JP6993780B2 - Nano bubble generator by energization method - Google Patents

Nano bubble generator by energization method Download PDF

Info

Publication number
JP6993780B2
JP6993780B2 JP2017021714A JP2017021714A JP6993780B2 JP 6993780 B2 JP6993780 B2 JP 6993780B2 JP 2017021714 A JP2017021714 A JP 2017021714A JP 2017021714 A JP2017021714 A JP 2017021714A JP 6993780 B2 JP6993780 B2 JP 6993780B2
Authority
JP
Japan
Prior art keywords
electrode rod
electrode
rod
titanium
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017021714A
Other languages
Japanese (ja)
Other versions
JP2018126690A (en
Inventor
一郎 富岡
耕一郎 鈴木
Original Assignee
ビーイー電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビーイー電子工業株式会社 filed Critical ビーイー電子工業株式会社
Priority to JP2017021714A priority Critical patent/JP6993780B2/en
Publication of JP2018126690A publication Critical patent/JP2018126690A/en
Application granted granted Critical
Publication of JP6993780B2 publication Critical patent/JP6993780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、直流電流を供給する通電方式によりナノバブルを生成するナノバブル発生装置の改良に関する。 The present invention relates to an improvement of a nanobubble generator that generates nanobubbles by an energization method that supplies a direct current.

電気分解の電極棒には、従来は、両極にチタン金属を基材にしてプラチナメッキを施した電極棒を使用していた。
上記通電方式によるナノバブル発生装置として、WO2014/148397号公報が知られている。
この公報では、陽極(+)側に接続される導電棒としてチタンの金属棒を使用し、陰極(-)側に接続される導電棒として白金(プラチナ)の金属棒またはチタンの金属棒の表面に白金(プラチナ)をコーティングしたものを使用しており、AC/DCコンバータの出力が、チタンの導電棒側に陽極(+)側電極が、白金の導電棒側に陰極(-)側電極が対応して接続する構成が開示されている。
しかし、チタンの導電棒側が陽極で、プラチナの導電棒側が陰極になっていると、陽極側に接続したチタンの導電棒には、チタン表面に酸化チタン皮膜が忽ちのうちに生成してしまい絶縁されるので、直流電流が流れない。
これは、チタンの導電棒が半導体化し、ダイオードカソード極になるからと思われ、前記構成では、水の電気分解を行うことができないという根本的な欠点があることが判明した。
Conventionally, as the electrode rod for electrolysis, an electrode rod having both poles made of titanium metal as a base material and plated with platinum has been used.
WO2014 / 148397 is known as a nanobubble generator by the above-mentioned energization method.
In this publication, a titanium metal rod is used as the conductive rod connected to the anode (+) side, and a platinum metal rod or a titanium metal rod surface is used as the conductive rod connected to the cathode (-) side. The output of the AC / DC converter is the electrode on the anode (+) side on the conductive rod side of titanium and the electrode on the cathode (-) side on the conductive rod side of platinum. Correspondingly connected configurations are disclosed.
However, if the conductive rod side of titanium is the anode and the conductive rod side of platinum is the cathode, a titanium oxide film will be formed on the titanium surface on the conductive rod of titanium connected to the anode side, and insulation will occur. Therefore, the DC current does not flow.
It is thought that this is because the conductive rod of titanium is converted into a semiconductor and becomes a diode cathode electrode, and it has been found that the above configuration has a fundamental drawback that water cannot be electrolyzed.

WO2014/148397号公報WO2014 / 148397

この発明は上記問題点を解決するために創案されたもので、その主たる課題は、直流コンバータの出力が、極側にチタンの導電棒を配置し、極側にプラチナまたはチタンにプラチナをコーティングした金属棒を用いることで、従来の欠点を解消することにある。 The present invention was devised to solve the above problems, and the main problem is that the output of the DC converter has a titanium conductive rod placed on the cathode side and platinum on the anode side or platinum on titanium. The purpose is to eliminate the conventional drawbacks by using a coated metal rod.

