JP2018050446A - Device and method for controlling doubly-fed alternator - Google Patents

Device and method for controlling doubly-fed alternator Download PDF

Info

Publication number
JP2018050446A
JP2018050446A JP2017115164A JP2017115164A JP2018050446A JP 2018050446 A JP2018050446 A JP 2018050446A JP 2017115164 A JP2017115164 A JP 2017115164A JP 2017115164 A JP2017115164 A JP 2017115164A JP 2018050446 A JP2018050446 A JP 2018050446A
Authority
JP
Japan
Prior art keywords
component
current
machine
double
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017115164A
Other languages
Japanese (ja)
Other versions
JP6991747B2 (en
Inventor
勇太朗 北森
Yutaro Kitamori
勇太朗 北森
楠 清志
Kiyoshi Kusunoki
清志 楠
隆太 長谷川
Ryuta Hasegawa
隆太 長谷川
隆久 影山
Takahisa Kageyama
隆久 影山
崇 藤田
Takashi Fujita
崇 藤田
照之 石月
Teruyuki Ishizuki
照之 石月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to DE102017215953.7A priority Critical patent/DE102017215953B4/en
Priority to CN201710831571.3A priority patent/CN107834921B/en
Publication of JP2018050446A publication Critical patent/JP2018050446A/en
Application granted granted Critical
Publication of JP6991747B2 publication Critical patent/JP6991747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the prompt zero cross of a primary current in a doubly-fed alternator.SOLUTION: A control device in the doubly-fed alternator includes: secondary current measurement means CT5A which measures a secondary side current of a doubly-fed alternator 1; DC component measurement means 6 which measures the DC component or the low-frequency component of the secondary current measured by the secondary current measurement means CT5A; DC command value generation means 7 which generates a DC conduction command or a low frequency conduction command to power conversion control means 3, according to the DC component or the low frequency component measured by the DC component measurement means 6; and switchover means 8 which outputs or suspends the signal of the DC command value generation means 7. When a predetermined condition is satisfied, the switchover means 8 outputs the signal of the DC command value generation means 7 to the power conversion control means 3.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、二重給電交流機の制御装置および制御方法に関する。   Embodiments described herein relate generally to a control device and a control method for a double-feed AC machine.

一次側が主要変圧器を介して電力系統に接続され、二次側が周波数変換器(交流励磁装置)に接続された二重給電交流機において、電力系統もしくは電気回路で、短絡や地絡等の電気故障が発生した場合、二重給電交流機の一次側の電圧低下、直流成分重畳、過電流等の過渡現象が発生し、二次側に過電圧が生じる。このとき、二重給電交流機の一次側では、直流成分の重畳により、遮断器開放時に一次電流がゼロクロスしない零ミスと呼ばれる現象が起こることがある。零ミスの問題を解決するための技術はいくつか提案されている。   In a double-feed AC machine in which the primary side is connected to the power system via the main transformer and the secondary side is connected to the frequency converter (AC exciter), the power system or electrical circuit can When a failure occurs, a transient phenomenon such as a voltage drop on the primary side of the double-feed AC machine, a DC component superposition, an overcurrent, etc. occurs, and an overvoltage occurs on the secondary side. At this time, on the primary side of the double-feed AC machine, a phenomenon called zero miss where the primary current does not cross zero when the circuit breaker is opened may occur due to superposition of the DC component. Several techniques for solving the zero-miss problem have been proposed.

特許第2816020号公報Japanese Patent No. 2816020

零ミスが生じると、遮断器が電流を遮断することができず、遮断器が損傷するばかりか、電気故障の除去ができず、電力系統の運転を継続できなくなったり、主要変圧器や二重給電交流機等を損傷したりする可能性がある。そのため、零ミスが生じないように、迅速に二重給電交流機の一次電流をゼロクロスさせることが求められる。   If a zero error occurs, the circuit breaker cannot cut off the current, the circuit breaker will be damaged, electrical faults will not be removed, power system operation will not be continued, main transformers and double There is a possibility of damage to the feeding AC machine. Therefore, it is required to quickly zero-cross the primary current of the double-feed AC machine so that no zero error occurs.

零ミスの問題を解決するための技術はいくつか提案されているが、電気故障発生後、迅速に二重給電交流機の一次電流をゼロクロスさせる有効な手法は提案されていない。   Several techniques have been proposed to solve the zero-miss problem, but no effective method for quickly zero-crossing the primary current of a double-fed AC machine after an electrical failure has been proposed.

本発明は上記実情に鑑みてなされたものであり、二重給電交流機の一次電流を迅速にゼロクロスさせることを可能にする二重給電交流機の制御装置および制御方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device and a control method for a double-feed AC machine that allows a primary current of a double-feed AC machine to be zero-crossed quickly. To do.

実施形態によれば、一次巻線が開閉手段を介して電気回路に接続される二重給電交流機と、二重給電交流機の二次巻線に可変周波数の電流を供給する電力変換手段と、電力変換手段の電圧もしくは電流を制御する電力変換制御手段と、を有する発電システムに適用される二重給電交流機の制御装置が提供される。二重給電交流機の制御装置は、前記二重給電交流機の二次側の電流を計測する二次電流計測手段と、前記二次電流計測手段により計測された二次電流の直流成分または低周波成分を計測する直流成分計測手段と、前記直流成分計測手段により計測された直流成分または低周波成分に応じて前記電力変換制御手段に直流通電指令または低周波通電指令の信号を発生する直流指令値発生手段と、前記直流指令値発生手段の信号を出力または停止する切替え手段とを備え、前記切替え手段は、所定の条件が成立したときに前記直流指令値発生手段の信号を前記電力変換制御手段に出力する。   According to the embodiment, the double-feed AC machine in which the primary winding is connected to the electric circuit through the switching means, and the power conversion means for supplying a variable frequency current to the secondary winding of the double-feed AC machine And a power conversion control means for controlling the voltage or current of the power conversion means, and a control device for a double-feed AC machine applied to a power generation system. The control device for the double-feed AC machine includes a secondary current measurement unit that measures a current on the secondary side of the double-feed AC machine, and a DC component or a low component of the secondary current measured by the secondary current measurement unit. DC component measuring means for measuring a frequency component, and a DC command for generating a DC energization command or a low frequency energization command signal to the power conversion control means according to the DC component or the low frequency component measured by the DC component measuring means Value generating means and switching means for outputting or stopping the signal of the DC command value generating means, and the switching means converts the signal of the DC command value generating means to the power conversion control when a predetermined condition is satisfied. Output to the means.

