JP6994195B2 - Manufacturing method of resistor - Google Patents

Manufacturing method of resistor Download PDF

Info

Publication number
JP6994195B2
JP6994195B2 JP2017251364A JP2017251364A JP6994195B2 JP 6994195 B2 JP6994195 B2 JP 6994195B2 JP 2017251364 A JP2017251364 A JP 2017251364A JP 2017251364 A JP2017251364 A JP 2017251364A JP 6994195 B2 JP6994195 B2 JP 6994195B2
Authority
JP
Japan
Prior art keywords
powder material
metal powder
resistor
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017251364A
Other languages
Japanese (ja)
Other versions
JP2019116664A (en
Inventor
昇 中山
勇人 井上
秀遥 楠
昂紀 森口
圭史 仲村
賢孝 粂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Shinshu University NUC
Original Assignee
Koa Corp
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp, Shinshu University NUC filed Critical Koa Corp
Priority to JP2017251364A priority Critical patent/JP6994195B2/en
Publication of JP2019116664A publication Critical patent/JP2019116664A/en
Application granted granted Critical
Publication of JP6994195B2 publication Critical patent/JP6994195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、電流検出用抵抗器に用いる抵抗体の製造方法に係り、特にCu-Mn-Ni系合金を用いた抵抗体の製造方法に関する。 The present invention relates to a method for manufacturing a resistor used for a current detection resistor, and more particularly to a method for manufacturing a resistor using a Cu—Mn—Ni alloy.

Cu-Mn-Ni系合金(マンガニン(登録商標))は電流検出用抵抗器の抵抗体材料として、固有抵抗値が小さく、且つ抵抗温度係数が小さいことから、低抵抗値の抵抗器が得られるので、広く使用されている。様々な抵抗値の電流検出用抵抗器を作製するためには、Cu-Mn-Ni系合金を様々な形に塑性加工する必要があり、圧延加工で厚みを調整したり、プレス加工で形状を加工したりして必要な抵抗値を得ている。 Cu-Mn-Ni alloy (manganin (registered trademark)) is a resistor material for current detection resistors, and since it has a small intrinsic resistance value and a small temperature coefficient of resistance, a resistor with a low resistance value can be obtained. So it is widely used. In order to manufacture resistors for detecting currents with various resistance values, it is necessary to plastically process Cu-Mn-Ni based alloys into various shapes, and adjust the thickness by rolling or press the shape. The required resistance value is obtained by processing.

特に10mΩ以上の比較的高い抵抗値の電流検出用抵抗器を作製するためには、Cu-Mn-Ni系合金の板を箔状に薄く加工する必要があり、より高い抵抗値を得るためには、箔状に薄く加工した板を長いパターン形状に切削加工する必要がある。 In particular, in order to manufacture a resistor for current detection with a relatively high resistance value of 10 mΩ or more, it is necessary to thinly process a Cu-Mn-Ni alloy plate into a foil shape, and in order to obtain a higher resistance value. It is necessary to cut a plate thinly processed into a foil shape into a long pattern shape.

ところで、下記特許文献1によれば、微粉物質(例えば金属粉末)を平行な第1表面と第2表面との間に配置し、第1表面と第2表面とで上記粉末を所定の押圧力で挟みながら、第1表面と第2表面を対向方向と直交する方向に移動させることで、上記微粉物質を一体成型物(例えば金属板)とする圧縮せん断による固化成形方法が記載されている。 By the way, according to the following Patent Document 1, a fine powder substance (for example, a metal powder) is arranged between a parallel first surface and a second surface, and the powder is pressed by a predetermined pressing force on the first surface and the second surface. Described is a solidification molding method by compression shearing in which the fine powder substance is made into an integrally molded product (for example, a metal plate) by moving the first surface and the second surface in a direction orthogonal to the opposite direction while sandwiching the powder material.