本発明は、上記課題を解決するために、請求項1の発明では、
水その他の溶媒中に、第1の電極棒と、第2の電極棒とを離間して配置し、前記第1の電極棒と前記第2の電極棒間に直流電流を供給する電源を有してなる通電方式によるナノバブル発生装置において、
第1の電極棒(陽極)がプラチナまたはチタンにプラチナをコーティングした電極棒で陽極側に接続され、前記第2の電極棒(陰極)がチタンの電極棒で陰極側に接続されて直流電流が供給されてなり、
前記第2の電極棒は、電気分解前に、チタン表面に酸化チタン皮膜を50nm以上生成してなり、
前記第1および第2の電極棒と並んで、チタン棒からなり液体との接触を検知する接液検出センサーの端子が設けられており、該接液検出センサーにより前記第1および第2の電極棒が液体中であることが検知されると、第1の電極棒に+側の電流が流れ、第2の電極棒に-側の電流流れて電気分解が行われるようになっていることを特徴とする。
請求項2の発明では、
第1の電極棒の同心円上に、第2の電極棒を等間隔にまたは隙間無く複数並べて配置してなることを特徴とする。
請求項3の発明では、
第1電極棒を中心とした円周上に複数の第2電極棒を等間隔に配置してなることを特徴とする。
In the invention of claim 1, in order to solve the above problems, the present invention
A power source is provided in which the first electrode rod and the second electrode rod are arranged apart from each other in water or other solvent, and a DC current is supplied between the first electrode rod and the second electrode rod. In the nano bubble generator by the energization method
The first electrode rod (anode) is connected to the anode side by an electrode rod obtained by coating platinum or titanium with platinum, and the second electrode rod (cathode) is connected to the cathode side by a titanium electrode rod to generate a direct current. Being supplied,
The second electrode rod has a titanium oxide film of 50 nm or more formed on the titanium surface before electrolysis.
Along with the first and second electrode rods, a terminal of a wetted contact detection sensor which is made of a titanium rod and detects contact with a liquid is provided, and the first and second electrodes are provided by the wetted contact detection sensor. When it is detected that the rod is in a liquid, a current on the + side flows through the first electrode rod, and a current on the-side flows through the second electrode rod to perform electrolysis. It is characterized by.
In the invention of claim 2,
It is characterized in that a plurality of second electrode rods are arranged side by side at equal intervals or without gaps on concentric circles of the first electrode rods.
In the invention of claim 3,
It is characterized in that a plurality of second electrode rods are arranged at equal intervals on the circumference centered on the first electrode rod.

この発明では、プラチナからなる第1の電極棒を陽極(+)とし、チタンからなる第2の電極棒を陰極(-)とし、直流電流を流して電気分解することで、ナノバブルを生成することができる。
また、第2の電極棒を陰極(-)側とすることで、チタンの表面に陽極酸化チタン被膜を生成させてもよい。
上記酸化チタン被膜は、半導体特性を発現し、プラチナまたは表面にプラチナをコーティングした第1の電極棒に対してカソードとなるので、第2の電極棒を陰極(-)とすることでプラチナからなる第1の電極棒(+)との間で通電が可能となる。
In the present invention, a first electrode rod made of platinum is used as an anode (+), a second electrode rod made of titanium is used as a cathode (-), and a direct current is applied to electrolyze the particles to generate nanobubbles. Can be done.
Further, by setting the second electrode rod to the cathode (−) side, a titanium anodized film may be formed on the surface of titanium.
Since the titanium oxide film exhibits semiconductor characteristics and serves as a cathode for platinum or a first electrode rod coated with platinum on the surface, it is made of platinum by using the second electrode rod as a cathode (-). Energization is possible with the first electrode rod (+).

