first to third electrode plates, and similarly, electrolysis is performed by the wiring connection according to the wiring according to the number of electrode plates 6. You just have to do.
Further, when the efficiency of electrolysis and the power supply capacity of the power supply circuit unit 11 are taken into consideration, the number of electrode plates 6 is 4, such as 4, 8, 12, or 16 as the number according to this embodiment. It may be a multiple of.

上記濾過器12は、底面を有する円筒状の容器48の内部に、円筒状の筒体50を同心円状に配置し、この容器48と筒体50との間に円環状の空間部52を形成している。そして、筒体50には下部寄りの周囲に複数の孔部51が設けられている。
上記容器48の上部近傍には、電解水の流入孔54が設けられており、また容器48の上部には蓋体が配置され空間部52は閉塞されている。
In the filter 12, a cylindrical cylinder 50 is concentrically arranged inside a cylindrical container 48 having a bottom surface, and an annular space portion 52 is formed between the container 48 and the cylinder 50. is doing. The tubular body 50 is provided with a plurality of holes 51 around the lower portion.
An inflow hole 54 for electrolyzed water is provided near the upper part of the container 48, and a lid is arranged on the upper part of the container 48 to close the space 52.

上記空間部52には、カーボンフィルター等の濾過材が配置されており、筒体50の上部には流出孔55が設けられている。
このため、濾過器12の流入孔54から流入した水溶液は、空間部52を下方に移動するが、このときカーボンフルターにより濾過が行われ、主に次亜塩素酸、塩素等の塩素系物質が除去される。さらに水溶液は、空間部52から孔部51を通過して筒体50の内部へと移動し、さらに筒体50内を上昇して流出孔55から排出される。
A filter material such as a carbon filter is arranged in the space 52, and an outflow hole 55 is provided in the upper part of the cylinder 50.
Therefore, the aqueous solution that has flowed in from the inflow hole 54 of the filter 12 moves downward in the space 52, but at this time, filtration is performed by the carbon fluter, and chlorine-based substances such as hypochlorous acid and chlorine are mainly contained. Will be removed. Further, the aqueous solution moves from the space portion 52 through the hole portion 51 to the inside of the tubular body 50, further rises in the tubular body 50, and is discharged from the outflow hole 55.

図8は、水素水生成装置2の流路に貯留タンク16を加え、電解槽4で電気分解された水溶液を、貯留タンク16を経由して再度電解槽4に送る循環流路62を示したものである。そして、ポンプ14の駆動により、貯留タンク16内の水溶液を吸引して電解槽4に送り、ここで電気分解された水溶液を貯留タンク16へ供給し、これを再度電解槽4に送り電気分解させる。このように、循環流路62に電気分解された水溶液を流通させることで、水溶液中の水素濃度を高める。 FIG. 8 shows a circulation flow path 62 in which a storage tank 16 is added to the flow path of the hydrogen water generator 2 and the aqueous solution electrolyzed in the electrolytic cell 4 is sent to the electrolytic cell 4 again via the storage tank 16. It is a thing. Then, by driving the pump 14, the aqueous solution in the storage tank 16 is sucked and sent to the electrolytic cell 4, the aqueous solution electrolyzed here is supplied to the storage tank 16, and this is sent to the electrolytic cell 4 again for electrolysis. .. By circulating the electrolyzed aqueous solution through the circulation flow path 62 in this way, the hydrogen concentration in the aqueous solution is increased.

また、電解槽4の排出口32には、二方向に枝分れした流路が接続され、それぞれの流路には第1の切替弁56及び第2の切替弁58が取り付けられている。
この第1の切替弁56の先は濾過器12の流入孔54に接続され、その流出孔55の先は流路を介して筐体18の吐出口22に接続されている。また、第2の切替弁58の先は流路を介し、そのまま筐体18の吐出口22に接続されている。
このため、第1及び第2の切替弁の操作により、電解槽4からの水溶液の流路について、濾過器12を通過させる流路と、これを迂回するバイパス流路とを選択することができる。
Further, a flow path branched in two directions is connected to the discharge port 32 of the electrolytic cell 4, and a first switching valve 56 and a second switching valve 58 are attached to each flow path.
The tip of the first switching valve 56 is connected to the inflow hole 54 of the filter 12, and the tip of the outflow hole 55 is connected to the discharge port 22 of the housing 18 via a flow path. Further, the tip of the second switching valve 58 is directly connected to the discharge port 22 of the housing 18 via the flow path.
Therefore, by operating the first and second switching valves, it is possible to select a flow path through which the filter 12 passes and a bypass flow path bypassing the flow path of the aqueous solution from the electrolytic cell 4. ..

通常、電解槽4で電気分解された電解水には、次亜塩素酸、塩素等が含まれており、これら塩素系物質は濾過器12により除去する。しかし、塩素系物質には殺菌作用があるため、植物の土壌等において殺菌が必要な場合には、塩素系物質を殺菌に用いる。このため、第1及び第2の切替弁の操作により、殺菌の必要がある場合には濾過器12を通過させない迂回流路を選択する。
なお、第1及び第2の切替弁として、他に三方弁からなる切替弁を用いることも可能であり、これにより濾過器12を通過する流路と、これを迂回する流路との切り替えを二者択一的に行う。
Normally, the electrolyzed water electrolyzed in the electrolytic cell 4 contains hypochlorous acid, chlorine and the like, and these chlorine-based substances are removed by the filter 12. However, since chlorine-based substances have a bactericidal action, chlorine-based substances are used for sterilization when sterilization is required in plant soil or the like. Therefore, by operating the first and second switching valves, a detour flow path that does not allow the filter 12 to pass through is selected when sterilization is required.
As the first and second switching valves, it is also possible to use a switching valve composed of a three-way valve, whereby the flow path passing through the filter 12 and the flow path bypassing the filter 12 can be switched. Do it alternately.

上記貯留タンク16は、水素等を含有する水溶液を保管する容器であり、ここでは容量を500リットルとしている。筐体18の吐出口22に、ホース等を取り付けて流路を形成し、電気分解された水溶液を貯留タンク16へ供給する。
貯留タンク16は、ここでは合成樹脂製であるが、他にステンレス等の金属が用いられ、全体は直方体状或いは球状の容器である。貯留タンク16は、上部に蓋部材が取り付けられ内部を密閉することが可能である。
この貯留タンク16は、電解槽4へ送る水の水源であり、また電解槽4からの水溶液(水素水等)を一度溜めておき、再び電解槽4へ送るために用いる。また、植物などへ水素水等を供給する水源となる。
The storage tank 16 is a container for storing an aqueous solution containing hydrogen or the like, and has a capacity of 500 liters here. A hose or the like is attached to the discharge port 22 of the housing 18 to form a flow path, and the electrolyzed aqueous solution is supplied to the storage tank 16.
The storage tank 16 is made of synthetic resin here, but a metal such as stainless steel is also used, and the entire storage tank 16 is a rectangular parallelepiped or spherical container. A lid member is attached to the upper portion of the storage tank 16 so that the inside can be sealed.
The storage tank 16 is a water source for water to be sent to the electrolytic cell 4, and is used to temporarily store an aqueous solution (hydrogen water or the like) from the electrolytic cell 4 and send it to the electrolytic cell 4 again. It also serves as a water source for supplying hydrogen water and the like to plants and the like.

