JP6991747B2 - Control device and control method for dual power supply alternator - Google Patents

Control device and control method for dual power supply alternator Download PDF

Info

Publication number
JP6991747B2
JP6991747B2 JP2017115164A JP2017115164A JP6991747B2 JP 6991747 B2 JP6991747 B2 JP 6991747B2 JP 2017115164 A JP2017115164 A JP 2017115164A JP 2017115164 A JP2017115164 A JP 2017115164A JP 6991747 B2 JP6991747 B2 JP 6991747B2
Authority
JP
Japan
Prior art keywords
power supply
component
current
low frequency
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017115164A
Other languages
Japanese (ja)
Other versions
JP2018050446A (en
Inventor
勇太朗 北森
清志 楠
隆太 長谷川
隆久 影山
崇 藤田
照之 石月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to DE102017215953.7A priority Critical patent/DE102017215953B4/en
Priority to CN201710831571.3A priority patent/CN107834921B/en
Publication of JP2018050446A publication Critical patent/JP2018050446A/en
Application granted granted Critical
Publication of JP6991747B2 publication Critical patent/JP6991747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明の実施形態は、二重給電交流機の制御装置および制御方法に関する。 An embodiment of the present invention relates to a control device and a control method for a dual power supply alternator.

一次側が主要変圧器を介して電力系統に接続され、二次側が周波数変換器(交流励磁装置)に接続された二重給電交流機において、電力系統もしくは電気回路で、短絡や地絡等の電気故障が発生した場合、二重給電交流機の一次側の電圧低下、直流成分重畳、過電流等の過渡現象が発生し、二次側に過電圧が生じる。このとき、二重給電交流機の一次側では、直流成分の重畳により、遮断器開放時に一次電流がゼロクロスしない零ミスと呼ばれる現象が起こることがある。零ミスの問題を解決するための技術はいくつか提案されている。 In a dual power supply AC machine in which the primary side is connected to the power system via the main transformer and the secondary side is connected to the frequency converter (AC exciter), electricity such as short circuits and ground faults in the power system or electric circuit. When a failure occurs, transient phenomena such as voltage drop, DC component superimposition, and overcurrent on the primary side of the dual power supply AC machine occur, and overvoltage occurs on the secondary side. At this time, on the primary side of the dual power supply AC device, a phenomenon called zero miss may occur in which the primary current does not cross zero when the circuit breaker is opened due to the superimposition of the DC component. Several techniques have been proposed to solve the zero-miss problem.

特許第2816020号公報Japanese Patent No. 2816020

零ミスが生じると、遮断器が電流を遮断することができず、遮断器が損傷するばかりか、電気故障の除去ができず、電力系統の運転を継続できなくなったり、主要変圧器や二重給電交流機等を損傷したりする可能性がある。そのため、零ミスが生じないように、迅速に二重給電交流機の一次電流をゼロクロスさせることが求められる。 When a zero error occurs, the circuit breaker cannot cut off the current, the circuit breaker is damaged, the electrical failure cannot be eliminated, the power system cannot continue to operate, or the main transformer or double. There is a possibility of damaging the power supply AC machine, etc. Therefore, it is required to quickly zero-cross the primary current of the dual power supply AC so that zero error does not occur.

零ミスの問題を解決するための技術はいくつか提案されているが、電気故障発生後、迅速に二重給電交流機の一次電流をゼロクロスさせる有効な手法は提案されていない。 Although some techniques for solving the problem of zero mistake have been proposed, no effective method for quickly zero-crossing the primary current of the dual power supply AC after the occurrence of an electric failure has been proposed.

本発明は上記実情に鑑みてなされたものであり、二重給電交流機の一次電流を迅速にゼロクロスさせることを可能にする二重給電交流機の制御装置および制御方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device and a control method for a double power supply AC machine that can quickly zero-cross the primary current of the double power supply AC machine. do.

実施形態によれば、一次巻線が開閉手段を介して電気回路に接続される二重給電交流機と、二重給電交流機の二次巻線に可変周波数の電流を供給する電力変換手段と、電力変換手段の電圧もしくは電流を制御する電力変換制御手段と、を有する発電システムに適用される二重給電交流機の制御装置が提供される。二重給電交流機の制御装置は、前記二重給電交流機の二次側の二次電流を計測する二次電流計測手段と、前記二重給電交流機の一次側に過電流が流れて前記二重給電交流機の一次側および二次側に過渡直流成分が重畳した場合に前記二次電流計測手段により計測された二次電流に重畳される直流成分または低周波成分を計測する直流成分計測手段と、前記直流成分計測手段により計測された直流成分または低周波成分に応じて前記電力変換制御手段に対する直流通電指令または低周波通電指令の信号を発生する直流指令値発生手段と、前記直流指令値発生手段が発生する直流通電指令または低周波通電指令の信号を出力または停止する切替え手段とを備え、前記切替え手段は、前記直流成分計測手段が前記二次電流に重畳される直流成分または低周波成分を計測した場合に前記直流指令値発生手段が発生する直流通電指令または低周波通電指令の信号を、前記二重給電交流機の一次側の電気回路の故障が検出されたとき又は前記二重給電交流機の二次側の電気回路の各相を短絡させる短絡器の短絡動作後の復帰が検出されたときに、前記電力変換制御手段に出力し、前記電力変換制御手段は、出力された前記直流通電指令または低周波通電指令の信号に応じた指令を前記電力変換手段に出力し、前記電力変換手段は、前記電力変換制御手段からの指令に応じた直流または低周波電流を前記二重給電交流機の二次巻線に流す
According to the embodiment, a dual power supply AC machine in which the primary winding is connected to an electric circuit via an opening / closing means, and a power conversion means for supplying a variable frequency current to the secondary winding of the double power supply AC machine. , A power conversion control means for controlling the voltage or current of the power conversion means, and a control device for a dual power supply AC device applied to a power generation system having the power conversion means. The control device of the double power supply AC is described by a secondary current measuring means for measuring the secondary current on the secondary side of the double power supply AC and an overcurrent flowing through the primary side of the double power supply AC. DC component measurement to measure the DC component or low frequency component superimposed on the secondary current measured by the secondary current measuring means when the transient DC component is superimposed on the primary side and secondary side of the dual power supply AC machine. The means, a DC command value generating means for generating a DC energization command or a low frequency energization command signal to the power conversion control means according to the DC component or the low frequency component measured by the DC component measuring means, and the DC command. The switching means includes a switching means for outputting or stopping the signal of the DC energization command or the low frequency energization command generated by the value generating means, and the switching means is a DC component or low in which the DC component measuring means is superimposed on the secondary current. When the signal of the DC energization command or the low frequency energization command generated by the DC command value generating means when the frequency component is measured, a failure of the electric circuit on the primary side of the double power supply AC machine is detected, or the above two. When a return after the short-circuit operation of the short-circuit device that short-circuits each phase of the electric circuit on the secondary side of the heavy power supply AC machine is detected, the output is output to the power conversion control means, and the power conversion control means is output. A command corresponding to the signal of the DC energization command or the low frequency energization command is output to the power conversion means, and the power conversion means outputs a DC or low frequency current according to the command from the power conversion control means. It flows through the secondary winding of the heavy power supply AC machine .

