JP6990348B1 - How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid - Google Patents

How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid Download PDF

Info

Publication number
JP6990348B1
JP6990348B1 JP2021138438A JP2021138438A JP6990348B1 JP 6990348 B1 JP6990348 B1 JP 6990348B1 JP 2021138438 A JP2021138438 A JP 2021138438A JP 2021138438 A JP2021138438 A JP 2021138438A JP 6990348 B1 JP6990348 B1 JP 6990348B1
Authority
JP
Japan
Prior art keywords
nickel
waste liquid
phosphorus
concentrate
plating waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021138438A
Other languages
Japanese (ja)
Other versions
JP2023016648A (en
Inventor
杜建偉
賀框
胡小英
張明楊
黄凱華
任艶玲
李銘珊
温勇
Original Assignee
生態環境部華南環境科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生態環境部華南環境科学研究所 filed Critical 生態環境部華南環境科学研究所
Application granted granted Critical
Publication of JP6990348B1 publication Critical patent/JP6990348B1/en
Publication of JP2023016648A publication Critical patent/JP2023016648A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • C25C1/08Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemically Coating (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】無電解ニッケルメッキ廃液中のニッケルおよびリン資源を、金属ニッケルおよびリン酸鉄の形で回収し再利用する方法を提供する。【解決手段】以下のステップを含む:S1、多段セキュリティフィルターシステムによって無電解ニッケルメッキ廃液を濾過する、S2、陰イオン一方向膜電気透析システムを使用して濾過された無電解ニッケルメッキ廃液に対して電気透析処理を行い、リン濃縮液を得る、S3、陽イオン一方向膜電気透析システムを使用して無電解ニッケルメッキ廃液に対して電気透析処理を行い、ニッケル濃縮液を得る、S4、エレクトロフェントン技術を使用してリン濃縮液を処理し、リン酸鉄を回収し再利用する、S5、旋廻流式電解装置を使用してニッケル濃縮液を処理し、金属ニッケルを回収して再利用する。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for recovering and reusing nickel and phosphorus resources in electroless nickel plating waste liquid in the form of metallic nickel and iron phosphate. SOLUTION: The electroless nickel plating waste liquid is filtered by S1, a multi-stage security filter system, and S2, an electroless nickel plating waste liquid filtered by an anion unidirectional membrane electrodialysis system. To obtain a phosphorus concentrate, S3, electroless nickel plating waste liquid using a cation unidirectional membrane electrodialysis system, to obtain a nickel concentrate, S4, electro Treatment of phosphorus concentrate using Fenton technology, recovery and reuse of iron phosphate, S5, treatment of nickel concentrate using swirl flow electrolytic device, recovery and reuse of metallic nickel .. [Selection diagram] Fig. 1

Description

本発明は、工業廃水処理およびリサイクルの技術分野に属し、具体的には、無電解ニッケ
ルメッキ廃液中のニッケルおよびリン資源を回収し再利用する方法に関する。
The present invention belongs to the technical field of industrial wastewater treatment and recycling, and specifically relates to a method for recovering and reusing nickel and phosphorus resources in an electroless nickel plating waste liquid.