上記ポンプ14は、筐体18の吸入口20と電解槽4の注入口30との間に配置し、循環流路62を駆動して、吸入口20から吸引した水を電解槽4の注入口30へ向けて流通させる。
このポンプ14は、貯留タンク16等、外部から水を吸引し、これを電解槽4へ供給し、また電解槽4内に水が十分に充填されると、これを電解槽4からの水溶液を濾過器12或いは筐体18の吐出口22へ送出し、この吐出口22から貯留タンク16へと流通させる。
The pump 14 is arranged between the suction port 20 of the housing 18 and the injection port 30 of the electrolytic cell 4, drives the circulation flow path 62, and sucks water from the suction port 20 into the injection port of the electrolytic cell 4. Distribute toward 30.
The pump 14 sucks water from the outside such as a storage tank 16 and supplies it to the electrolytic cell 4, and when the electrolytic cell 4 is sufficiently filled with water, the aqueous solution from the electrolytic cell 4 is used. It is delivered to the discharge port 22 of the filter 12 or the housing 18, and is distributed from the discharge port 22 to the storage tank 16.

このように、貯留タンク16内の水溶液(水素水等)を電解槽4に送り、再度電気分解を行なうことで水素水の濃度を高める。貯留タンク16内の水溶液は、そのまま農作物等へ供給することができる。
ポンプ14による水の流量は、例えば9L(リットル)/分~12L/分とする。この場合、電解槽4の注入口30から9L/分~12L/分の水が注入され、この量の水が電気分解され、また同量の水が電解槽4の排出口32から排出される。
In this way, the aqueous solution (hydrogen water or the like) in the storage tank 16 is sent to the electrolytic cell 4 and electrolyzed again to increase the concentration of hydrogen water. The aqueous solution in the storage tank 16 can be supplied to agricultural products and the like as it is.
The flow rate of water by the pump 14 is, for example, 9 L (liter) / min to 12 L / min. In this case, 9 L / min to 12 L / min of water is injected from the injection port 30 of the electrolytic cell 4, this amount of water is electrolyzed, and the same amount of water is discharged from the discharge port 32 of the electrolytic cell 4. ..

次に、水素水生成装置2の運転動作について説明する。この水素水生成装置2は、制御盤8に設けた操作パネル9より予め操作ボタン等を操作し、運転内容、運転時間等の運転管理情報を登録しておく。これら運転内容は、制御部10によりコントロールされポンプ14等を稼働させる。
このように、制御部10には管理情報を登録設定することができ、水の循環流路62の循環時間として、循環流路62の流通を駆動させるポンプ14の稼働時間(電気分解の時間も同期)を登録し、或いは再循環回数(貯留タンク内の水量及び循環水量から試算)を登録し、装置を運転させることにより、所望する濃度の水素水を得ることが容易に行える。
Next, the operation operation of the hydrogen water generation device 2 will be described. The hydrogen water generation device 2 operates operation buttons and the like in advance from the operation panel 9 provided on the control panel 8, and registers operation management information such as operation contents and operation time. These operation contents are controlled by the control unit 10 to operate the pump 14 and the like.
In this way, management information can be registered and set in the control unit 10, and as the circulation time of the water circulation flow path 62, the operating time of the pump 14 that drives the flow of the circulation flow path 62 (also the electrolysis time). By registering (synchronization) or registering the number of recirculations (estimated from the amount of water in the storage tank and the amount of circulating water) and operating the apparatus, hydrogen water having a desired concentration can be easily obtained.

運転の準備として、濾過器12を使用する場合には、濾過器12側の第1の切替弁56を開け、第2の切替弁58を閉める。この場合、電解槽4からの水溶液は濾過器12を通過して濾過される。逆に、濾過器12を迂回させる場合には、第1の切替弁56を閉め、第2の切替弁58を開ける。
また、装置の運転時には、筐体18に設けた排水コック26、及び水抜コック28は閉めておく。
When the filter 12 is used as a preparation for operation, the first switching valve 56 on the filter 12 side is opened and the second switching valve 58 is closed. In this case, the aqueous solution from the electrolytic cell 4 passes through the filter 12 and is filtered. On the contrary, when detouring the filter 12, the first switching valve 56 is closed and the second switching valve 58 is opened.
Further, when the device is operated, the drain cock 26 and the drain cock 28 provided in the housing 18 are closed.

通常、装置の運転では、貯留タンク16を経由する循環流路を構成する。この場合、流路を形成するホース等の流通管を用いて、貯留タンク16と筐体18の吸入口20とを流通管で連通し流路を形成する。また、筐体18の吐出口22と貯留タンク16とを流通管で連通して流路を形成し、貯留タンク16を介した水の循環流路62を形成する。
また、貯留タンク16には、予め電気分解するための所定量の水を補充し充填しておく。
Normally, in the operation of the device, a circulation flow path via the storage tank 16 is configured. In this case, using a flow pipe such as a hose that forms a flow path, the storage tank 16 and the suction port 20 of the housing 18 are communicated with each other by the flow pipe to form a flow path. Further, the discharge port 22 of the housing 18 and the storage tank 16 are communicated with each other by a flow pipe to form a flow path, and a water circulation flow path 62 via the storage tank 16 is formed.
Further, the storage tank 16 is pre-filled with a predetermined amount of water for electrolysis.

なお、貯留タンク16以外の、他の貯留槽等に貯留された水を使用する場合には、流通管を用いてこの貯留槽と筐体18の吸入口20とを連通し、電解槽4で電気分解することとしてもよい。
この場合、電解槽4からの水溶液(水素水等)を吐出口22から流通管を介して一度貯留タンク16に溜めても良く、またこの水溶液を吐出口22から直接農作物等に供給するようにしてもよい。
When water stored in another storage tank or the like other than the storage tank 16 is used, the storage tank and the suction port 20 of the housing 18 are communicated with each other by using a flow pipe, and the electrolytic tank 4 is used. It may be electrolyzed.
In this case, the aqueous solution (hydrogen water, etc.) from the electrolytic cell 4 may be once stored in the storage tank 16 from the discharge port 22 via the flow pipe, and the aqueous solution may be directly supplied to the agricultural products, etc. from the discharge port 22. You may.

さて、上記循環流路62を形成し、制御部10に登録された運転管理情報に基づき運転が開始されると、ポンプ14が始動し電解槽4での電気分解が開始される。そして、貯留タンク16から水が吸引され、これが筐体18の吸入口20からポンプ14を経由して電解槽4の注入口30へ供給される。
電解槽4の注入口30から注入された水は、電解槽4の下部から8枚の各電極板6の下部から上方に移動し、やがて各電極板6による電気分解により水素等が含有された水溶液(電解水)が生成される。
When the circulation flow path 62 is formed and the operation is started based on the operation management information registered in the control unit 10, the pump 14 is started and the electrolysis in the electrolytic cell 4 is started. Then, water is sucked from the storage tank 16 and is supplied from the suction port 20 of the housing 18 to the injection port 30 of the electrolytic cell 4 via the pump 14.
The water injected from the injection port 30 of the electrolytic cell 4 moved upward from the lower part of each of the eight electrode plates 6 from the lower part of the electrolytic cell 4, and eventually contained hydrogen and the like by electrolysis by each electrode plate 6. An aqueous solution (electrolyzed water) is produced.