本発明によれば、二重給電交流機の一次電流を迅速にゼロクロスさせることが可能となる。 According to the present invention, it is possible to quickly zero-cross the primary current of the dual power supply AC machine.

第1の実施形態に係る発電システムの構成の一例を示す図。The figure which shows an example of the structure of the power generation system which concerns on 1st Embodiment. 図1中の直流成分計測機能6の回路構成の一例を示す図。The figure which shows an example of the circuit structure of the DC component measurement function 6 in FIG. 第2の実施形態に係る発電システムの構成の一例を示す図。The figure which shows an example of the structure of the power generation system which concerns on 2nd Embodiment.

以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

<第1の実施形態>
最初に、第1の実施形態について説明する。
(構成)
図1は、第1の実施形態に係る発電システムの構成の一例を示す図である。
<First Embodiment>
First, the first embodiment will be described.
(Constitution)
FIG. 1 is a diagram showing an example of a configuration of a power generation system according to the first embodiment.

図1に示す発電システムは、例えば揚水発電所に設置される可変速揚水発電システムであり、電力系統Sに電気的に接続される。 The power generation system shown in FIG. 1 is, for example, a variable speed pumped storage power generation system installed in a pumped storage power plant, and is electrically connected to the power system S.

発電システムは、基本的な構成要素として、例えばポンプ水車101に連結される発電電動機である二重給電交流機1(以下、「発電電動機1」と称す。)、コンバータ2Aおよびインバータ2Bを有する電力変換器2、主要変圧器102、系統側遮断器103、並列用遮断器104、励磁用変圧器105、励磁用遮断器106、調速機107、サーボモータ108、角度検出器KA、計器用変成器VT、変流器CT、CT5A、系統故障検出機能DTなどの機器類を備えている。 The power generation system has, as basic components, for example, a power supply AC machine 1 (hereinafter referred to as “power generation motor 1”) which is a power generation motor connected to a pump water wheel 101, a converter 2A, and an inverter 2B. Converter 2, main transformer 102, system side breaker 103, parallel breaker 104, exciting transformer 105, exciting breaker 106, speed controller 107, servo motor 108, angle detector KA, instrument transformer It is equipped with equipment such as an instrument VT, a current transformer CT, CT5A, and a system failure detection function DT.

また、発電システムは、コンバータ制御部3Aおよびインバータ制御部3Bを有する電力変換制御部3、無効電力制御部111、有効電力制御部112、発電電動機電圧制御部113、通常運転時インバータ電圧指令値演算部114、調速機制御部115、コンバータ電圧指令値演算部116、発電電動機一次電流交流化制御演算部120、演算部A1、A2などの各種の制御機能を備えている。 Further, the power generation system includes a power conversion control unit 3 having a converter control unit 3A and an inverter control unit 3B, an ineffective power control unit 111, an active power control unit 112, a power generation motor voltage control unit 113, and an inverter voltage command value calculation during normal operation. It is equipped with various control functions such as a speed controller control unit 115, a converter voltage command value calculation unit 116, a power generation motor primary current AC control calculation unit 120, and calculation units A1 and A2.

演算部A1は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧と、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された変流器CTを通じて検出される電流とに基づき、有効電力、無効電力を演算する機能である。 The calculation unit A1 has a voltage detected through an instrument transformer VT installed in an electric circuit between the main transformer 102 on the primary side of the power generation motor 1 and the parallel circuit breaker 104, and the primary side of the power generation motor 1. It is a function to calculate active power and ineffective power based on the current detected through the current transformer CT installed in the electric circuit between the main transformer 102 and the parallel circuit breaker 104.

演算部A2は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧と、励磁用遮断器106の下流に設置された変流器CTを通じて検出される電流とに基づき、有効電力、無効電力を演算する機能である。 The calculation unit A2 includes the voltage detected through the instrumental transformer VT installed in the electric circuit between the main transformer 102 on the primary side of the power generation electric power unit 1 and the parallel circuit breaker 104, and the exciting circuit breaker 106. It is a function to calculate active power and invalid power based on the current detected through the transformer CT installed downstream.

無効電力制御部111は、入力部T1より入力される無効電力指令値と演算部A1により演算される無効電力との差に基づき、発電システムから電力系統に供給する無効電力の制御目標値を演算して出力する機能である。 The reactive power control unit 111 calculates a control target value of the reactive power supplied from the power generation system to the power system based on the difference between the reactive power command value input from the input unit T1 and the reactive power calculated by the calculation unit A1. It is a function to output.

有効電力制御部112は、演算部A1により演算される有効電力、入力部T2より入力される有効電力指令値、入力部T3より入力される落差測定値、および、サーボモータ108からのガイドベーン開度帰還信号に基づき、有効電力、回転速度、およびガイドベーンGの開度の各制御目標値を演算する機能である。 The active power control unit 112 has the active power calculated by the calculation unit A1, the active power command value input from the input unit T2, the head measurement value input from the input unit T3, and the guide vane opening from the servomotor 108. It is a function to calculate each control target value of the active power, the rotation speed, and the opening degree of the guide vane G based on the degree feedback signal.

