JP6994229B2 - Method for manufacturing surface-modified boron nitride - Google Patents

Method for manufacturing surface-modified boron nitride Download PDF

Info

Publication number
JP6994229B2
JP6994229B2 JP2017125986A JP2017125986A JP6994229B2 JP 6994229 B2 JP6994229 B2 JP 6994229B2 JP 2017125986 A JP2017125986 A JP 2017125986A JP 2017125986 A JP2017125986 A JP 2017125986A JP 6994229 B2 JP6994229 B2 JP 6994229B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride powder
heat treatment
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017125986A
Other languages
Japanese (ja)
Other versions
JP2019006653A (en
Inventor
貴大 塩田
康博 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2017125986A priority Critical patent/JP6994229B2/en
Publication of JP2019006653A publication Critical patent/JP2019006653A/en
Application granted granted Critical
Publication of JP6994229B2 publication Critical patent/JP6994229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面改質窒化ホウ素の製造方法に関する。 The present invention relates to a method for producing surface-modified boron nitride.

窒化ホウ素(BN)は、優れた絶縁性および高い熱伝導率を有しており、この特性を活かして例えば放熱材料用のフィラーとして使用されている。放熱材料の熱伝導率を向上させるためには、マトリックス中に配合するフィラーの充填量を高める必要がある。しかし、マトリックスに樹脂を使用する場合、窒化ホウ素は樹脂との親和性(なじみ)が低いため、窒化ホウ素の充填量を十分に高めることができないという問題がある。そこで、窒化ホウ素の表面を改質して樹脂との親和性を高めるべく、様々な試みが成されている。 Boron nitride (BN) has excellent insulating properties and high thermal conductivity, and is used as a filler for, for example, a heat radiating material by taking advantage of this property. In order to improve the thermal conductivity of the heat-dissipating material, it is necessary to increase the filling amount of the filler to be blended in the matrix. However, when a resin is used for the matrix, there is a problem that the filling amount of boron nitride cannot be sufficiently increased because boron nitride has a low affinity (familiarity) with the resin. Therefore, various attempts have been made to modify the surface of boron nitride to improve its affinity with the resin.

特許文献1は、温度375℃以上450℃以下、圧力25MPa以上40MPa以下の超臨界水又は亜臨界水を用いて、窒化ホウ素粉末の表面を酸化させる方法を開示している。また、特許文献1は、窒化ホウ素粉末と、チオール類、アミン類、カルボン酸類などの有機修飾剤とを共に亜臨界水又は超臨界水下で処理することにより、酸化した窒化ホウ素粉末表面を有機修飾剤によって修飾する方法も開示している。 Patent Document 1 discloses a method of oxidizing the surface of a boron nitride powder using supercritical water or subcritical water having a temperature of 375 ° C. or higher and 450 ° C. or lower and a pressure of 25 MPa or higher and 40 MPa or lower. Further, in Patent Document 1, the surface of the oxidized boron nitride powder is organically prepared by treating the boron nitride powder and organic modifiers such as thiols, amines and carboxylic acids together in subcritical water or supercritical water. A method of modifying with a modifier is also disclosed.

特許文献2は、酸素雰囲気下、800℃~1300℃・1~8時間の条件で窒化ホウ素を加熱して、窒化ホウ素の表面を改質する方法を開示している。 Patent Document 2 discloses a method of modifying the surface of boron nitride by heating boron nitride under the conditions of 800 ° C. to 1300 ° C. for 1 to 8 hours in an oxygen atmosphere.

特開2012-121744公報Japanese Unexamined Patent Publication No. 2012-121744 特開平09-012771公報Japanese Patent Application Laid-Open No. 09-012771

ところで、窒化ホウ素の表面改質は、製造コストなどの観点からできる限り低温低圧で実施されることが好ましい。 By the way, it is preferable that the surface modification of boron nitride is carried out at a low temperature and a low pressure as much as possible from the viewpoint of manufacturing cost and the like.

この点、特許文献1の方法では亜臨界水又は超臨界水を使用して高温高圧下で実施されるため、当該方法を実施するための装置が高価で且つ1バッチ当たりの処理量が少なく、製造コストが高くなりやすい。また、亜臨界や超臨界を実現するための装置を大型化することは困難であり、仮に装置の大型化を実現できたとしてもその装置を使用しての製造には危険が伴う。さらに、高温高圧下では反応制御が困難であり、所望の物性を満たす表面改質窒化ホウ素を得ることが困難であると推測される。 In this respect, since the method of Patent Document 1 is carried out under high temperature and high pressure using subcritical water or supercritical water, the apparatus for carrying out the method is expensive and the amount of processing per batch is small. Manufacturing costs tend to be high. In addition, it is difficult to increase the size of a device for realizing subcritical or supercritical, and even if the device can be increased in size, there is a danger in manufacturing using the device. Further, it is presumed that reaction control is difficult under high temperature and high pressure, and it is difficult to obtain surface-modified boron nitride satisfying desired physical properties.