この水溶液は、電気分解により生成され、水中に水素を含有した水素水が含まれ、この水素水は、水素(ガス)が水に溶け込んだもの、また水中にナノバブル化した気泡(水素)を閉じ込めた所謂ナノバブル水素水が含まれている。
また、上記水溶液には、電気分解により生成され、水溶液中に酸素(ガス)を含有した酸素水も含まれ、塩素系物質等も含まれている。
This aqueous solution contains hydrogen water that is generated by electrolysis and contains hydrogen in water. This hydrogen water contains hydrogen (gas) dissolved in water and nano-bubbled bubbles (hydrogen) in the water. It contains so-called nanobubble hydrogen water.
Further, the aqueous solution also contains oxygenated water produced by electrolysis and containing oxygen (gas) in the aqueous solution, and also contains chlorine-based substances and the like.

電解槽4内の水は、電解槽4の前側下部近傍の注入口30から注入されて電解槽4の下部側を移動し、やがて電解槽4の後側上部近傍の排出口32に向けて上昇し、さらに電解槽4の後部へ移動し排出口32から排出される。このように、電解槽4の注入口30から注入された水は、電解槽4内で排出口32に向かって移動流通し、また一部は網状の電極板6を通過し移動流通する。
電解槽4の電気分解は、上記水の移動の際に8枚の電極板6によって行われる。また、水は、網体の電極板6を通過する際にも電気分解が行われる。
The water in the electrolytic cell 4 is injected from the injection port 30 near the lower front side of the electrolytic cell 4, moves on the lower side of the electrolytic cell 4, and eventually rises toward the discharge port 32 near the upper rear side of the electrolytic cell 4. Then, it moves to the rear part of the electrolytic cell 4 and is discharged from the discharge port 32. In this way, the water injected from the injection port 30 of the electrolytic cell 4 moves and circulates in the electrolytic cell 4 toward the discharge port 32, and a part of the water passes through the mesh-like electrode plate 6 and moves and circulates.
The electrolysis of the electrolytic cell 4 is performed by the eight electrode plates 6 when the water is moved. Water is also electrolyzed when it passes through the electrode plate 6 of the reticular formation.

また、電解槽4内では、8枚の電極板6を中央寄りに配置し、電極板6と電解槽4の前後左右の壁面との間に水の流通に十分な隙間(空間部)を設けてあり、また電解槽4の底面部34と電極板6との間にも、水の流通に十分な隙間(空間部)を設けている。
これら隙間は、電解槽4内の水の流通移動の流路を形成することから、電解槽4内部における水の滞留を防止し、併せて電解槽4内の水が満遍なく均一に電気分解される。
そして、電解槽4の下部近傍に設けた注入口30から注入された水は、反対側の排出口32方向へ流通し、この水の移動とともに各電極板6により電気分解が行われ、電解槽4の上部近傍に設けた排出口32から排出される。
Further, in the electrolytic cell 4, eight electrode plates 6 are arranged closer to the center, and a sufficient gap (space) for water flow is provided between the electrode plates 6 and the front, rear, left and right wall surfaces of the electrolytic cell 4. In addition, a sufficient gap (space portion) is provided between the bottom surface portion 34 of the electrolytic cell 4 and the electrode plate 6 for the flow of water.
Since these gaps form a flow path for water flow in the electrolytic cell 4, water retention in the electrolytic cell 4 is prevented, and at the same time, the water in the electrolytic cell 4 is evenly and uniformly electrolyzed. ..
Then, the water injected from the injection port 30 provided near the lower part of the electrolytic cell 4 flows in the direction of the discharge port 32 on the opposite side, and as the water moves, electrolysis is performed by each electrode plate 6, and the electrolytic cell is electrolyzed. It is discharged from the discharge port 32 provided near the upper part of No. 4.

電解槽4は蓋部材により内部が密閉されている。このため、ポンプ14の稼働により電解槽4の注入口30(吸入口20)から給水される水量は、電解槽4の排出口32(吐出口22)から排出される水の量と同じであり、給水される水により電解槽4内部の水が押し出され排出される。 The inside of the electrolytic cell 4 is sealed by a lid member. Therefore, the amount of water supplied from the injection port 30 (suction port 20) of the electrolytic cell 4 due to the operation of the pump 14 is the same as the amount of water discharged from the discharge port 32 (discharge port 22) of the electrolytic cell 4. , The water inside the electrolytic cell 4 is pushed out and discharged by the water supplied.

上記電解槽4内で電気分解が行われている間も、ポンプ14は稼働しており、電解槽4内には注入口30から新たな水が供給され、また同量の水(水溶液)が電解槽4の排出口32から排出される。この水溶液は、切替弁の操作により、第1の切替弁56を経由して濾過器12に送られる。
濾過器12では、濾過により塩素系物質等が除去され、濾過器12の流出孔55から流出した水溶液は、筐体18の吐出口22に送られ、この吐出口22に接続されたホース等により貯留タンク16へと送出され、ここに貯留される。
While the electrolysis is being performed in the electrolytic cell 4, the pump 14 is operating, new water is supplied from the injection port 30 into the electrolytic cell 4, and the same amount of water (aqueous solution) is supplied. It is discharged from the discharge port 32 of the electrolytic cell 4. This aqueous solution is sent to the filter 12 via the first switching valve 56 by operating the switching valve.
In the filter 12, chlorine-based substances and the like are removed by filtration, and the aqueous solution flowing out from the outflow hole 55 of the filter 12 is sent to the discharge port 22 of the housing 18, and is sent by a hose or the like connected to the discharge port 22. It is sent to the storage tank 16 and stored there.

上記貯留タンク16から、流路を介してポンプ14、電解槽4(電極板6)、第1及び第2の切替弁、及び濾過器12(迂回有り)を経て、再度貯留タンク16に戻される流路が、水溶液(電解水)の循環流路62となる。
装置が稼働している間は、ポンプ14の駆動により、上記循環流路62は水溶液が絶え間なく流通し、電解槽4での電気分解及び濾過器12での濾過が繰り返し行われる。このように、上記循環流路62を繰り返し循環させ、電気分解を繰り返し行うことで、水中に含有する水素の濃度が高まり、高濃度の水素水が得られる。
The storage tank 16 is returned to the storage tank 16 again via the pump 14, the electrolytic cell 4 (electrode plate 6), the first and second switching valves, and the filter 12 (with detours) via the flow path. The flow path becomes the circulation flow path 62 of the aqueous solution (electrolyzed water).
While the apparatus is in operation, the pump 14 drives the aqueous solution to continuously flow through the circulation flow path 62, and electrolysis in the electrolytic cell 4 and filtration in the filter 12 are repeated. In this way, by repeatedly circulating the circulation flow path 62 and repeatedly performing electrolysis, the concentration of hydrogen contained in the water is increased, and high-concentration hydrogen water can be obtained.