発電電動機電圧制御部113は、発電電動機1の一次側の並列用遮断器104と発電電動機1との間の電気回路に設置された計器用変成器VTを通じて検出される電圧に基づき、無効電力制御部111からの無効電力の制御目標値または入力部T4より入力される電圧増減指令に従って、発電電動機電圧の制御目標値を演算して出力する機能である。 The power generation motor voltage control unit 113 controls ineffective power based on the voltage detected through the instrument transformer VT installed in the electric circuit between the parallel breaker 104 on the primary side of the power generation motor 1 and the power generation motor 1. It is a function to calculate and output the control target value of the generator motor voltage according to the control target value of the ineffective power from the unit 111 or the voltage increase / decrease command input from the input unit T4.

通常運転時インバータ電圧指令値演算部114は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧に基づき、周波数を演算して出力するとともに、有効電力制御部112により演算される回転速度の制御目標値、角度検出器KAから出力される発電電動機1の角度信号、および発電電動機1の二次側の電気回路に設置された変流器CT5Aにより検出される電流に基づき、発電電動機電圧制御部113からの発電電動機電圧の制御目標値に従って、インバータ制御部3Bおよびインバータ2Bを通じて発電電動機1の二次電流を制御し、発電電動機1の電圧、有効電力および回転速度を制御する機能である。 During normal operation, the inverter voltage command value calculation unit 114 determines the voltage detected through the instrument transformer VT installed in the electric circuit between the main transformer 102 on the primary side of the power generator 1 and the parallel breaker 104. Based on this, the frequency is calculated and output, the control target value of the rotation speed calculated by the active power control unit 112, the angle signal of the power generation electric power unit 1 output from the angle detector KA, and the secondary side of the power generation electric power unit 1. Based on the current detected by the current transformer CT5A installed in the electric circuit of the above, the secondary of the generator 1 is passed through the inverter control unit 3B and the inverter 2B according to the control target value of the generator voltage from the generator voltage control unit 113. It is a function of controlling the current and controlling the voltage, the active power, and the rotation speed of the power generation motor 1.

通常運転時インバータ電圧指令値演算部114は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧から周波数を演算して演算結果を調速機制御部115へ出力する周波数演算機能aと、角度検出器KAから出力される発電電動機1の角度信号を入力する角度信号入力機能bと、その角度信号から角速度を演算する角速度演算機能cと、有効電力制御部112からの制御信号(回転速度・ガイドベーン開度の目標値)と角速度との差分を演算して出力する演算機能dと、その差分に応じたすべり周波数制御信号を生成するすべり周波数制御機能eと、発電電動機1の二次側の電気回路に設置された変流器CT5Aにより検出される電流に基づきリセット制御信号を生成するリセット制御機能f(但し、本実施形態では使用しない。)と、変流器CT5Aにより検出される電流の三相二相変換を行う三相二相変換機能gと、すべり周波数制御信号またはリセット制御信号と三相二相変換後の信号との差分を演算して出力する演算機能hと、発電電動機電圧制御部113からの制御信号(発電電動機電圧の制御目標値)と三相二相変換後の信号との差分を演算して出力する演算機能jと、演算機能hの演算結果に応じた制御信号を出力する制御機能kと、演算機能jの演算結果に応じた制御信号を出力する制御機能mと、制御機能kからの制御信号および制御機能mからの制御信号を入力して二相三相変換を行う二相三相変換機能nと、二相三相変換後の制御信号に応じたインバータ電圧指令値を演算してインバータ制御部3Bへ出力するインバータ電圧指令値演算機能pとを含む。 During normal operation, the inverter voltage command value calculation unit 114 is based on the voltage detected through the instrument transformer VT installed in the electric circuit between the main transformer 102 on the primary side of the generator motor 1 and the parallel breaker 104. The frequency calculation function a that calculates the frequency and outputs the calculation result to the speed controller control unit 115, the angle signal input function b that inputs the angle signal of the power generation motor 1 output from the angle detector KA, and the angle signal thereof. The angular speed calculation function c that calculates the angular speed from, and the calculation function d that calculates and outputs the difference between the control signal (target value of rotation speed / guide vane opening) from the active power control unit 112 and the angular speed, and the difference thereof. The slip frequency control function e that generates the slip frequency control signal according to the above, and the reset control that generates the reset control signal based on the current detected by the current transformer CT5A installed in the electric circuit on the secondary side of the power generation motor 1. A function f (however, not used in this embodiment), a three-phase two-phase conversion function g that performs three-phase two-phase conversion of the current detected by the current transformer CT5A, and a slip frequency control signal or a reset control signal. Calculation function h that calculates and outputs the difference from the signal after three-phase two-phase conversion, the control signal from the power generation motor voltage control unit 113 (control target value of the power generation motor voltage), and the signal after three-phase two-phase conversion. A calculation function j that calculates and outputs the difference between the two, a control function k that outputs a control signal according to the calculation result of the calculation function h, and a control function m that outputs a control signal according to the calculation result of the calculation function j. The two-phase and three-phase conversion function n that inputs the control signal from the control function k and the control signal from the control function m to perform two-phase and three-phase conversion, and the inverter corresponding to the control signal after the two-phase and three-phase conversion. It includes an inverter voltage command value calculation function p that calculates a voltage command value and outputs it to the inverter control unit 3B.

調速機制御部115は、通常運転時インバータ電圧指令値演算部114の周波数演算機能aにより演算される周波数、およびサーボモータ108からのガイドベーン開度帰還信号に基づき、有効電力制御部112からの信号(有効電力の制御目標値およびガイドベーンGの開度の制御目標値)に従って、調速機107を通じてサーボモータ108を制御し、ガイドベーンGの開度を制御する機能である。 The speed governor control unit 115 is operated from the active power control unit 112 based on the frequency calculated by the frequency calculation function a of the inverter voltage command value calculation unit 114 during normal operation and the guide vane opening feedback signal from the servomotor 108. This is a function of controlling the servomotor 108 through the governor 107 to control the opening degree of the guide vane G according to the signal (control target value of active power and control target value of opening degree of the guide vane G).