特許文献2の方法では、800℃~1300℃という高温下で実施されるため製造コストが高くなると共に、窒化ホウ素の粒子同士の融着が懸念される。 Since the method of Patent Document 2 is carried out at a high temperature of 800 ° C. to 1300 ° C., the manufacturing cost is high and there is a concern that the boron nitride particles are fused to each other.

本発明は、低コストで表面改質窒化ホウ素を製造することができる製造方法を提供することを目的とする。 An object of the present invention is to provide a production method capable of producing surface-modified boron nitride at low cost.

本発明は、下記に掲げる態様の発明を提供する。
(項目1)
窒化ホウ素を飽和水蒸気下で加熱処理する、
ことを特徴とする表面改質窒化ホウ素の製造方法。
(項目2)
実質的に窒化ホウ素のみを加熱処理する、
ことを特徴とする項目1に記載の表面改質窒化ホウ素の製造方法。
(項目3)
前記加熱処理は、乾式で実施される、
項目1または2に記載の表面改質窒化ホウ素の製造方法。
(項目4)
前記加熱処理は、180℃以上205℃以下で実施される、
項目1から3のいずれか1項に記載の表面改質窒化ホウ素の製造方法。
(項目5)
流動パラフィンの吸液量が、処理前窒化ホウ素の流動パラフィンの吸液量に対して75質量%~97質量%である、
項目1から4のいずれか1項に記載の表面改質窒化ホウ素の製造方法。
The present invention provides the inventions of the following aspects.
(Item 1)
Heat treatment of boron nitride under saturated steam,
A method for producing surface-modified boron nitride, which is characterized by the above.
(Item 2)
Heat treatment of substantially only boron nitride,
The method for producing surface-modified boron nitride according to item 1, wherein the surface-modified boron nitride is produced.
(Item 3)
The heat treatment is carried out in a dry manner.
The method for producing surface-modified boron nitride according to item 1 or 2.
(Item 4)
The heat treatment is carried out at 180 ° C. or higher and 205 ° C. or lower.
The method for producing surface-modified boron nitride according to any one of items 1 to 3.
(Item 5)
The liquid absorption amount of the liquid paraffin is 75% by mass to 97% by mass with respect to the liquid absorption amount of the liquid paraffin of boron nitride before treatment.
The method for producing surface-modified boron nitride according to any one of items 1 to 4.

本発明の製造方法では、飽和水蒸気下という比較的低温低圧下で窒化ホウ素の表面改質を行うため、低コストで表面改質窒化ホウ素を製造することができる。 In the production method of the present invention, surface modification of boron nitride is performed under a relatively low temperature and low pressure of saturated steam, so that surface-modified boron nitride can be produced at low cost.

本発明の表面改質窒化ホウ素の製造方法は、原料である窒化ホウ素の粉末を飽和水蒸気下で加熱処理(水熱処理)することを特徴とする。詳細には、窒化ホウ素粉末および水をオートクレーブなどの圧力容器に入れ、所定温度に加熱して飽和水蒸気下で窒化ホウ素粉末を処理することを特徴とする。 The method for producing surface-modified boron nitride of the present invention is characterized by heat-treating (hydroheat-treating) a powder of boron nitride as a raw material under saturated steam. Specifically, the boron nitride powder and water are placed in a pressure vessel such as an autoclave and heated to a predetermined temperature to treat the boron nitride powder under saturated steam.

加熱処理は、乾式または湿式で実施することができる。 The heat treatment can be carried out dry or wet.

「湿式」とは、最も一般的な水熱処理(水熱合成)方法であり、原料の窒化ホウ素粉末と水とをあらかじめ混合して混合物(スラリー)を作製し、飽和水蒸気圧力下で液体の水の中で窒化ホウ素を加圧加熱処理することを意味する。「湿式」処理の方法は、液体の水の中で窒化ホウ素が加圧加熱処理される状態であれば特に限定はされない。例えば、加熱の方法として、ボイラで発生させた水蒸気を圧力容器内に導入する方法や前述のスラリーの入った圧力容器を外から電気ヒーターや熱媒油で加熱する方法などがある。また、スラリーを撹拌せず静置状態で加圧加熱してもよく、撹拌してもよい。 "Wet" is the most common hydrothermal heat treatment (hydrothermal synthesis) method. Boron nitride powder as a raw material and water are mixed in advance to prepare a mixture (slurry), and liquid water is prepared under saturated steam pressure. It means that boron nitride is heat-treated under pressure. The method of the "wet" treatment is not particularly limited as long as the boron nitride is pressure-heated in liquid water. For example, as a heating method, there are a method of introducing steam generated by a boiler into a pressure vessel and a method of heating the pressure vessel containing the above-mentioned slurry from the outside with an electric heater or heat medium oil. Further, the slurry may be pressurized and heated in a stationary state without stirring, or may be stirred.