水素水生成装置2の運転時の吐出流量(吐出口22から吐出される流量)は、濾過器12を使用する場合、例えば5~20L(リットル)/分、好ましくは9~12L(リットル)/分である。また、貯留タンクの容量が500L(リットル)の場合、装置の運転時間は例えば3~6時間程度とする。 When the filter 12 is used, the discharge flow rate (flow rate discharged from the discharge port 22) during operation of the hydrogen water generator 2 is, for example, 5 to 20 L (liter) / min, preferably 9 to 12 L (liter) / min. Minutes. When the capacity of the storage tank is 500 L (liter), the operation time of the device is, for example, about 3 to 6 hours.

続いて、上記水素水生成装置2を用いて生成された水溶液(水素水)の水素量(濃度)等の試験結果について説明する。
図9は、試験1として、電気分解に使用した水の導電率による水素量の推移を示したグラフである。
ここで、
試験1-1のグラフは、電極ピッチ7mm、電源電圧24V、吐出流量10L/分、
試験1-2のグラフは、電極ピッチ7mm、電源電圧18V、吐出流量10L/分、
試験1-3のグラフは、電極ピッチ7mm、電源電圧24V、吐出流量18L/分、の条件で試験を行なったものである。
Subsequently, the test results such as the hydrogen amount (concentration) of the aqueous solution (hydrogen water) generated by using the hydrogen water generation device 2 will be described.
FIG. 9 is a graph showing the transition of the amount of hydrogen due to the conductivity of the water used for electrolysis as Test 1.
here,
The graph of Test 1-1 shows an electrode pitch of 7 mm, a power supply voltage of 24 V, a discharge flow rate of 10 L / min, and
The graph of test 1-2 shows an electrode pitch of 7 mm, a power supply voltage of 18 V, a discharge flow rate of 10 L / min, and
The graph of Test 1-3 shows the test under the conditions of an electrode pitch of 7 mm, a power supply voltage of 24 V, and a discharge flow rate of 18 L / min.

尚、上記「電極ピッチ」は、対向する電極板6同士の間隔である。「電源電圧」は、AC1~4に係るGNDに対する電圧(V+)である。吐出流量は、吐出口22から吐出される流量(Lリットル)である。また、「導電率」は、水中に塩(塩化ナトリウム)を加えて変化させた。試験1は、吐出口からさらに6時間経過後の水素量を示したものである。 The "electrode pitch" is the distance between the opposing electrode plates 6. The "power supply voltage" is a voltage (V +) with respect to GND related to AC1 to AC4. The discharge flow rate is a flow rate (L liter) discharged from the discharge port 22. In addition, "conductivity" was changed by adding a salt (sodium chloride) to water. Test 1 shows the amount of hydrogen after another 6 hours have passed from the discharge port.

試験1より、特に導電率25mS/mまでは水素量の増加割合が高く、50mS/mを超えると緩やかとなる。また、何れの試験においても、導電率が低い(25mS/m以下)場合には、導電率の増加に対する水素量の増加割合が高いことが示されている。
また、電源電圧の高さによる水素量の増加は、導電率の高さによっては逆転し、電源電圧を低く(18V)しても十分な水素量が得られる。
このため、電気分解用の水については、水道水、自然水等、その水質に応じて、循環流路62の循環の回数を制御することが好ましい。また、水中に予め塩、液肥等を加えて導電率を高めておくことも有効である。
From Test 1, the rate of increase in the amount of hydrogen is high, especially up to a conductivity of 25 mS / m, and becomes gradual when it exceeds 50 mS / m. Further, in any of the tests, when the conductivity is low (25 mS / m or less), it is shown that the ratio of increase in the amount of hydrogen to the increase in conductivity is high.
Further, the increase in the amount of hydrogen due to the high power supply voltage is reversed depending on the high conductivity, and a sufficient amount of hydrogen can be obtained even if the power supply voltage is low (18 V).
Therefore, regarding the water for electrolysis, it is preferable to control the number of circulations in the circulation flow path 62 according to the water quality such as tap water and natural water. It is also effective to add salt, liquid fertilizer, etc. in water in advance to increase the conductivity.

図10は、試験2として、装置から吐出された水溶液(水素水)の水素量の経時変化を示したものである。
ここで、
試験2-1のグラフは、電極ピッチ5mm、稼働時間24時間、導電率30mS/m、電源電圧24V、吐出流量10L/分、
試験2-2のグラフは、電極ピッチ7mm、稼働時間8時間、導電率10mS/m、電源電圧24V、吐出流量10L/分、
試験2-3のグラフは、電極ピッチ7mm、稼働時間8時間、導電率200mS/m、電源電圧18V、吐出流量10L/分、
試験2-4のグラフは、電極ピッチ7mm、稼働時間8時間、導電率200mS/m、電源電圧18V、吐出流量10L/分、の条件で試験を行なったものである。
FIG. 10 shows the change over time in the amount of hydrogen in the aqueous solution (hydrogen water) discharged from the apparatus as Test 2.
here,
The graph of test 2-1 shows an electrode pitch of 5 mm, an operating time of 24 hours, a conductivity of 30 mS / m, a power supply voltage of 24 V, and a discharge flow rate of 10 L / min.
The graph of test 2-2 shows an electrode pitch of 7 mm, an operating time of 8 hours, a conductivity of 10 mS / m, a power supply voltage of 24 V, and a discharge flow rate of 10 L / min.
The graph of test 2-3 shows an electrode pitch of 7 mm, an operating time of 8 hours, a conductivity of 200 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 10 L / min.
The graph of Test 2-4 is a test conducted under the conditions of an electrode pitch of 7 mm, an operating time of 8 hours, a conductivity of 200 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 10 L / min.

吐出された水溶液の保存について、試験2-1~3はバケツ(開放)で保存し、また試験2-4ではタンク(蓋付の密閉容器)で保存した。稼働時間は、装置の運転時間であり、この稼働時間が長いと再循環による電気分解の繰り返しの回数も多くなる。
その他の条件については、上述したものと同じである。
Regarding the storage of the discharged aqueous solution, tests 2-1 to 3 were stored in a bucket (open), and in test 2-4, they were stored in a tank (closed container with a lid). The operating time is the operating time of the device, and if this operating time is long, the number of times of repeated electrolysis due to recirculation increases.
Other conditions are the same as described above.