コンバータ電圧指令値演算部116は、演算部A2により演算される無効電力、直流電圧検出機能2Cからの直流電圧信号、および励磁用変圧器105の下流に設置された変流器CTを通じて検出される電流に基づき、コンバータ電圧指令値を演算してコンバータ制御部3Aに送ることにより、コンバータ2Aの無効電力および直流電圧を制御するする機能である。 The converter voltage command value calculation unit 116 is detected through the invalid power calculated by the calculation unit A2, the DC voltage signal from the DC voltage detection function 2C, and the current transformer CT installed downstream of the exciting transformer 105. It is a function to control the invalid power and the DC voltage of the converter 2A by calculating the converter voltage command value based on the current and sending it to the converter control unit 3A.

電力変換制御部3は、コンバータ制御部3Aおよびインバータ制御部3Bを備えている。コンバータ制御部3Aは、コンバータ電圧指令値演算部116から出力されるコンバータ電圧指令値に従って電力変換器2のコンバータ2Aを制御する機能である。インバータ制御部3Bは、通常運転時インバータ電圧指令値演算部114から出力されるインバータ電圧指令値に従ってインバータ2Bを制御する機能である。 The power conversion control unit 3 includes a converter control unit 3A and an inverter control unit 3B. The converter control unit 3A is a function of controlling the converter 2A of the power converter 2 according to the converter voltage command value output from the converter voltage command value calculation unit 116. The inverter control unit 3B is a function of controlling the inverter 2B according to the inverter voltage command value output from the inverter voltage command value calculation unit 114 during normal operation.

発電電動機一次電流交流化制御演算部120は、短絡検出機能(電気故障検出手段)4、直流成分計測機能6、直流指令値発生機能7、および切替え機能8Bを備えている。 The generator motor primary current AC control calculation unit 120 includes a short-circuit detection function (electrical failure detection means) 4, a DC component measurement function 6, a DC command value generation function 7, and a switching function 8B.

短絡検出機能(電気故障検出手段)4は、電力系統Sに接続される電気回路もしくは発電電動機1の一次側の電気的諸量(例えば電流または電圧など)を計測し、電力系統S及び/又は当該電気回路の電気故障を検出する。 The short circuit detection function (electrical failure detecting means) 4 measures the electric quantities (for example, current or voltage) on the primary side of the electric circuit or the power generation electric motor 1 connected to the power system S, and measures the power system S and / or Detects an electrical failure in the electrical circuit.

直流成分計測機能6は、変流器CT5Aにより計測された二次電流の直流成分または低周波成分(発電電動機1のすべり周波数成分またはすべり周波数に近い周波数成分)を計測する。 The DC component measuring function 6 measures the DC component or the low frequency component (the slip frequency component of the power generation motor 1 or the frequency component close to the slip frequency) of the secondary current measured by the current transformer CT5A.

直流指令値発生機能7は、直流成分計測機能6により計測された直流成分または低周波成分に応じて電力変換制御部3に直流通電指令または低周波通電指令の信号を発生する。 The DC command value generation function 7 generates a DC energization command or a low frequency energization command signal to the power conversion control unit 3 according to the DC component or the low frequency component measured by the DC component measurement function 6.

切替え機能8Bは、直流指令値発生機能7の信号を出力または停止する。この切替え機能8Bは、所定の条件が成立したとき、例えば短絡検出機能(電気故障検出手段)4が発電電動機1の一次側の電気回路の短絡などの故障を検出したときに、直流指令値発生機能7の信号を電力変換制御部3に出力する。 The switching function 8B outputs or stops the signal of the DC command value generation function 7. The switching function 8B generates a DC command value when a predetermined condition is satisfied, for example, when the short circuit detection function (electrical failure detecting means) 4 detects a failure such as a short circuit of the electric circuit on the primary side of the generator motor 1. The signal of the function 7 is output to the power conversion control unit 3.

ここで、直流成分計測機能6の回路構成の一例を図2に示す。図2に示される直流成分計測機能6は、変流器CT5Aにより計測される二次電流の各相の一定期間の移動平均を算出する処理を繰り返す移動平均演算部6Aと、移動平均演算部6Aにより算出される各相の移動平均の情報に極性の情報を含めて出力する極性判別部6Bとを備えている。 Here, an example of the circuit configuration of the DC component measuring function 6 is shown in FIG. The DC component measuring function 6 shown in FIG. 2 has a moving average calculation unit 6A and a moving average calculation unit 6A that repeat a process of calculating a moving average of each phase of the secondary current measured by the current transformer CT5A for a certain period. It is provided with a polarity discriminating unit 6B that includes the polarity information in the moving average information of each phase calculated by the above method and outputs the information.

なお、直流指令値発生機能7の回路構成は、図2の例に限定されるものではない。例えば、移動平均演算部6Aおよび極性判別部6Bの代わりに、変流器CT5Aにより計測された二次電流の直流成分のみまたは低周波成分のみを通過させるローパスフィルタを採用してもよい。 The circuit configuration of the DC command value generation function 7 is not limited to the example of FIG. For example, instead of the moving average calculation unit 6A and the polarity determination unit 6B, a low-pass filter that passes only the DC component or the low frequency component of the secondary current measured by the current transformer CT5A may be adopted.

(作用)
例えば、電力系統で短絡故障や地絡故障が発生すると、発電電動機1の一次電圧が低下し、過電流が流れるとともに、主要変圧器102、発電電動機1の一次および二次に過渡直流成分が重畳する。
(Action)
For example, when a short-circuit failure or a ground fault occurs in the power system, the primary voltage of the power generation motor 1 drops, an overcurrent flows, and the primary and secondary transient DC components of the main transformer 102 and the power generation motor 1 are superimposed. do.

系統故障検出機能DTは、系統故障を検出し、遮断器103に開指令を出す。短絡検出機能4は、発電電動機一次電圧低下を検出し、切替え機能8Bに入指令を出力する。直流成分計測機能6は、発電電動機二次電流に含まれる直流成分を計測し、直流指令値発生機能7に直流成分計測値を出力する。直流指令値発生機能7は、直流成分計測値に応じて発電電動機二次電流の直流化に適した各相のインバータ制御指令を演算し、インバータ制御部3に出力する。インバータ2Bは、インバータ制御部3からの指令に応じて各相のスイッチング素子を入切し、発電電動機二次巻線に直流または低周波電流を流す。 The system failure detection function DT detects a system failure and issues an open command to the circuit breaker 103. The short-circuit detection function 4 detects a decrease in the primary voltage of the generator motor and outputs an input command to the switching function 8B. The DC component measurement function 6 measures the DC component included in the secondary current of the generator motor, and outputs the DC component measurement value to the DC command value generation function 7. The DC command value generation function 7 calculates an inverter control command for each phase suitable for converting the secondary current of the generator motor to DC according to the DC component measurement value, and outputs the inverter control command to the inverter control unit 3. The inverter 2B turns on and off the switching element of each phase in response to a command from the inverter control unit 3, and causes a direct current or a low frequency current to flow through the secondary winding of the generator motor.