一方、「乾式」とは、原料の窒化ホウ素粉末に水を添加することなく、飽和水蒸気下で窒化ホウ素粉末を加熱処理することを意味する。乾式加熱処理では、例えば圧力容器内に窒化ホウ素粉末の入った容器を入れると共に、圧力容器内を飽和水蒸気で満たして窒化ホウ素粉末を加熱処理する。水蒸気の発生方法は特に限定されないが、例えば、圧力容器内に飽和水蒸気を発生させるのに十分な量の水を入れ、圧力容器を加熱することによりその水を蒸発させて水蒸気を発生させる方法や、ボイラ等により発生させた水蒸気を圧力容器内に入れる方法などが挙げられる。圧力容器内の窒化ホウ素粉末は水蒸気によって加圧されながら加熱処理される。乾式加熱処理では、加熱処理中、窒化ホウ素粉末と(液体状態の)水とは直接接触しない。 On the other hand, the "dry type" means that the boron nitride powder is heat-treated under saturated steam without adding water to the raw material boron nitride powder. In the dry heat treatment, for example, a container containing boron nitride powder is placed in a pressure vessel, and the pressure vessel is filled with saturated steam to heat-treat the boron nitride powder. The method of generating water vapor is not particularly limited, but for example, a method of putting a sufficient amount of water in the pressure vessel to generate saturated water vapor and heating the pressure vessel to evaporate the water to generate water vapor. , A method of putting steam generated by a boiler or the like into a pressure vessel. The boron nitride powder in the pressure vessel is heat-treated while being pressurized by steam. In the dry heat treatment, the boron nitride powder and water (in a liquid state) do not come into direct contact with each other during the heat treatment.

乾式加熱処理は、窒化ホウ素粉末に水を添加しないため、湿式加熱処理と比較して以下の利点を有する。すなわち、1バッチ当たりの窒化ホウ素粉末の仕込み量を多くすることができ、スラリー中の水を加熱する必要がないためエネルギーコストおよび加熱処理時間を低減でき、且つ加熱処理終了後の脱水工程および乾燥工程が必要ないため製造コストを低減できる。 Since the dry heat treatment does not add water to the boron nitride powder, it has the following advantages over the wet heat treatment. That is, the amount of boron nitride powder charged per batch can be increased, the energy cost and heat treatment time can be reduced because the water in the slurry does not need to be heated, and the dehydration step and drying after the heat treatment is completed. Since no process is required, the manufacturing cost can be reduced.

本発明の製造方法では、実質的に窒化ホウ素のみを加熱処理することが好ましい。「実質的に窒化ホウ素のみを加熱処理する」とは、加熱処理時に水以外の物質を窒化ホウ素粉末に意図的に添加しないことを意味し、窒化ホウ素粉末が不可避的不純物と共に加熱処理されることは許容される。 In the production method of the present invention, it is preferable to heat-treat substantially only boron nitride. "Practically heat-treating only boron nitride" means that a substance other than water is not intentionally added to the boron nitride powder during the heat treatment, and the boron nitride powder is heat-treated together with unavoidable impurities. Is acceptable.

加熱処理における加熱温度は、100℃以上300℃以下、好ましくは130℃以上270℃以下、より好ましくは170℃以上250℃以下である。加熱温度は、窒化ホウ素の表面改質が進行する温度であれば特に限定されないが、高温では、窒化ホウ素表面の分解促進による収率の低下や、製造コストの高騰から250℃以下であることが特に好ましい。加熱処理は飽和水蒸気下で実施されるため、加熱処理時の圧力は飽和水蒸気圧と同じである。 The heating temperature in the heat treatment is 100 ° C. or higher and 300 ° C. or lower, preferably 130 ° C. or higher and 270 ° C. or lower, and more preferably 170 ° C. or higher and 250 ° C. or lower. The heating temperature is not particularly limited as long as the surface modification of boron nitride progresses, but at high temperatures, the temperature may be 250 ° C. or lower due to a decrease in yield due to accelerated decomposition of the boron nitride surface and an increase in manufacturing cost. Especially preferable. Since the heat treatment is carried out under saturated steam, the pressure during the heat treatment is the same as the saturated water vapor pressure.

