JP6991120B2 - Method for producing γ-aminobutyric acid - Google Patents

Method for producing γ-aminobutyric acid Download PDF

Info

Publication number
JP6991120B2
JP6991120B2 JP2018192834A JP2018192834A JP6991120B2 JP 6991120 B2 JP6991120 B2 JP 6991120B2 JP 2018192834 A JP2018192834 A JP 2018192834A JP 2018192834 A JP2018192834 A JP 2018192834A JP 6991120 B2 JP6991120 B2 JP 6991120B2
Authority
JP
Japan
Prior art keywords
aminobutyric acid
strain
acid
lactic acid
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018192834A
Other languages
Japanese (ja)
Other versions
JP2020058309A (en
Inventor
友樹 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagome Co Ltd
Original Assignee
Kagome Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagome Co Ltd filed Critical Kagome Co Ltd
Priority to JP2018192834A priority Critical patent/JP6991120B2/en
Publication of JP2020058309A publication Critical patent/JP2020058309A/en
Application granted granted Critical
Publication of JP6991120B2 publication Critical patent/JP6991120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

NPMD NPMD NITE P-02790NITE P-02790

本発明は、新規乳酸菌、及びこれを用いるγ-アミノ酪酸及びγ-アミノ酪酸含有飲食品の製造方法に関する。 The present invention relates to a novel lactic acid bacterium and a method for producing a food or drink containing γ-aminobutyric acid and γ-aminobutyric acid using the novel lactic acid bacterium.

γ-アミノ酪酸(GABA)は、生物界に広く分布する非タンパク質アミノ酸で、高等動物においては、抑制性の神経伝達物質として機能していることが知られている(非特許文献1)。また、近年γ-アミノ酪酸は様々な生理機能を有することが知られてきており、血圧降下作用、脳機能改善作用、精神安定作用等が報告されている(非特許文献2~4)。 γ-Aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in the biological world, and is known to function as an inhibitory neurotransmitter in higher animals (Non-Patent Document 1). In recent years, γ-aminobutyric acid has been known to have various physiological functions, and has been reported to have a blood pressure lowering effect, a brain function improving effect, a tranquilizing effect, and the like (Non-Patent Documents 2 to 4).

γ-アミノ酪酸は、食品では玄米等や一部の野菜や果実等に含まれているが、これらの中には微量しか存在せず、上記生理機能を果たすための有効量を含有する食品はなかった。
そこで、食品中のγ-アミノ酪酸含有量を増加させる方法が種々検討され、乳酸菌の発酵により、食品中のグルタミン酸をγ-アミノ酪酸に変換する手法が多く取られている(特許文献1~7)。グルタミン酸を多く含む発酵原料としてはトマト果実やその処理物(トマト加工品等)が用いられている。
γ-Aminobutyric acid is contained in brown rice and some vegetables and fruits in foods, but only a trace amount is present in these, and foods containing an effective amount for fulfilling the above physiological functions There wasn't.
Therefore, various methods for increasing the content of γ-aminobutyric acid in foods have been studied, and many methods for converting glutamic acid in foods into γ-aminobutyric acid by fermentation of lactic acid bacteria have been taken (Patent Documents 1 to 7). ). As a fermentation raw material containing a large amount of glutamic acid, tomato fruits and processed products thereof (processed tomato products, etc.) are used.

特許第4757569号公報Japanese Patent No. 4757569 特開2000-308457号公報Japanese Unexamined Patent Publication No. 2000-308457 特開2004-313032号公報Japanese Unexamined Patent Publication No. 2004-313032 特開2007-289008号公報Japanese Unexamined Patent Publication No. 2007-289008 特開2008-17703号公報Japanese Unexamined Patent Publication No. 2008-17703 特開2008-50269号公報Japanese Unexamined Patent Publication No. 2008-50269 特開2008-54555号公報Japanese Unexamined Patent Publication No. 2008-54555

生物工学会誌、75、239-244、1997Journal of Biological Engineering, 75, 239-244, 1997 薬理と治療、28、529-533、2000Pharmacology and Treatment, 28, 529-533, 2000 食品と開発、36、No.6、4-6、2001Food and Development, 36, No. 6, 4-6, 2001 日本食品科学工学会誌、47、596-603、2000Journal of Japanese Society of Food Science and Engineering, 47, 596-603, 2000

特許文献1には、乳酸菌発酵においてBrix3%における濾液着色度が0.20より高いトマト処理物を発酵原料として用いた場合のγ-アミノ酪酸への変換率は、あまり高くないことが示されている。このように、トマト果実の処理物を発酵原料として用いる場合、その熱履歴(濾液着色度)がγ-アミノ酪酸生成能に影響を与えてしまう。そのため、使用原料に制約が生じ、産業規模でγ-アミノ酪酸の乳酸菌発酵を行う場合の製造コストの観点から好ましくない。
かかる状況において、本発明は、熱履歴に制約がなく安価なトマト処理物を発酵原料として用いることができる、γ-アミノ酪酸及びγ-アミノ酪酸含有飲食品の製造方法を提供することを課題とする。
Patent Document 1 shows that the conversion rate to γ-aminobutyric acid is not so high when a processed tomato product having a filtrate coloring degree of more than 0.20 at Brix 3% is used as a fermentation raw material in fermentation of lactic acid bacteria. There is. As described above, when the processed product of tomato fruit is used as a fermentation raw material, its heat history (filter coloring degree) affects the ability to produce γ-aminobutyric acid. Therefore, there are restrictions on the raw materials used, which is not preferable from the viewpoint of production cost when lactic acid bacteria fermentation of γ-aminobutyric acid is performed on an industrial scale.
Under such circumstances, it is an object of the present invention to provide a method for producing a food or drink containing γ-aminobutyric acid and γ-aminobutyric acid, which can use an inexpensive processed tomato product as a fermentation raw material without any limitation on the heat history. do.

本発明者等が鋭意研究を進めた結果、新規乳酸菌ラクトバチルス・プランタラム(Lactobacillus plantarum)KB1253株が、グルタミン酸をγ-アミノ酪酸へ高い効率で変換できることを見出した。そして、該乳酸菌を用いてトマト処理物を発酵することにより、γ-アミノ酪酸及びγ-アミノ酪酸含有飲食品を効率的に製造できることに想到し、本発明を完成させた。 As a result of diligent research by the present inventors, it has been found that the novel lactic acid bacterium Lactobacillus plantarum KB1253 strain can convert glutamic acid to γ-aminobutyric acid with high efficiency. Then, he came up with the idea that γ-aminobutyric acid and γ-aminobutyric acid-containing foods and drinks could be efficiently produced by fermenting a processed tomato product using the lactic acid bacterium, and completed the present invention.