本発明によれば、二重給電交流機の一次電流を迅速にゼロクロスさせることが可能となる。   According to the present invention, it is possible to quickly zero-cross the primary current of a double-feed AC machine.

第1の実施形態に係る発電システムの構成の一例を示す図。The figure which shows an example of a structure of the electric power generation system which concerns on 1st Embodiment. 図1中の直流成分計測機能6の回路構成の一例を示す図。The figure which shows an example of the circuit structure of the DC component measurement function 6 in FIG. 第2の実施形態に係る発電システムの構成の一例を示す図。The figure which shows an example of a structure of the electric power generation system which concerns on 2nd Embodiment.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

<第1の実施形態>
最初に、第1の実施形態について説明する。
(構成)
図1は、第1の実施形態に係る発電システムの構成の一例を示す図である。
<First Embodiment>
First, the first embodiment will be described.
(Constitution)
FIG. 1 is a diagram illustrating an example of a configuration of a power generation system according to the first embodiment.

図1に示す発電システムは、例えば揚水発電所に設置される可変速揚水発電システムであり、電力系統Sに電気的に接続される。   The power generation system shown in FIG. 1 is a variable speed pumped storage power generation system installed in a pumped storage power plant, for example, and is electrically connected to the power system S.

発電システムは、基本的な構成要素として、例えばポンプ水車101に連結される発電電動機である二重給電交流機1(以下、「発電電動機1」と称す。)、コンバータ2Aおよびインバータ2Bを有する電力変換器2、主要変圧器102、系統側遮断器103、並列用遮断器104、励磁用変圧器105、励磁用遮断器106、調速機107、サーボモータ108、角度検出器KA、計器用変成器VT、変流器CT、CT5A、系統故障検出機能DTなどの機器類を備えている。   The power generation system has, as basic components, for example, a double-feed AC machine 1 (hereinafter referred to as “generator motor 1”) that is a generator motor connected to the pump turbine 101, an electric power having a converter 2A and an inverter 2B. Converter 2, Main transformer 102, System side circuit breaker 103, Parallel circuit breaker 104, Excitation transformer 105, Excitation circuit breaker 106, Speed governor 107, Servo motor 108, Angle detector KA, Instrument transformation Equipment such as a transformer VT, current transformers CT, CT5A, and a system failure detection function DT.

また、発電システムは、コンバータ制御部3Aおよびインバータ制御部3Bを有する電力変換制御部3、無効電力制御部111、有効電力制御部112、発電電動機電圧制御部113、通常運転時インバータ電圧指令値演算部114、調速機制御部115、コンバータ電圧指令値演算部116、発電電動機一次電流交流化制御演算部120、演算部A1、A2などの各種の制御機能を備えている。   In addition, the power generation system includes a power conversion control unit 3 having a converter control unit 3A and an inverter control unit 3B, a reactive power control unit 111, an active power control unit 112, a generator motor voltage control unit 113, and a normal operation inverter voltage command value calculation. Unit 114, governor control unit 115, converter voltage command value calculation unit 116, generator motor primary current AC conversion control calculation unit 120, calculation units A 1 and A 2, and the like.

演算部A1は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧と、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された変流器CTを通じて検出される電流とに基づき、有効電力、無効電力を演算する機能である。   The arithmetic unit A1 is configured to detect the voltage detected through the instrument transformer VT installed in the electric circuit between the primary transformer 102 on the primary side of the generator motor 1 and the parallel circuit breaker 104, and the primary side of the generator motor 1. This is a function of calculating active power and reactive power based on the current detected through the current transformer CT installed in the electric circuit between the main transformer 102 and the parallel circuit breaker 104.

演算部A2は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧と、励磁用遮断器106の下流に設置された変流器CTを通じて検出される電流とに基づき、有効電力、無効電力を演算する機能である。   The calculation unit A2 is configured to detect the voltage detected through the instrument transformer VT installed in the electric circuit between the primary transformer 102 on the primary side of the generator motor 1 and the parallel circuit breaker 104, and the excitation circuit breaker 106. This function calculates active power and reactive power based on current detected through a current transformer CT installed downstream.

無効電力制御部111は、入力部T1より入力される無効電力指令値と演算部A1により演算される無効電力との差に基づき、発電システムから電力系統に供給する無効電力の制御目標値を演算して出力する機能である。   The reactive power control unit 111 calculates a control target value of reactive power supplied from the power generation system to the power system based on the difference between the reactive power command value input from the input unit T1 and the reactive power calculated by the calculation unit A1. It is a function to output.

有効電力制御部112は、演算部A1により演算される有効電力、入力部T2より入力される有効電力指令値、入力部T3より入力される落差測定値、および、サーボモータ108からのガイドベーン開度帰還信号に基づき、有効電力、回転速度、およびガイドベーンGの開度の各制御目標値を演算する機能である。   The active power control unit 112 includes an active power calculated by the calculation unit A1, an active power command value input from the input unit T2, a drop measurement value input from the input unit T3, and guide vane opening from the servo motor 108. This is a function for calculating each control target value of active power, rotational speed, and opening degree of the guide vane G based on the degree feedback signal.