特開2003-221603号公報Japanese Patent Application Laid-Open No. 2003-221603

抵抗体として用いられる合金は、その生産段階で一般に高温の熱処理を要し、板材あるいは線材として市場に供給される。しかしながら、電流検出用抵抗器の抵抗体として、所要の抵抗値を得るために、抵抗合金を、板材あるいは線材から箔状に薄く加工し、且つ所要のパターン形状・寸法に加工することは容易なことではない。 Alloys used as resistors generally require high temperature heat treatment at the production stage and are supplied to the market as plates or wires. However, as a resistor for a current detection resistor, it is easy to thinly process a resistance alloy from a plate or wire into a foil shape and process it to a required pattern shape and dimensions in order to obtain the required resistance value. It's not that.

本発明は、上述の事情に基づいてなされたもので、任意のパターン形状で且つ薄く形成したCu-Mn系合金箔を、粉体から作製することができる、電流検出用抵抗器の抵抗体の製造方法を提供することを目的とする。 The present invention has been made based on the above circumstances, and is a resistor for a current detection resistor capable of producing a Cu—Mn-based alloy foil having an arbitrary pattern shape and thinly formed from powder. The purpose is to provide a manufacturing method.

本発明の抵抗体の製造方法は、第1表面と、この第1表面と並行となるように向い合せて配置された第2表面を有し、第1表面と第2表面との間に、Cu-Mn系の金属粉素材を配置し、第1表面と第2表面とで該金属粉素材を所定の押圧力で挟みながら、第1表面と第2表面を対向方向と直交する方向に移動させることで、前記金属粉素材を一体成型物(金属板)とし、前記金属粉素材の平均粒径は、1μm~12μmであることを特徴とする。 The method for producing a resistor of the present invention has a first surface and a second surface arranged so as to be parallel to the first surface, and between the first surface and the second surface. A Cu—Mn-based metal powder material is arranged, and the first surface and the second surface are moved in a direction orthogonal to the opposite direction while sandwiching the metal powder material between the first surface and the second surface with a predetermined pressing force. The metal powder material is made into an integrally molded product (metal plate), and the average particle size of the metal powder material is 1 μm to 12 μm .

本発明によれば、抵抗器の抵抗体を構成する金属粉素材は、粉末であるので、メタルマスクやスクリーン印刷等を用いることで、任意のパターン形状で、且つ任意の厚みのCu-Mn系合金箔を作成することができる。そして、金属抵抗素材の焼結工法のように高温を必要とせず、また、塑性変形加工や切削加工を必要としない。 According to the present invention, since the metal powder material constituting the resistor of the resistor is powder, a Cu—Mn system having an arbitrary pattern shape and an arbitrary thickness can be used by using a metal mask, screen printing, or the like. Alloy foils can be made. Further, unlike the sintering method of a metal resistance material, a high temperature is not required, and plastic deformation processing and cutting processing are not required.

本発明の一実施例のCu-Mn-Ni系抵抗体の製造方法を示す図である。It is a figure which shows the manufacturing method of the Cu—Mn—Ni system resistor of one Example of this invention. 平均粒径12.9μmのCu-Mn-Ni系合金粉の画像である。It is an image of a Cu—Mn—Ni based alloy powder having an average particle size of 12.9 μm. 平均粒径3.5μmのCu-Mn-Ni系合金粉の画像である。It is an image of a Cu—Mn—Ni alloy powder having an average particle size of 3.5 μm. 圧縮せん断の移動距離L=0mmのSEMによる表面画像である。It is a surface image by SEM of the moving distance L = 0 mm of compression shear. 圧縮せん断の移動距離L=0.1mmのSEMによる表面画像である。It is a surface image by SEM of the moving distance L = 0.1 mm of compression shear. 圧縮せん断の移動距離L=0.2mmのSEMによる表面画像である。It is a surface image by SEM of the moving distance L = 0.2mm of compression shear. 圧縮せん断の移動距離L=0.5mmのSEMによる表面画像である。It is a surface image by SEM of the moving distance L = 0.5mm of compression shear. 圧縮せん断の移動距離L=1.0mmのSEMによる表面画像である。It is a surface image by SEM of the moving distance L = 1.0mm of compression shear. 圧縮せん断の移動距離とビッカース硬さの関係のグラフである。It is a graph of the relationship between the moving distance of compressive shear and Vickers hardness. 圧縮せん断の移動距離と体積抵抗の関係のグラフである。It is a graph of the relationship between the moving distance of compressive shear and the volume resistance. 圧縮せん断で形成された抵抗体の測定温度と体積抵抗の関係のグラフである。It is a graph of the relationship between the measured temperature and the volume resistance of the resistor formed by compression shear. 粉末充填体の形成にスクリーン印刷を適用した図である。It is a figure which applied the screen printing to the formation of a powder filler.