実施例1の第1と電極棒と第2の電極棒の配置を説明する模式図である。It is a schematic diagram explaining the arrangement of the 1st and 2nd electrode rods of Example 1. FIG. ナノバブル発生装置の底面図である。It is a bottom view of a nanobubble generator. 浴槽にナノバブル発生装置をセットした場合の説明図である。It is explanatory drawing when the nano bubble generator is set in the bathtub. ナノバブルの発生状態を示す写真である。It is a photograph showing the generation state of nanobubbles. 実施例2の第1と電極棒と第2の電極棒の配置を説明する説明図である。It is explanatory drawing explaining the arrangement of the 1st and 2nd electrode rods of Example 2. FIG.

水その他の極性溶媒中に、プラチナまたはチタンにプラチナをコーティングした第1の電極棒1と、チタンの第2の電極棒2とを離間して配置し、第1の電極棒1を陽極側に接続し、第2の電極棒2を陰極側に接続して直流電流を供給して、電気分解により生じた水素気泡をより小さいナノバブルとして発生させることを実現した。 The first electrode rod 1 obtained by coating platinum or titanium with platinum and the second electrode rod 2 made of titanium are arranged separately from each other in water or other polar solvent, and the first electrode rod 1 is placed on the anode side. By connecting and connecting the second electrode rod 2 to the cathode side to supply a DC current, it was realized that hydrogen bubbles generated by electrolysis are generated as smaller nanobubbles.

以下に、この発明を風呂用ナノバブル発生装置10に適用した好適実施例について図面を参照しながら説明する。
通電方式によるナノバブル発生装置10は、図1から図3に示すように、浴槽Bの電解質イオン水A中に、第1の電極棒1と、第2の電極棒2とを離間して配置し、電源部3から直流電流を供給する構成からなり、前記第1の電極棒1を陽極とし、第2の電極棒2を陰極として電源部から直流電流を供給する構成からなっている。
Hereinafter, preferred embodiments in which the present invention is applied to the bath nanobubble generator 10 will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the nano bubble generator 10 by the electric current method arranges the first electrode rod 1 and the second electrode rod 2 in the electrolyte ionized water A of the bath B so as to be separated from each other. The first electrode rod 1 is used as an anode and the second electrode rod 2 is used as a cathode to supply a DC current from the power supply unit.

そして、第1の電極棒1は、純プラチナからなる金属棒、または純チタンからなる金属棒の表面に均一の厚みにプラチナをコーティングした金属棒からなっている。
第2の電極棒2は、純チタンの金属棒からなっている。
The first electrode rod 1 is made of a metal rod made of pure platinum or a metal rod made of pure titanium coated with platinum to a uniform thickness on the surface of the metal rod.
The second electrode rod 2 is made of a pure titanium metal rod.

本実施例の通電方式によるナノバブル発生装置10は、図3に示すように、浴槽B中に投入し、通電してナノバブルを発生させるものである。
即ち、浴槽Bの中に、電解質イオン水、例えば通常の水が満たされる。
この水(湯)の中に、ナノバブル発生装置10を沈めて静止させる。
As shown in FIG. 3, the nanobubble generator 10 according to the energization method of this embodiment is charged into the bathtub B and energized to generate nanobubbles.
That is, the bathtub B is filled with electrolyte ionized water, for example, ordinary water.
The nanobubble generator 10 is submerged in this water (hot water) to stand still.

ナノバブル発生装置10には、DC100Vを供給する電源部3が設けられている。
本実施例では、ACコンセント(図示省略)に接続される電源アダプター(AC/DCコンバータ)31から充電アダプター32を介してナノバブル発生装置10の充電池収納部11内の充電池12に直流電流が充電される。
The nanobubble generator 10 is provided with a power supply unit 3 for supplying DC100V.
In this embodiment, a direct current is transmitted from the power adapter (AC / DC converter) 31 connected to the AC outlet (not shown) to the rechargeable battery 12 in the rechargeable battery storage portion 11 of the nanobubble generator 10 via the charging adapter 32. It will be charged.

このように充電池12に充電した後に、充電アダプター32を外して、充電池12から直流電圧12~24Vが前記電極棒1、2間に通電されて、ナノバブル発生装置10が使用に供される。 After charging the rechargeable battery 12 in this way, the charging adapter 32 is removed, and a DC voltage of 12 to 24 V is applied from the rechargeable battery 12 between the electrode rods 1 and 2, and the nanobubble generator 10 is used. ..