発電電動機電圧制御部113は、発電電動機1の一次側の並列用遮断器104と発電電動機1との間の電気回路に設置された計器用変成器VTを通じて検出される電圧に基づき、無効電力制御部111からの無効電力の制御目標値または入力部T4より入力される電圧増減指令に従って、発電電動機電圧の制御目標値を演算して出力する機能である。   The generator motor voltage control unit 113 controls the reactive power based on the voltage detected through the instrument transformer VT installed in the electric circuit between the parallel breaker 104 on the primary side of the generator motor 1 and the generator motor 1. This function calculates and outputs the control target value of the generator motor voltage in accordance with the reactive power control target value from the unit 111 or the voltage increase / decrease command input from the input unit T4.

通常運転時インバータ電圧指令値演算部114は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧に基づき、周波数を演算して出力するとともに、有効電力制御部112により演算される回転速度の制御目標値、角度検出器KAから出力される発電電動機1の角度信号、および発電電動機1の二次側の電気回路に設置された変流器CT5Aにより検出される電流に基づき、発電電動機電圧制御部113からの発電電動機電圧の制御目標値に従って、インバータ制御部3Bおよびインバータ2Bを通じて発電電動機1の二次電流を制御し、発電電動機1の電圧、有効電力および回転速度を制御する機能である。   During normal operation, the inverter voltage command value calculation unit 114 converts the voltage detected through the instrument transformer VT installed in the electric circuit between the primary transformer 102 on the primary side of the generator motor 1 and the parallel circuit breaker 104. Based on the calculated frequency and output, the control target value of the rotational speed calculated by the active power control unit 112, the angle signal of the generator motor 1 output from the angle detector KA, and the secondary side of the generator motor 1 In accordance with the control target value of the generator motor voltage from the generator motor voltage control unit 113 based on the current detected by the current transformer CT5A installed in the electric circuit of the secondary of the generator motor 1 through the inverter control unit 3B and the inverter 2B This function controls the current and controls the voltage, active power, and rotational speed of the generator motor 1.

通常運転時インバータ電圧指令値演算部114は、発電電動機1の一次側の主要変圧器102と並列用遮断器104との間の電気回路に設置された計器用変成器VTを通じて検出される電圧から周波数を演算して演算結果を調速機制御部115へ出力する周波数演算機能aと、角度検出器KAから出力される発電電動機1の角度信号を入力する角度信号入力機能bと、その角度信号から角速度を演算する角速度演算機能cと、有効電力制御部112からの制御信号(回転速度・ガイドベーン開度の目標値)と角速度との差分を演算して出力する演算機能dと、その差分に応じたすべり周波数制御信号を生成するすべり周波数制御機能eと、発電電動機1の二次側の電気回路に設置された変流器CT5Aにより検出される電流に基づきリセット制御信号を生成するリセット制御機能f(但し、本実施形態では使用しない。)と、変流器CT5Aにより検出される電流の三相二相変換を行う三相二相変換機能gと、すべり周波数制御信号またはリセット制御信号と三相二相変換後の信号との差分を演算して出力する演算機能hと、発電電動機電圧制御部113からの制御信号(発電電動機電圧の制御目標値)と三相二相変換後の信号との差分を演算して出力する演算機能jと、演算機能hの演算結果に応じた制御信号を出力する制御機能kと、演算機能jの演算結果に応じた制御信号を出力する制御機能mと、制御機能kからの制御信号および制御機能mからの制御信号を入力して二相三相変換を行う二相三相変換機能nと、二相三相変換後の制御信号に応じたインバータ電圧指令値を演算してインバータ制御部3Bへ出力するインバータ電圧指令値演算機能pとを含む。   The inverter voltage command value calculation unit 114 during normal operation is based on the voltage detected through the instrument transformer VT installed in the electric circuit between the primary transformer 102 on the primary side of the generator motor 1 and the parallel circuit breaker 104. A frequency calculation function a that calculates a frequency and outputs a calculation result to the governor control unit 115, an angle signal input function b that inputs an angle signal of the generator motor 1 output from the angle detector KA, and the angle signal An angular velocity calculation function c for calculating the angular velocity from the calculation function d, a calculation function d for calculating and outputting the difference between the control signal from the active power control unit 112 (the target value of the rotation speed / guide vane opening) and the angular velocity, and the difference Reset based on a current detected by a slip frequency control function e for generating a slip frequency control signal corresponding to the current and a current transformer CT5A installed in an electric circuit on the secondary side of the generator motor 1 A reset control function f for generating a control signal (but not used in the present embodiment), a three-phase two-phase conversion function g for performing three-phase to two-phase conversion of the current detected by the current transformer CT5A, and a slip frequency A calculation function h for calculating and outputting the difference between the control signal or the reset control signal and the signal after the three-phase to two-phase conversion, a control signal from the generator motor voltage control unit 113 (control target value of the generator motor voltage) and three An arithmetic function j that calculates and outputs a difference from the signal after the phase-to-two-phase conversion, a control function k that outputs a control signal according to the arithmetic result of the arithmetic function h, and a control according to the arithmetic result of the arithmetic function j A control function m that outputs a signal, a two-phase three-phase conversion function n that performs a two-phase three-phase conversion by inputting a control signal from the control function k and a control signal from the control function m, and after the two-phase three-phase conversion The inverter voltage command value according to the control signal Calculated to an inverter voltage command value computing function p to be output to inverter control unit 3B.

調速機制御部115は、通常運転時インバータ電圧指令値演算部114の周波数演算機能aにより演算される周波数、およびサーボモータ108からのガイドベーン開度帰還信号に基づき、有効電力制御部112からの信号(有効電力の制御目標値およびガイドベーンGの開度の制御目標値)に従って、調速機107を通じてサーボモータ108を制御し、ガイドベーンGの開度を制御する機能である。   The speed governor control unit 115 is controlled by the active power control unit 112 based on the frequency calculated by the frequency calculation function a of the inverter voltage command value calculation unit 114 during normal operation and the guide vane opening feedback signal from the servo motor 108. The servo motor 108 is controlled through the speed governor 107 in accordance with the above signals (control target value of active power and control target value of the opening degree of the guide vane G), and the opening degree of the guide vane G is controlled.