以下、本発明の実施形態について、図1乃至図7を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 7. In each figure, the same or corresponding members or elements will be described with the same reference numerals.

図1は、本発明の一実施例のCu-Mn-Ni系抵抗体の製造方法を示す。その製造方法の概略は、メタルマスク等を用いて必要形状にCu-Mn-Ni系金属粉素材を充填し、金属粉素材の充填体を形成する。そして、互いに並行となるように向い合せて配置された第1表面と第2表面との間に、金属粉素材を配置し、圧縮荷重を負荷しながら、一方の表面を他方の表面に対して移動させて、金属粉素材の充填体にせん断力を加える圧縮せん断で、Cu-Mn-Ni系合金の金属箔を得る。 FIG. 1 shows a method for manufacturing a Cu—Mn—Ni-based resistor according to an embodiment of the present invention. The outline of the manufacturing method is that a Cu—Mn—Ni-based metal powder material is filled in a required shape using a metal mask or the like to form a filler of the metal powder material. Then, a metal powder material is placed between the first surface and the second surface, which are arranged so as to be parallel to each other, and one surface is applied to the other surface while applying a compressive load. A metal foil of a Cu—Mn—Ni-based alloy is obtained by compression shearing in which a shearing force is applied to a filler made of a metal powder material by moving the metal powder material.

図1(A)は、メタルマスク11を下板12に載置する段階を示す。メタルマスク11には、開口Oを備えることで、金属粉素材を充填するマスク開口Oの形状に合わせて、必要な形状の抵抗体パターンを形成することができる。 FIG. 1A shows a stage in which the metal mask 11 is placed on the lower plate 12. By providing the metal mask 11 with an opening O, it is possible to form a resistor pattern having a required shape according to the shape of the mask opening O filled with the metal powder material.

図1(B)は、メタルマスク11の開口OにCu-Mn-Ni系金属粉素材を充填し、粉末充填体13を形成した段階を示す。使用する粉末は、Cu-Mn-Ni系金属粉素材である。その平均粒径Φは1~12μmであることが好ましい。特に、使用するCu-Mn-Ni系金属粉素材の平均粒径Φは、後述するように、3.5μm程度が望ましい。なお、平均粒径Φは12.5μm程度よりも大きくなると成形が困難になる。また、後述のとおり、これよりも平均粒径が大きくなると、金属光沢が無く、金属箔が形成され難いという問題がある。平均粒径Φが1μmよりも小さい細かな粒は、水アトマイズ法では形成が難しいという問題がある。 FIG. 1B shows a stage in which the opening O of the metal mask 11 is filled with a Cu—Mn—Ni-based metal powder material to form the powder filler 13. The powder used is a Cu-Mn-Ni-based metal powder material. The average particle size Φ is preferably 1 to 12 μm. In particular, the average particle size Φ of the Cu—Mn—Ni-based metal powder material used is preferably about 3.5 μm, as will be described later. If the average particle size Φ is larger than about 12.5 μm, molding becomes difficult. Further, as will be described later, if the average particle size is larger than this, there is a problem that there is no metallic luster and it is difficult to form a metal foil. There is a problem that it is difficult to form fine particles having an average particle size Φ smaller than 1 μm by the water atomization method.

使用する金属粉の粉体は真球体でないものが好ましい。真球体だと、圧縮せん断移動に際して、転がりによってうまく紛体がつぶれないことがあるからである。本実施例では、水アトマイズ法等を用いて作製された、適度にいびつなtear-drop(涙)状の、平均粒径Φが3.5μm程度の粉体を使用している(図2B参照)。 The metal powder used is preferably non-spherical. This is because if it is a true sphere, the powder may not be crushed well due to rolling during compressive shear movement. In this example, a moderately distorted tear-drop-shaped powder having an average particle size of about 3.5 μm, which is produced by using a water atomizing method or the like, is used (see FIG. 2B). ).