試験2より、試験2-1と試験2-3からして、電気分解を行う水の導電率が低い場合(試験2-1)であっても、装置の稼働時間を長く(再循環回数を多く)することにより比較的高い水素量が得られることが示されている。
また、試験2-4(タンク保存)では、特に経過時間が十数時間(h)までは、水素量の経時低下が僅かであり、また他の試験2-1~3と比べて水素量の経時低下の変化が小さい。一方、試験2-1~3(バケツ保存)は、経過時間が二十数時間(h)までは、水素量の経時低下が急であり、それ以降は経時低下が緩やかである。
上記より、装置の稼働時間を長くすることで高い濃度の水素水が得られ、また水素水の保存は蓋付の容器で保存する方が、水素量が高く保持され長持ちすることが確認できた。
From Test 2 to Test 2-1 and Test 2-3, even when the conductivity of the water to be electrolyzed is low (Test 2-1), the operating time of the device is long (the number of recirculations is increased). It has been shown that a relatively high amount of hydrogen can be obtained by doing so.
Further, in Test 2-4 (tank storage), the amount of hydrogen decreased slightly with time, especially until the elapsed time was more than 10 hours (h), and the amount of hydrogen was smaller than that of other Tests 2-1 to 3. The change over time is small. On the other hand, in Tests 2-1 to 3 (bucket storage), the amount of hydrogen decreases rapidly with time until the elapsed time is more than 20 hours (h), and after that, the decrease with time is gradual.
From the above, it was confirmed that high-concentration hydrogen water can be obtained by lengthening the operating time of the device, and that the hydrogen water can be stored in a container with a lid to maintain a high hydrogen content and last longer. ..

図11は、試験3として、装置から吐出される流量による水素量の変化(経時)を示したものである。
ここで、
試験3-1のグラフは、電極ピッチ7mm、導電率30mS/m、電源電圧24V、吐出流量18L/分、
試験3-2のグラフは、電極ピッチ7mm、導電率30mS/m、電源電圧24V、吐出流量10L/分、
試験3-3のグラフは、電極ピッチ7mm、導電率100mS/m、電源電圧18V、吐出流量10L/分、
試験3-4のグラフは、電極ピッチ7mm、導電率100mS/m、電源電圧18V、吐出流量18L/分、
試験3-5のグラフは、電極ピッチ7mm、導電率30mS/m、電源電圧24V、吐出流量10L/分、濾過器使用、の条件で試験を行なったものである。
FIG. 11 shows a change (time) in the amount of hydrogen depending on the flow rate discharged from the device as Test 3.
here,
The graph of test 3-1 shows an electrode pitch of 7 mm, a conductivity of 30 mS / m, a power supply voltage of 24 V, and a discharge flow rate of 18 L / min.
The graph of test 3-2 shows an electrode pitch of 7 mm, a conductivity of 30 mS / m, a power supply voltage of 24 V, and a discharge flow rate of 10 L / min.
The graph of test 3-3 shows an electrode pitch of 7 mm, a conductivity of 100 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 10 L / min.
The graph of test 3-4 shows an electrode pitch of 7 mm, a conductivity of 100 mS / m, a power supply voltage of 18 V, and a discharge flow rate of 18 L / min.
The graph of Test 3-5 shows the test under the conditions of an electrode pitch of 7 mm, a conductivity of 30 mS / m, a power supply voltage of 24 V, a discharge flow rate of 10 L / min, and a filter.

試験3より、導電率が高い場合(試験3-3,4)は、導電率が低い場合(試験3-1,2,5)と比べて、稼働時間に対する水素量の増加割合が高い。
また、濾過器を使用した場合(試験3-5)は、同条件で濾過器を使用しない場合(試験3-2)と比べて、水素量の増加割合が低い。
また、試験3-3に対する試験3-4のように吐出流量を1.8倍にした場合であっても、水素量は十数%低下する程度であり、吐出量を多少増減したところで得られる水素量に大きな変化はないことが示された。
From Test 3, when the conductivity is high (Tests 3-3, 4), the rate of increase in the amount of hydrogen with respect to the operating time is higher than when the conductivity is low (Tests 3-1, 2, 5).
Further, when the filter is used (test 3-5), the rate of increase in the amount of hydrogen is lower than when the filter is not used under the same conditions (test 3-2).
Further, even when the discharge flow rate is increased by 1.8 times as in the test 3-4 with respect to the test 3-3, the hydrogen amount is reduced by about 10%, and it can be obtained when the discharge amount is slightly increased or decreased. It was shown that there was no significant change in the amount of hydrogen.

以上、上記試験1~3から、以下のことが考察される。
・幅広い導電率をカバーするためには、電源電圧18Vとするのが好ましい。
・導電率が30mS/mを下回る場合には、塩、肥料等の添加物を加えて導電率を高めることで、水素量の増大が望める。
・水素量の経時変化から、バケツでの保存では3日程度で100ppbを下回ることから、タンク等で大量に密閉保存することで、水素量の低下が防げて長く保存できる。
・吐出流量は、18L/分より、10L/分の方が優位である。
・濾過器を使用した場合には、水素量が少し低下する。
As mentioned above, the following matters are considered from the above tests 1 to 3.
-In order to cover a wide range of conductivity, it is preferable to set the power supply voltage to 18V.
-If the conductivity is less than 30 mS / m, the amount of hydrogen can be expected to increase by adding additives such as salt and fertilizer to increase the conductivity.
-Due to the change over time in the amount of hydrogen, it will be less than 100 ppb in about 3 days when stored in a bucket. Therefore, by storing a large amount in a tank or the like in a sealed manner, the amount of hydrogen can be prevented from decreasing and can be stored for a long time.
-The discharge flow rate is superior to 10 L / min over 18 L / min.
・ When a filter is used, the amount of hydrogen decreases a little.

図12は、上記水素水生成装置2で生成した水溶液(水素水)の粒子濃度(縦軸:E7)及び気泡(バブル)の粒子径(横軸:nm)を示したグラフである。ここで、大きな山のグラフ(a)は上記水素水生成装置2で生成した水溶液(水素水)に係るグラフであり、小さい山のグラフ(b)は、一般の水道水に係るグラフである。なお、水道水に係る粒子は微細な塵であり気泡とは異なる。グラフ(b)は、参考までに示した。 FIG. 12 is a graph showing the particle concentration (vertical axis: E7) of the aqueous solution (hydrogen water) generated by the hydrogen water generator 2 and the particle diameter (horizontal axis: nm) of the bubbles. Here, the large mountain graph (a) is a graph related to the aqueous solution (hydrogen water) generated by the hydrogen water generation device 2, and the small mountain graph (b) is a graph related to general tap water. The particles related to tap water are fine dust and are different from bubbles. Graph (b) is shown for reference.

上記グラフ(a)から、粒子(気泡)の粒子径が50nm~250nmにわたって、ナノサイズの粒子の生成が見られる。特に、粒子径が70nm~130nmの範囲では、粒子濃度(粒子数)が高くナノサイズの粒子が多く生成されている。
また、水素水生成装置2により生成された粒子(気泡)は、濃度(Concentration)として1mL中の粒子数が2.19・109個(約21億9千万個)/mLであった。ここで、参考までに水道水の1mL中の粒子数は7.05・107個(約7千万個)/mLであった。これを差し引くと、水素水生成装置2により粒子(気泡)が約21億個生成されたことになる。
上記粒子(気泡)内の物質については、具体的な測定を行っていないが、上記試験1~3等の水素量から、水素ガスが含有されているものと推測される。これから、水素水生成装置2により、ナノサイズの気泡(ナノバブル水素水)が大量に生成されていると考えられる。
From the graph (a) above, the formation of nano-sized particles can be seen with the particle size of the particles (bubbles) ranging from 50 nm to 250 nm. In particular, when the particle size is in the range of 70 nm to 130 nm, the particle concentration (number of particles) is high and many nano-sized particles are produced.
The particles (air bubbles) generated by the hydrogen water generator 2 had a concentration (Concentration) of 2.19.109 particles (about 2.19 billion particles) / mL in 1 mL. Here, for reference, the number of particles in 1 mL of tap water was 7.05.107 (about 70 million) / mL. When this is subtracted, about 2.1 billion particles (bubbles) are generated by the hydrogen water generator 2.
The substance in the particles (bubbles) has not been specifically measured, but it is presumed that hydrogen gas is contained from the amount of hydrogen in the tests 1 to 3 and the like. From this, it is considered that a large amount of nano-sized bubbles (nano bubble hydrogen water) are generated by the hydrogen water generation device 2.