電気メッキは、中国国内の加工および製造業における一般的なプロセスであり、機械、電
子、航空宇宙などの分野で幅広く応用されている。無電解ニッケルめっきは、電気めっき
業界の重要な分野であり、その優れた耐食性、耐摩耗性、はんだ付け性、およびコーティ
ングの均一な厚さにより、世界中で幅広く使用されている。
無電解ニッケルメッキ産業は急速に発展する同時に、大量の無電解ニッケルメッキ廃液を
処理する必要がある問題を引き起こす。無電解ニッケルメッキ廃液には、高濃度のニッケ
ルおよび次亜リン酸塩が含まれ、含有量が1リットルあたり数グラムから数十グラムにも
ある。水域に放出された重金属であるニッケルは、水生生物に明らかな毒性作用を及ぼし
、水域中のニッケルイオン濃度が1.2mg/Lを超えると、魚を死に至らしめる可能性
がある。生化学的処理方法における微生物が廃液中の次亜リン酸塩を効果的に利用できず
、ほとんどの下水処理場では、このような水処理により深刻なリン過剰排出問題が発生し
、大量のリンが水域に排出され水質の汚染が深刻になり、水域の富栄養化の汚染物の1つ
である。中国の電気メッキ汚染物排出標準(GB21900-2008)中の表3標準に
よると、ニッケル許容排出濃度がわずか0.1mg/L、総リン許容排出濃度が0.5m
g/Lと規定されている。
ニッケルは希少で高価の金属資源であり、国際市場でのニッケルの価格は近年高とまりし
ている。2020年、金属ニッケルの価格が14万元/トンに上昇した。同時に、リン資
源も中国の希少の資源の1つであり、中国の国土資源省は、リン資源を2010年以降国
家経済発展のニーズに応えられない重要な鉱物の1つとする。近年、多くの学者が、国内
の下水処理場で発生するスラッジからますます貴重なリン資源を抽出する方法を研究して
いる。無電解ニッケルメッキ廃液中のニッケルおよびリンをリサイクルせず任意に排出す
ると、必然的にそのような希少で貴重な資源の浪費になる。
現在、無電解ニッケルメッキ廃液の主な処理方法は、化学沈殿法、フェントン法などがあ
り、これらの方法は、下水処理薬品を大量に添加する必要があり、コストが高く、同時に
廃液中の重金属、リン資源の回収が難しく、資源の浪費になり、スラッジが多く発生し、
二次汚染が発生しやすくなる。
Electroplating is a common process in the processing and manufacturing industry in China and is widely applied in fields such as mechanical, electronic and aerospace. Electroless nickel plating is an important field in the electroplating industry and is widely used worldwide due to its excellent corrosion resistance, wear resistance, solderability and uniform thickness of coating.
The electroless nickel plating industry is developing rapidly and at the same time raises the problem that a large amount of electroless nickel plating waste liquid needs to be treated. The electroless nickel plating waste liquid contains high concentrations of nickel and hypophosphite, and the content is several grams to several tens of grams per liter. Nickel, a heavy metal released into the body of water, has a clear toxic effect on aquatic organisms and can kill fish if the nickel ion concentration in the body of water exceeds 1.2 mg / L. Microorganisms in biochemical treatment methods cannot effectively utilize the hypophosphite in the effluent, and in most sewage treatment plants, such water treatment causes serious phosphorus excess discharge problems and large amounts of phosphorus. Is discharged into the water area and the pollution of the water quality becomes serious, and it is one of the eutrophication pollutants in the water area. According to Table 3 standards in China's Electroplated Contaminant Emission Standard (GB21900-2008), nickel permissible emission concentration is only 0.1 mg / L and total phosphorus permissible emission concentration is 0.5 m.
It is specified as g / L.
Nickel is a rare and expensive metal resource, and the price of nickel in the international market has been high in recent years. In 2020, the price of metallic nickel rose to 140,000 yuan / ton. At the same time, phosphorus resources are also one of the rare resources of China, and the Ministry of Land, Infrastructure, Transport and Tourism of China makes phosphorus resources one of the important minerals that cannot meet the needs of national economic development after 2010. In recent years, many scholars have been studying ways to extract increasingly valuable phosphorus resources from sludge generated in domestic sewage treatment plants. Arbitrary discharge of nickel and phosphorus in electroless nickel plating waste liquid without recycling inevitably wastes such rare and valuable resources.
Currently, the main treatment methods for electroless nickel plating waste liquid are chemical precipitation method, Fenton method, etc., and these methods require the addition of a large amount of sewage treatment chemicals, are costly, and at the same time, heavy metals in the waste liquid. , It is difficult to recover phosphorus resources, waste resources, generate a lot of sludge,
Secondary pollution is more likely to occur.

上記の問題を考慮して、本発明は、無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法を提供し、具体的な技術的解決策は以下のとおりである。無電
解ニッケルメッキ廃液中のニッケルおよびリン資源を回収し再利用する方法は、主に以下
のステップを含む:
S1、廃液濾過
多段セキュリティフィルターシステムによって無電解ニッケルメッキ廃液を濾過し、無電
解ニッケルメッキ廃液中の粒子不純物を去除する、
S2、廃液中のリンの分離濃縮
陰イオン一方向膜電気透析システムを使用して濾過された無電解ニッケルメッキ廃液に対
して電気透析処理を行い、無電解ニッケルメッキ廃液中の次亜リン酸塩と亜リン酸塩が電
界力の作用下で、陰イオン一方向膜を通過してリン濃縮液プールに入り、無電解ニッケル
メッキ廃液中のリンを分離濃縮してリン濃縮液を得る、
S3、廃液中ニッケルの分離濃縮
陽イオン一方向膜電気透析システムを使用して、ステップS2で処理された無電解ニッケ
ルメッキ廃液に対して電気透析処理を行い、無電解ニッケルメッキ廃液中のニッケルイオ
ンが電界力の作用下で、陽イオン一方向膜を通過してニッケル濃縮液プールに入り、無電
解ニッケルメッキ廃液中のニッケルを分離濃縮してニッケル濃縮液を得る、
S4、リン濃縮液の後処理
エレクトロフェントン技術を使用してステップS2で得られたリン濃縮液を処理し、エレ
クトロフェントン反応によって生成されたOHの作用下で、リン濃縮液中の次亜リン酸塩
、亜リン酸塩が酸化されてオルトリン酸塩になり、オルトリン酸塩とエレクトロフェント
ン反応系中のFe3+と反応してリン酸鉄結晶沈殿物を形成し、得られたリン酸鉄結晶沈
殿物を加工してリン酸鉄に回収して再利用する、
S5、ニッケル濃縮液の後処理
旋廻流式電解装置を使用してステップS3で得られたニッケル濃縮液を処理し、ニッケル
濃縮液中のニッケルイオンが還元されて陰極に堆積され、金属ニッケルを回収して再利用
する。
In consideration of the above problems, the present invention provides a method for recovering and reusing nickel and phosphorus resources in electroless nickel plating waste liquid, and specific technical solutions are as follows. The method of recovering and reusing nickel and phosphorus resources in electroless nickel plating waste liquid mainly includes the following steps:
S1, Waste liquid filtration The electroless nickel plating waste liquid is filtered by a multi-stage security filter system to remove particle impurities in the electroless nickel plating waste liquid.
S2, Separation and concentration of phosphorus in waste liquid Electroless nickel plating waste liquid filtered using a concentrated anion unidirectional membrane electrodialysis system is subjected to electrodialysis treatment, and hypophosphite in the electroless nickel plating waste liquid. Under the action of electric field force, the phosphite passes through the anion unidirectional membrane and enters the phosphorus concentrate pool, and phosphorus in the electroless nickel plating waste liquid is separated and concentrated to obtain a phosphorus concentrate.
S3, Separation of Nickel in Waste Liquid Using the concentrated cation unidirectional membrane electrodialysis system, the electroless nickel plating waste liquid treated in step S2 is subjected to electrodialysis treatment, and nickel ions in the electroless nickel plating waste liquid are performed. Under the action of electric field force, it passes through a cation unidirectional film and enters the nickel concentrate pool, and the nickel in the electroless nickel plating waste liquid is separated and concentrated to obtain a nickel concentrate.
S4, Post-treatment of Phosphorus Concentrate The phosphorus concentrate obtained in step S2 is treated using the electrophenon technology, and hypophosphoric acid in the phosphorus concentrate is treated under the action of OH produced by the electrofenton reaction. Salts and phosphite are oxidized to orthophosphate, which reacts with Fe 3+ in the electrofenton reaction system to form an iron phosphate crystal precipitate, resulting in iron phosphate crystals. Process the precipitate, collect it in iron phosphate and reuse it,
S5, Post-treatment of nickel concentrate The nickel concentrate obtained in step S3 is treated using a rotating electrolyzer, and the nickel ions in the nickel concentrate are reduced and deposited on the cathode to recover metallic nickel. And reuse it.