すなわち、本発明の第一の態様は、新規乳酸菌ラクトバチルス・プランタラム(Lactobacillus plantarum)KB1253株である。 That is, the first aspect of the present invention is a novel lactic acid bacterium Lactobacillus plantarum KB1253 strain.

本発明の別の態様は、トマト処理物と、乳酸菌ラクトバチルス・プランタラムKB1253株とを含有する組成物である。本態様において、前記組成物は好ましくはγ-アミノ酪酸を17.5mM以上含有する。また、本態様において、前記組成物は好ましくはグルタミン酸を15.4mM以下含有する。さらに、本態様の組成物は飲食品に含有されることが好ましい。 Another aspect of the present invention is a composition containing a processed tomato product and a lactic acid bacterium Lactobacillus plantarum KB1253 strain. In this embodiment, the composition preferably contains γ-aminobutyric acid in an amount of 17.5 mM or more. Further, in this embodiment, the composition preferably contains 15.4 mM or less of glutamic acid. Further, the composition of this embodiment is preferably contained in foods and drinks.

本発明の別の態様は、グルタミン酸含有培地中で、乳酸菌ラクトバチルス・プランタラムKB1253株を培養する発酵工程を含む、γ-アミノ酪酸の製造方法である。
本発明の別の態様は、トマト処理物を、乳酸菌ラクトバチルス・プランタラムKB1253株で発酵させる発酵工程を含む、γ-アミノ酪酸含有飲食品の製造方法である。本態様における前記トマト処理物のBrixは、好ましくは5~20%である。
これらの製造方法における発酵工程は、好ましくは30~40℃で行われ、また好ましくは12時間以上行われる。これらの製造方法においては、前記発酵工程の前又は途中でグルタミン酸及び/又はその塩を添加することが好ましい。
Another aspect of the present invention is a method for producing γ-aminobutyric acid, which comprises a fermentation step of culturing the lactic acid bacterium Lactobacillus plantarum KB1253 strain in a glutamic acid-containing medium.
Another aspect of the present invention is a method for producing a γ-aminobutyric acid-containing food or drink, which comprises a fermentation step of fermenting a processed tomato product with a lactic acid bacterium Lactobacillus plantarum KB1253 strain. The Brix of the processed tomato product in this embodiment is preferably 5 to 20%.
The fermentation step in these production methods is preferably carried out at 30 to 40 ° C., and is preferably carried out for 12 hours or more. In these production methods, it is preferable to add glutamic acid and / or a salt thereof before or during the fermentation step.

本発明により、グルタミン酸をγ-アミノ酪酸へ高い効率で変換できる、新規乳酸菌が提供される。該乳酸菌は、熱履歴(濾液着色度)の高い、例えばBrix3%における濾液着色度が0.20より高い、汎用のトマト処理物を発酵原料とする場合であっても、60%以上の高い変換率でγ-アミノ酪酸を生成することができる。そのため、熱履歴(濾液着色度)の制約を受けることなくトマト処理物を発酵原料として用い、該乳酸菌による発酵を行うことにより、効率的にγ-アミノ酪酸及びγ-アミノ酪酸含有飲食品を製造することができる。
かかる発酵においてはグルタミン酸が消費され、発酵後のトマト処理物中のグルタミン酸濃度は低くなるため、旨味が抑制されたすっきりとした後味が求められる飲食品の原料又は添加物として好適である。
INDUSTRIAL APPLICABILITY The present invention provides a novel lactic acid bacterium capable of converting glutamic acid to γ-aminobutyric acid with high efficiency. The lactic acid bacterium has a high heat history (filter coloring degree), for example, a filtrate coloring degree of Brix 3% is higher than 0.20, and even when a general-purpose processed tomato product is used as a fermentation raw material, the conversion is as high as 60% or more. Gamma-aminobutyric acid can be produced at a rate. Therefore, γ-aminobutyric acid and γ-aminobutyric acid-containing foods and drinks can be efficiently produced by using the processed tomato product as a fermentation raw material without being restricted by the heat history (filter coloring degree) and fermenting with the lactic acid bacteria. can do.
In such fermentation, glutamic acid is consumed and the concentration of glutamic acid in the processed tomato product after fermentation is low, so that it is suitable as a raw material or an additive for foods and drinks that requires a refreshing aftertaste with suppressed umami.

実施例1におけるγ-アミノ酪酸濃度の経時変化を表すグラフ。The graph which shows the time-dependent change of the γ-aminobutyric acid concentration in Example 1. FIG. 実施例1におけるグルタミン酸濃度の経時変化を表すグラフ。The graph which shows the time-dependent change of the glutamic acid concentration in Example 1. FIG. 実施例1におけるグルタミン酸からγ-アミノ酪酸への変換率の経時変化を表すグラフ。The graph which shows the time-dependent change of the conversion rate from glutamic acid to γ-aminobutyric acid in Example 1. FIG. 実施例2におけるγ-アミノ酪酸濃度の経時変化を表すグラフ。The graph which shows the time-dependent change of the γ-aminobutyric acid concentration in Example 2. 実施例2におけるグルタミン酸濃度の経時変化を表すグラフ。The graph which shows the time-dependent change of the glutamic acid concentration in Example 2. 実施例2におけるグルタミン酸からγ-アミノ酪酸への変換率の経時変化を表すグラフ。The graph which shows the time-dependent change of the conversion rate from glutamic acid to γ-aminobutyric acid in Example 2. FIG. 実施例3におけるγ-アミノ酪酸濃度の経時変化を表すグラフ。The graph which shows the time-dependent change of the γ-aminobutyric acid concentration in Example 3. 実施例3におけるグルタミン酸濃度の経時変化を表すグラフ。The graph which shows the time-dependent change of the glutamic acid concentration in Example 3. 実施例3におけるグルタミン酸からγ-アミノ酪酸への変換率の経時変化を表すグラフ。The graph which shows the time-dependent change of the conversion rate from glutamic acid to γ-aminobutyric acid in Example 3. FIG. 実施例4におけるグルタミン酸からγ-アミノ酪酸への変換率の経時変化を表すグラフ。The graph which shows the time-dependent change of the conversion rate from glutamic acid to γ-aminobutyric acid in Example 4. FIG.

次に、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されず、本発明の範囲内で自由に変更することができる。 Next, an embodiment of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be freely changed within the scope of the present invention.