(効果)
本実施形態によれば、発電電動機二次電流に含まれる直流成分を計測し、直流成分計測値に応じて、インバータ電圧制御指令値を演算し、発電電動機二次巻線の直流または低周波電流を制御するので、迅速に主要変圧器および発電電動機1の一次電流および二次電流を零クロスさせ、零ミスを防ぐことができる。
(effect)
According to this embodiment, the DC component included in the power generation motor secondary current is measured, the inverter voltage control command value is calculated according to the DC component measurement value, and the DC or low frequency current of the power generation motor secondary winding is calculated. Therefore, the primary current and the secondary current of the main transformer and the generator motor 1 can be quickly crossed to zero, and zero mistakes can be prevented.

<第2の実施形態>
次に、第2の実施形態について説明する。
(構成)
図3は、第2の実施形態に係る発電システムの構成の一例を示す図である。なお、第1の実施形態(図1)と共通する要素には同一の符号を付し、重複する説明を省略する。以下では、第1の実施形態と異なる部分を中心に説明する。
<Second embodiment>
Next, the second embodiment will be described.
(Constitution)
FIG. 3 is a diagram showing an example of the configuration of the power generation system according to the second embodiment. The elements common to the first embodiment (FIG. 1) are designated by the same reference numerals, and duplicate description will be omitted. Hereinafter, the parts different from the first embodiment will be mainly described.

第2の実施形態が第1の実施形態と異なる点は、二次側の電気回路の各相に短絡器9および変流器CT5Bを設け、さらに、発電電動機一次電流交流化制御演算部120の代わりに発電電動機一次電流交流化制御演算部120’を設けた点である。発電電動機一次電流交流化制御演算部120’は、前述の短絡検出機能(電気故障検出手段)4を備える代わりに、短絡器動作/復帰判定機能10を備えている。また、通常運転時インバータ電圧指令値演算部114には、さらに、切替え機能8C、8Dが備えられる。 The second embodiment is different from the first embodiment in that a short circuit 9 and a current transformer CT5B are provided in each phase of the electric circuit on the secondary side, and further, the power generation motor primary current AC control calculation unit 120 is provided. Instead, a power generation motor primary current AC control calculation unit 120'is provided. The generator motor primary current AC control calculation unit 120'is provided with a short circuit operation / recovery determination function 10 instead of the short circuit detection function (electrical failure detection means) 4 described above. Further, the inverter voltage command value calculation unit 114 during normal operation is further provided with switching functions 8C and 8D.

短絡器9は、発電電動機1の二次側に過電圧が発生した際に二次側の電気回路(三相交流回路)の相間を短絡させる機能を有する。 The short-circuiter 9 has a function of short-circuiting the phases of the electric circuit (three-phase AC circuit) on the secondary side when an overvoltage occurs on the secondary side of the generator motor 1.

短絡器動作/復帰判定機能10は、短絡器9が動作していること(短絡し、短絡器9に電流が流れていること)、もしくは、復帰したこと(電気的に開路し、短絡器9に電流が流れていないこと)を検出する機能である。 The short-circuiting device operation / recovery determination function 10 indicates that the short-circuiting device 9 is operating (short-circuited and current is flowing through the short-circuiting device 9) or that the short-circuiting device 9 has returned (electrically opened and the short-circuiting device 9). It is a function to detect that no current is flowing through the circuit.

切替え機能8Bは、短絡動作/復帰判定機能10が短絡器9の短絡動作を検出した後に復帰を検出したときに、直流指令値発生機能7の信号を電力変換制御部3に出力する。 The switching function 8B outputs the signal of the DC command value generation function 7 to the power conversion control unit 3 when the short-circuit operation / return determination function 10 detects the short-circuit operation of the short-circuit device 9 and then detects the return.

(作用)
例えば、電力系統で短絡故障や地絡故障が発生すると、発電電動機1の一次電圧が低下し、過電流が流れるとともに、主要変圧器、発電電動機1の一次および二次に過渡直流成分が重畳する。また、発電電動機一次側の過渡現象、過渡直流成分により、発電電動機二次側に過電圧が発生する。
(Action)
For example, when a short-circuit failure or a ground fault occurs in the power system, the primary voltage of the power generation motor 1 drops, an overcurrent flows, and the primary and secondary transient DC components of the main transformer and the power generation motor 1 are superimposed. .. Further, an overvoltage is generated on the secondary side of the generator motor due to the transient phenomenon and the transient DC component on the primary side of the generator motor.

系統故障検出機能DTは、系統故障を検出し、遮断器103に開指令を出す。短絡器9は、発電電動機二次側に過電圧が発生すると、二次側の電気回路を短絡し、発電電動機1および電力変換器2を過電圧から保護する。短絡器9が動作中は、発電電動機二次電流は、短絡器9に流れるため、発電電動機二次電流を制御することができない。そのため、短絡器9が動作した後、インバータ制御部3Bは、通常運転時インバータ電圧指令値演算部114の制御指令値に従い、短絡器9の電流をインバータ2Bに移行させ、短絡器9の電流をゼロに絞り、短絡器9を復帰させる。短絡器9が復帰すると、インバータ2Bにより、発電電動機二次電流の制御が可能になる。 The system failure detection function DT detects a system failure and issues an open command to the circuit breaker 103. When an overvoltage is generated on the secondary side of the generator motor, the short-circuiter 9 short-circuits the electric circuit on the secondary side to protect the generator motor 1 and the power converter 2 from the overvoltage. While the short-circuit device 9 is in operation, the secondary current of the generator motor flows through the short-circuit device 9, so that the secondary current of the generator motor cannot be controlled. Therefore, after the short-circuiter 9 operates, the inverter control unit 3B shifts the current of the short-circuiter 9 to the inverter 2B according to the control command value of the inverter voltage command value calculation unit 114 during normal operation, and transfers the current of the short-circuiter 9 to the inverter 2. It is squeezed to zero and the short circuiter 9 is restored. When the short-circuiter 9 is restored, the inverter 2B can control the secondary current of the generator motor.