本発明の一側面として、前記多段セキュリティフィルターシステムの濾過方法は、無電解
ニッケルメッキ廃液を多段セキュリティフィルターシステムに導入し、多段セキュリティ
フィルターシステム中の複数組の濾過タンクによって無電解ニッケルメッキ廃液中の粒子
を段階的に濾過および遮断し、前記濾過タンクの濾過開口径が上から下に向かって徐々に
減少し、濾過後、濾過タンク頂端のスプレー洗浄装置を使用して、濾過によって得られた
粒子の表面を洗浄し、濾過粒子に付着した無電解ニッケルメッキ廃液を分離して無電解ニ
ッケルメッキ廃液本体に返還するので、多段濾過により無電解ニッケルメッキ廃液中の不
溶性不純物粒子を濾過し粒子径の大きさに応じて分離し、後処理が容易になり、同時にス
プレー洗浄装置を使用して濾過された粒子の表面に付着した無電解ニッケルメッキ廃液を
洗浄し、不純物粒子の後処理が容易になり、無電解ニッケルメッキ廃液中のニッケル、リ
ンの回収率を向上させる。
As one aspect of the present invention, in the filtration method of the multi-stage security filter system, the non-electrolytic nickel-plated waste liquid is introduced into the multi-stage security filter system, and the non-electrolytic nickel-plated waste liquid is contained in the non-electrolytic nickel-plated waste liquid by a plurality of sets of filtration tanks in the multi-stage security filter system. The particles are filtered and blocked in stages, the filtration opening diameter of the filtration tank gradually decreases from top to bottom, and after filtration, the particles obtained by filtration using a spray cleaning device at the top of the filtration tank. The surface of the non-electrolytic nickel plating waste liquid adhering to the filtered particles is separated and returned to the main body of the non-electrolytic nickel plating waste liquid. Separation according to size facilitates post-treatment, and at the same time uses a spray cleaning device to clean the electroless nickel-plated waste liquid adhering to the surface of the filtered particles, facilitating post-treatment of impurity particles. , Improves the recovery rate of nickel and phosphorus in non-electrolytic nickel plating waste liquid.

本発明の一側面として、前記陰イオン一方向膜電気透析システムは、無電解ニッケルメッ
キ廃液を通過させるための陰イオン一方向膜、前記陰イオン一方向膜両側に設けられた第
1の陽極電極タンク、第1の陰極電極タンクを含み、前記第1の陽極電極タンクと陰イオ
ン一方向膜の間にリン濃縮液プールが設けられ、陰イオン一方向膜が次亜リン酸塩、亜リ
ン酸塩を通過させる特性を活用して、電界力を印可すれば無電解ニッケルメッキ廃液中の
リンを分離でき、分離コストが低く効率が高い。
As one aspect of the present invention, the anion unidirectional membrane electrodialysis system is an anion unidirectional membrane for passing an electrolytic nickel-plated waste liquid, and a first anode electrode provided on both sides of the anion unidirectional membrane. A tank and a first cathode electrode tank are included, a phosphorus concentrate pool is provided between the first anode electrode tank and the anion unidirectional membrane, and the anion unidirectional membrane is hypophosphite and phosphite. If an electric field force is applied by utilizing the property of allowing salts to pass through, phosphorus in the electroless nickel plating waste liquid can be separated, and the separation cost is low and the efficiency is high.