なお図中、T1は第1の電極棒1に設けられた充電用端子、T2は第2の電極棒2に設けられた充電用端子、T3はチタン棒からなり液体との接触を検知する接液検出センサー5の端子であり、充電アダプター32と接続しうるようになっている。
これにより、接液検出センサー5により前記電極部1,2が液体中であることが検知されてから、第1の電極棒1に+側の電流が流れ、第2の電極棒2に-側の電流が流れて電気分解が行われるようになっている。
In the figure, T1 is a charging terminal provided on the first electrode rod 1, T2 is a charging terminal provided on the second electrode rod 2, and T3 is a contact that detects contact with a liquid. It is a terminal of the liquid detection sensor 5 and can be connected to the charging adapter 32.
As a result, after the wet contact detection sensor 5 detects that the electrode portions 1 and 2 are in the liquid, a current on the + side flows through the first electrode rod 1, and the negative side flows through the second electrode rod 2. The current flows and electrolysis is performed.

前記第1の電極棒1と、第2の電極棒2とは、図2に模式図を示すように交互に等間隔で平行に多数配列されている。
そして第1の電極棒1の端部はいずれも一端側で第2の電極棒2より長く設定されており、逆に第2の電極棒2の端部はいずれも他端側で第1の電極棒2より長く設定されている。
The first electrode rod 1 and the second electrode rod 2 are arranged in parallel at equal intervals alternately as shown in the schematic diagram in FIG.
The ends of the first electrode rod 1 are set longer than the second electrode rod 2 on one end side, and conversely, the ends of the second electrode rod 2 are both set on the other end side of the first electrode rod 2. It is set longer than the electrode rod 2.

そして、複数の第1の電極棒1はその突出部分でいずれも陽極(+)側に接続され、複数の第2の電極棒2は、その反対側の突出部分で陰極(-)側に接続されている。 The plurality of first electrode rods 1 are all connected to the anode (+) side at their protruding portions, and the plurality of second electrode rods 2 are connected to the cathode (-) side at their opposite protruding portions. Has been done.

ここで、第1の電極棒1、第2の電極棒2の断面形状としては円形、楕円形の他に、三角形や四角形などの多角形など任意の断面形状であってもよい。
そして、この発明では、常に、第1の電極棒1が陽極(+)に接続され、第2の電極棒2が陰極(-)に接続される点に特徴がある。
Here, the cross-sectional shape of the first electrode rod 1 and the second electrode rod 2 may be any cross-sectional shape such as a polygon such as a triangle or a quadrangle, in addition to a circular shape and an elliptical shape.
The present invention is characterized in that the first electrode rod 1 is always connected to the anode (+) and the second electrode rod 2 is connected to the cathode (−).

予め、第2の電極棒2のチタンの表面には酸化チタン被膜が生成される。
この酸化チタン被膜は、半導体特性を発現し、第1の電極棒1に対してカソードとなるので、第2の電極棒2を陰極とすることで第1の電極棒1との間で通電が可能となる。
A titanium oxide film is formed on the surface of the titanium of the second electrode rod 2 in advance.
This titanium oxide film exhibits semiconductor characteristics and serves as a cathode with respect to the first electrode rod 1. Therefore, by using the second electrode rod 2 as a cathode, electricity can be applied to the first electrode rod 1. It will be possible.

上記酸化チタン被膜は、耐食性が高く長寿命であり、光触媒機能や超親水性を有して水に馴染みやすいので、電気分解により生じた水素気泡をより小さくナノバブルとして発生させることになる。 The titanium oxide film has high corrosion resistance, a long life, has a photocatalytic function and superhydrophilicity, and is easily compatible with water, so that hydrogen bubbles generated by electrolysis are generated as smaller nanobubbles.