加熱時間は、窒化ホウ素の表面改質が進行する時間であれば特に限定されないが、48時間以上の加熱処理は不経済である。 The heating time is not particularly limited as long as the surface modification of boron nitride proceeds, but the heat treatment for 48 hours or more is uneconomical.

加熱処理後の窒化ホウ素粉末は、必要に応じて、洗浄および乾燥されてもよい。例えば窒化ホウ素粉末の洗浄は、窒化ホウ素の純度を高めることを目的として、加熱処理によって窒化ホウ素粉末の表面に生成した化合物(例えば、-B(OH)など)を除去するために行うことができる。洗浄後の乾燥方法は、窒化ホウ素粉末から水分を蒸発させることができる方法であれば特に限定されない。 The boron nitride powder after the heat treatment may be washed and dried, if necessary. For example, cleaning of the boron nitride powder may be performed to remove a compound (for example, −B (OH) 2 or the like) formed on the surface of the boron nitride powder by heat treatment for the purpose of increasing the purity of the boron nitride. can. The drying method after washing is not particularly limited as long as it is a method capable of evaporating water from the boron nitride powder.

加熱処理後の窒化ホウ素粉末の流動パラフィンの吸液量(質量)は、原料窒化ホウ素粉末の流動パラフィンの吸液量に対し、75質量%~97質量%であることが好ましい。吸液量とは、窒化ホウ素粉末1gに流動パラフィンを加えていった際に、窒化ホウ素粉末が一つの塊になるまでに要した流動パラフィンの質量(g)を100倍した値(すなわち、窒化ホウ素粉末100g当たりに換算した値)のことである。吸液量は、窒化ホウ素粉末とマトリックス(例えば樹脂)との親和性を表す指標である。吸液量が少ないほど、窒化ホウ素粉末を練り込むのに必要なマトリックス量が少なくて済むということであり、すなわち、マトリックス中に窒化ホウ素粉末を充填する際に、マトリックスに対する窒化ホウ素粉末の充填率を高めることができることを意味する。 The liquid absorption amount (mass) of the liquid paraffin of the boron nitride powder after the heat treatment is preferably 75% by mass to 97% by mass with respect to the liquid absorption amount of the liquid paraffin of the raw material boron nitride powder. The liquid absorption amount is a value obtained by multiplying the mass (g) of the liquid paraffin required for the boron nitride powder to become one mass when liquid paraffin is added to 1 g of the boron nitride powder (that is, nitrided). It is a value converted per 100 g of boron powder). The amount of liquid absorbed is an index showing the affinity between the boron nitride powder and the matrix (for example, resin). The smaller the amount of liquid absorbed, the smaller the amount of matrix required to knead the boron nitride powder, that is, the filling ratio of the boron nitride powder to the matrix when filling the matrix with the boron nitride powder. Means that can be enhanced.

以下では、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

表1に、実施例1~9および比較例1~4の実験条件および実験結果を示す。なお、比較例1、3および4は原料窒化ホウ素粉末の測定データである。 Table 1 shows the experimental conditions and experimental results of Examples 1 to 9 and Comparative Examples 1 to 4. In addition, Comparative Examples 1, 3 and 4 are measurement data of the raw material boron nitride powder.

<実施例1~6の実験方法>
実施例1~6では乾式により窒化ホウ素の加熱処理を行った。
(1)窒化ホウ素粉末(デンカ株式会社製、HGP:5μm品)60gを入れたステンレスバットをオートクレーブ内に入れた。オートクレーブ内に、目的加熱温度にて飽和水蒸気を発生させるのに十分な量の水を入れた。窒化ホウ素粉末はステンレスバットに入っているため、加熱時に窒化ホウ素粉末とオートクレーブ内の水とは直接接触しないようになっている。
(2)室温から目的加熱温度まで所定の昇温速度(目的加熱温度が205℃の場合87.5℃/h、目的加熱温度が180℃の場合75℃/h)で昇温した。
(3)目的加熱温度に到達後、その加熱温度で所定時間保持した。なお、実施例1の加熱保持時間0時間とは、目的加熱温度205℃に達した後、すぐに加熱を停止したことを意味する。
(4)加熱保持時間経過後、加熱を停止し、自然冷却した。
(5)加熱処理後の窒化ホウ素粉末を、ろ液がpH7.5以下で且つ電気伝導度0.4mS/m以下となるまでイオン交換水で洗浄した後、120℃で24時間乾燥させ、試料を作製した。
<Experimental methods of Examples 1 to 6>
In Examples 1 to 6, boron nitride was heat-treated by a dry method.
(1) A stainless steel vat containing 60 g of boron nitride powder (manufactured by Denka Co., Ltd., HGP: 5 μm product) was placed in an autoclave. A sufficient amount of water was placed in the autoclave to generate saturated steam at the target heating temperature. Since the boron nitride powder is contained in the stainless steel vat, the boron nitride powder and the water in the autoclave do not come into direct contact with each other during heating.
(2) The temperature was raised from room temperature to the target heating temperature at a predetermined rate of temperature rise (87.5 ° C./h when the target heating temperature was 205 ° C., 75 ° C./h when the target heating temperature was 180 ° C.).
(3) After reaching the target heating temperature, the temperature was maintained at that heating temperature for a predetermined time. The heating holding time of 0 hours in Example 1 means that the heating was stopped immediately after reaching the target heating temperature of 205 ° C.
(4) After the heating holding time had elapsed, the heating was stopped and the mixture was naturally cooled.
(5) The boron nitride powder after the heat treatment was washed with ion-exchanged water until the filtrate had a pH of 7.5 or less and an electric conductivity of 0.4 mS / m or less, and then dried at 120 ° C. for 24 hours to prepare a sample. Was produced.