本発明の一側面として、前記陰イオン一方向膜電気透析システムを5~7日間運転した後
、前記第1の陽極電極タンクと第1の陰極電極タンクの位置を入れ替えて、同時にリン濃
縮液を第1の陽極電極タンクと陰イオン一方向膜間のリン濃縮液プール内に再び充填し、
電極タンクの位置を周期的に入れ替えることで陰イオン一方向膜の両側を使用でき、陰イ
オン一方向膜の長期間使用による詰まりを回避し、電極タンクを入れ替える時電極タンク
内の沈殿物を掃除することもできる。
As one aspect of the present invention, after operating the anion unidirectional membrane electrodialysis system for 5 to 7 days, the positions of the first anode electrode tank and the first cathode electrode tank are exchanged, and a phosphorus concentrate is simultaneously applied. The phosphorus concentrate pool between the first anode electrode tank and the anion unidirectional membrane was refilled and refilled.
By periodically changing the position of the electrode tank, both sides of the anion unidirectional film can be used, avoiding clogging due to long-term use of the anion unidirectional film, and cleaning the precipitate in the electrode tank when replacing the electrode tank. You can also do it.

本発明の一側面として、前記陽イオン一方向膜電気透析システムは、無電解ニッケルメッ
キ廃液を通過させる陽イオン一方向膜、前記陽イオン一方向膜の両側に設けられた第2の
陽極電極タンク、第2の陰極電極タンクを含み、前記第2の陰極電極タンクと陽イオン一
方向膜間にニッケル濃縮液プールが設けられ、陽イオン一方向膜がニッケルイオンを通過
させる特性を活用して、電界力を印可すれば無電解ニッケルメッキ廃液中のニッケルを分
離でき、分離コストが低く効率が高い。
As one aspect of the present invention, the cationic unidirectional membrane electrodialysis system is a cation unidirectional membrane through which a non-electrolytic nickel plating waste liquid is passed, and a second anode electrode tank provided on both sides of the cationic unidirectional membrane. , A second cathode electrode tank is included, a nickel concentrate pool is provided between the second cathode electrode tank and the cation unidirectional membrane, and the cation unidirectional membrane allows nickel ions to pass through. If an electric field force is applied, nickel in the electroless nickel plating waste liquid can be separated, and the separation cost is low and the efficiency is high.

本発明の一側面として、前記陽イオン一方向膜電気透析システムを10~15日間を運転
した後、前記第2の陽極電極タンクと第2の陰極電極タンクの位置を入れ替えて、同時に
ニッケル濃縮液を第2の陰極電極タンクと陽イオン一方向膜間のニッケル濃縮液プール内
に再び充填し、電極タンクの位置を周期的に入れ替えることで陽イオン一方向膜の両側を
使用でき、陽イオン一方向膜の長期間使用による詰まりを回避し、電極タンクを入れ替え
る時電極タンク内の沈殿物を掃除することもできる。
As one aspect of the present invention, after operating the cationic unidirectional membrane electrodialysis system for 10 to 15 days, the positions of the second anode electrode tank and the second cathode electrode tank are exchanged, and at the same time, the nickel concentrate is prepared. Can be used on both sides of the cation unidirectional membrane by refilling the nickel concentrate pool between the second cathode electrode tank and the cation unidirectional membrane and periodically changing the position of the electrode tank. It is also possible to avoid clogging due to long-term use of the directional membrane and to clean the deposits in the electrode tank when replacing the electrode tank.

本発明の一側面として、エレクトロフェントン反応系の処理の前に、ステップS2で得ら
れたリン濃縮液のpHを2.5~4に調節し、リン濃縮液のpHが2.5~4であると、
エレクトロフェントン反応系によって生成されたOHの量が大きく、リン濃縮液中の次亜
リン酸塩、亜リン酸塩の酸化効率が高い。
As one aspect of the present invention, the pH of the phosphorus concentrate obtained in step S2 is adjusted to 2.5 to 4 and the pH of the phosphorus concentrate is adjusted to 2.5 to 4 before the treatment of the electrofenton reaction system. If there,
The amount of OH produced by the electrofenton reaction system is large, and the oxidation efficiency of hypophosphite and phosphite in the phosphorus concentrate is high.

本発明の一側面として、前記リン酸鉄結晶沈殿物を加工してリン酸鉄を得るステップは、
リン酸鉄結晶沈殿物を蒸留水で3~5回洗浄し、洗浄したリン酸鉄結晶沈殿物を60~8
0℃で30~50分乾燥し、そしてリン酸鉄結晶沈殿物を焼結炉に置き、純度99.9%
のアルゴンガスを焼結炉の保護ガスとして使用し、5℃/分の昇温速度で焼結炉中の温度
を130~150℃まで昇温させ、10~20分間保持した後、10℃/分の昇温速度で
焼結炉中の温度を350~370℃まで昇温させ、350~370℃の条件下で20~3
0分間加熱してリン酸鉄を得ることを含み、リン酸鉄結晶沈殿物には結晶水が含まれ、一
般に、リン酸鉄結晶沈殿物の処理には脱水と結晶変換の2つの部分が含まれ、上記加工ス
テップは、昇温速度および高温処理時間が制御される条件下で、2つのステップに分割す
る必要がなく、効率が向上し、コストも節約される。
As one aspect of the present invention, the step of processing the iron phosphate crystal precipitate to obtain iron phosphate is described.
The iron phosphate crystal precipitate was washed with distilled water 3 to 5 times, and the washed iron phosphate crystal precipitate was washed 60 to 8 times.
Dry at 0 ° C. for 30-50 minutes and place the iron phosphate crystal precipitate in a sintering furnace to a purity of 99.9%.
The argon gas of No. 1 was used as a protective gas for the sintering furnace, the temperature in the sintering furnace was raised to 130 to 150 ° C at a heating rate of 5 ° C / min, held for 10 to 20 minutes, and then 10 ° C / The temperature in the sintering furnace is raised to 350 to 370 ° C at a heating rate of 30 to 370 ° C, and 20 to 3 under the condition of 350 to 370 ° C.
It involves heating for 0 minutes to obtain iron phosphate, the iron phosphate crystal precipitate contains water of crystallization, and in general, the treatment of the iron phosphate crystal precipitate contains two parts, dehydration and crystal conversion. Therefore, the processing step does not need to be divided into two steps under the condition that the heating rate and the high temperature processing time are controlled, and the efficiency is improved and the cost is saved.