ここで、第2の電極棒2は、初期に、チタン表面に酸化チタン被膜を、例えば50nm程度生成しておくことが好ましい。
上記方法の通電方式で電気分解して水を観測した写真を図3に示す。
これにより、大量に雲状の水素バブルが上昇しており、一例として、気泡サイズが200~400nm程度のナノバブルが高い密度で生成されていることがわかる。
Here, it is preferable that the second electrode rod 2 initially forms a titanium oxide film on the titanium surface, for example, about 50 nm.
FIG. 3 shows a photograph of water observed by electrolysis by the energization method of the above method.
As a result, it can be seen that a large amount of cloud-shaped hydrogen bubbles are rising, and as an example, nanobubbles having a bubble size of about 200 to 400 nm are generated at a high density.

前記実施例では、第1の電極棒1と第2の電極棒2とは1:1の比率とした場合を例示したが、この発明では異なる比率や配列であってもよい。
図5は、第1の電極棒1と第2の電極棒2との異なる組み合わせを示す断面図である。
In the above embodiment, the case where the ratio of the first electrode rod 1 and the second electrode rod 2 is 1: 1 is exemplified, but in the present invention, different ratios and arrangements may be used.
FIG. 5 is a cross-sectional view showing different combinations of the first electrode rod 1 and the second electrode rod 2.

即ち、第1電極棒1と第2電極棒2は、いずれも直径が2mmの金属棒からなっており、第1電極棒1と第2電極棒2とは2mmの間隔を隔てて配置されているが、第1の電極棒1を中心にして、半径2mmの円周上に60度間隔で6つの第2の電極棒2を配置した形状からなっている。 That is, both the first electrode rod 1 and the second electrode rod 2 are made of a metal rod having a diameter of 2 mm, and the first electrode rod 1 and the second electrode rod 2 are arranged at a distance of 2 mm. However, it has a shape in which six second electrode rods 2 are arranged at intervals of 60 degrees on a circumference having a radius of 2 mm with the first electrode rod 1 as the center.

この場合でも、前記実施例1とほぼ同様のナノバブルを発生させることができ、コスト削減を図ることができる。
このように、第1の電極棒1を中心にした円周上に等間隔に複数の第2の電極棒2を複数配置してもよい。
この場合の第2の電極棒2の角度は上記実施例に限定されず、等間隔に配置されていればよく、ほぼ隙間無く隣接するものでもよい。
Even in this case, nanobubbles almost the same as those in the first embodiment can be generated, and cost reduction can be achieved.
In this way, a plurality of second electrode rods 2 may be arranged at equal intervals on the circumference centered on the first electrode rod 1.
The angle of the second electrode rod 2 in this case is not limited to the above embodiment, and may be arranged at equal intervals, and may be adjacent to each other with almost no gap.

また、電気分解反応は、一部では、投入電力で決定されるので、電極の電流密度と抵抗値によるロスを考慮すすれば、第1の電極棒1のプラチナの表面積は、第2の電極棒2のチタンの表面積と同じである必要はなく、第1の電極棒1に対して第2の電極棒2を複数、等間隔に配置してもよく、これにより高価なプラチナを使用する第1の電極棒を第2の電極棒よりも少なく配置して経費を削減することも可能である。 Further, since the electrolysis reaction is partially determined by the input power, the platinum surface surface of the first electrode rod 1 is the second electrode, considering the loss due to the current density and the resistance value of the electrode. It does not have to be the same as the surface area of the titanium of the rod 2, and a plurality of second electrode rods 2 may be arranged at equal intervals with respect to the first electrode rod 1, whereby expensive platinum is used. It is also possible to reduce the cost by arranging one electrode rod less than the second electrode rod.