本発明の第一の態様は、新規乳酸菌ラクトバチルス・プランタラム(Lactobacillus plantarum)KB1253株である。以降、「本発明の乳酸菌」とも記載する。
本発明の乳酸菌は、グルタミン酸をγ-アミノ酪酸へ変換することができる。
The first aspect of the present invention is a novel lactic acid bacterium Lactobacillus plantarum KB1253 strain. Hereinafter, it will also be referred to as “lactic acid bacterium of the present invention”.
The lactic acid bacterium of the present invention can convert glutamic acid to γ-aminobutyric acid.

ラクトバチルス・プランタラム KB1253株は、漬物を分離源として単離された細菌である。その遺伝学的性質を調べるため、16SrRNA遺伝子塩基配列を常法により同定した。さらに、ラクトバチルス・プランタラム KB1253株の16SrRNA遺伝子の上流約500 bpの塩基配列について、米国立バイオテクノロジー情報センター(NCBI)のデータベースにて、BLAST解析により前記塩基配列の相同性検索を行った。
その結果、ラクトバチルス・プランタラム KB1253株は、ラクトバチルス・プランタラムの基準株であるラクトバチルス・プランタラム・サブスピーシーズ・プランタラム(Lactobacillus plantarum subsp.plantarum)NBRC15891と前記塩基配列において100%の相同性があり、ラクトバチルス・プランタラムに属する乳酸菌であることが確認された。
Lactobacillus plantarum KB1253 strain is a bacterium isolated from pickles. To investigate its genetic properties, the 16S rRNA gene sequence was identified by a conventional method. Furthermore, the nucleotide sequence of about 500 bp upstream of the 16S rRNA gene of Lactobacillus plantarum KB1253 strain was searched for homology by BLAST analysis in the database of the National Center for Biotechnology Information (NCBI).
As a result, the Lactobacillus plantarum KB1253 strain is 100% homologous to the Lactobacillus plantarum subspecies plantarum NBRC15891, which is the reference strain of Lactobacillus plantarum. It was confirmed that it is a lactic acid bacterium that has sex and belongs to Lactobacillus plantarum.

ラクトバチルス・プランタラム KB1253株は、平成30年10月3日に独立行政法人製品評価技術基盤機構特許微生物寄託センター(郵便番号:292-0818、住所:千葉県木更津市かずさ鎌足2-5-8 122号室)に、国内寄託がなされ、受領番号NITE AP-02790が付与されている。 Lactobacillus plantarum KB1253 strain was released on October 3, 2018 by the National Institute of Technology and Evaluation Patent Microorganisms Depositary Center (postal code: 292-0818, address: 2-5-Kazusakamatari, Kisarazu City, Chiba Prefecture). A domestic deposit was made in Room 8122), and the receipt number NITE AP-02790 was given.

本発明の乳酸菌は、ラクトバチルス・プランタラム KB1253株名で寄託されている株そのもの(便宜上、「寄託株」ともいう)に制限されず、同寄託株と実質的に同等の株(「派生株」または「誘導株」ともいう)も包含される。実質的に同等の細菌とは、本発明の乳酸菌と同種属の細菌であって、上記寄託株と同程度の高い変換率でグルタミン酸をγ-アミノ酪酸に変換する活性を有する細菌を言う。また、実質的に同等の細菌は、16SrRNA遺伝子の塩基配列が、上記寄託株の16SrRNA遺伝子の塩基配列と99.5%以上、好ましくは99.9%以上、より好ましくは100%の相同性を有し、且つ、好ましくは上記寄託株と同一の菌学的性質を有する。さらに、本発明の乳酸菌は、本発明の効果が損なわれない限り、寄託菌、又はそれと実質的に同等の細菌から、変異処理、遺伝子組換え、自然変異株の選択等によって育種された変異株であってもよい。育種方法としては、遺伝子工学的手法による改変や、変異処理による改変が挙げられる。変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。寄託株からの自然変異株としては、寄託株の使用の際に自然に生じた株が挙げられる。そのような株としては、寄託株の培養(例えば継代培養)により自然に生じた変異株が挙げられる。派生株は、1種の改変により構築されてもよく、2種またはそれ以上の改変により構築されてもよい。 The lactic acid bacterium of the present invention is not limited to the strain itself deposited under the name of Lactobacillus plantarum KB1253 (also referred to as “deposited strain” for convenience), and is substantially equivalent to the deposited strain (“derivative strain”). Also referred to as "inducible strain"). The substantially equivalent bacterium is a bacterium of the same genus as the lactic acid bacterium of the present invention and has an activity of converting glutamic acid to γ-aminobutyric acid at a conversion rate as high as that of the deposited strain. Further, in substantially equivalent bacteria, the base sequence of the 16S rRNA gene has 99.5% or more, preferably 99.9% or more, more preferably 100% homology with the base sequence of the 16S rRNA gene of the above-mentioned deposit strain. And preferably have the same mycological properties as the deposited strain. Further, the lactic acid bacterium of the present invention is a mutant strain bred from a deposited bacterium or a bacterium substantially equivalent thereto by mutation treatment, gene recombination, selection of a natural mutant strain, etc., as long as the effect of the present invention is not impaired. May be. Examples of the breeding method include modification by a genetic engineering method and modification by mutation treatment. Mutation treatment includes X-ray irradiation, ultraviolet irradiation, and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). Treatment with a variegant such as, etc. can be mentioned. Examples of the naturally mutated strain from the deposited strain include strains naturally generated during the use of the deposited strain. Examples of such a strain include a mutant strain naturally generated by culturing a deposited strain (for example, subculture). The derivative strain may be constructed by one modification or by two or more modifications.

本発明の別の態様は、グルタミン酸含有培地中で、本発明の乳酸菌を培養する発酵工程を含む、γ-アミノ酪酸の製造方法である。
本発明の乳酸菌は、グルタミン酸をγ-アミノ酪酸に変換することができる。そのため
、本態様は、グルタミン酸をγ-アミノ酪酸に変換する方法とも言い換えることができる。
Another aspect of the present invention is a method for producing γ-aminobutyric acid, which comprises a fermentation step of culturing the lactic acid bacterium of the present invention in a glutamic acid-containing medium.
The lactic acid bacterium of the present invention can convert glutamic acid to γ-aminobutyric acid. Therefore, this aspect can be rephrased as a method for converting glutamic acid into γ-aminobutyric acid.