本発明の一側面として、前記エレクトロフェントン技術で処理されたリン濃縮液をステッ
プS2に返還して分離および濃縮を継続し、さらにリン濃縮液中のリンを回収し、返還回
数が1~3回であり、エレクトロフェントン技術によって、リン濃縮液中のリン濃度を9
3%以上減少し、処理後の液体には少量の次亜リン酸塩、亜リン酸塩が含まれ、ステップ
S2に返還させ分離および濃縮を継続し、プロセス全体に影響を与えることなくさらにそ
のリンを回収することができる。
As one aspect of the present invention, the phosphorus concentrate treated by the electrofenton technique is returned to step S2 to continue separation and concentration, and phosphorus in the phosphorus concentrate is recovered, and the number of returns is 1 to 3 times. The phosphorus concentration in the phosphorus concentrate is reduced to 9 by the electrofenton technology.
Reduced by 3% or more, the treated liquid contains a small amount of hypophosphite, phosphite, returned to step S2 to continue separation and concentration, further without affecting the entire process. Phosphorus can be recovered.

本発明の一側面として、前記旋廻流式電解で処理されたニッケル濃縮液をステップS3に
返還して分離および濃縮を継続し、さらにニッケル濃縮液中のニッケルを回収し、返還回
数が1~5回であり、旋廻流式電解処理によってニッケル濃縮液中のニッケル濃度が90
%以上減少し、処理後の液体にはニッケルイオンが含まれ、ステップS3に返還させ分離
および濃縮を1~5回行い、プロセス全体に影響を与えることなくさらにそのニッケルを
回収することができる。
As one aspect of the present invention, the nickel concentrate treated by the rotary electrolysis is returned to step S3 to continue separation and concentration, and nickel in the nickel concentrate is recovered, and the number of returns is 1 to 5. The nickel concentration in the nickel concentrate is 90 due to the rotating electrolysis treatment.
The treated liquid contains nickel ions, which are reduced by% or more, and can be returned to step S3 for separation and concentration 1 to 5 times to further recover the nickel without affecting the entire process.

本発明は以下の有益な効果を有する。本発明によって提供される無電解ニッケルメッキ廃
液中のニッケルおよびリン資源を回収し再利用する方法は、無電解ニッケルメッキ廃液を
多段濾過し、廃液中の不純物粒子を分離および洗浄して、濾過粒子の後処理が容易になる
だけでなく、廃液の回収率も向上し、陰イオン一方向膜および陽イオン一方向膜を使用し
て廃液を段階的に処理し、電界力および一方向膜の一方向通過性により廃液中のリン、ニ
ッケルをそれぞれ濃縮し、処理プロセス中、電極タンクの極性を周期的に入れ替え、イオ
ン一方向膜の使用寿命を延ばし、処理コストを削減し、金属ニッケルおよびリン酸鉄の形
で、廃液中のニッケルリン資源を効果的に回収し、廃液による環境汚染を減らす。一言で
言えば、本発明は、高度な方法、完全なプロセス、高い処理効率、低いコストなどの利点
を有する。
The present invention has the following beneficial effects. The method of recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid provided by the present invention is to multi-stage filter the electroless nickel plating waste liquid, separate and wash the impurity particles in the waste liquid, and filter the particles. Not only is the post-treatment easier, but the recovery rate of the waste liquid is also improved, and the waste liquid is treated stepwise using an anionic unidirectional membrane and a cation unidirectional membrane, and the electric field force and one of the unidirectional membranes are used. Phosphorus and nickel in the waste liquid are concentrated by directional passability, and the polarity of the electrode tank is periodically changed during the treatment process to extend the life of the ion unidirectional membrane, reduce the treatment cost, and reduce the treatment cost, metallic nickel and nickel acid. In the form of iron, it effectively recovers nickel-phosphorus resources in the waste liquid and reduces environmental pollution caused by the waste liquid. In a nutshell, the invention has advantages such as advanced method, complete process, high processing efficiency, low cost and so on.

本発明の方法全体のフローチャートである。It is a flowchart of the whole method of this invention. 本発明の実施例1の電気透析処理システムの構造図である。It is a structural drawing of the electrodialysis processing system of Example 1 of this invention. 本発明の実施例11の電気透析処理の構造概略図である。It is a structural schematic diagram of the electrodialysis treatment of Example 11 of this invention.