<実施例7の実験方法>
実施例7では湿式により窒化ホウ素の加熱処理を行った。
(1)上記と同じ窒化ホウ素粉末60gとイオン交換水300gとをステンレスバットに入れて混合しスラリーを作製した。スラリーの入ったステンレスバットをオートクレーブ内に入れた。オートクレーブ内に、目的加熱温度にて飽和水蒸気を発生させるのに十分な量の水を入れた。なお、スラリーはステンレスバットに入っているため、加熱時にスラリーとオートクレーブ内の水とは直接接触しないようになっている。
(2)上記(1)以降の工程は、実施例1~6の乾式加熱処理における工程(2)~(5)と同じである。
<Experimental method of Example 7>
In Example 7, the boron nitride was heat-treated by a wet method.
(1) 60 g of the same boron nitride powder as above and 300 g of ion-exchanged water were placed in a stainless steel vat and mixed to prepare a slurry. A stainless steel vat containing the slurry was placed in an autoclave. A sufficient amount of water was placed in the autoclave to generate saturated steam at the target heating temperature. Since the slurry is contained in a stainless steel vat, the slurry does not come into direct contact with the water in the autoclave during heating.
(2) The steps after (1) above are the same as the steps (2) to (5) in the dry heat treatment of Examples 1 to 6.

<実施例8の実験方法>
実施例3の原料窒化ホウ素粉末を、窒化ホウ素粉末(デンカ株式会社製、MGP:10μm品)に代えた以外は、実施例3と同じ方法により試験を行った。
<Experimental method of Example 8>
The test was carried out by the same method as in Example 3 except that the raw material boron nitride powder of Example 3 was replaced with boron nitride powder (manufactured by Denka Corporation, MGP: 10 μm product).

<実施例9の実験方法>
実施例3の原料窒化ホウ素粉末を、窒化ホウ素粉末(三井化学株式会社製、MBN-010T:0.8μm品)に代えた以外は、実施例3と同じ方法により試験を行った。
<Experimental method of Example 9>
The test was carried out by the same method as in Example 3 except that the raw material boron nitride powder of Example 3 was replaced with boron nitride powder (MBN-010T: 0.8 μm product manufactured by Mitsui Chemicals, Inc.).

<比較例2の実験方法>
(1)上記と同じ窒化ホウ素粉末120gが入ったアルミナ製るつぼを電気炉に入れた。
(2)200℃/hの昇温速度で室温から900℃まで昇温し、900℃で10時間保持した。
(3)その後自然冷却をし、実施例1~6における工程(5)と同様の洗浄工程および乾燥工程を行い、試料を作製した。
<Experimental method of Comparative Example 2>
(1) An alumina crucible containing 120 g of the same boron nitride powder as above was placed in an electric furnace.
(2) The temperature was raised from room temperature to 900 ° C. at a heating rate of 200 ° C./h, and the temperature was maintained at 900 ° C. for 10 hours.
(3) After that, natural cooling was performed, and the same washing step and drying step as in the steps (5) in Examples 1 to 6 were performed to prepare a sample.