この発明は、湯船に沈めて温浴効果、水素バブル浴を可能としてもよいし、ナノバブルにより口腔内、あるいは肌への洗浄や殺菌効果、水素バブルによる酸化還元作用、水素水生成装置などに応用することができる。
また、電気分解水であればよく、単なる水に限らず、飲食用の食材と混ぜて煮たり沸かしたりして調理などの各種用途に用いることができる。
この発明は上記実施例に限定されるものではなく、要するにこの発明の要旨を変更しない範囲で種々設計変更することができる。
The present invention may be submerged in a bathtub to enable a hot bath effect and a hydrogen bubble bath, and is applied to a cleaning and bactericidal effect on the oral cavity or skin by nanobubbles, a redox action by hydrogen bubbles, a hydrogen water generator, and the like. be able to.
Further, electrolyzed water may be used as long as it is not limited to simple water, and can be used for various purposes such as cooking by mixing it with food and drink ingredients and boiling or boiling it.
The present invention is not limited to the above embodiment, and in short, various design changes can be made without changing the gist of the present invention.

1 第1の電極棒
2 第2の電極棒
3 電源部
10 ナノバブル発生装置
11 充電池収納部
12 充電池
31 電源アダプター
32 充電アダプター
1 1st electrode rod 2 2nd electrode rod 3 Power supply unit 10 Nano bubble generator 11 Rechargeable battery storage unit 12 Rechargeable battery 31 Power supply adapter 32 Charging adapter

Claims (3)

水その他の溶媒中に、第1の電極棒と、第2の電極棒とを離間して配置し、前記第1の電極棒と前記第2の電極棒間に直流電流を供給する電源を有してなる通電方式によるナノバブル発生装置において、
第1の電極棒がプラチナまたはチタンにプラチナをコーティングした電極棒で陽極側に接続され、前記第2の電極棒がチタンの電極棒で陰極側に接続されて直流電流が供給可能となっており、
前記第2の電極棒は、電気分解前に、チタン表面に酸化チタン皮膜を50nm以上生成してなり、
前記第1および第2の電極棒と並んで、チタン棒からなり液体との接触を検知する接液検出センサーの端子が設けられており、該接液検出センサーにより前記第1および第2の電極棒が液体中であることが検知されると、第1の電極棒に+側の電流が流れ、第2の電極棒に-側の電流流れて電気分解が行われるようになっていることを特徴とする通電方式によるナノバブル発生装置。
A power source is provided in which the first electrode rod and the second electrode rod are arranged apart from each other in water or other solvent, and a DC current is supplied between the first electrode rod and the second electrode rod. In the nano bubble generator by the energization method
The first electrode rod is connected to the anode side by an electrode rod made of platinum or titanium coated with platinum, and the second electrode rod is connected to the cathode side by a titanium electrode rod so that a direct current can be supplied. ,
The second electrode rod has a titanium oxide film of 50 nm or more formed on the titanium surface before electrolysis.
Along with the first and second electrode rods, a terminal of a wetted contact detection sensor which is made of a titanium rod and detects contact with a liquid is provided, and the first and second electrodes are provided by the wetted contact detection sensor. When it is detected that the rod is in a liquid, a current on the + side flows through the first electrode rod, and a current on the-side flows through the second electrode rod to perform electrolysis. Nano bubble generator by energization method characterized by.
第1の電極棒の同心円上に、第2の電極棒を等間隔にまたは隙間無く複数並べて配置してなることを特徴とする請求項1に記載の通電方式によるナノバブル発生装置。 The nanobubble generator according to an energization method according to claim 1, wherein a plurality of second electrode rods are arranged side by side at equal intervals or without gaps on concentric circles of the first electrode rods. 第1電極棒を中心とした円周上に複数の第2電極棒を等間隔に配置してなることを特徴とする請求項1からのいずれかに記載の通電方式によるナノバブル発生装置。 The nanobubble generator according to any one of claims 1 to 2 , wherein a plurality of second electrode rods are arranged at equal intervals on a circumference centered on the first electrode rod.
JP2017021714A 2017-02-08 2017-02-08 Nano bubble generator by energization method Active JP6993780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021714A JP6993780B2 (en) 2017-02-08 2017-02-08 Nano bubble generator by energization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021714A JP6993780B2 (en) 2017-02-08 2017-02-08 Nano bubble generator by energization method