次に、上記水素水生成装置2によって生成した水素水の、植物(農作物の栽培、園芸等)及び畜産(家畜の飼育等)への利用形態について説明する。植物への利用は、主に、葉面散布、潅水及び水耕栽培等が挙げられる。この場合、貯留タンク16から水素水を供給し、植物への散布、潅水等を行う。 Next, a mode of use of the hydrogen water generated by the hydrogen water generation device 2 for plants (cultivation of agricultural products, gardening, etc.) and livestock (breeding of livestock, etc.) will be described. The use for plants mainly includes foliar spraying, irrigation and hydroponics. In this case, hydrogen water is supplied from the storage tank 16 and sprayed on plants, irrigated, and the like.

葉面散布では、例えば、水素水の噴霧用の自動噴霧器或いは動噴器等を用いて、農作物、花等の植物の葉面散布を行う。これは主に、ダニ、アブラムシ、スリップス等の害虫忌避駆除、害虫等の卵の孵化阻害の目的で行なう。
植物への水素水(特にナノバブル水素水)の供給により、病害虫の耐性及び薬害等も無く、農薬の使用回数を減らすことができる。また、害虫の卵は酸化で孵化するが、ナノバブル水素水は還元反応が高いため卵の酸化を防ぎ、孵化を阻害する働きがある。
In foliar spraying, for example, foliar spraying of plants such as agricultural products and flowers is performed using an automatic sprayer or a dynamic sprayer for spraying hydrogen water. This is mainly performed for the purpose of exterminating pests such as mites, thrips and slips, and inhibiting the hatching of eggs such as pests.
By supplying hydrogen water (particularly nanobubble hydrogen water) to plants, there is no resistance to pests and phytotoxicity, and the number of times pesticides are used can be reduced. In addition, pest eggs hatch by oxidation, but nanobubble hydrogen water has a high reduction reaction, so it has the function of preventing egg oxidation and inhibiting hatching.

また、潅水及び水耕栽培では、供給ポンプ等を介して貯留タンク16から水素水を流通させ、植物の根等に水素水を供給する。この場合、例えば、一日程度かけて水素水が畑(農園)を一巡するようにしてもよい。なお、水素水の水素濃度は3日程度残存することが好ましい。
試験によれば、水素水の潅水等により、植物の生育例えば葉などが大きく成長し、植物の生長促進に寄与する。
Further, in irrigation and hydroponics, hydrogen water is circulated from the storage tank 16 via a supply pump or the like, and hydrogen water is supplied to the roots of plants or the like. In this case, for example, hydrogen water may go around the field (farm) over a day or so. The hydrogen concentration of hydrogen water preferably remains for about 3 days.
According to the test, the growth of plants such as leaves grows greatly by irrigation of hydrogen water and the like, which contributes to the promotion of plant growth.

また、上記水素水生成装置2によって生成した水素水を、家畜(豚、牛、鶏等)の飲料水及び家畜餌に混ぜて使用する。これにより、家畜の健康が維持(病気の発生が減少)され、また糞の量が減り(消化吸収が良いため)、糞の臭気も軽減される等の効果がある。 Further, the hydrogen water generated by the hydrogen water generation device 2 is mixed with the drinking water and livestock feed of livestock (pigs, cows, chickens, etc.) and used. This has the effects of maintaining the health of livestock (reducing the occurrence of diseases), reducing the amount of feces (because of good digestion and absorption), and reducing the odor of feces.

また、上記水素水生成装置2による水素水は、微小な粒子状のナノバブル水素水が多く含まれており、水素濃度を3日程度残存させることは可能である。なお、水素水の貯留タンク16は密閉保存することが好ましく、これにより長期の保存が可能となる。 Further, the hydrogen water produced by the hydrogen water generation device 2 contains a large amount of fine particle-like nanobubble hydrogen water, and it is possible to leave the hydrogen concentration for about 3 days. The hydrogen water storage tank 16 is preferably stored in a sealed manner, which enables long-term storage.

なお、電解槽4で生成された水素水は、そのまま直接植物へ供給することも可能である。
この場合、例えば、水道或いは水源から直接筐体18の吸入口20に水を供給し、更に電解槽4及び濾過器12を通過させて筐体18の吐出口22から吐出される水溶液を、そのまま流路を介して農作物等に供給する。
このとき、貯留タンク16は特に必要としないが、例えば、貯留タンク16をバッファー(緩衝手段)としても用いることも可能である。この場合、電解槽4で生成される水溶液を一度貯留タンク16に蓄えておき、これを植物に供給する。これにより、電解槽4で生成される水素水の量に左右されることなく、常に農作物に必要な量の水素水が供給できる。
The hydrogen water generated in the electrolytic cell 4 can be directly supplied to the plant as it is.
In this case, for example, water is directly supplied to the suction port 20 of the housing 18 from a water supply or a water source, and the aqueous solution that is further passed through the electrolytic cell 4 and the filter 12 and discharged from the discharge port 22 of the housing 18 is used as it is. It is supplied to agricultural products, etc. via the channel.
At this time, the storage tank 16 is not particularly required, but for example, the storage tank 16 can also be used as a buffer (buffering means). In this case, the aqueous solution produced in the electrolytic cell 4 is once stored in the storage tank 16 and supplied to the plant. As a result, the amount of hydrogen water required for crops can always be supplied regardless of the amount of hydrogen water produced in the electrolytic cell 4.

以上説明したように、この実施例に係る水素水生成装置によれば、効率的に水素を含有する水溶液(水素水)を大量に得ることができ、また電解槽等の装置の小型化が図れ、機能的で経済性にも優れる。また、電解槽内では、水の移動とともに電気分解が行なえて効率的であり、水の移動が淀みなく満遍に行え、良好に電気分解が行なえ水の滞留も防止され、加えて循環流路により繰り返し電解槽を通過させることで、容易に高濃度の水素水を得ることができ、水溶液中の水素濃度の管理も容易である。 As described above, according to the hydrogen water generator according to this embodiment, a large amount of an aqueous solution (hydrogen water) containing hydrogen can be efficiently obtained, and the device such as an electrolytic cell can be downsized. , Functional and economical. In addition, in the electrolytic tank, electrolysis can be performed efficiently with the movement of water, the movement of water can be performed evenly without stagnation, the electrolysis can be performed well, the retention of water can be prevented, and in addition, the circulation flow path. By repeatedly passing through the electrolytic tank, high-concentration hydrogen water can be easily obtained, and the hydrogen concentration in the aqueous solution can be easily controlled.