<吸液量測定>
実施例1~9および比較例1~4で実施した吸液量測定は、JIS5101-13-2の煮あまに油法を参考とし、流動パラフィンを用いて測定した。測定手順は次のとおりである。
(1)窒化ホウ素粉末1gをガラスシャーレ上に置いた。
(2)流動パラフィンをスポイトから1回につき2滴ずつ加えた。流動パラフィンを加える度に、パレットナイフで流動パラフィンを窒化ホウ素粉末に練り込んだ。
(3)上記(2)の操作を繰り返し行い、流動パラフィンおよび窒化ホウ素粉末の塊ができたところを終点とし、それまでに要した流動パラフィンの質量(g)を100倍した値を吸液量とした。
(4)実施例1~9および比較例2で測定された吸液量を、同一原料グレードの比較例の吸液量(すなわち、実施例1~7および比較例2では比較例1の吸液量、実施例8では比較例3の吸液量、実施例9では比較例4の吸液量)で除して百分率に換算した値を吸液量変化率(原料窒化ホウ素粉末の吸液量に対する変化率)と定義した。
<Measurement of liquid absorption>
The liquid absorption measurement carried out in Examples 1 to 9 and Comparative Examples 1 to 4 was carried out using liquid paraffin with reference to the oil method for boiled flax of JIS5101-13-2. The measurement procedure is as follows.
(1) 1 g of boron nitride powder was placed on a glass petri dish.
(2) Liquid paraffin was added from the dropper in two drops at a time. Each time liquid paraffin was added, the liquid paraffin was kneaded into the boron nitride powder with a palette knife.
(3) The liquid absorption amount is the value obtained by multiplying the mass (g) of the liquid paraffin required up to that point by 100 times the mass (g) of the liquid paraffin required up to that point, with the end point being the place where the lumps of the liquid paraffin and the boron nitride powder are formed by repeating the operation of the above (2). And said.
(4) The liquid absorption amount measured in Examples 1 to 9 and Comparative Example 2 is the liquid absorption amount of the comparative example of the same raw material grade (that is, the liquid absorption of Comparative Example 1 in Examples 1 to 7 and Comparative Example 2). Amount, in Example 8, the amount of liquid absorbed in Comparative Example 3, and in Example 9, the amount of liquid absorbed in Comparative Example 4) divided by the value converted into a percentage and the amount of change in liquid absorption (the amount of liquid absorbed by the raw material boron nitride powder). Rate of change).

<熱伝導率測定>
(1)窒化ホウ素粉末5gとエポキシ樹脂(三井化学株式会社製、エポミック(登録商標)R140P)40gとを自転公転ミキサー(シンキー社製ARE-310)に入れ、公転2000rpm、自転1200rpmで2分間混合した。
(2)上記(1)で作製された混合物に、窒化ホウ素粉末5gをさらに添加して、上記(1)と同じ回転数および混合時間でさらに混合を行った。
(3)上記(2)で作製された混合物に、窒化ホウ素粉末5gをさらに添加して、上記(1)と同じ回転数および混合時間でさらに混合を行った。
(4)上記(3)で作製された混合物に、窒化ホウ素粉末5gと、開始剤として2-エチル4-メチルイミダゾール(和光純薬工業株式会社製)0.8gとをさらに添加し、上記(1)と同じ回転数および混合時間でさらに混合を行い、混合終了後、脱泡処理運転を2分間行った。
(5)上記(4)で作製された混合物を120℃で2時間加熱硬化し、熱伝導率測定用の試料を作製した。
(6)上記(5)で作製された試料を、40mm×40mm×20mmの大きさに切り出し、25℃の恒温槽で2時間以上保持した。
(7)上記(6)で得られた試料の熱伝導率を、迅速熱伝導計(京都電子工業株式会社製、QTM-500)を用いて測定した。
(8)実施例1~9および比較例2で測定された熱伝導率を、同一原料グレードの比較例の熱伝導率(すなわち、実施例1~7および比較例2では比較例1の熱伝導率、実施例8では比較例3の熱伝導率、実施例9では比較例4の熱伝導率)で除して百分率に換算した値を熱伝導率変化率(原料窒化ホウ素粉末を用いた場合の熱伝導率に対する変化率)と定義した。
<Measurement of thermal conductivity>
(1) 5 g of boron nitride powder and 40 g of epoxy resin (Epomic (registered trademark) R140P manufactured by Mitsui Chemicals, Inc.) are placed in a rotating revolution mixer (ARE-310 manufactured by Shinky) and mixed at a revolution of 2000 rpm and a rotation of 1200 rpm for 2 minutes. did.
(2) To the mixture prepared in (1) above, 5 g of boron nitride powder was further added, and further mixing was carried out at the same rotation speed and mixing time as in (1) above.
(3) To the mixture prepared in (2) above, 5 g of boron nitride powder was further added, and further mixing was carried out at the same rotation speed and mixing time as in (1) above.
(4) To the mixture prepared in (3) above, 5 g of boron nitride powder and 0.8 g of 2-ethyl4-methylimidazole (manufactured by Wako Pure Chemical Industries, Ltd.) as an initiator are further added, and the above ( Further mixing was performed at the same rotation speed and mixing time as in 1), and after the mixing was completed, the defoaming treatment operation was performed for 2 minutes.
(5) The mixture prepared in (4) above was heat-cured at 120 ° C. for 2 hours to prepare a sample for measuring thermal conductivity.
(6) The sample prepared in (5) above was cut into a size of 40 mm × 40 mm × 20 mm and held in a constant temperature bath at 25 ° C. for 2 hours or more.
(7) The thermal conductivity of the sample obtained in (6) above was measured using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Manufacturing Co., Ltd.).
(8) The thermal conductivity measured in Examples 1 to 9 and Comparative Example 2 is the thermal conductivity of the comparative example of the same raw material grade (that is, the thermal conductivity of Comparative Example 1 in Examples 1 to 7 and Comparative Example 2). The rate, the value converted into a percentage by dividing by the thermal conductivity of Comparative Example 3 in Example 8 and the thermal conductivity of Comparative Example 4 in Example 9) is the thermal conductivity change rate (when the raw material boron nitride powder is used). Rate of change with respect to thermal conductivity).