短絡器動作/復帰判定機能10は、直流電圧検出機能2Cからの直流電圧信号を入力し、短絡器9の動作を判定する。また、変流器CT5Bからの電流を計測し、短絡器9の復帰を判定する。短絡器動作前および短絡器動作中は、切替え機能8Aが「入」、切替え機能8Bが「切」の状態であり、また、切替え機能8Cのすべり周波数制御信号側が「入」、リセット制御信号側が「切」、切替え機能8Dが「入」の状態である。短絡器動作/復帰判定機能10は、短絡器が動作した後に復帰したと判定すると、切替え機能8Aおよび切替え機能8Bに切替え指令を出し、切替え機能8Aを「切」、切替え機能8Bを「入」の状態にし、また、切替え機能8Cのリセット制御信号側を「入」、すべり周波数制御信号側を「切」、切替え機能8Dを「切」の状態にする。 The short-circuit device operation / recovery determination function 10 inputs a DC voltage signal from the DC voltage detection function 2C and determines the operation of the short-circuit device 9. Further, the current from the current transformer CT5B is measured, and the return of the short circuit device 9 is determined. Before the short-circuit device operates and during the short-circuit device operation, the switching function 8A is "on" and the switching function 8B is "off", and the slip frequency control signal side of the switching function 8C is "on" and the reset control signal side is. It is in the "off" state and the switching function 8D is in the "on" state. When the short-circuit device operation / return determination function 10 determines that the short-circuit device has returned after operating, it issues a switching command to the switching function 8A and the switching function 8B, turns the switching function 8A "off", and switches the switching function 8B "on". The reset control signal side of the switching function 8C is set to "ON", the slip frequency control signal side is set to "Off", and the switching function 8D is set to "Off".

直流成分計測機能6は、発電電動機二次電流に含まれる直流成分を計測し、直流指令値発生機能7に直流成分計測値を出力する。直流指令値発生機能7は、直流成分計測値に応じて発電電動機二次電流の直流化に適したインバータ制御指令を演算し、インバータ制御部3に出力する。インバータ2Bは、インバータ制御部3からの指令値に応じて各相のスイッチング素子を入切し、発電電動機二次巻線に直流または低周波電流を流す。 The DC component measurement function 6 measures the DC component included in the secondary current of the generator motor, and outputs the DC component measurement value to the DC command value generation function 7. The DC command value generation function 7 calculates an inverter control command suitable for converting the secondary current of the generator motor to DC according to the DC component measurement value, and outputs the inverter control command to the inverter control unit 3. The inverter 2B turns on and off the switching element of each phase according to the command value from the inverter control unit 3, and causes a direct current or a low frequency current to flow through the secondary winding of the generator motor.

(効果)
本実施形態によれば、発電電動機二次電流に含まれる直流成分を計測し、直流成分計測値に応じて、短絡器9が復帰した直後に、インバータ制御指令を演算し、発電電動機二次巻線の直流または低周波電流を制御するので、迅速に主要変圧器および発電電動機1の一次電流および二次電流を零クロスさせ、零ミスを防ぐことができる。
(effect)
According to the present embodiment, the DC component included in the secondary current of the power generation motor is measured, and the inverter control command is calculated immediately after the short circuit controller 9 is restored according to the measured value of the DC component, and the secondary winding of the power generation motor is performed. Since the direct current or low frequency current of the line is controlled, the primary current and the secondary current of the main transformer and the generator motor 1 can be quickly crossed to zero, and zero mistakes can be prevented.

以上詳述したように、各実施形態によれば、二重給電交流機の一次電流を迅速にゼロクロスさせることが可能となる。 As described in detail above, according to each embodiment, it is possible to quickly zero-cross the primary current of the dual power supply AC machine.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

上述の例では、検出量、計測量、制御量が電流または電圧の例について説明したが、電流の代わりに電圧、磁束等の電気的諸量を用いても良いし、電圧の代わりに電流、磁束等の電気的諸量を用いても良い。 In the above example, an example in which the detected amount, the measured amount, and the controlled amount are current or voltage has been described, but electrical quantities such as voltage and magnetic flux may be used instead of current, and current instead of voltage. Various electrical quantities such as magnetic flux may be used.

1…二重給電交流機、2…電力変換器、2A…コンバータ、2B…インバータ、3…電力変換制御部、2C…直流電圧検出機能、3A…コンバータ制御部、3B…インバータ制御部、4…並列用遮断器、8A、8B、8C、8D…切替え機能、101…ポンプ水車、102…主要変圧器、103…系統側遮断器、105…励磁用変圧器、106…励磁用遮断器、107…調速機、108…サーボモータ、111…無効電力制御部、112…有効電力制御部、113…発電電動機電圧制御部、114…通常運転時インバータ電圧指令値演算部、115…調速機制御部、116…コンバータ電圧指令値演算部、120,120’…発電電動機一次電流交流化制御演算部、KA…角度検出器、PT…計器用変成器、CT、CT5A、CT5B…変流器、DT…系統故障検出機能、G…ガイドベーン。 1 ... Double power supply AC machine, 2 ... Power converter, 2A ... Converter, 2B ... Inverter, 3 ... Power conversion control unit, 2C ... DC voltage detection function, 3A ... Converter control unit, 3B ... Inverter control unit, 4 ... Parallel breaker, 8A, 8B, 8C, 8D ... Switching function, 101 ... Pump water wheel, 102 ... Main transformer, 103 ... System side breaker, 105 ... Excitation transformer, 106 ... Excitation breaker, 107 ... Speed controller, 108 ... Servo motor, 111 ... Invalid power control unit, 112 ... Active power control unit, 113 ... Power generator voltage control unit, 114 ... Inverter voltage command value calculation unit during normal operation, 115 ... Speed controller control unit , 116 ... Converter voltage command value calculation unit, 120, 120'... Generation motor primary current AC control calculation unit, KA ... Angle detector, PT ... Instrument transformer, CT, CT5A, CT5B ... Transformer, DT ... System failure detection function, G ... Guide vane.