コンバータ電圧指令値演算部116は、演算部A2により演算される無効電力、直流電圧検出機能2Cからの直流電圧信号、および励磁用変圧器105の下流に設置された変流器CTを通じて検出される電流に基づき、コンバータ電圧指令値を演算してコンバータ制御部3Aに送ることにより、コンバータ2Aの無効電力および直流電圧を制御するする機能である。   The converter voltage command value calculation unit 116 is detected through the reactive power calculated by the calculation unit A2, the DC voltage signal from the DC voltage detection function 2C, and the current transformer CT installed downstream of the excitation transformer 105. This function controls the reactive power and DC voltage of the converter 2A by calculating the converter voltage command value based on the current and sending it to the converter control unit 3A.

電力変換制御部3は、コンバータ制御部3Aおよびインバータ制御部3Bを備えている。コンバータ制御部3Aは、コンバータ電圧指令値演算部116から出力されるコンバータ電圧指令値に従って電力変換器2のコンバータ2Aを制御する機能である。インバータ制御部3Bは、通常運転時インバータ電圧指令値演算部114から出力されるインバータ電圧指令値に従ってインバータ2Bを制御する機能である。   The power conversion control unit 3 includes a converter control unit 3A and an inverter control unit 3B. Converter control unit 3A has a function of controlling converter 2A of power converter 2 in accordance with the converter voltage command value output from converter voltage command value calculation unit 116. The inverter control unit 3B has a function of controlling the inverter 2B according to the inverter voltage command value output from the inverter voltage command value calculation unit 114 during normal operation.

発電電動機一次電流交流化制御演算部120は、短絡検出機能(電気故障検出手段)4、直流成分計測機能6、直流指令値発生機能7、および切替え機能8Bを備えている。   The generator motor primary current AC control calculation unit 120 includes a short-circuit detection function (electrical failure detection means) 4, a DC component measurement function 6, a DC command value generation function 7, and a switching function 8B.

短絡検出機能(電気故障検出手段)4は、電力系統Sに接続される電気回路もしくは発電電動機1の一次側の電気的諸量(例えば電流または電圧など)を計測し、電力系統S及び/又は当該電気回路の電気故障を検出する。   The short-circuit detection function (electrical failure detection means) 4 measures electrical quantities (for example, current or voltage) on the primary side of the electric circuit or generator motor 1 connected to the electric power system S, and the electric power system S and / or An electrical failure of the electrical circuit is detected.

直流成分計測機能6は、変流器CT5Aにより計測された二次電流の直流成分または低周波成分(発電電動機1のすべり周波数成分またはすべり周波数に近い周波数成分)を計測する。   The DC component measuring function 6 measures a DC component or a low frequency component (slip frequency component of the generator motor 1 or a frequency component close to the slip frequency) of the secondary current measured by the current transformer CT5A.

直流指令値発生機能7は、直流成分計測機能6により計測された直流成分または低周波成分に応じて電力変換制御部3に直流通電指令または低周波通電指令の信号を発生する。   The DC command value generation function 7 generates a DC energization command or low frequency energization command signal to the power conversion control unit 3 according to the DC component or low frequency component measured by the DC component measurement function 6.

切替え機能8Bは、直流指令値発生機能7の信号を出力または停止する。この切替え機能8Bは、所定の条件が成立したとき、例えば短絡検出機能(電気故障検出手段)4が発電電動機1の一次側の電気回路の短絡などの故障を検出したときに、直流指令値発生機能7の信号を電力変換制御部3に出力する。   The switching function 8B outputs or stops the signal of the DC command value generation function 7. This switching function 8B generates a DC command value when a predetermined condition is satisfied, for example, when the short circuit detection function (electrical failure detection means) 4 detects a failure such as a short circuit in the primary side of the generator motor 1. The function 7 signal is output to the power conversion control unit 3.

ここで、直流成分計測機能6の回路構成の一例を図2に示す。図2に示される直流成分計測機能6は、変流器CT5Aにより計測される二次電流の各相の一定期間の移動平均を算出する処理を繰り返す移動平均演算部6Aと、移動平均演算部6Aにより算出される各相の移動平均の情報に極性の情報を含めて出力する極性判別部6Bとを備えている。   Here, an example of a circuit configuration of the DC component measuring function 6 is shown in FIG. The DC component measurement function 6 shown in FIG. 2 includes a moving average calculation unit 6A that repeats a process for calculating a moving average of each phase of the secondary current measured by the current transformer CT5A, and a moving average calculation unit 6A. And a polarity discriminating unit 6B that outputs the information of the moving average of each phase including the polarity information.

なお、直流指令値発生機能7の回路構成は、図2の例に限定されるものではない。例えば、移動平均演算部6Aおよび極性判別部6Bの代わりに、変流器CT5Aにより計測された二次電流の直流成分のみまたは低周波成分のみを通過させるローパスフィルタを採用してもよい。   Note that the circuit configuration of the DC command value generation function 7 is not limited to the example of FIG. For example, instead of the moving average calculation unit 6A and the polarity determination unit 6B, a low-pass filter that passes only the DC component or only the low-frequency component of the secondary current measured by the current transformer CT5A may be employed.

(作用)
例えば、電力系統で短絡故障や地絡故障が発生すると、発電電動機1の一次電圧が低下し、過電流が流れるとともに、主要変圧器102、発電電動機1の一次および二次に過渡直流成分が重畳する。
(Function)
For example, when a short circuit fault or a ground fault occurs in the power system, the primary voltage of the generator motor 1 decreases, an overcurrent flows, and the primary and secondary primary DC components of the main transformer 102 and the generator motor 1 are superimposed. To do.