一方、例えばガスアトマイズ法で得られる金属粉素材は真球形状を有しており、Φ12.5μm以下の小さな平均粒径を得ることは困難である。また、真球形状だと、圧縮せん断移動による金属粉素材の変形が起きにくく、一体成型物(金属板)とすることが難しい。よって、金属粉素材は水アトマイズ法により作成されることが好ましい。 On the other hand, for example, the metal powder material obtained by the gas atomizing method has a spherical shape, and it is difficult to obtain a small average particle size of Φ12.5 μm or less. Further, if the shape is a true sphere, the metal powder material is less likely to be deformed due to compressive shear movement, and it is difficult to form an integrally molded product (metal plate). Therefore, it is preferable that the metal powder material is prepared by the water atomizing method.

図2Aは、水アトマイズ法で作成された平均粒径Φが12.9μmのCu-Mn-Ni系合金粉を示している。なお、アトマイズ法とは、紛体の製造方法であり、金属または合金の溶湯をタンディッシュ底部の小孔から流出させて細流とし、これに高速の空気、窒素、アルゴン、水などを吹き付けると、溶湯は飛散、急冷凝固して粉末となる。 FIG. 2A shows a Cu—Mn—Ni based alloy powder having an average particle size Φ of 12.9 μm produced by the water atomization method. The atomizing method is a method for producing powder. When a molten metal or alloy is discharged from a small hole at the bottom of a tundish to form a trickle, and high-speed air, nitrogen, argon, water, etc. is blown onto the molten metal, the molten metal is formed. Scatters and quenches and solidifies into powder.

図1(C)は、メタルマスク11を除去した段階を示す。この段階で、下板12の第1表面12aに、メタルマスク11の開口部OのサイズのCu-Mn-Ni系金属粉素材の充填体13が配置される。 FIG. 1C shows a stage in which the metal mask 11 is removed. At this stage, a filler 13 made of a Cu—Mn—Ni-based metal powder material having the size of the opening O of the metal mask 11 is arranged on the first surface 12a of the lower plate 12.

図1(D)は、上板14の第2表面14aと下板12の第1表面12aとで、金属粉素材の充填体13を圧縮荷重F1の押圧力で挟む段階を示す。なお、第1表面12aと、この第1表面12aとが並行となるように、第2表面14aが第1表面12aに対して向い合せて配置されている。 FIG. 1D shows a stage in which the filler 13 made of a metal powder material is sandwiched between the second surface 14a of the upper plate 14 and the first surface 12a of the lower plate 12 by the pressing force of the compressive load F1. The second surface 14a is arranged so as to face the first surface 12a so that the first surface 12a and the first surface 12a are parallel to each other.

圧縮荷重については、サンプルのサイズを変えて、単位面積当たりの荷重を変えて試験を行うと、1.7kN/mm(30mm×10mm)以上の荷重であれば得られる箔の強度は充分確保され、1.2kN/mm(40mm×10mm)以下の荷重では、充分な強度が得られず、金属箔が割れてしまう結果となった。よって1.7kN/mm 以上の圧縮荷重を掛けることが望ましい。 As for the compressive load, if the sample size is changed and the load per unit area is changed in the test, the strength of the obtained foil is sufficiently secured if the load is 1.7 kN / mm 2 (30 mm × 10 mm) or more. However, with a load of 1.2 kN / mm 2 (40 mm × 10 mm) or less, sufficient strength could not be obtained, resulting in cracking of the metal foil. Therefore, it is desirable to apply a compressive load of 1.7 kN / mm 2 or more.