本態様におけるグルタミン酸含有培地は、グルタミン酸を含有する限りにおいて特に限定されず、乳酸菌の培養に通常用いられる培地を滅菌したうえで用いることができる。すなわち、炭素源としては、例えば、グルコース、ガラクトース、ラクトース、アラビノース、マンノース、スクロース、デンプン、デンプン加水分解物、廃糖蜜等の糖類を資化性に応じて使用できる。窒素源としては、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウムなどのアンモニウム塩類や硝酸塩類を使用できる。また、無機塩類としては、例えば、塩化ナトリウム、塩化カリウム、リン酸カリウム、硫酸マグネシウム、塩化カルシウム、硝酸カルシウム、塩化マンガン、硫酸第一鉄等を用いることができる。また、ペプトン、大豆粉、脱脂大豆粕、肉エキス、酵母エキス等の有機成分を用いてもよい。
また、グルタミン酸含有培地としてトマト処理物を用いることもでき、その場合は後述のγ-アミノ酪酸含有飲食品の製造方法の態様となる。
The glutamic acid-containing medium in this embodiment is not particularly limited as long as it contains glutamic acid, and a medium usually used for culturing lactic acid bacteria can be sterilized before use. That is, as the carbon source, for example, sugars such as glucose, galactose, lactose, arabinose, mannose, sucrose, starch, starch hydrolysate, and waste sugar honey can be used depending on the assimilation property. As the nitrogen source, for example, ammonium salts such as ammonia, ammonium sulfate, ammonium chloride and ammonium nitrate and nitrates can be used. Further, as the inorganic salts, for example, sodium chloride, potassium chloride, potassium phosphate, magnesium sulfate, calcium chloride, calcium nitrate, manganese chloride, ferrous sulfate and the like can be used. Further, organic components such as peptone, soybean flour, defatted soybean meal, meat extract and yeast extract may be used.
Further, a processed tomato product can also be used as the glutamic acid-containing medium, and in that case, it becomes an aspect of the method for producing a food or drink containing γ-aminobutyric acid, which will be described later.

培地のグルタミン酸の含有量は、特に限定されないが、上限は好ましくは400mM以下、より好ましくは160mM以下、さらに好ましくは120mM以下である。また、下限は1mM以上であればよく、より好ましくは10mM以上である。 The content of glutamic acid in the medium is not particularly limited, but the upper limit is preferably 400 mM or less, more preferably 160 mM or less, still more preferably 120 mM or less. The lower limit may be 1 mM or more, more preferably 10 mM or more.

本態様により製造されたγ-アミノ酪酸は、任意の手法により飲食品に添加することができる。 The γ-aminobutyric acid produced according to this embodiment can be added to foods and drinks by any method.

本発明の別の態様は、トマト処理物を、本発明の乳酸菌で発酵させる発酵工程を含む、γ-アミノ酪酸含有飲食品の製造方法である。 Another aspect of the present invention is a method for producing a food or drink containing γ-aminobutyric acid, which comprises a fermentation step of fermenting a processed tomato product with the lactic acid bacterium of the present invention.

本態様におけるトマト処理物は、トマト果実を加工したものを指し、その加工手段は特に制限されない。例えば、トマトを搾汁したもの、磨砕したもの、破砕したもの、細断したもの、抽出したもの、これらを乾燥したもの、加熱したもの、濃縮したもの、遠心分離した上清、清澄化したもの等が挙げられる。
本態様におけるトマト処理物は、通常はグルタミン酸を10.0mM以上含有し、より好ましくは25.0mM以上、さらに好ましくは30.0mM以上含有するものを用いる。なお、これは発酵に使用するときの濃度であり、トマト処理物が上記乾燥物や濃縮物の場合は水等で希釈して発酵に供する状態にしたときの濃度とする。また、不溶性固形分をのぞいた部分の濃度とする。
The processed tomato product in this embodiment refers to a processed tomato fruit, and the processing means thereof is not particularly limited. For example, tomato juice, ground, crushed, shredded, extracted, dried, heated, concentrated, centrifuged supernatant, clarified. Things etc. can be mentioned.
The tomato-treated product in this embodiment usually contains glutamic acid of 10.0 mM or more, more preferably 25.0 mM or more, still more preferably 30.0 mM or more. It should be noted that this is the concentration when used for fermentation, and when the tomato processed product is the above-mentioned dried product or concentrated product, it is the concentration when it is diluted with water or the like to be used for fermentation. In addition, it is the concentration of the portion excluding the insoluble solid content.

本態様におけるトマト処理物のBrixは、5~20%であることが好ましく、10~15%であることがより好ましい。かかる範囲のものを用いることにより、本発明の乳酸菌による発酵が十分に進行し、グルタミン酸からγ-アミノ酪酸への変換率がさらに向上する。 The Brix of the processed tomato product in this embodiment is preferably 5 to 20%, more preferably 10 to 15%. By using a substance in such a range, fermentation by the lactic acid bacterium of the present invention proceeds sufficiently, and the conversion rate from glutamic acid to γ-aminobutyric acid is further improved.

本態様におけるトマト処理物中の不溶性固形分は、5容量%以下であることが好ましい。5容量%以下であれば、乳酸菌による発酵が十分に進行し、グルタミン酸からγ-アミノ酪酸への変換率がさらに向上する。不溶性固形分の調整は、通常ろ過、精密ろ過、限外ろ過等のろ過や遠心分離で行うことができる。
なお、ここで不溶性固形分は、以下の方法で測定する。トマト処理物10mLを長さ105mmの遠心沈澱管にとり、回転半径14.5cm、回転数3000rpm、時間10分の条件で遠心分離したときの、全容量に対する沈殿物の容量の割合を測定し、その値を不溶性固形分とする。
The insoluble solid content in the processed tomato product in this embodiment is preferably 5% by volume or less. When it is 5% by volume or less, fermentation by lactic acid bacteria proceeds sufficiently, and the conversion rate from glutamic acid to γ-aminobutyric acid is further improved. The insoluble solid content can be adjusted by filtration such as ordinary filtration, microfiltration, ultrafiltration, or centrifugation.
Here, the insoluble solid content is measured by the following method. 10 mL of the tomato processed product was placed in a centrifugal settling tube having a length of 105 mm, and the ratio of the volume of the precipitate to the total volume was measured when the tomato was centrifuged under the conditions of a turning radius of 14.5 cm, a rotation speed of 3000 rpm, and a time of 10 minutes. The value is an insoluble solid content.