系統故障検出機能DTは、系統故障を検出し、遮断器103に開指令を出す。短絡検出機能4は、発電電動機一次電圧低下を検出し、切替え機能8Bに入指令を出力する。直流成分計測機能6は、発電電動機二次電流に含まれる直流成分を計測し、直流指令値発生機能7に直流成分計測値を出力する。直流指令値発生機能7は、直流成分計測値に応じて発電電動機二次電流の直流化に適した各相のインバータ制御指令を演算し、インバータ制御部3に出力する。インバータ2Bは、インバータ制御部3からの指令に応じて各相のスイッチング素子を入切し、発電電動機二次巻線に直流または低周波電流を流す。   The system failure detection function DT detects a system failure and issues an open command to the circuit breaker 103. The short circuit detection function 4 detects a generator motor primary voltage drop and outputs an input command to the switching function 8B. The DC component measurement function 6 measures a DC component contained in the generator motor secondary current and outputs a DC component measurement value to the DC command value generation function 7. The DC command value generation function 7 calculates an inverter control command for each phase suitable for directing the generator motor secondary current according to the DC component measurement value, and outputs the inverter control command to the inverter control unit 3. Inverter 2B turns on and off each phase switching element in accordance with a command from inverter control unit 3, and causes a direct current or a low frequency current to flow through the secondary winding of the generator motor.

(効果)
本実施形態によれば、発電電動機二次電流に含まれる直流成分を計測し、直流成分計測値に応じて、インバータ電圧制御指令値を演算し、発電電動機二次巻線の直流または低周波電流を制御するので、迅速に主要変圧器および発電電動機1の一次電流および二次電流を零クロスさせ、零ミスを防ぐことができる。
(effect)
According to this embodiment, the DC component contained in the generator motor secondary current is measured, the inverter voltage control command value is calculated according to the DC component measurement value, and the DC or low frequency current of the generator motor secondary winding is calculated. Therefore, the primary current and the secondary current of the main transformer and the generator motor 1 can be quickly crossed to zero, and zero errors can be prevented.

<第2の実施形態>
次に、第2の実施形態について説明する。
(構成)
図3は、第2の実施形態に係る発電システムの構成の一例を示す図である。なお、第1の実施形態(図1)と共通する要素には同一の符号を付し、重複する説明を省略する。以下では、第1の実施形態と異なる部分を中心に説明する。
<Second Embodiment>
Next, a second embodiment will be described.
(Constitution)
FIG. 3 is a diagram illustrating an example of a configuration of a power generation system according to the second embodiment. In addition, the same code | symbol is attached | subjected to the element which is common in 1st Embodiment (FIG. 1), and the overlapping description is abbreviate | omitted. Below, it demonstrates centering on a different part from 1st Embodiment.

第2の実施形態が第1の実施形態と異なる点は、二次側の電気回路の各相に短絡器9および変流器CT5Bを設け、さらに、発電電動機一次電流交流化制御演算部120の代わりに発電電動機一次電流交流化制御演算部120’を設けた点である。発電電動機一次電流交流化制御演算部120’は、前述の短絡検出機能(電気故障検出手段)4を備える代わりに、短絡器動作/復帰判定機能10を備えている。また、通常運転時インバータ電圧指令値演算部114には、さらに、切替え機能8C、8Dが備えられる。   The second embodiment is different from the first embodiment in that a short circuit 9 and a current transformer CT5B are provided in each phase of the secondary-side electric circuit, and further, the generator motor primary current alternating current control operation unit 120 Instead, a generator motor primary current alternating current control calculation unit 120 ′ is provided. The generator motor primary current alternating current control calculation unit 120 ′ includes a short circuit operation / recovery determination function 10 instead of the short circuit detection function (electrical failure detection means) 4 described above. In addition, the inverter voltage command value calculation unit 114 during normal operation is further provided with switching functions 8C and 8D.

短絡器9は、発電電動機1の二次側に過電圧が発生した際に二次側の電気回路(三相交流回路)の相間を短絡させる機能を有する。   The short circuit 9 has a function of short-circuiting the phases of the secondary-side electric circuit (three-phase AC circuit) when an overvoltage is generated on the secondary side of the generator motor 1.

短絡器動作/復帰判定機能10は、短絡器9が動作していること(短絡し、短絡器9に電流が流れていること)、もしくは、復帰したこと(電気的に開路し、短絡器9に電流が流れていないこと)を検出する機能である。   The short-circuit operation / recovery determination function 10 indicates that the short-circuit 9 is operating (short-circuited and current is flowing through the short-circuit 9) or has been recovered (electrically opened, short-circuit 9 This is a function to detect that no current is flowing in.

切替え機能8は、短絡動作/復帰判定機能10が短絡器9の短絡動作を検出した後に復帰を検出したときに、直流指令値発生機能7の信号を電力変換制御部3に出力する。   The switching function 8 outputs a signal of the DC command value generation function 7 to the power conversion control unit 3 when the short circuit operation / recovery determination function 10 detects the short circuit operation and then detects the short circuit operation.

(作用)
例えば、電力系統で短絡故障や地絡故障が発生すると、発電電動機1の一次電圧が低下し、過電流が流れるとともに、主要変圧器、発電電動機1の一次および二次に過渡直流成分が重畳する。また、発電電動機一次側の過渡現象、過渡直流成分により、発電電動機二次側に過電圧が発生する。
(Function)
For example, when a short circuit fault or a ground fault occurs in the power system, the primary voltage of the generator motor 1 decreases, an overcurrent flows, and the primary and secondary DC components of the primary transformer and the generator motor 1 are superimposed. . Further, an overvoltage is generated on the secondary side of the generator motor due to a transient phenomenon and a transient DC component on the primary side of the generator motor.