そして、図1(E)に示すように、上板14の下面の第2表面14aと、下板12の上面の第1表面12aとの間に、Cu-Mn-Ni系の金属粉素材の充填体13を配置し、第2表面14aと第1表面12aとで金属粉素材を所定の押圧力F1で挟みながら、第2表面14aと第1表面12aを対向方向と直交する方向に、所定の距離を移動させることで、金属粉素材の充填体13にせん断力F2を作用させることができ、充填体13を一体成型物である金属箔(抵抗体)13Aとすることができる。 Then, as shown in FIG. 1 (E), a Cu—Mn—Ni-based metal powder material is formed between the second surface 14a on the lower surface of the upper plate 14 and the first surface 12a on the upper surface of the lower plate 12. The filler 13 is arranged, and while the metal powder material is sandwiched between the second surface 14a and the first surface 12a by a predetermined pressing force F1, the second surface 14a and the first surface 12a are predetermined in a direction orthogonal to the facing direction. By moving the distance between the two, the shearing force F2 can be applied to the filler 13 made of the metal powder material, and the filler 13 can be made into a metal foil (resistor) 13A which is an integrally molded product.

金属粉素材の充填体13を所定の押圧力で挟みながら、一方の面を横方向に移動させ、一体成形物である金属箔を形成する圧縮せん断移動距離は、充填体13の膜厚に対して、1倍以上であることが必要である。すなわち、充填体13の膜厚が0.5mmである場合は、圧縮せん断移動距離は0.5mm以上が必要である。 While sandwiching the metal powder material filler 13 with a predetermined pressing force, one surface is moved laterally to form a metal foil as an integrally molded product, and the compression shear transfer distance is relative to the film thickness of the filler 13. It is necessary to be 1 times or more. That is, when the film thickness of the filler 13 is 0.5 mm, the compression shear movement distance needs to be 0.5 mm or more.

すなわち、せん断ひずみ=(移動距離/金属粉素材の厚み)とした場合に、せん断ひずみを1以上とすることが必要である。 That is, when shear strain = (moving distance / thickness of metal powder material), it is necessary to set the shear strain to 1 or more.

図3A-図3Eは、平均粒径Φ=3.5μmのCu-Mn-Ni系合金粉を用い、充填した厚さを0.5mmとし、圧縮せん断移動距離L=0mm(図3A)、L=0.1mm(図3B)、L=0.2mm(図3C)、L=0.5mm(図3D)、L=1.0mm(図3E)、とした場合のSEMによる表面画像である。 3A-3E use Cu—Mn—Ni alloy powder having an average particle size of Φ = 3.5 μm, the filling thickness is 0.5 mm, and the compression shear transfer distance L = 0 mm (FIG. 3A), L. It is a surface image by SEM when = 0.1 mm (FIG. 3B), L = 0.2 mm (FIG. 3C), L = 0.5 mm (FIG. 3D), L = 1.0 mm (FIG. 3E).

上記画像によれば、L=0.5mm以上せん断移動をさせると、粒子形状が確認されず、金属光沢を有して、Cu-Mn-Ni系合金箔が形成されているのがわかる。これに対し、L=0.2mm以下のせん断移動では粉体粒子の形状が保たれており、Cu-Mn-Ni系合金箔は形成されていない。 According to the above image, it can be seen that when the shearing movement is performed by L = 0.5 mm or more, the particle shape is not confirmed, the material has a metallic luster, and the Cu—Mn—Ni alloy foil is formed. On the other hand, in the shear movement of L = 0.2 mm or less, the shape of the powder particles is maintained, and the Cu—Mn—Ni based alloy foil is not formed.

平均粒径Φ=12.9μmのCu-Mn-Ni系合金粉を用いると、上記せん断移動距離のどのサンプルも金属光沢が無く、くすんでいて、金属箔は形成されていない。 When a Cu—Mn—Ni alloy powder having an average particle size of Φ = 12.9 μm was used, none of the samples having the shear transfer distance had metallic luster, were dull, and no metal foil was formed.

図4は、圧縮せん断移動距離とサンプルのビッカース硬さの関係を示すグラフである。●印はCu-Mn-Ni系合金粉(平均粒径Φ=3.5μm)についてのものである。得られた硬さは、厚さ0.5mmの場合、0.5mmより短いせん断移動距離では硬さが低く、金属としての硬さがない。 FIG. 4 is a graph showing the relationship between the compression shear movement distance and the Vickers hardness of the sample. ● Marks are for Cu—Mn—Ni alloy powder (average particle size Φ = 3.5 μm). When the thickness is 0.5 mm, the obtained hardness is low at a shearing distance shorter than 0.5 mm, and there is no hardness as a metal.