<収率>
処理後に回収できた窒化ホウ素粉末の質量を処理前の窒化ホウ素粉末の質量で除して百分率に換算した値を収率と定義した。
<Yield>
The value obtained by dividing the mass of the boron nitride powder recovered after the treatment by the mass of the boron nitride powder before the treatment and converting it into a percentage was defined as the yield.

<粒子観察>
窒化ホウ素粉末の粒子状態を走査型電子顕微鏡(SEM)で観察した。
<Particle observation>
The particle state of the boron nitride powder was observed with a scanning electron microscope (SEM).

Figure 0006994229000001
Figure 0006994229000001

同一の原料グレードで比較した場合、各実施例の表面改質窒化ホウ素の吸液量は、比較例のそれと比べて少なかった。そのため、実施例の表面改質窒化ホウ素を用いれば、マトリックスへの充填量を高めることができる。 When compared with the same raw material grade, the amount of liquid absorbed by the surface-modified boron nitride in each example was smaller than that in the comparative example. Therefore, if the surface-modified boron nitride of the example is used, the filling amount to the matrix can be increased.

同一の原料グレードで比較した場合、実施例の表面改質窒化ホウ素粉末を練り込んだ樹脂組成物の熱伝導率は、比較例のそれと比べて高かった。これは窒化ホウ素粉末の表面改質により、表面改質窒化ホウ素粉末と樹脂との親和性が高くなり、その結果、表面改質窒化ホウ素粉末と樹脂との密着性が向上したためであると考えられる。乾式加熱処理(実施例3)と湿式加熱処理(実施例7)とを比較した場合、乾式加熱処理のほうが熱伝導率が高かった。 When compared with the same raw material grade, the thermal conductivity of the resin composition kneaded with the surface-modified boron nitride powder of the example was higher than that of the comparative example. It is considered that this is because the surface modification of the surface-modified boron nitride powder increases the affinity between the surface-modified boron nitride powder and the resin, and as a result, the adhesion between the surface-modified boron nitride powder and the resin is improved. .. When the dry heat treatment (Example 3) and the wet heat treatment (Example 7) were compared, the dry heat treatment had a higher thermal conductivity.

実施例1~7では収率が90%超であった。これに対し、比較例2では収率が82.3%と低かった。乾式加熱処理(実施例3)と湿式加熱処理(実施例7)とを比較した場合、乾式加熱処理のほうが収率が高かった。 In Examples 1 to 7, the yield was more than 90%. On the other hand, in Comparative Example 2, the yield was as low as 82.3%. When the dry heat treatment (Example 3) and the wet heat treatment (Example 7) were compared, the yield of the dry heat treatment was higher.

SEM観察の結果、実施例の表面改質窒化ホウ素粉末では、粒子同士の融着が見られなかった。一方、比較例2の表面改質窒化ホウ素粉末では、粒子同士の融着が見られた。 As a result of SEM observation, no fusion of particles was observed in the surface-modified boron nitride powder of the example. On the other hand, in the surface-modified boron nitride powder of Comparative Example 2, fusion of particles was observed.