系統故障検出機能DTは、系統故障を検出し、遮断器103に開指令を出す。短絡器9は、発電電動機二次側に過電圧が発生すると、二次側の電気回路を短絡し、発電電動機1および電力変換器2を過電圧から保護する。短絡器9が動作中は、発電電動機二次電流は、短絡器9に流れるため、発電電動機二次電流を制御することができない。そのため、短絡器9が動作した後、インバータ制御部3Bは、通常運転時インバータ電圧指令値演算部114の制御指令値に従い、短絡器9の電流をインバータ2Bに移行させ、短絡器9の電流をゼロに絞り、短絡器9を復帰させる。短絡器9が復帰すると、インバータ2Bにより、発電電動機二次電流の制御が可能になる。   The system failure detection function DT detects a system failure and issues an open command to the circuit breaker 103. When an overvoltage occurs on the secondary side of the generator motor, the short circuit 9 short-circuits the secondary electric circuit and protects the generator motor 1 and the power converter 2 from the overvoltage. While the short circuit 9 is in operation, the generator motor secondary current flows through the short circuit 9, so that the generator motor secondary current cannot be controlled. Therefore, after the short circuit 9 operates, the inverter control unit 3B shifts the current of the short circuit 9 to the inverter 2B in accordance with the control command value of the inverter voltage command value calculation unit 114 during normal operation, and the current of the short circuit 9 is changed. It is reduced to zero and the short circuit 9 is returned. When the short circuit 9 is restored, the inverter 2B can control the generator motor secondary current.

短絡器動作/復帰判定機能10は、直流電圧検出機能2Cからの直流電圧信号を入力し、短絡器9の動作を判定する。また、変流器CT5Bからの電流を計測し、短絡器9の復帰を判定する。短絡器動作前および短絡器動作中は、切替え機能8Aが「入」、切替え機能8Bが「切」の状態であり、また、切替え機能8Cのすべり周波数制御信号側が「入」、リセット制御信号側が「切」、切替え機能8Dが「入」の状態である。短絡器動作/復帰判定機能10は、短絡器が動作した後に復帰したと判定すると、切替え機能8Aおよび切替え機能8Bに切替え指令を出し、切替え機能8Aを「切」、切替え機能8Bを「入」の状態にし、また、切替え機能8Cのリセット制御信号側を「入」、すべり周波数制御信号側を「切」、切替え機能8Dを「切」の状態にする。   The short circuit operation / recovery determination function 10 receives the DC voltage signal from the DC voltage detection function 2 </ b> C and determines the operation of the short circuit 9. Moreover, the electric current from current transformer CT5B is measured, and the return | restoration of the short circuit 9 is determined. Before the short-circuiting operation and during the short-circuiting operation, the switching function 8A is “ON” and the switching function 8B is “OFF”, and the slip frequency control signal side of the switching function 8C is “ON” and the reset control signal side is “Off”, and the switching function 8D is in the “On” state. When the short-circuit operation / recovery determination function 10 determines that the short-circuit has returned after the short-circuit has been operated, it issues a switching command to the switching function 8A and the switching function 8B. Further, the reset control signal side of the switching function 8C is set to “ON”, the slip frequency control signal side is set to “OFF”, and the switching function 8D is set to “OFF”.

直流成分計測機能6は、発電電動機二次電流に含まれる直流成分を計測し、直流指令値発生機能7に直流成分計測値を出力する。直流指令値発生機能7は、直流成分計測値に応じて発電電動機二次電流の直流化に適したインバータ制御指令を演算し、インバータ制御部3に出力する。インバータ2Bは、インバータ制御部3からの指令値に応じて各相のスイッチング素子を入切し、発電電動機二次巻線に直流または低周波電流を流す。   The DC component measurement function 6 measures a DC component contained in the generator motor secondary current and outputs a DC component measurement value to the DC command value generation function 7. The DC command value generation function 7 calculates an inverter control command suitable for directing the generator motor secondary current according to the DC component measurement value, and outputs the inverter control command to the inverter control unit 3. Inverter 2B turns on / off switching elements of each phase in accordance with a command value from inverter control unit 3, and causes a direct current or a low frequency current to flow through the secondary winding of the generator motor.

(効果)
本実施形態によれば、発電電動機二次電流に含まれる直流成分を計測し、直流成分計測値に応じて、短絡器9が復帰した直後に、インバータ制御指令を演算し、発電電動機二次巻線の直流または低周波電流を制御するので、迅速に主要変圧器および発電電動機1の一次電流および二次電流を零クロスさせ、零ミスを防ぐことができる。
(effect)
According to this embodiment, the DC component included in the secondary current of the generator motor is measured, and the inverter control command is calculated immediately after the short circuit 9 is restored in accordance with the DC component measurement value. Since the direct current or low frequency current of the line is controlled, the primary current and the secondary current of the main transformer and the generator motor 1 can be quickly crossed to zero, and zero errors can be prevented.

以上詳述したように、各実施形態によれば、二重給電交流機の一次電流を迅速にゼロクロスさせることが可能となる。   As described above in detail, according to each embodiment, it is possible to quickly zero-cross the primary current of the double-feed AC machine.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

上述の例では、検出量、計測量、制御量が電流または電圧の例について説明したが、電流の代わりに電圧、磁束等の電気的諸量を用いても良いし、電圧の代わりに電流、磁束等の電気的諸量を用いても良い。   In the above example, the detection amount, the measurement amount, and the control amount are described as examples of current or voltage, but electrical quantities such as voltage and magnetic flux may be used instead of current, or current, Various electrical quantities such as magnetic flux may be used.