これに対し、0.5mm以上の圧縮せん断移動距離により、金属箔としての硬さが得られる。すなわち、せん断移動距離が0.5mm以上になると、サンプルのビッカース硬さは大きくなり、300以上の値を示し、Cu-Mn-Ni系合金箔が形成されていることが確認される。 On the other hand, with a compression shear movement distance of 0.5 mm or more, hardness as a metal foil can be obtained. That is, when the shearing distance is 0.5 mm or more, the Vickers hardness of the sample increases and shows a value of 300 or more, confirming that a Cu—Mn—Ni alloy foil is formed.

これに対し、■印はCu-Mn-Ni系合金粉(平均粒径Φ=12.9μm)についてのものである。得られたビッカース硬さは、100以下であり、金属としての硬さがなく、一体成型物である金属箔は形成されていない。 On the other hand, the marks (1) are for Cu—Mn—Ni alloy powder (average particle size Φ = 12.9 μm). The obtained Vickers hardness is 100 or less, there is no hardness as a metal, and a metal foil which is an integrally molded product is not formed.

図5は、せん断移動距離と体積抵抗値の関係を示す。せん断移動距離Lが1mm以上の金属箔は通常のCu-Mn-Ni系合金と同等の体積抵抗値を示した。すなわち、45×10-8Ω・m近辺の値を示した。これに対し、L=1mmより小さいせん断距離においては、体積抵抗の値が大きく変化した。 FIG. 5 shows the relationship between the shear movement distance and the volume resistance value. A metal foil having a shear transfer distance L of 1 mm or more showed a volume resistance value equivalent to that of a normal Cu—Mn—Ni based alloy. That is, the values in the vicinity of 45 × 10-8 Ω · m are shown. On the other hand, at a shear distance smaller than L = 1 mm, the value of volume resistance changed significantly.

すなわち、L=0.5mmの金属箔は通常のCu-Mn-Ni系合金よりも10倍ほど体積抵抗値が高いものであった。このため、比較的高い抵抗値を得たい場合は、L=0.5mmのせん断移動をして、高い抵抗値のCu-Mn-Ni系合金抵抗箔を得ることもできる。 That is, the metal foil having L = 0.5 mm had a volume resistance value about 10 times higher than that of a normal Cu—Mn—Ni based alloy. Therefore, when it is desired to obtain a relatively high resistance value, a Cu—Mn—Ni alloy resistance foil having a high resistance value can be obtained by shearing with L = 0.5 mm.

図6は、図5におけるL=0.5mmの金属箔とL=1.0mmの金属箔の体積抵抗値の温度特性を示す。L=0.5mmの金属箔(図中○で示す)の25℃における体積抵抗値は510μΩ・cmであり、抵抗温度係数は-137ppm/℃であった。L=1.0mmの金属箔(図中■で示す)の25℃における体積抵抗値は47μΩ・cmであり、抵抗温度係数は+25ppm/℃であり、通常のCu-Mn-Ni系合金と同等の特性が得られた。 FIG. 6 shows the temperature characteristics of the volume resistance values of the metal leaf of L = 0.5 mm and the metal leaf of L = 1.0 mm in FIG. The volume resistance value of the metal leaf with L = 0.5 mm (indicated by ◯ in the figure) at 25 ° C. was 510 μΩ · cm, and the temperature coefficient of resistance was 137 ppm / ° C. The volume resistance value of the metal leaf with L = 1.0 mm (indicated by ■ in the figure) at 25 ° C. is 47 μΩ · cm, and the temperature coefficient of resistance is + 25 ppm / ° C., which is equivalent to that of a normal Cu—Mn—Ni alloy. The characteristics of were obtained.