本態様におけるトマト処理物の濾液着色度は、特に限定されない。
従来、濾液着色度が高い、例えばBrix3%における濾液着色度が0.20より高い、トマト処理物を発酵原料とすると、乳酸菌による発酵は進行するが、グルタミン酸からγ-アミノ酪酸への変換率が低くなるとされていた。本発明の乳酸菌を用いることにより、濾液着色度が高いトマト処理物であっても高効率でγ-アミノ酪酸を製造できる。そのため、熱履歴を考慮せずとも任意の安価なトマト処理物を発酵原料とすることができる。
The degree of coloration of the filtrate of the processed tomato product in this embodiment is not particularly limited.
Conventionally, when a processed tomato product having a high degree of filtrate coloring, for example, a filtrate coloring of Brix 3% higher than 0.20, is used as a fermentation raw material, fermentation by lactic acid bacteria proceeds, but the conversion rate from glutamic acid to γ-aminobutyric acid is high. It was supposed to be low. By using the lactic acid bacterium of the present invention, γ-aminobutyric acid can be produced with high efficiency even in a processed tomato product having a high degree of filtrate coloring. Therefore, any inexpensive processed tomato product can be used as a fermentation raw material without considering the heat history.

本態様におけるトマト処理物の濾液着色度は高くとも構わないが、γ-アミノ酪酸の生産性をより向上させる観点から、Brix3%において0.02~1.22が好ましく、0.02~0.35がより好ましい。
なお、ここで濾液着色度は、以下の方法で測定する。まず、水等を用いてトマト処理物を糖度3%に調整する。次に、これをろ紙(アドバンテック社製 No.5A)を用いて濾過する。ハイフロースーパーセル(セライト社製、和光純薬販売、カタログNo.534-02315)を厚さ5mm程度になるように入れた漏斗型ガラス濾過器(旭テクノグラス社製 36060FNL3G4)を、蒸留水でプレコートする。この漏斗型ガラス濾過器に、上記濾過したトマト処理物を通し、さらに、開口径0.45μmのメンブレンフィルター(アドバンテック社製 DISMIC-25CS045AN)で濾過する。濾過後のトマト処理物を、分光光度計(日立製作所製 U-3310)を用いて、450nmの吸光度を測定し、その値を濾液着色度とする。
The degree of coloration of the filtrate of the processed tomato product in this embodiment may be high, but from the viewpoint of further improving the productivity of γ-aminobutyric acid, 0.02 to 1.22 is preferable in Brix 3%, and 0.02 to 0. 35 is more preferable.
Here, the degree of coloration of the filtrate is measured by the following method. First, the processed tomato product is adjusted to a sugar content of 3% using water or the like. Next, this is filtered using a filter paper (No. 5A manufactured by Advantech Co., Ltd.). A funnel-shaped glass filter (36060FNL3G4 manufactured by Asahi Techno Glass Co., Ltd.) containing a high-flow supercell (manufactured by Celite, sold by Wako Pure Chemical Industries, Ltd., Catalog No. 534-02315) with a thickness of about 5 mm is precoated with distilled water. do. The filtered tomato processed product is passed through this funnel-shaped glass filter, and further filtered with a membrane filter (DISMIC-25CS045AN manufactured by Advantech) having an opening diameter of 0.45 μm. The treated tomato product after filtration is measured for absorbance at 450 nm using a spectrophotometer (U-3310 manufactured by Hitachi, Ltd.), and the value is used as the filtrate coloring degree.

上述したγ-アミノ酪酸の製造方法及びγ-アミノ酪酸含有飲食品の製造方法の態様において、本発明の乳酸菌を予め適当な培地で前培養し、該前培養物をグルタミン酸含有培地又はトマト処理物に添加して本培養(発酵工程)することが、γ-アミノ酪酸の製造効率と安定性の観点から好ましい。 In the above-mentioned method for producing γ-aminobutyric acid and the method for producing γ-aminobutyric acid-containing food and drink, the lactic acid bacterium of the present invention is pre-cultured in an appropriate medium in advance, and the pre-culture is used as a glutamic acid-containing medium or a tomato-treated product. From the viewpoint of production efficiency and stability of γ-aminobutyric acid, it is preferable to add it to the main culture (fermentation step).

前培養の条件に特に制限はないが、例えば30~40℃で8~48時間が好ましい。前培養後の培養物中の乳酸菌数は、10~10cfu/mLであることが好ましい。
前培養における培地として、トマト処理物を用いてもよい。また、トマト処理物を前培養に供する前に、通常は予め殺菌を行い、その条件としては特に制限はないが、80~110℃で1~20分処理することが好ましい。
The preculture conditions are not particularly limited, but are preferably 8 to 48 hours at 30 to 40 ° C., for example. The number of lactic acid bacteria in the culture after preculture is preferably 107 to 109 cfu / mL.
A processed tomato product may be used as the medium in the preculture. Further, before the processed tomato product is subjected to pre-culture, it is usually sterilized in advance, and the conditions are not particularly limited, but it is preferable to treat the tomato product at 80 to 110 ° C. for 1 to 20 minutes.

本培養において添加する乳酸菌前培養物は、グルタミン酸含有培地又はトマト処理物に対して0.1~20質量%が好ましく、0.1~10質量%が特に好ましい。
本培養(発酵工程)の温度条件は、30~40℃が好ましく、32~38℃がより好ましい。また、pHは、4.0~6.0が好ましい。また、発酵時間は12時間以上が好ましく、24時間以上がより好ましく、通常は96時間以下で発酵終点となる。
本培養(発酵工程)は、嫌気条件下で行うことが好ましく、例えば、炭酸ガス等の嫌気ガスを通気しながら培養することができる。また、液体静置培養等の微好気条件下で培養してもよい。
The lactic acid bacterium preculture added in the main culture is preferably 0.1 to 20% by mass, particularly preferably 0.1 to 10% by mass, based on the glutamic acid-containing medium or the processed tomato product.
The temperature condition of the main culture (fermentation step) is preferably 30 to 40 ° C, more preferably 32 to 38 ° C. The pH is preferably 4.0 to 6.0. Further, the fermentation time is preferably 12 hours or more, more preferably 24 hours or more, and usually 96 hours or less is the fermentation end point.
The main culture (fermentation step) is preferably performed under anaerobic conditions, and for example, the culture can be performed while aerating an anaerobic gas such as carbon dioxide. Further, the cells may be cultured under slightly aerobic conditions such as liquid static culture.

本培養(発酵工程)の前又は発酵途中では、グルタミン酸及び/又はその塩を添加することが好ましい。これは、基質を補充して、変換されるγ-アミノ酪酸量を向上させるためである。
添加後のグルタミン酸濃度は、特に限定されないが10~160mMとすることが好ましく、10~120mMとすることがより好ましい。
また、発酵途中でグルタミン酸を添加する場合、そのタイミングとしては、特に限定されないが、発酵開始後0~24時間後が好ましく、0~12時間後がより好ましい。
It is preferable to add glutamic acid and / or a salt thereof before or during the main culture (fermentation step). This is to supplement the substrate and improve the amount of γ-aminobutyric acid converted.
The concentration of glutamic acid after the addition is not particularly limited, but is preferably 10 to 160 mM, more preferably 10 to 120 mM.
When glutamic acid is added during fermentation, the timing is not particularly limited, but is preferably 0 to 24 hours after the start of fermentation, and more preferably 0 to 12 hours after the start of fermentation.