[符号の説明]
1 陰イオン一方向膜電気透析システム
11 陰イオン一方向膜
12 第1の陽極電極タンク
13 第1の陰極電極タンク
14 リン濃縮液プール
2 陽イオン一方向膜電気透析システム
21 陽イオン一方向膜
22 第2の陽極電極タンク
23 第2の陰極電極タンク
24 ニッケル濃縮液プール
1a 双方向膜組
11a 陰イオン交換膜
12a 陽イオン交換膜
14a リン濃縮プール
24a ニッケル濃縮プール
2a 陽極電極タンク
3a 陰極電極タンク
[Explanation of code]
1 Anion unidirectional membrane electrodialysis system 11 Anion unidirectional membrane 12 First anode electrode tank 13 First cathode electrode tank 14 Phosphorus concentrate pool 2 Cyanion unidirectional membrane electrodialysis system 21 Cyanion unidirectional membrane 22 2nd Electrode Electrode Tank 23 2nd Electrode Electrode Tank 24 Nickel Concentrate Pool 1a Bidirectional Film Assembly 11a Anion Exchange Film 12a Cryon Exchange Film 14a Phosphorus Concentrated Pool 24a Nickel Concentrated Pool 2a Electrode Electrode Tank 3a Cathode Electrode Tank

本発明の技術的解決策の理解を容易にするために、以下、図1から図3および具体的な実
施例を参照して本発明をさらに解釈および説明するが、実施例は本発明の保護範囲を限定
するものではない。
In order to facilitate the understanding of the technical solutions of the present invention, the present invention will be further interpreted and described below with reference to FIGS. 1 to 3 and specific examples, but the examples are the protection of the present invention. It does not limit the range.

実施例1:図1に示すように、無電解ニッケルメッキ廃液中のニッケルおよびリン資源を
回収し再利用する方法は、主に以下のステップを含む:
S1、廃液濾過
多段セキュリティフィルターシステムによって無電解ニッケルメッキ廃液を濾過し、無電
解ニッケルメッキ廃液中の粒子不純物を去除し、多段セキュリティフィルターシステムの
濾過方法は以下のとおりである:無電解ニッケルメッキ廃液を多段セキュリティフィルタ
ーシステムに導入し、多段セキュリティフィルターシステム中の複数組の濾過タンクによ
って無電解ニッケルメッキ廃液中の粒子を段階的に濾過および遮断し、濾過タンクの濾過
開口径が上から下に向かって徐々に減少し、濾過後、濾過タンク頂端のスプレー洗浄装置
を使用して濾過で得られた粒子の表面を洗浄し、濾過粒子に付着した無電解ニッケルメッ
キ廃液を分離して無電解ニッケルメッキ廃液本体に返還させる、
S2、廃液中のリンの分離濃縮
陰イオン一方向膜電気透析システム1を使用して濾過された無電解ニッケルメッキ廃液に
対して電気透析処理を行い、無電解ニッケルメッキ廃液中の次亜リン酸塩と亜リン酸塩が
電界力の作用下で、陰イオン一方向膜11を通過してリン濃縮液プール14に入り、無電
解ニッケルメッキ廃液中のリンを分離濃縮してリン濃縮液を得る、
図2に示すように、陰イオン一方向膜電気透析システム1は、無電解ニッケルメッキ廃液
を通過させる陰イオン一方向膜11、陰イオン一方向膜11の両側に設けられた第1の陽
極電極タンク12、第1の陰極電極タンク13を含み、第1の陽極電極タンク12と陰イ
オン一方向膜11の間にリン濃縮液プール14が設けられる、
陰イオン一方向膜電気透析システム1を6日間運転した後、第1の陽極電極タンク12と
第1の陰極電極タンク13の位置を入れ替えて、同時にリン濃縮液を第1の陽極電極タン
ク12と陰イオン一方向膜11の間のリン濃縮液プール14内に再び充填する、
S3、廃液中ニッケルの分離濃縮
陽イオン一方向膜電気透析システム2を使用ていステップS2で処理された無電解ニッケ
ルメッキ廃液に対して電気透析処理を行い、無電解ニッケルメッキ廃液中のニッケルイオ
ンが電界力の作用下で、陽イオン一方向膜21を通過してニッケル濃縮液プール24に入
り、無電解ニッケルメッキ廃液中のニッケルを分離および濃縮してニッケル濃縮液を得る

図2に示すように、陽イオン一方向膜電気透析システム2は、無電解ニッケルメッキ廃液
を通過させる陽イオン一方向膜21、陽イオン一方向膜21両側に設けられた第2の陽極
電極タンク22、第2の陰極電極タンク23を含み、第2の陰極電極タンク23と陽イオ
ン一方向膜21の間ニッケル濃縮液プール24が設けられる、
陽イオン一方向膜電気透析システム2を13日間運転した後、第2の陽極電極タンク22
と第2の陰極電極タンク23の位置を入れ替えて、同時にニッケル濃縮液を第2の陰極電
極タンク23と陽イオン一方向膜21の間のニッケル濃縮液プール24内に再び充填する