Claims (6)

一次巻線が開閉手段を介して電気回路に接続される二重給電交流機と、前記二重給電交流機の二次巻線に可変周波数の電流を供給する電力変換手段と、前記電力変換手段の電圧もしくは電流を制御する電力変換制御手段と、を有する発電システムに適用される二重給電交流機の制御装置であって、
前記二重給電交流機の二次側の二次電流を計測する二次電流計測手段と、
前記二重給電交流機の一次側に過電流が流れて前記二重給電交流機の一次側および二次側に過渡直流成分が重畳した場合に前記二次電流計測手段により計測された二次電流に重畳される直流成分または低周波成分を計測する直流成分計測手段と、
前記直流成分計測手段により計測された直流成分または低周波成分に応じて前記電力変換制御手段に対する直流通電指令または低周波通電指令の信号を発生する直流指令値発生手段と、
前記直流指令値発生手段が発生する直流通電指令または低周波通電指令の信号を出力または停止する切替え手段と
を備え、
前記切替え手段は、前記直流成分計測手段が前記二次電流に重畳される直流成分または低周波成分を計測した場合に前記直流指令値発生手段が発生する直流通電指令または低周波通電指令の信号を、前記二重給電交流機の一次側の電気回路の故障が検出されたとき又は前記二重給電交流機の二次側の電気回路の各相を短絡させる短絡器の短絡動作後の復帰が検出されたときに、前記電力変換制御手段に出力し、
前記電力変換制御手段は、出力された前記直流通電指令または低周波通電指令の信号に応じた指令を前記電力変換手段に出力し、前記電力変換手段は、前記電力変換制御手段からの指令に応じた直流または低周波電流を前記二重給電交流機の二次巻線に流すことを特徴とする二重給電交流機の制御装置。
A double power supply AC machine in which the primary winding is connected to an electric circuit via an opening / closing means, a power conversion means for supplying a variable frequency current to the secondary winding of the double power supply AC machine, and the power conversion means. It is a control device of a double power supply AC machine applied to a power generation system having a power conversion control means for controlling the voltage or current of the electric current.
A secondary current measuring means for measuring the secondary current on the secondary side of the dual power supply alternator, and
The secondary current measured by the secondary current measuring means when an overcurrent flows through the primary side of the double power supply AC and a transient DC component is superimposed on the primary side and the secondary side of the double power supply AC. A DC component measuring means for measuring a DC component or a low frequency component superimposed on the
A DC command value generating means that generates a DC energization command or a low frequency energization command signal to the power conversion control means according to the DC component or the low frequency component measured by the DC component measuring means.
It is provided with a switching means for outputting or stopping a signal of a DC energization command or a low frequency energization command generated by the DC command value generating means.
The switching means outputs a DC energization command or low frequency energization command signal generated by the DC command value generating means when the DC component measuring means measures a DC component or a low frequency component superimposed on the secondary current. , When a failure of the electric circuit on the primary side of the double power supply AC machine is detected, or after a short circuit operation of the short circuit that short-circuits each phase of the electric circuit on the secondary side of the double power supply AC machine, recovery is detected. When it is done, it is output to the power conversion control means.
The power conversion control means outputs a command corresponding to the output DC energization command or low frequency energization command signal to the power conversion means, and the power conversion means responds to a command from the power conversion control means. A control device for a double-powered AC machine, characterized in that a direct current or a low-frequency current is passed through the secondary winding of the double-powered AC machine.
前記二重給電交流機の二次側に過電圧が発生した際に二次側の電気回路の各相を短絡する短絡手段と、
前記短絡手段が動作もしくは復帰したことを検出する短絡動作/復帰判定手段と
を更に備え、
前記切替え手段は、前記短絡動作/復帰判定手段が前記短絡手段の短絡動作を検出した後に復帰を検出したときに、前記直流指令値発生手段が発生する直流通電指令または低周波通電指令の信号を前記電力変換制御手段に出力することを特徴とする請求項1に記載の二重給電交流機の制御装置。
A short-circuiting means for short-circuiting each phase of the electric circuit on the secondary side when an overvoltage occurs on the secondary side of the dual power supply AC device.
Further provided with a short-circuit operation / recovery determination means for detecting that the short-circuit means has been operated or restored.
The switching means outputs a DC energization command or low frequency energization command signal generated by the DC command value generating means when the short-circuit operation / return determination means detects a short-circuit operation of the short-circuit means and then detects a return. The control device for a dual power supply AC device according to claim 1, wherein the power is output to the power conversion control means.
前記直流成分計測手段は、前記二次電流計測手段により計測される二次電流の各相の一定期間の移動平均を算出する処理を繰り返す移動平均演算手段を含むことを特徴とする請求項1または2に記載の二重給電交流機の制御装置。 The DC component measuring means is characterized by comprising a moving average calculation means that repeats a process of calculating a moving average of each phase of the secondary current measured by the secondary current measuring means for a certain period of time. 2. The control device for the dual power supply AC device according to 2. 前記直流成分計測手段は、前記移動平均演算手段により算出される各相の移動平均の情報に極性の情報を含めて出力する極性判別手段を含むことを特徴とする請求項3に記載の二重給電交流機の制御装置。 The double according to claim 3, wherein the DC component measuring means includes a polarity discriminating means for outputting the moving average information of each phase calculated by the moving average calculating means including the polarity information. Control device for power supply AC. 前記直流成分計測手段は、前記二次電流計測手段により計測された二次電流の直流成分のみまたは低周波成分のみを通過させるローパスフィルタを含むことを特徴とする請求項1または2に記載の二重給電交流機の制御装置。 2. The second aspect of claim 1 or 2, wherein the DC component measuring means includes a low-pass filter that allows only the DC component or the low frequency component of the secondary current measured by the secondary current measuring means to pass through. Control device for heavy-duty alternator. 一次巻線が開閉手段を介して電気回路に接続される二重給電交流機と、前記二重給電交流機の二次巻線に可変周波数の電流を供給する電力変換手段と、前記電力変換手段の電圧もしくは電流を制御する電力変換制御手段と、を有する発電システムに適用される二重給電交流機の制御方法であって、
二次電流計測手段により、前記二重給電交流機の二次側の二次電流を計測し、
直流成分計測手段により、前記二重給電交流機の一次側に過電流が流れて前記二重給電交流機の一次側および二次側に過渡直流成分が重畳した場合に前記二次電流計測手段により計測された二次電流に重畳される直流成分または低周波成分を計測し、
直流指令値発生手段により、前記直流成分計測手段により計測された直流成分または低周波成分に応じて前記電力変換制御手段に直流通電指令または低周波通電指令の信号を発生し、
切替え手段により、前記直流成分計測手段が前記二次電流に重畳される直流成分または低周波成分を計測した場合に前記直流指令値発生手段が発生する直流通電指令または低周波通電指令の信号を、前記二重給電交流機の一次側の電気回路の故障が検出されたとき又は前記二重給電交流機の二次側の電気回路の各相を短絡させる短絡器の短絡動作後の復帰が検出されたときに、前記電力変換制御手段に出力し、
前記電力変換制御手段により、出力された前記直流通電指令または低周波通電指令の信号に応じた指令を前記電力変換手段に出力し、前記電力変換手段により、前記電力変換制御手段からの指令に応じた直流または低周波電流を前記二重給電交流機の二次巻線に流す
ことを特徴とする二重給電交流機の制御方法。
A double power supply AC machine in which the primary winding is connected to an electric circuit via an opening / closing means, a power conversion means for supplying a variable frequency current to the secondary winding of the double power supply AC machine, and the power conversion means. It is a control method of a double power supply AC machine applied to a power generation system having a power conversion control means for controlling the voltage or current of the power supply.
The secondary current on the secondary side of the dual power supply AC machine is measured by the secondary current measuring means.
When an overcurrent flows to the primary side of the double power supply AC by the DC component measuring means and the transient DC component is superimposed on the primary side and the secondary side of the double power supply AC, the secondary current measuring means Measure the DC component or low frequency component superimposed on the measured secondary current,
The DC command value generating means generates a DC energization command or a low frequency energization command signal to the power conversion control means according to the DC component or the low frequency component measured by the DC component measuring means.
When the DC component measuring means measures the DC component or the low frequency component superimposed on the secondary current by the switching means, the DC command value generating means generates a DC energization command or a low frequency energization command signal. When a failure of the electric circuit on the primary side of the double power supply AC machine is detected, or after a short circuit operation of the short circuit that short-circuits each phase of the electric circuit on the secondary side of the double power supply AC machine, recovery is detected. At that time, it is output to the power conversion control means.
The power conversion control means outputs a command corresponding to the output DC energization command or low frequency energization command signal to the power conversion means, and the power conversion means responds to a command from the power conversion control means. Direct current or low frequency current is passed through the secondary winding of the dual power supply AC machine.
A control method for a dual power supply AC machine, which is characterized by this.
JP2017115164A 2016-09-15 2017-06-12 Control device and control method for dual power supply alternator Active JP6991747B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017215953.7A DE102017215953B4 (en) 2016-09-15 2017-09-11 CONTROL DEVICE AND CONTROL METHOD FOR DUAL FEED ALTERNATOR
CN201710831571.3A CN107834921B (en) 2016-09-15 2017-09-15 Control device and control method for double-feed AC machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016180822 2016-09-15
JP2016180822 2016-09-15