図1(F)は、金属粉素材から形成した金属箔(抵抗体)13Aが完成した段階を示し、図1(G)は、金属箔(抵抗体)13Aの両端に電極(Cu板)15を溶接して、電流検出用抵抗器16が完成した段階を示す。従って、金属粉素材から金属箔(抵抗体)13Aを形成する工程は、加熱することなく、常温環境下で実施できる。 FIG. 1 (F) shows a stage in which a metal foil (resistor) 13A formed from a metal powder material is completed, and FIG. 1 (G) shows electrodes (Cu plates) 15 at both ends of the metal foil (resistor) 13A. Is welded to show the stage where the current detection resistor 16 is completed. Therefore, the step of forming the metal foil (resistor) 13A from the metal powder material can be carried out in a normal temperature environment without heating.

そして、メタルマスクやスクリーン印刷法を用いて、固定金型上に金属粉をパターン形状に充填することによって、様々な任意の形状のCu-Mn-Ni系合金の金属箔を得ることができる。なお、以上は、Cu-Mn-Ni系合金を例に説明したが、例えば、Cu-Mn-Sn系合金を用いても上記と同様の結果が得られており、本発明はCu-Mn系合金を抵抗体として用いる場合に適用できるものである。 Then, by filling the fixed mold with the metal powder in a pattern shape by using a metal mask or a screen printing method, it is possible to obtain a metal foil of a Cu—Mn—Ni based alloy having various arbitrary shapes. Although the above description has been made using a Cu—Mn—Ni alloy as an example, the same results as above can be obtained even when a Cu—Mn—Sn alloy is used, and the present invention is a Cu—Mn based alloy. It can be applied when an alloy is used as a resistor.

図7は、スクリーン印刷法を用いて、N字型の抵抗金属箔を形成する例を示す。まず、(A)に示すように、N字型のスクリーンマスク31をセットする。次ぎに、(B)に示すように、金属粉32をスクリーンマスク上に配置し、スクリーン印刷する。すると、(C)に示すように、N字型の粉末充填体33が形成される。そして、図1(E)に示すように、粉末充填体33に圧縮せん断加工を施すことで、N字型の金属箔抵抗が形成される。 FIG. 7 shows an example of forming an N-shaped resistance metal foil by using a screen printing method. First, as shown in (A), an N-shaped screen mask 31 is set. Next, as shown in (B), the metal powder 32 is placed on the screen mask and screen-printed. Then, as shown in (C), an N-shaped powder filler 33 is formed. Then, as shown in FIG. 1 (E), the powder filler 33 is subjected to compression shearing to form an N-shaped metal leaf resistor.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment and may be implemented in various different forms within the scope of the technical idea.

本発明は、特にCu-Mn系合金を用いた電流検出用抵抗器の抵抗体の製造に好適に利用可能である。
INDUSTRIAL APPLICABILITY The present invention can be particularly suitably used for manufacturing a resistor for a current detection resistor using a Cu—Mn based alloy.

Claims (4)

第1表面と、この第1表面と並行となるように向い合せて配置された第2表面を有し、
第1表面と第2表面との間に、Cu-Mn系の金属粉素材を配置し、
第1表面と第2表面とで金属粉素材を所定の押圧力で挟みながら、第1表面と第2表面を対向方向と直交する方向に移動させることで、前記金属粉素材を一体成型物とし、
前記金属粉素材の平均粒径は、1μm~12μmである、抵抗体の製造方法。
It has a first surface and a second surface arranged so as to be parallel to the first surface.
A Cu—Mn-based metal powder material is placed between the first surface and the second surface.
By sandwiching the metal powder material between the first surface and the second surface with a predetermined pressing force and moving the first surface and the second surface in a direction orthogonal to the facing direction, the metal powder material is integrally molded. death,
A method for producing a resistor , wherein the metal powder material has an average particle size of 1 μm to 12 μm .
せん断ひずみ=(移動距離/金属粉素材の厚み)とした場合に、せん断ひずみを1以上とした、請求項1に記載の抵抗体の製造方法。 The method for manufacturing a resistor according to claim 1, wherein the shear strain is 1 or more when the shear strain = (movement distance / thickness of the metal powder material). 移動距離は、0.5mm~10mmである、請求項1に記載の抵抗体の製造方法。 The method for manufacturing a resistor according to claim 1, wherein the moving distance is 0.5 mm to 10 mm. 第1表面と、この第1表面と並行となるように向い合せて配置された第2表面を有し、
第1表面と第2表面との間に、Cu-Mn系の金属粉素材を配置し、
第1表面と第2表面とで金属粉素材を所定の押圧力で挟みながら、第1表面と第2表面を対向方向と直交する方向に移動させることで、前記金属粉素材を一体成型物とし、
前記金属粉素材は水アトマイズ法により作成される、抵抗体の製造方法。
It has a first surface and a second surface arranged so as to be parallel to the first surface.
A Cu—Mn-based metal powder material is placed between the first surface and the second surface.
By sandwiching the metal powder material between the first surface and the second surface with a predetermined pressing force and moving the first surface and the second surface in a direction orthogonal to the opposite direction, the metal powder material is made into an integrally molded product. ,
The metal powder material is a method for producing a resistor , which is produced by a water atomizing method.
JP2017251364A 2017-12-27 2017-12-27 Manufacturing method of resistor Active JP6994195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017251364A JP6994195B2 (en) 2017-12-27 2017-12-27 Manufacturing method of resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017251364A JP6994195B2 (en) 2017-12-27 2017-12-27 Manufacturing method of resistor