2 水素水生成装置
4 電解槽
6 電極板
10 制御部
11 電源回路部
12 濾過器
14 ポンプ
16 貯留タンク
30 注入口
32 排出口
62 循環流路
2 Hydrogen water generator 4 Electrolytic cell 6 Electrode plate 10 Control unit 11 Power supply circuit unit 12 Filter 14 Pump 16 Storage tank 30 Injection port 32 Outlet port 62 Circulation flow path

Claims (4)

網状の電極板と、
上記電極板を、連続する4枚を一組とし、且つ所定間隔をおいて8枚を互いに向い合せに配置し、これら電極板の並びの一方側に水の注入口を、また他方側に水の排出口をそれぞれ設けた電解槽と、
上記各電極板に電圧を印加し、隣り合う電極板間及び他の電極板を介在させた電極板間に電流を流して電気分解を行わせる電源回路部と、を有し、
上記電源回路部に、上記4枚を一組とする各組に電気を供給する出力回路を、各組毎に個別に設け、
上記電源回路部は、各一組の上記電極板の内、他の電極板を介在させた特定の電極板間に交流電圧を印加し、且つ当該特定の電極板以外の電極板には直流電圧を印加し、電気分解を行わせることとし、
上記電解槽を筐体内に収め、上記電解槽の上部に、下部側に上記8枚の電極板を取り付けた蓋部材を配置し、当該蓋部材を上記電解槽の縁部に固定し、かつ上記電極板を電解槽の中央部寄りにまとめて配置し、上記電極板と上記電解槽の周囲の壁面との間には、水の流通が可能な隙間を形成し、上記蓋部材により上記電解槽の内部を密閉し、
上記筐体における水の吸入口と上記電解槽の上記注入口との間の流路にポンプを配置し、上記ポンプの駆動により水を上記注入口へ向けて流通させ、
上記注入口から給水される水により上記電解槽内部の水が押し出され、これを上記排出口から排出し、当該排出される水の流量を9~12リットル/分とし、併せて、
上記注入口を上記電解槽の下部近傍に設けて水を注入する一方、上記排出口を上記電解槽の上部近傍に設けて、上記注入された水を上記注入口から上記排出口方向へ移動させるとともに、下方から上方へと移動させ、この移動する水を上記電極板により電気分解し、水中に水素を含有する水溶液を生成し、これを上記排出口から排出することを特徴とする水素水生成装置。
With a net-like electrode plate,
Four consecutive electrode plates are arranged as a set, and eight plates are arranged facing each other at predetermined intervals, and a water inlet is provided on one side of the array of these electrode plates and water is placed on the other side. An electrolytic cell with each discharge port and
It has a power supply circuit unit in which a voltage is applied to each of the above electrode plates and a current is passed between adjacent electrode plates and between electrode plates interposed between other electrode plates to perform electrolysis.
In the power supply circuit section, an output circuit for supplying electricity to each set of the above four sets is individually provided for each set.
The power supply circuit unit applies an AC voltage between specific electrode plates interposed between the other electrode plates in each set of the electrode plates, and a DC voltage to the electrode plates other than the specific electrode plates. To perform electrolysis,
The electrolytic cell is housed in a housing, a lid member to which the eight electrode plates are attached is arranged on the lower side of the electrolytic cell, the lid member is fixed to the edge of the electrolytic cell, and the electrolytic cell is fixed. The electrode plates are collectively arranged near the center of the electrolytic cell, a gap through which water can flow is formed between the electrode plate and the wall surface around the electrolytic cell, and the electrolytic cell is provided with the lid member. Seal the inside of
A pump is arranged in the flow path between the water suction port in the housing and the injection port of the electrolytic cell, and the water is circulated toward the injection port by driving the pump.
The water inside the electrolytic cell is pushed out by the water supplied from the inlet, discharged from the discharge port, and the flow rate of the discharged water is set to 9 to 12 liters / minute.
The injection port is provided near the lower part of the electrolytic tank to inject water, while the discharge port is provided near the upper part of the electrolytic tank to move the injected water from the injection port toward the discharge port. At the same time, it is moved from the bottom to the top, and the moving water is electrolyzed by the electrode plate to generate an aqueous solution containing hydrogen in the water, which is discharged from the discharge port. Device.
網状の電極板と、
上記電極板を、連続する4枚を一組とし、且つ所定間隔をおいて8枚を互いに向い合せに配置し、これら電極板の並びの一方側に水の注入口を、また他方側に水の排出口をそれぞれ設けた電解槽と、
上記各電極板に電圧を印加し、隣り合う電極板間及び他の電極板を介在させた電極板間に電流を流して電気分解を行わせる電源回路部と、を有し、
上記電源回路部に、上記4枚を一組とする各組に電気を供給する出力回路を、各組毎に個別に設け、
隣り合う上記電極板間の間隔を5~8mmとし、
上記電源回路部は、各一組の上記電極板の内、他の電極板を介在させた特定の電極板間に交流電圧を印加し、且つ当該特定の電極板以外の電極板には直流電圧を印加する形態とし、
上記組毎に設けた出力回路について、直流電源としての電気信号を印加する回路を接続して一体化し、前記組同士の間の隣り合う電極の内、一方側には交流電圧を印加する電極が配置される形態の場合には、他方側には直流電圧を印加する電極を配置する形態として、電気分解を行わせ、
上記注入口を上記電解槽の下部近傍に設けて水を注入する一方、上記排出口を上記電解槽の上部近傍に設けて、上記注入された水を上記注入口から上記排出口方向へ移動させるとともに、下方から上方へと移動させ、この移動する水を上記電極板により電気分解し、水中に水素を含有する水溶液を生成し、これを上記排出口から排出することを特徴とする水素水生成装置。
With a net-like electrode plate,
Four consecutive electrode plates are arranged as a set, and eight plates are arranged facing each other at predetermined intervals, and a water inlet is provided on one side of the array of these electrode plates and water is placed on the other side. An electrolytic cell with each discharge port and
It has a power supply circuit unit in which a voltage is applied to each of the above electrode plates and a current is passed between adjacent electrode plates and between electrode plates interposed between other electrode plates to perform electrolysis.
In the power supply circuit section, an output circuit for supplying electricity to each set of the above four sets is individually provided for each set.
The distance between the adjacent electrode plates is 5 to 8 mm.
The power supply circuit unit applies an AC voltage between specific electrode plates sandwiched between other electrode plates in each set of the electrode plates, and a DC voltage is applied to the electrode plates other than the specific electrode plates. In the form of applying
Regarding the output circuit provided for each of the above sets, a circuit for applying an electric signal as a DC power supply is connected and integrated, and among the adjacent electrodes between the sets, an electrode for applying an AC voltage is provided on one side. In the case of the arranged form, an electrode for applying a DC voltage is arranged on the other side, and electrolysis is performed.
The injection port is provided near the lower part of the electrolytic tank to inject water, while the discharge port is provided near the upper part of the electrolytic tank to move the injected water from the injection port toward the discharge port. At the same time, it is moved from the bottom to the top, and the moving water is electrolyzed by the electrode plate to generate an aqueous solution containing hydrogen in the water, which is discharged from the discharge port. Device.
上記電解槽を筐体内に収め、上記電解槽の上部に、下部側に上記8枚の電極板を取り付けた蓋部材を配置し、当該蓋部材を上記電解槽の縁部に固定し、かつ上記電極板を電解槽の中央部寄りにまとめて配置し、上記電極板と上記電解槽の周囲の壁面との間には、水の流通が可能な隙間を形成し、上記蓋部材により上記電解槽の内部を密閉し、
上記筐体における水の吸入口と上記電解槽の上記注入口との間の流路にポンプを配置し、上記ポンプの駆動により水を上記注入口へ向けて流通させ、
上記給水される水により上記電解槽内部の水が押し出され、これを上記排出口から排出し、当該排出される水の流量を9~12リットル/分とすることを特徴とする請求項に記載の水素水生成装置。
The electrolytic cell is housed in a housing, a lid member to which the eight electrode plates are attached is arranged on the lower side of the electrolytic cell, the lid member is fixed to the edge of the electrolytic cell, and the electrolytic cell is fixed. The electrode plates are collectively arranged near the center of the electrolytic cell, a gap through which water can flow is formed between the electrode plate and the wall surface around the electrolytic cell, and the electrolytic cell is provided with the lid member. Seal the inside of
A pump is arranged in the flow path between the water suction port in the housing and the injection port of the electrolytic cell, and the water is circulated toward the injection port by driving the pump.
The second aspect of claim 2 , wherein the water inside the electrolytic cell is pushed out by the water supplied and discharged from the discharge port so that the flow rate of the discharged water is 9 to 12 liters / minute. The hydrogen water generator described.
上記排出口と連通する切替弁を設け、上記排出口から排出された水溶液の濾過器を通過する流路と、この濾過器を通過しない流路とを切り替え可能としたことを特徴とする請求項1乃至の何れかに記載の水素水生成装置。 The claim is characterized in that a switching valve that communicates with the discharge port is provided so that a flow path through which the aqueous solution discharged from the discharge port passes through the filter and a flow path that does not pass through the filter can be switched. The hydrogen water generator according to any one of 1 to 3 .
JP2020090527A 2020-05-25 2020-05-25 Hydrogen water generator Active JP6994780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090527A JP6994780B2 (en) 2020-05-25 2020-05-25 Hydrogen water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090527A JP6994780B2 (en) 2020-05-25 2020-05-25 Hydrogen water generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017196157A Division JP2019069413A (en) 2017-10-06 2017-10-06 Hydrogen water generation apparatus