本培養後の培養物(発酵物)は、グルタミン酸からγ-アミノ酪酸への変換率が少なくとも60%以上と高く、γ-アミノ酪酸を高濃度で含むものである。 The culture (fermented product) after the main culture has a high conversion rate of glutamic acid to γ-aminobutyric acid of at least 60% or more, and contains γ-aminobutyric acid in a high concentration.

なお、グルタミン酸からγ-アミノ酪酸への変換率は、以下の数式(1)で算出される。数式(1)においてGABAは、γ-アミノ酪酸を指す。[GABA]は、発酵開始時のγ-アミノ酪酸の濃度(mM)を表す。[GABA]は、発酵開始後t時点のγ-アミノ酪酸の濃度(mM)を表す。[Glu]は、発酵開始時のグルタミン酸濃度(mM)を表す。 The conversion rate from glutamic acid to γ-aminobutyric acid is calculated by the following mathematical formula (1). In formula (1), GABA refers to γ-aminobutyric acid. [GABA] 0 represents the concentration of γ-aminobutyric acid (mM) at the start of fermentation. [GABA] t represents the concentration (mM) of γ-aminobutyric acid at the time t after the start of fermentation. [Glu] 0 represents the glutamic acid concentration (mM) at the start of fermentation.

Figure 0006991120000001
Figure 0006991120000001

上述した製造方法により製造されたγ-アミノ酪酸含有飲食品は、任意の飲食品、例えばトマトジュース、トマトピューレ、トマトソース等の形態に調製することができる。また、これらをトマト以外の果実、果汁、野菜汁、豆乳、麦芽汁、牛乳、ヨーグルト、調味料、菓子、サプリメント、その他の飲食品に添加してもよい。
このような、γ-アミノ酪酸含有飲食品は、トマト処理物と本発明の乳酸菌とを含有する組成物の一実施形態であり、かかる組成物も本発明に包含される態様である。
The γ-aminobutyric acid-containing food or drink produced by the above-mentioned production method can be prepared in the form of any food or drink, such as tomato juice, tomato puree, or tomato sauce. Further, these may be added to fruits other than tomato, fruit juice, vegetable juice, soy milk, malt juice, milk, yogurt, seasonings, confectionery, supplements, and other foods and drinks.
Such a γ-aminobutyric acid-containing food or drink is an embodiment of a composition containing a processed tomato product and the lactic acid bacterium of the present invention, and such a composition is also an embodiment of the present invention.

トマト処理物と本発明の乳酸菌とを含有する組成物において、前記乳酸菌は生菌であっても死菌であってもよく、生菌と死菌との両方を含むものでもよい。さらに、乳酸菌が破砕された状態、乳酸菌の一部を含む状態であってもよい。
前記組成物は任意の飲食品の形態に調製することができ、また任意の飲食品に添加することができる。
In the composition containing the processed tomato product and the lactic acid bacterium of the present invention, the lactic acid bacterium may be a live bacterium or a dead bacterium, or may contain both a live bacterium and a dead bacterium. Further, a state in which lactic acid bacteria are crushed or a state in which a part of lactic acid bacteria is contained may be used.
The composition can be prepared in the form of any food or drink and can be added to any food or drink.

前記組成物は、通常は液状であり、γ-アミノ酪酸を17.5mM以上含有していればよく、好ましくは21.2mM以上、より好ましくは、27.6mM以上含有する。また、濃縮物や乾燥物等の半固形・固形状でもよく、γ-アミノ酪酸を、1.80mg/g以上含有していればよく、2.18mg/g以上、より好ましくは2.94mg/g以上含有する。
また、前記組成物におけるグルタミン酸含有量は、15.4mM以下が好ましく、10.0mM以下がより好ましい。また、2.27mg/g以下が好ましく、1.48mg/g以下がより好ましい。これにより、飲食品の形態としたときに、すっきりとした後味となる。
The composition is usually liquid and may contain γ-aminobutyric acid in an amount of 17.5 mM or more, preferably 21.2 mM or more, more preferably 27.6 mM or more. Further, it may be in the form of a semi-solid or solid such as a concentrated product or a dried product, and may contain γ-aminobutyric acid in an amount of 1.80 mg / g or more, 2.18 mg / g or more, more preferably 2.94 mg / g. Contains g or more.
The glutamic acid content in the composition is preferably 15.4 mM or less, more preferably 10.0 mM or less. Further, 2.27 mg / g or less is preferable, and 1.48 mg / g or less is more preferable. This results in a clean aftertaste when in the form of food and drink.

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

<実施例1>
アメリカ産ジュース用トマトペースト(MSP.020CB モーニングスター社製)を、水でBrix10%に希釈し(以下、「Brix10%トマト処理物」という)、培地(発酵原料)とした。なお、Brix10%トマト処理物をBrix3%に調整したときの濾液着色度は、0.31であった。
<Example 1>
American juice tomato paste (MSP.020CB, manufactured by Morningstar Japan) was diluted with water to Brix 10% (hereinafter referred to as "Brix 10% tomato processed product") to prepare a medium (fermentation raw material). The degree of coloration of the filtrate when the processed Brix 10% tomato product was adjusted to Brix 3% was 0.31.

Brix10%トマト処理物をφ18mm試験管に10mL入れ、95℃で10分間オートクレーブ殺菌した。これに乳酸菌を植菌し、30℃で18時間培養した(前培養)。乳酸菌は、L. plantarum KB1253株、L. plantarum NBR
C3070株、L. plantarum NBRC14712株、L. plantarum NBRC14713株、L.brevis NBRC3360株、L. brevis NBRC12005株、L. brevis NBRC3345株、又はL. reuteri JCM2762株を用いた。
上記とは別に、Brix10%トマト処理物を300mL容三角フラスコに200mL入れ、95℃で10分間オートクレーブ殺菌した。ここに、前培養液2mLを加え、36℃で72時間培養した(本培養)。
10 mL of Brix 10% tomato processed product was placed in a φ18 mm test tube and sterilized by autoclave at 95 ° C. for 10 minutes. Lactic acid bacteria were inoculated into this and cultured at 30 ° C. for 18 hours (preculture). Lactic acid bacteria are described in L. Plantarum KB1253 strain, L. plantarum NBR
C3070 strain, L. Plantarum NBRC14712 strain, L. Plantarum NBRC14713 strain, L. Brevis NBRC3360 strain, L. Brevis NBRC12005 strain, L. Brevis NBRC3345 strain, or L. Limosilactobacillus JCM2762 strain was used.
Separately from the above, 200 mL of Brix 10% tomato processed product was placed in a 300 mL Erlenmeyer flask and sterilized by autoclaving at 95 ° C. for 10 minutes. To this, 2 mL of the preculture solution was added, and the cells were cultured at 36 ° C. for 72 hours (main culture).