Publications (2)

Publication Number Publication Date
JP2019116664A JP2019116664A (en) 2019-07-18
JP6994195B2 true JP6994195B2 (en) 2022-01-14

Family

ID=67304085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017251364A Active JP6994195B2 (en) 2017-12-27 2017-12-27 Manufacturing method of resistor

Country Status (1)

Country Link
JP (1) JP6994195B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221603A (en) 2002-01-30 2003-08-08 Hiroyuki Takeishi Solidified compact with crystalline surface, method for forming solidified crystalline surface by compression shearing, and method for coating surface with crystallites by compression shearing
JP2012082446A (en) 2010-10-07 2012-04-26 Shinshu Univ Composite metal material and method for production thereof
JP2014152096A (en) 2013-02-14 2014-08-25 Shinshu Univ Silicon molding production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221603A (en) 2002-01-30 2003-08-08 Hiroyuki Takeishi Solidified compact with crystalline surface, method for forming solidified crystalline surface by compression shearing, and method for coating surface with crystallites by compression shearing
JP2012082446A (en) 2010-10-07 2012-04-26 Shinshu Univ Composite metal material and method for production thereof
JP2014152096A (en) 2013-02-14 2014-08-25 Shinshu Univ Silicon molding production method

Also Published As

Publication number Publication date
JP2019116664A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2018079304A1 (en) Copper alloy powder, laminate molding production method, and laminate molding
KR102121181B1 (en) Method of manufacturing soft magnetic dust core and soft magnetic dust core
JP5697604B2 (en) Manufacturing method of metal parts
EP3142814B1 (en) Use of gold powder alloys for manufacturing jewelry items by selective laser melting
JP5082002B1 (en) Magnetic materials and coil parts
WO2018079002A1 (en) Laminated molding production method and laminated molding
RU2497632C2 (en) Method of making part semis for electric terminals and electric terminal component
JP6389557B1 (en) Copper alloy powder, manufacturing method of layered object, and layered object
JPS646259B2 (en)
CN110315076A (en) A kind of manufacturing process of the high-gravity tungsten based alloy based on pre-alloyed powder
US9779854B2 (en) Method for producing a semifinished product for electrical contacts and contact piece
JP6994195B2 (en) Manufacturing method of resistor
EP2587507A1 (en) Electrical contact material
JP2015521355A (en) Contact member and manufacturing method thereof
EP2620515B1 (en) Electric contact material
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
US9847169B2 (en) Method of production rare-earth magnet
EP2586883B1 (en) Electrical contact material
JPH09506931A (en) Sintered contact material, manufacturing method thereof, and contact made of this material
JPH04371373A (en) Manufacture of spot welding electrode tip
JP5129893B1 (en) Magnetic materials and coil parts
JP2007126689A5 (en)
EP2191921A2 (en) Process for producing a copper-chromium contact element for medium-voltage switchgear assemblies, and contact element itself
IL265815A (en) Particulate matter comprising a coated microparticle and uses of same in printing objects
JP2020124867A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6994195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150