S4、リン濃縮液の後処理
ステップS2で得られたリン濃縮液のpHを3に調節し、エレクトロフェントン技術によ
りリン濃縮液を処理し、エレクトロフェントン反応によって生成されたOHの作用下で、
リン濃縮液中の次亜リン酸塩、亜リン酸塩が酸化されオルトリン酸塩になり、オルトリン
酸塩がエレクトロフェントン反応系中のFe3+と反応してリン酸鉄結晶沈殿物を形成し
、得られたリン酸鉄結晶沈殿物を加工してリン酸鉄として回収して再利用し、エレクトロ
フェントン技術によって処理されたリン濃縮液をステップS2に返還させ分離および濃縮
を継続し、さらにリン濃縮液中のリンを回収し、返還回数が2回である、
リン酸鉄結晶沈殿物を加工してリン酸鉄を得るステップは、リン酸鉄結晶沈殿物を蒸留水
で4回洗浄し、洗浄したリン酸鉄結晶沈殿物を70℃で40分間乾燥した後、リン酸鉄結
晶沈殿物を焼結炉に置き、純度99.9%のアルゴンガスを焼結炉の保護ガスとして使用
し、5℃/分の昇温速度で焼結炉中の温度を140℃まで昇温させ、15分間保持した後
、10℃/分の昇温速度で焼結炉中の温度を350℃まで昇温させ、350℃条件下で3
0分間加熱してリン酸鉄を得る、
S5、ニッケル濃縮液の後処理
旋廻流式電解装置を使用してステップS3で得られたニッケル濃縮液を処理し、ニッケル
濃縮液中のニッケルイオンが還元されて陰極に堆積され、得られた金属ニッケルを回収し
て再利用し、旋廻流式電解処理されたニッケル濃縮液をステップS3に返還させ分離およ
び濃縮を継続し、さらにニッケル濃縮液中のニッケルを回収し、返還回数が3回である。
Example 1: As shown in FIG. 1, a method of recovering and reusing nickel and phosphorus resources in electroless nickel plating waste liquid mainly includes the following steps:
S1, Waste liquid filtration The non-electrolytic nickel plating waste liquid is filtered by the multi-stage security filter system to remove particle impurities in the non-electrolytic nickel plating waste liquid, and the filtration method of the multi-stage security filter system is as follows: Was introduced into the multi-stage security filter system, and the particles in the electroless nickel-plated waste liquid were gradually filtered and blocked by multiple sets of filtration tanks in the multi-stage security filter system, and the filtration opening diameter of the filtration tank was directed from top to bottom. After filtration, the surface of the particles obtained by filtration is cleaned using a spray cleaning device at the top of the filtration tank, and the electroless nickel plating waste liquid adhering to the filtered particles is separated and electroless nickel plating. Return to the waste liquid body,
S2, Separation of phosphorus in waste liquid Phosphorus in the electroless nickel plating waste liquid is subjected to electrodialysis treatment using the concentrated anion unidirectional membrane electrodialysis system 1. Under the action of electric field force, the salt and phosphite pass through the anion unidirectional film 11 and enter the phosphorus concentrate pool 14, and the phosphorus in the electroless nickel plating waste liquid is separated and concentrated to obtain a phosphorus concentrate. ,
As shown in FIG. 2, in the anion unidirectional membrane electrodialysis system 1, the anion unidirectional membrane 11 through which the electroless nickel plating waste liquid passes, and the first anode electrodes provided on both sides of the anion unidirectional membrane 11 are provided. A tank 12 and a first cathode electrode tank 13 are included, and a phosphorus concentrate pool 14 is provided between the first anode electrode tank 12 and the anion unidirectional membrane 11.
After operating the anion unidirectional membrane electrodialysis system 1 for 6 days, the positions of the first anode electrode tank 12 and the first cathode electrode tank 13 are exchanged, and at the same time, the phosphorus concentrate is mixed with the first anode electrode tank 12. The phosphorus concentrate pool 14 between the anion unidirectional membranes 11 is refilled.
S3, Separation of Nickel in Waste Liquid Using the concentrated cation unidirectional membrane electrodialysis system 2, the electroless nickel plating waste liquid treated in step S2 is subjected to electrodialysis treatment, and nickel ions in the electroless nickel plating waste liquid are generated. Under the action of electric field force, it passes through the cation unidirectional film 21 and enters the nickel concentrate pool 24, and the nickel in the electroless nickel plating waste liquid is separated and concentrated to obtain a nickel concentrate.
As shown in FIG. 2, the cation unidirectional membrane electrodialysis system 2 has a cation unidirectional membrane 21 through which a non-electrolytic nickel plating waste liquid is passed, and a second anode electrode tank provided on both sides of the cation unidirectional membrane 21. 22, including the second cathode electrode tank 23, a nickel concentrate pool 24 is provided between the second cathode electrode tank 23 and the cation unidirectional membrane 21.
After operating the cation unidirectional membrane electrodialysis system 2 for 13 days, the second anode electrode tank 22
And the position of the second cathode electrode tank 23 are exchanged, and at the same time, the nickel concentrate is refilled in the nickel concentrate pool 24 between the second cathode electrode tank 23 and the cation unidirectional film 21.
S4, Post-treatment of phosphorus concentrate The pH of the phosphorus concentrate obtained in step S2 was adjusted to 3, the phosphorus concentrate was treated by the electro-Fenton technique, and under the action of OH produced by the electro-Fenton reaction.
Hypophosphate and phosphite in the phosphorus concentrate are oxidized to orthophosphate, and the orthophosphate reacts with Fe 3+ in the electrofenton reaction system to form an iron phosphate crystal precipitate. The obtained iron phosphate crystal precipitate is processed, recovered as iron phosphate and reused, and the phosphorus concentrate treated by the electrophenton technique is returned to step S2 to continue separation and concentration, and further phosphorus. Phosphoric acid in the concentrate is recovered and returned twice.
The step of processing the iron phosphate crystal precipitate to obtain iron phosphate is as follows: the iron phosphate crystal precipitate is washed 4 times with distilled water, and the washed iron phosphate crystal precipitate is dried at 70 ° C. for 40 minutes. , Iron phosphate crystal precipitate is placed in a sintering furnace, argon gas with a purity of 99.9% is used as a protective gas for the sintering furnace, and the temperature in the sintering furnace is raised to 140 at a heating rate of 5 ° C./min. After raising the temperature to ° C and holding for 15 minutes, the temperature in the precipitating furnace was raised to 350 ° C at a heating rate of 10 ° C / min, and 3 under 350 ° C conditions.
Heat for 0 minutes to obtain iron phosphate,
S5, Post-treatment of nickel concentrate The nickel concentrate obtained in step S3 is treated using a rotating electrolysis device, and the nickel ions in the nickel concentrate are reduced and deposited on the cathode, and the obtained metal is obtained. Nickel is recovered and reused, and the nickel concentrate that has been subjected to the cyclic electrolytic treatment is returned to step S3 to continue separation and concentration, and the nickel in the nickel concentrate is recovered, and the number of returns is three. ..