Publications (3)

Publication Number Publication Date
JP2020121314A JP2020121314A (en) 2020-08-13
JP2020121314A5 JP2020121314A5 (en) 2020-09-24
JP6994780B2 true JP6994780B2 (en) 2022-01-14

Family

ID=71991829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090527A Active JP6994780B2 (en) 2020-05-25 2020-05-25 Hydrogen water generator

Country Status (1)

Country Link
JP (1) JP6994780B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220389A (en) 2002-01-30 2003-08-05 Kosumosu Enterp:Kk Reduced water former
JP2003236543A (en) 2002-02-14 2003-08-26 Hideo Hayakawa Alternating current electrolysis method and apparatus for liquid
JP2004033963A (en) 2002-07-05 2004-02-05 Kyushu Hitachi Maxell Ltd Water treatment apparatus
JP2004131746A (en) 2002-10-08 2004-04-30 Denso Corp Gaseous hydrogen feeder
JP2007307517A (en) 2006-05-22 2007-11-29 Hideo Hayakawa Method and apparatus for electrolyzing liquid by using alternating current
JP2011131118A (en) 2009-12-22 2011-07-07 Tanah Process Co Ltd Method and apparatus for preparing spray water for plant
JP2012161795A (en) 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
WO2017077992A1 (en) 2015-11-05 2017-05-11 株式会社日本トリム Hydrogen water server

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623204B2 (en) * 1993-02-26 1997-06-25 英雄 早川 Water reforming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220389A (en) 2002-01-30 2003-08-05 Kosumosu Enterp:Kk Reduced water former
JP2003236543A (en) 2002-02-14 2003-08-26 Hideo Hayakawa Alternating current electrolysis method and apparatus for liquid
JP2004033963A (en) 2002-07-05 2004-02-05 Kyushu Hitachi Maxell Ltd Water treatment apparatus
JP2004131746A (en) 2002-10-08 2004-04-30 Denso Corp Gaseous hydrogen feeder
JP2007307517A (en) 2006-05-22 2007-11-29 Hideo Hayakawa Method and apparatus for electrolyzing liquid by using alternating current
JP2011131118A (en) 2009-12-22 2011-07-07 Tanah Process Co Ltd Method and apparatus for preparing spray water for plant
JP2012161795A (en) 2012-04-04 2012-08-30 Daikin Industries Ltd Electrolytic apparatus and heat pump type water heater equipped with the same
WO2017077992A1 (en) 2015-11-05 2017-05-11 株式会社日本トリム Hydrogen water server

Also Published As

Publication number Publication date
JP2020121314A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
USRE47665E1 (en) Flow-through oxygenator
WO2019069734A1 (en) Hydrogen water generation device
US6802956B2 (en) Electrolytic treatment of aqueous media
CN201212061Y (en) Electrolyzed water maker for poultry and livestock farms sterilisation
JP6994780B2 (en) Hydrogen water generator
RU2628782C1 (en) Water electroactivation device
JP5385776B2 (en) Middle water supply equipment
KR101947051B1 (en) Functional water production system using nano bubble
JP2006204235A (en) Closed circulation type culture system and ph adjuster
KR101368491B1 (en) Appliance for electrolysis attached ship and the method of sterilizing red tied using it
JP4929465B2 (en) Water quality control device for aquarium fish tank
JP2007038090A (en) Electrolytic ion water generator for fruits and vegetables
JP7481782B1 (en) Electrolysis device for aquatic organism cultivation, circulating water treatment system for aquatic organism cultivation, and electrolysis method for aquatic organism cultivation
USRE47092E1 (en) Flow-through oxygenator
JP3238937U (en) Apparatus for producing modified water and distributing this modified water to agricultural holdings
US20240270614A1 (en) Water management system
CN206901835U (en) A kind of electrolysis water sterilization algae removal water circle device
JP3840189B2 (en) Seafood farming equipment
CN110036965A (en) A kind of ion cleaning cultivating system
KR20000018274A (en) Mass storage electrolytic water making and dispersing apparatus
WO2005077831A1 (en) Electrochemical water treatment method and device
CN103141430A (en) Tri-polar dual-circulation seawater purifying aerator
CN112939268A (en) Aquaculture harmless water purification treatment equipment and method
JP2005245328A (en) Closed circulating culture system
JPH03224683A (en) Electrochemical treatment of water to be treated

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6994780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250