Publications (2)

Publication Number Publication Date
JP2018126690A JP2018126690A (en) 2018-08-16
JP6993780B2 true JP6993780B2 (en) 2022-01-14

Family

ID=63171762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021714A Active JP6993780B2 (en) 2017-02-08 2017-02-08 Nano bubble generator by energization method

Country Status (1)

Country Link
JP (1) JP6993780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204531B2 (en) * 2019-02-28 2023-01-16 キヤノン株式会社 Ultra fine bubble generator
WO2020179667A1 (en) * 2019-03-07 2020-09-10 株式会社超微細科学研究所 Device for generating water containing fine bubbles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288415A (en) 2004-04-05 2005-10-20 Japan Science & Technology Agency Method and apparatus for sterilizing water
WO2014148397A1 (en) 2013-03-18 2014-09-25 学校法人北里研究所 Device for generating nanobubbles by electric current supply

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363248B2 (en) * 1994-03-31 2003-01-08 ジプコム株式会社 Sterilized water, its production method and production equipment
JP4558896B2 (en) * 2000-06-27 2010-10-06 有限会社アトラス Pool water purification equipment
US7008529B2 (en) * 2001-04-27 2006-03-07 Sanyo Electric Co., Ltd. Water treating device
US6689262B2 (en) * 2002-02-22 2004-02-10 Aqua Innovation, Inc. Microbubbles of oxygen
JP2004197211A (en) * 2002-12-16 2004-07-15 Koichi Aihara Hydrogen/oxygen gaseous mixture generator
JP2006167684A (en) * 2004-12-20 2006-06-29 Noritz Corp Method for supplying hydrogen water
JP5595213B2 (en) * 2010-10-14 2014-09-24 株式会社コガネイ Disinfecting water manufacturing apparatus and disinfecting water manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288415A (en) 2004-04-05 2005-10-20 Japan Science & Technology Agency Method and apparatus for sterilizing water
WO2014148397A1 (en) 2013-03-18 2014-09-25 学校法人北里研究所 Device for generating nanobubbles by electric current supply

Also Published As

Publication number Publication date
JP2018126690A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
TW573066B (en) Hydrogen-oxygen gas generation device and method for generating hydroden-oxygen gas using such device
JP6993780B2 (en) Nano bubble generator by energization method
JPWO2003000395A1 (en) Vibration stirrer and processing apparatus and processing method using the same
CN104938038A (en) Plasma generator
US20150368815A1 (en) Hydrogen-containing water generating device
JPWO2017098598A1 (en) Hydrogen water generator
JP4637885B2 (en) Ozone water generator
TWI465301B (en) Preparation device of porous alumina template
TWI317186B (en) Column type fuel cell, series device thereof and stack thereof
US9903030B2 (en) Hydrogen-containing water generating electrode and hydrogen-containing water generating device
US20150368813A1 (en) Hydrogen-containing water generating electrode and hydrogen-containing water generating device
JP2004307878A (en) Device for generating hydrogen and oxygen
JP3132767U (en) Hydrogen / oxygen gas generator
JP2018053318A (en) Portable hydrogen generator
JP2007154301A (en) Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation
JP2018043210A (en) Hydrogen Water Generator
CN207822149U (en) A kind of portable free radical generating means
KR20150071045A (en) Hydrogen-oxygen mixing gas generator and system for generating hydrogen-oxygen mixing gas using the same
JP3012802U (en) Electrolytic polishing equipment for metal surfaces
KR101659884B1 (en) Wet membrane-electrode assembly, sterilizer using the same
JP2020012125A (en) Electrode for electrolysis and electric equipment provided with the same
CN204999980U (en) High yield chlorine electrolytic device
JP2003245671A5 (en)
TW202018131A (en) Frequency conversion polarization of polishing device and method
RU81189U1 (en) INDUCTION ELECTROCHEMICAL INSTALLATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200427

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200430

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200703

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200708

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210506

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210512

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210707

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211104

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211201

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6993780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150