Claims (3)

窒化ホウ素を液体の水と接触させず、水から発生させた水蒸気によって飽和水蒸気圧下で、180℃以上205℃以下の温度で乾式加熱処理する、
ことを特徴とする表面改質窒化ホウ素の製造方法。
Boron nitride is not brought into contact with liquid water, and is subjected to dry heat treatment at a temperature of 180 ° C. or higher and 205 ° C. or lower under saturated steam pressure by steam generated from water.
A method for producing surface-modified boron nitride, which is characterized by the above.
実質的に窒化ホウ素のみを加熱処理する、
ことを特徴とする請求項1に記載の表面改質窒化ホウ素の製造方法。
Heat treatment of substantially only boron nitride,
The method for producing surface-modified boron nitride according to claim 1.
流動パラフィンの吸液量が、処理前窒化ホウ素の流動パラフィンの吸液量に対して75
質量%~97質量%である、
請求項1または2に記載の表面改質窒化ホウ素の製造方法。
The amount of liquid paraffin absorbed is 75 relative to the amount of liquid paraffin of untreated boron nitride.
Mass% to 97% by mass,
The method for producing surface-modified boron nitride according to claim 1 or 2 .
JP2017125986A 2017-06-28 2017-06-28 Method for manufacturing surface-modified boron nitride Active JP6994229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017125986A JP6994229B2 (en) 2017-06-28 2017-06-28 Method for manufacturing surface-modified boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017125986A JP6994229B2 (en) 2017-06-28 2017-06-28 Method for manufacturing surface-modified boron nitride

Publications (2)

Publication Number Publication Date
JP2019006653A JP2019006653A (en) 2019-01-17
JP6994229B2 true JP6994229B2 (en) 2022-01-14

Family

ID=65025742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017125986A Active JP6994229B2 (en) 2017-06-28 2017-06-28 Method for manufacturing surface-modified boron nitride

Country Status (1)

Country Link
JP (1) JP6994229B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529938A (en) 2007-05-28 2010-09-02 セラム ハイド Method for activating boron nitride
JP2012121744A (en) 2010-12-07 2012-06-28 Tohoku Univ Method for surface treatment of boron nitride powder
JP2016034991A (en) 2014-08-01 2016-03-17 株式会社トクヤマ Silicone resin composition
JP2016522299A (en) 2013-06-19 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529938A (en) 2007-05-28 2010-09-02 セラム ハイド Method for activating boron nitride
JP2012121744A (en) 2010-12-07 2012-06-28 Tohoku Univ Method for surface treatment of boron nitride powder
JP2016522299A (en) 2013-06-19 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof
JP2016034991A (en) 2014-08-01 2016-03-17 株式会社トクヤマ Silicone resin composition

Also Published As

Publication number Publication date
JP2019006653A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP2015507064A (en) Method for producing polymer particles in gel form
CN101456553B (en) Chemical processing method for preparing high quality inflatable graphite
Hsieh et al. Rice husk agricultural waste-derived low ionic content carbon–silica nanocomposite for green reinforced epoxy resin electronic packaging material
JP6452873B2 (en) Boron nitride powder and method for producing the same
JP2019182737A (en) Hexagonal boron nitride powder and manufacturing method therefor
Wang et al. Preparation of organic/inorganic composite phenolic resin and application in Al2O3‐C refractories
TWI439497B (en) The method for producing spherical spherical furfuryl alcohol resin particles, the spherical polyfuryl alcohol resin particles obtained, and the spherical carbon particles and the spherical active carbon particles
CN109573997A (en) A kind of preparation method of graphene oxide-loaded vulcanization carbon/carbon-copper composite material
JP6994229B2 (en) Method for manufacturing surface-modified boron nitride
Hsieh et al. Rice husk‐derived hierarchical micro/mesoporous carbon–silica nanocomposite as superior filler for green electronic packaging material
Thu et al. Preparation of inorganic binder for cold-hardening mixtures
JP2005281116A (en) Method for producing activated carbon using microwave
CN107214344A (en) A kind of industrial production process of sodium sand
JP6382621B2 (en) Silicone resin composition
US1105388A (en) Process of making boron suboxid.
Meinhold et al. Flash calcination of kaolinite studied by DSC, TG and MAS NMR
CN106495194A (en) A kind of method of low temperature preparation alpha-type aluminum oxide superfine powder
CN107760348B (en) Mesophase pitch prepared from coal liquefaction residues and preparation method and application thereof
JP2005263575A (en) Method for manufacturing high purity diamond particle, and high purity diamond particle
US602632A (en) Method of obtaining free amorphous silicon
US754978A (en) Process of manufacturing hydrofluoric acid.
US520056A (en) Samuel p
CN113270232B (en) Preparation method of graphene-copper composite ultrahigh-conductivity material
RU2686223C1 (en) Method of synthesis of nanocomposites ag/c
Marocco et al. Parameters expediting the thermal conversion of Ba-exchanged zeolite A to monoclinic celsian

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211206

R150 Certificate of patent or registration of utility model

Ref document number: 6994229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150