本培養開始後0、12、24、48、及び72時間に培地を1mLずつ採取した。採取した培地を3%スルホサリチル酸で10倍(容量)に希釈した後、メンブレンフィルター(アドバンテック社製DISMIC-25CS045AN)で濾過し、アミノ酸自動分析計(日立製作所製L-8800A)を用いてγ-アミノ酪酸量を測定した。γ-アミノ酪酸量は、γ-アミノ酪酸標品(アクロスオーガニクス社製)を用いて作成した検量線から算出した。また、前記採取した培地のグルタミン酸量を、上記アミノ酸自動分析計を用いて測定した。これらの測定値を用いて数式(1)に従って変換率を算出した。 1 mL of the medium was collected at 0, 12, 24, 48, and 72 hours after the start of the main culture. The collected medium is diluted 10-fold (volume) with 3% sulfosalicylic acid, filtered through a membrane filter (DISMIC-25CS045AN manufactured by Advantech), and γ- using an automatic amino acid analyzer (L-8800A manufactured by Hitachi, Ltd.). The amount of aminobutyric acid was measured. The amount of γ-aminobutyric acid was calculated from a calibration curve prepared using a γ-aminobutyric acid standard (manufactured by Across Organics). In addition, the amount of glutamic acid in the collected medium was measured using the above-mentioned automatic amino acid analyzer. Using these measured values, the conversion rate was calculated according to the mathematical formula (1).

結果を図1~3に示す。発酵原料のトマト処理物のBrix3%における濾液着色度が0.31と高い場合であっても、L. plantarum KB1253株は、高い変換率でγ-アミノ酪酸を生成することができた。また、L. plantarum KB1253株は、他の乳酸菌株と比べて高い変換率を示した。 The results are shown in FIGS. Even when the degree of coloration of the filtrate in Brix 3% of the processed tomato product as a fermentation raw material is as high as 0.31, L. The plantalum KB1253 strain was able to produce γ-aminobutyric acid with a high conversion rate. In addition, L. The plantarum KB1253 strain showed a high conversion rate as compared with other lactic acid bacteria strains.

<実施例2>
用いる乳酸菌をL. plantarum KB1253株のみとし、発酵温度を28~42℃に変更した他は実施例1と同様にして、発酵を行った。
結果を図4~6に示す。発酵温度が30~40℃の条件において、高い変換率が認められた。
<Example 2>
The lactic acid bacterium used is L. Fermentation was carried out in the same manner as in Example 1 except that only the plantarum KB1253 strain was used and the fermentation temperature was changed to 28 to 42 ° C.
The results are shown in FIGS. 4-6. A high conversion rate was observed under the condition that the fermentation temperature was 30 to 40 ° C.

<実施例3>
用いる乳酸菌をL. plantarum KB1253株のみとし、培地(発酵原料)のBrixを1~25%に変更した他は実施例1と同様にして、発酵を行った。
結果を図7~9に示す。Brixが5~20%の条件において、高い変換率が認められた。
<Example 3>
The lactic acid bacterium used is L. Fermentation was carried out in the same manner as in Example 1 except that only the plantarum KB1253 strain was used and the Brix of the medium (fermentation raw material) was changed to 1 to 25%.
The results are shown in FIGS. 7-9. A high conversion rate was observed under the condition that Brix was 5 to 20%.

<実施例4>
用いる乳酸菌をL. plantarum KB1253株のみとし、培地をMRSBroth(CM0359、Oxoid社製)に変更したこと、及びグルタミン酸含有量を10~400mMに変更した他は実施例1と同様にして、発酵を行った。
結果を図10に示す。いずれのグルタミン酸含量でもγ-アミノ酪酸への変換が認められたが、特に10~160mMの条件において、高い変換率が認められた。
<Example 4>
The lactic acid bacterium used is L. Fermentation was carried out in the same manner as in Example 1 except that only the plantarum KB1253 strain was used, the medium was changed to MRSBros (CM0359, manufactured by Oxoid), and the glutamic acid content was changed to 10 to 400 mM.
The results are shown in FIG. Conversion to γ-aminobutyric acid was observed in all glutamic acid contents, but a high conversion rate was observed especially under the condition of 10 to 160 mM.

本発明によれば、グルタミン酸をγ-アミノ酪酸へ高い効率で変換できる、新規乳酸菌が提供される。また、熱履歴(濾液着色度)の制約を受けることなくトマト処理物を発酵原料として用い、前記乳酸菌による発酵を行うことにより、γ-アミノ酪酸及びγ-アミノ酪酸含有飲食品を効率的に製造する方法が提供される。
本発明の方法で製造されたγ-アミノ酪酸含有飲食品は、すっきりとした後味が求められる飲食品や、健康食品等に好適である。
INDUSTRIAL APPLICABILITY According to the present invention, a novel lactic acid bacterium capable of converting glutamic acid to γ-aminobutyric acid with high efficiency is provided. In addition, γ-aminobutyric acid and γ-aminobutyric acid-containing foods and drinks can be efficiently produced by fermenting with the above-mentioned lactic acid bacteria using a processed tomato product as a fermentation raw material without being restricted by the heat history (degree of coloration of the filtrate). A way to do it is provided.
The γ-aminobutyric acid-containing food and drink produced by the method of the present invention is suitable for food and drinks that require a refreshing aftertaste, health foods, and the like.