1…二重給電交流機、2…電力変換器、2A…コンバータ、2B…インバータ、3…電力変換制御部、2C…直流電圧検出機能、3A…コンバータ制御部、3B…インバータ制御部、4…並列用遮断器、8A、8B、8C、8D…切替え機能、101…ポンプ水車、102…主要変圧器、103…系統側遮断器、105…励磁用変圧器、106…励磁用遮断器、107…調速機、108…サーボモータ、111…無効電力制御部、112…有効電力制御部、113…発電電動機電圧制御部、114…通常運転時インバータ電圧指令値演算部、115…調速機制御部、116…コンバータ電圧指令値演算部、120,120’…発電電動機一次電流交流化制御演算部、KA…角度検出器、PT…計器用変成器、CT、CT5A、CT5B…変流器、DT…系統故障検出機能、G…ガイドベーン。   DESCRIPTION OF SYMBOLS 1 ... Double feeding AC machine, 2 ... Power converter, 2A ... Converter, 2B ... Inverter, 3 ... Power conversion control part, 2C ... DC voltage detection function, 3A ... Converter control part, 3B ... Inverter control part, 4 ... Parallel circuit breaker, 8A, 8B, 8C, 8D ... switching function, 101 ... pump turbine, 102 ... main transformer, 103 ... system side circuit breaker, 105 ... excitation transformer, 106 ... excitation circuit breaker, 107 ... Speed governor, 108 ... servo motor, 111 ... reactive power control unit, 112 ... active power control unit, 113 ... generator motor voltage control unit, 114 ... inverter voltage command value calculation unit during normal operation, 115 ... governor control unit 116, converter voltage command value calculation unit, 120, 120 '... generator motor primary current alternating current control calculation unit, KA ... angle detector, PT ... instrument transformer, CT, CT5A, CT5B ... current transformation , DT ... system fault detection function, G ... guide vanes.

Claims (6)

一次巻線が開閉手段を介して電気回路に接続される二重給電交流機と、前記二重給電交流機の二次巻線に可変周波数の電流を供給する電力変換手段と、前記電力変換手段の電圧もしくは電流を制御する電力変換制御手段と、を有する発電システムに適用される二重給電交流機の制御装置であって、
前記二重給電交流機の二次側の電流を計測する二次電流計測手段と、
前記二次電流計測手段により計測された二次電流の直流成分または低周波成分を計測する直流成分計測手段と、
前記直流成分計測手段により計測された直流成分または低周波成分に応じて前記電力変換制御手段に直流通電指令または低周波通電指令の信号を発生する直流指令値発生手段と、
前記直流指令値発生手段の信号を出力または停止する切替え手段と
を備え、
前記切替え手段は、所定の条件が成立したときに前記直流指令値発生手段の信号を前記電力変換制御手段に出力することを特徴とする二重給電交流機の制御装置。
A double-feed AC machine in which a primary winding is connected to an electric circuit via an opening / closing means; a power conversion means for supplying a variable frequency current to a secondary winding of the double-feed AC machine; and the power conversion means A power conversion control means for controlling the voltage or current of the double-feed AC machine applied to the power generation system,
Secondary current measuring means for measuring the current on the secondary side of the double-feed AC machine;
DC component measuring means for measuring the DC component or low frequency component of the secondary current measured by the secondary current measuring means;
DC command value generating means for generating a DC energization command or a low frequency energization command signal to the power conversion control means according to the DC component or low frequency component measured by the DC component measurement means;
Switching means for outputting or stopping the signal of the DC command value generating means,
The switching device outputs a signal from the DC command value generating means to the power conversion control means when a predetermined condition is satisfied, and controls the double-feed AC machine.
前記二重給電交流機の二次側に過電圧が発生した際に二次側の電気回路の各相を短絡する短絡手段と、
前記短絡手段が動作もしくは復帰したことを検出する短絡動作/復帰判定手段と
を更に備え、
前記切替え手段は、前記短絡動作/復帰判定手段が前記短絡手段の短絡動作を検出した後に復帰を検出したときに、前記直流指令値発生手段の信号を前記電力変換制御手段に出力することを特徴とする請求項1に記載の二重給電交流機の制御装置。
Short-circuit means for short-circuiting each phase of the secondary-side electric circuit when an overvoltage occurs on the secondary side of the double-feed AC machine,
A short-circuit operation / recovery determination means for detecting that the short-circuit means has been operated or returned,
The switching means outputs the signal of the DC command value generation means to the power conversion control means when the short-circuit operation / recovery determination means detects a return after detecting the short-circuit operation of the short-circuit means. The control device for a double-feed AC machine according to claim 1.
前記直流成分計測手段は、前記二次電流計測手段により計測される二次電流の各相の一定期間の移動平均を算出する処理を繰り返す移動平均演算手段を含むことを特徴とする請求項1または2に記載の二重給電交流機の制御装置。   The DC component measuring unit includes a moving average calculating unit that repeats a process of calculating a moving average of each phase of the secondary current measured by the secondary current measuring unit over a certain period. The control apparatus of the double electric power feeding AC machine of 2. 前記直流成分計測手段は、前記移動平均演算手段により算出される各相の移動平均の情報に極性の情報を含めて出力する極性判別手段を含むことを特徴とする請求項3に記載の二重給電交流機の制御装置。   4. The dual component according to claim 3, wherein the DC component measuring means includes polarity determining means for outputting the information of the moving average of each phase calculated by the moving average calculating means together with polarity information. Control device for feeding AC machine. 前記直流成分計測手段は、前記二次電流計測手段により計測された二次電流の直流成分のみまたは低周波成分のみを通過させるローパスフィルタを含むことを特徴とする請求項1または2に記載の二重給電交流機の制御装置。   3. The DC component measuring unit includes a low-pass filter that allows only a DC component or only a low-frequency component of a secondary current measured by the secondary current measuring unit to pass therethrough. Control device for heavy power supply AC machine. 一次巻線が開閉手段を介して電気回路に接続される二重給電交流機と、前記二重給電交流機の二次巻線に可変周波数の電流を供給する電力変換手段と、前記電力変換手段の電圧もしくは電流を制御する電力変換制御手段と、を有する発電システムに適用される二重給電交流機の制御方法であって、
二次電流計測手段により、前記二重給電交流機の二次側の電流を計測し、
直流成分計測手段により、前記二次電流計測手段により計測された二次電流の直流成分または低周波成分を計測し、
直流指令値発生手段により、前記直流成分計測手段により計測された直流成分または低周波成分に応じて前記電力変換制御手段に直流通電指令または低周波通電指令の信号を発生し、
切替え手段により、所定の条件が成立したときに前記直流指令値発生手段の信号を前記電力変換制御手段に出力する
ことを特徴とする二重給電交流機の制御方法。
A double-feed AC machine in which a primary winding is connected to an electric circuit via an opening / closing means; a power conversion means for supplying a variable frequency current to a secondary winding of the double-feed AC machine; and the power conversion means A power conversion control means for controlling the voltage or current of
By the secondary current measuring means, measure the current on the secondary side of the double-feed AC machine,
The direct current component measuring means measures the direct current component or low frequency component of the secondary current measured by the secondary current measuring means,
The DC command value generating means generates a DC energization command or low frequency energization command signal to the power conversion control means according to the DC component or low frequency component measured by the DC component measuring means,
A control method for a double-feed AC machine, characterized in that a signal from the DC command value generating means is output to the power conversion control means when a predetermined condition is established by the switching means.
JP2017115164A 2016-09-15 2017-06-12 Control device and control method for dual power supply alternator Active JP6991747B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017215953.7A DE102017215953B4 (en) 2016-09-15 2017-09-11 CONTROL DEVICE AND CONTROL METHOD FOR DUAL FEED ALTERNATOR
CN201710831571.3A CN107834921B (en) 2016-09-15 2017-09-15 Control device and control method for double-feed AC machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016180822 2016-09-15
JP2016180822 2016-09-15