Publications (2)

Publication Number Publication Date
JP2018050446A JP2018050446A (en) 2018-03-29
JP6991747B2 true JP6991747B2 (en) 2022-01-13

Family

ID=61767911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115164A Active JP6991747B2 (en) 2016-09-15 2017-06-12 Control device and control method for dual power supply alternator

Country Status (1)

Country Link
JP (1) JP6991747B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725446B2 (en) 2017-03-23 2020-07-15 株式会社東芝 Wound-type induction machine control system and control method
CN109738676B (en) * 2019-03-06 2023-11-24 湖南省湘电试验研究院有限公司 Frequency signal wiring switching device and application method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079383A (en) 2006-09-20 2008-04-03 Toshiba Mitsubishi-Electric Industrial System Corp Controller for ac excitation generator motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100805B2 (en) * 1993-08-24 2000-10-23 東京電力株式会社 Overvoltage protection device for variable speed pumped storage power generation system
JP3462347B2 (en) * 1996-07-09 2003-11-05 株式会社東芝 Control device for variable speed generator motor
JPH11206196A (en) * 1998-01-20 1999-07-30 Mitsubishi Electric Corp Secondary exciting equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079383A (en) 2006-09-20 2008-04-03 Toshiba Mitsubishi-Electric Industrial System Corp Controller for ac excitation generator motor

Also Published As

Publication number Publication date
JP2018050446A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
EP2845282B1 (en) System and method for ground fault detection and protection in adjustable speed drives
JP5826292B2 (en) Motor control device and electric power steering device
KR101818916B1 (en) Fault diagnosis apparatus, system and method of permanent magnet motor
US8766576B2 (en) Fault detection method for electric motors with one or several star points
WO2015136976A1 (en) Electric motor control device and control method
CA2940499C (en) System and method for starting a variable frequency drive with reduced arc flash risk
JP6480316B2 (en) Motor control device
CN107800333B (en) Motor control device
JP2009142115A (en) Motor controller and method for detecting failure of motor controller
WO2017122309A1 (en) Electric motor control device
JP6991747B2 (en) Control device and control method for dual power supply alternator
KR101916046B1 (en) Voltage sensor default detecting method
Maamouri et al. A sliding mode observer for inverter open-switch fault diagnostic in sensorless induction motor drive
US20120229144A1 (en) Electric rotating machine
JP2017099103A (en) Rotary rectifier fault detector and rotary rectifier fault detection method
JP4244025B2 (en) Distributed power supply device and method for detecting DC ground fault thereof
CN107834921B (en) Control device and control method for double-feed AC machine
Thankachen et al. Hysteresis controller based fault current interruption using DVR
US9488698B2 (en) System and method for detecting diode failures
JP2006345683A (en) Current detector
US9742340B2 (en) Apparatus for controlling inverter
JP2013059147A (en) Power conversion device
RU2449445C1 (en) Driving controller for alternating current motor
JP2019115179A (en) Instantaneous voltage drop compensation device and instantaneous voltage drop compensation system
JP3686273B2 (en) AC power system equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211015

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6991747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150