Claims (11)

乳酸菌ラクトバチルス・プランタラム(Lactobacillus plantarum)KB1253株。 Lactobacillus plantarum KB1253 strain. トマト処理物と、乳酸菌ラクトバチルス・プランタラムKB1253株とを含有する組成物。 A composition containing a processed tomato product and a lactic acid bacterium Lactobacillus plantarum KB1253 strain. γ-アミノ酪酸を17.5mM以上含有する、請求項2に記載の組成物。 The composition according to claim 2, which contains 17.5 mM or more of γ-aminobutyric acid. グルタミン酸を15.4mM以下含有する、請求項2又は3に記載の組成物。 The composition according to claim 2 or 3, which contains 15.4 mM or less of glutamic acid. 請求項2~4のいずれか一項に記載の組成物を含有する飲食品。 A food or drink containing the composition according to any one of claims 2 to 4. グルタミン酸含有培地中で、乳酸菌ラクトバチルス・プランタラムKB1253株を培養する発酵工程を含む、γ-アミノ酪酸の製造方法。 A method for producing γ-aminobutyric acid, which comprises a fermentation step of culturing a lactic acid bacterium Lactobacillus plantarum KB1253 strain in a glutamic acid-containing medium. トマト処理物を、乳酸菌ラクトバチルス・プランタラムKB1253株で発酵させる発酵工程を含む、γ-アミノ酪酸含有飲食品の製造方法。 A method for producing a γ-aminobutyric acid-containing food or drink, which comprises a fermentation step of fermenting a processed tomato product with a lactic acid bacterium Lactobacillus plantarum KB1253 strain. 前記トマト処理物のBrixが、5~20%である、請求項7に記載の製造方法。 The production method according to claim 7, wherein the Brix of the processed tomato product is 5 to 20%. 前記発酵工程を30~40℃で行う、請求項6~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 6 to 8, wherein the fermentation step is carried out at 30 to 40 ° C. 前記発酵工程を12時間以上行う、請求項6~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 6 to 9, wherein the fermentation step is carried out for 12 hours or more. 前記発酵工程の前又は途中でグルタミン酸及び/又はその塩を添加する、請求項6~10のいずれか一項に記載の製造方法。
The production method according to any one of claims 6 to 10, wherein glutamic acid and / or a salt thereof is added before or during the fermentation step.
JP2018192834A 2018-10-11 2018-10-11 Method for producing γ-aminobutyric acid Active JP6991120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018192834A JP6991120B2 (en) 2018-10-11 2018-10-11 Method for producing γ-aminobutyric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192834A JP6991120B2 (en) 2018-10-11 2018-10-11 Method for producing γ-aminobutyric acid

Publications (2)

Publication Number Publication Date
JP2020058309A JP2020058309A (en) 2020-04-16
JP6991120B2 true JP6991120B2 (en) 2022-01-12

Family

ID=70219217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192834A Active JP6991120B2 (en) 2018-10-11 2018-10-11 Method for producing γ-aminobutyric acid

Country Status (1)

Country Link
JP (1) JP6991120B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308457A (en) 1999-04-27 2000-11-07 Bio Arubin Kenkyusho:Kk Production of lactic acid-fermented food
JP2004313032A (en) 2003-04-14 2004-11-11 Sadaji Yokoyama Method for producing functional raw material
JP2007060990A (en) 2005-08-31 2007-03-15 Kagome Co Ltd METHOD FOR PRODUCING FOOD AND DRINK HIGHLY CONTAINING gamma-AMINOBUTYRIC ACID, AND FOOD AND DRINK HIGHLY CONTAINING gamma-AMINOBUTYRIC ACID
JP2007289008A (en) 2006-04-20 2007-11-08 Taiyo Corp Method for producing tomato fermented product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308457A (en) 1999-04-27 2000-11-07 Bio Arubin Kenkyusho:Kk Production of lactic acid-fermented food
JP2004313032A (en) 2003-04-14 2004-11-11 Sadaji Yokoyama Method for producing functional raw material
JP2007060990A (en) 2005-08-31 2007-03-15 Kagome Co Ltd METHOD FOR PRODUCING FOOD AND DRINK HIGHLY CONTAINING gamma-AMINOBUTYRIC ACID, AND FOOD AND DRINK HIGHLY CONTAINING gamma-AMINOBUTYRIC ACID
JP2007289008A (en) 2006-04-20 2007-11-08 Taiyo Corp Method for producing tomato fermented product

Also Published As

Publication number Publication date
JP2020058309A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP5467433B2 (en) Seaweed fermentation composition and method for producing the same
JP5011543B2 (en) Method for producing fermented material containing GABA
JP4672776B2 (en) Acid-resistant Leuconostoc mesenteroides with excellent mannitol-producing ability and method for producing kimchi using the same
JP2019088212A (en) Flavor improving agent for beverage
JP6914534B2 (en) β-Glucan Highly Producing Strain, β-Glucan Producing Method, and β-Glucan Highly Producing Strain Screening Method
JP2001352940A (en) METHOD OF PRODUCING FOOD MATERIAL HIGHLY INCLUDING gamma- AMINO BUTYRIC ACID AND FOOD MATERIAL OBTAINED THEREFROM
JP4757569B2 (en) Process for producing food and drink with high content of γ-aminobutyric acid and food and drink with high content of γ-aminobutyric acid
Assamoi et al. Isolation and screening of Weissella strains for their potential use as starter during attiéké production
Li et al. Acceleration of aglycone isoflavone and γ-aminobutyric acid production from doenjang using whole-cell biocatalysis accompanied by protease treatment
WO2006054480A1 (en) Process for producing food containing ϝ-aminobutyric acid and yeast having high ability to produce ϝ-aminobutyric acid
JP4901372B2 (en) Deferifericlysin high production mutant, liquid medium for siderophore production, and method for producing siderophore
JP6991120B2 (en) Method for producing γ-aminobutyric acid
JP2010142215A (en) Plum lactic acid bacterium fermentation food or drink and method for producing the same
KR101080322B1 (en) A novel acetic acid bacterium
JP2010246398A (en) New antibacterial peptide
KR100763563B1 (en) Method for production of houttuynia decoction fermentation beverage
EP1001033A2 (en) Process for the valorization of starch into lactic acid-containing products, and obtained products
JP2020115761A (en) PREPARATION METHODS FOR HIGH LEVEL PRODUCTION OF γ-AMINOBUTYRIC ACID
Rattanaporn et al. Production of pyridoxal 5՛-phosphate and pyridoxineby Lactobacillus pentosus L47I-A
CN110713935B (en) Aspergillus niger and pectinase for high yield of narrow-distribution pectin oligosaccharides and application thereof
KR20060136089A (en) Method for production of houttuynia decoction fermentation beverage
JP6860150B2 (en) Method for producing GABA-containing composition and food containing GABA-containing composition
Henshaw et al. Effect of single bacterial starter culture on odour reduction during controlled fermentation of cassava tubers for foofoo production
JP2023085160A (en) Method for producing menaquinone
KR100722979B1 (en) Leuconostoc sp. KACC 91156P for fermentation of houttuynia decoction extract

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150