Publications (2)

Publication Number Publication Date
JP2018050446A true JP2018050446A (en) 2018-03-29
JP6991747B2 JP6991747B2 (en) 2022-01-13

Family

ID=61767911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115164A Active JP6991747B2 (en) 2016-09-15 2017-06-12 Control device and control method for dual power supply alternator

Country Status (1)

Country Link
JP (1) JP6991747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738676A (en) * 2019-03-06 2019-05-10 湖南省湘电试验研究院有限公司 A kind of frequency signal wiring switching device and its application method
US10291159B2 (en) 2017-03-23 2019-05-14 Kabushiki Kaisha Toshiba Control system, controller, and control method for wound induction machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767393A (en) * 1993-08-24 1995-03-10 Tokyo Electric Power Co Inc:The Overvoltage protecting device for variable-speed pumped-storage power generation system
JPH1028398A (en) * 1996-07-09 1998-01-27 Toshiba Corp Controller for variable speed generator/motor
JPH11206196A (en) * 1998-01-20 1999-07-30 Mitsubishi Electric Corp Secondary exciting equipment
JP2008079383A (en) * 2006-09-20 2008-04-03 Toshiba Mitsubishi-Electric Industrial System Corp Controller for ac excitation generator motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767393A (en) * 1993-08-24 1995-03-10 Tokyo Electric Power Co Inc:The Overvoltage protecting device for variable-speed pumped-storage power generation system
JPH1028398A (en) * 1996-07-09 1998-01-27 Toshiba Corp Controller for variable speed generator/motor
JPH11206196A (en) * 1998-01-20 1999-07-30 Mitsubishi Electric Corp Secondary exciting equipment
JP2008079383A (en) * 2006-09-20 2008-04-03 Toshiba Mitsubishi-Electric Industrial System Corp Controller for ac excitation generator motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291159B2 (en) 2017-03-23 2019-05-14 Kabushiki Kaisha Toshiba Control system, controller, and control method for wound induction machine
CN109738676A (en) * 2019-03-06 2019-05-10 湖南省湘电试验研究院有限公司 A kind of frequency signal wiring switching device and its application method
CN109738676B (en) * 2019-03-06 2023-11-24 湖南省湘电试验研究院有限公司 Frequency signal wiring switching device and application method thereof

Also Published As

Publication number Publication date
JP6991747B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5933016B2 (en) Method and apparatus for supplying current to a power system
CN108134550B (en) Fault tolerant phase current measurement for motor control systems
US8570003B2 (en) Double fed induction generator converter and method for suppressing transient in deactivation of crowbar circuit for grid fault ridethrough
US8593093B2 (en) Electric motor control apparatus
EP2077612A2 (en) System and method for suppressing DC link voltage buildup due to generator armature reaction
WO2015130543A1 (en) System and method for controlling a power generation system based on a detected islanding event
KR101169797B1 (en) Fault detecting system of stator winding of motor
US10090680B2 (en) High accuracy mains filter monitoring for a multi-phase power system
JP6159659B2 (en) Power converter control device and electric vehicle
US9742339B2 (en) Apparatus for controlling inverter
US20120229144A1 (en) Electric rotating machine
EP2477298B1 (en) Controllers for static energy supply units
JP6052323B2 (en) Rotor position detector abnormality determination device for motor control device
JP2018050446A (en) Device and method for controlling doubly-fed alternator
JP2017099103A (en) Rotary rectifier fault detector and rotary rectifier fault detection method
JP6075901B2 (en) Thyristor starter and control method thereof
JP6586828B2 (en) Method and apparatus for suppressing turbine acceleration
CN107834921B (en) Control device and control method for double-feed AC machine
EP2806554B1 (en) Variable speed control apparatus and operation method
Li et al. Current and rotor position sensor fault detection and isolation for permanent magnet synchronous generators in wind applications
US9742340B2 (en) Apparatus for controlling inverter
Hu et al. Turn fault detection for surface-mounted permanent magnet synchronous machine based on current residual
JP2013059147A (en) Power conversion device
JPH1028398A (en) Controller for variable speed generator/motor
JP3686273B2 (en) AC power system equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211015

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6991747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150