実施例2:以下のことを除いて実施例1と大体同じである:
S1、廃液濾過
無電解ニッケルメッキ廃液を1段濾過し、無電解ニッケルメッキ廃液中の粒子不純物を去
除する。
Example 2: Approximately the same as Example 1 except for the following:
S1, Waste liquid filtration Electroless nickel plating Waste liquid is filtered in one stage to remove particle impurities in the electroless nickel plating waste liquid.

実施例3:以下のことを除いて実施例1と大体同じである:
陰イオン一方向膜電気透析システム1を5日間運転した後、第1の陽極電極タンク12と
第1の陰極電極タンク13の位置を入れ替えて、同時にリン濃縮液を第1の陽極電極タン
ク12と陰イオン一方向膜11の間のリン濃縮液プール14内に再び充填する。
Example 3: Approximately the same as Example 1 except for the following:
After operating the anion unidirectional membrane electrodialysis system 1 for 5 days, the positions of the first anode electrode tank 12 and the first cathode electrode tank 13 are exchanged, and at the same time, the phosphorus concentrate is mixed with the first anode electrode tank 12. The phosphorus concentrate pool 14 between the anion unidirectional membranes 11 is refilled.

実施例4:以下のことを除いて実施例1と大体同じである:
陰イオン一方向膜電気透析システム1を7日間運転した後、第1の陽極電極タンク12と
第1の陰極電極タンク13の位置を入れ替えて、同時にリン濃縮液を第1の陽極電極タン
ク12と陰イオン一方向膜11の間のリン濃縮液プール14内に再び充填する。
Example 4: Approximately the same as Example 1 except for the following:
After operating the anion unidirectional membrane electrodialysis system 1 for 7 days, the positions of the first anode electrode tank 12 and the first cathode electrode tank 13 are exchanged, and at the same time, the phosphorus concentrate is mixed with the first anode electrode tank 12. The phosphorus concentrate pool 14 between the anion unidirectional membranes 11 is refilled.

実施例5:以下のことを除いて実施例1と大体同じである:
陽イオン一方向膜電気透析システム2を10日間運転した後、第2の陽極電極タンク22
と第2の陰極電極タンク23の位置を入れ替えて、同時にニッケル濃縮液を第2の陰極電
極タンク23と陽イオン一方向膜21の間のニッケル濃縮液プール24内に再び充填する
Example 5: Approximately the same as Example 1 except for the following:
After running the cation unidirectional membrane electrodialysis system 2 for 10 days, the second anode electrode tank 22
And the position of the second cathode electrode tank 23 are exchanged, and at the same time, the nickel concentrate is refilled in the nickel concentrate pool 24 between the second cathode electrode tank 23 and the cation unidirectional film 21.

実施例6:以下のことを除いて実施例1と大体同じである:
陽イオン一方向膜電気透析システム2を15日間運転した後、第2の陽極電極タンク22
と第2の陰極電極タンク23の位置を入れ替えて、同時にニッケル濃縮液を第2の陰極電
極タンク23と陽イオン一方向膜21の間のニッケル濃縮液プール24内に再び充填する
Example 6: Approximately the same as Example 1 except for the following:
After running the cation unidirectional membrane electrodialysis system 2 for 15 days, the second anode electrode tank 22
And the position of the second cathode electrode tank 23 are exchanged, and at the same time, the nickel concentrate is refilled in the nickel concentrate pool 24 between the second cathode electrode tank 23 and the cation unidirectional film 21.

実施例7:以下のことを除いて実施例1と大体同じである:
S4、リン濃縮液の後処理
ステップS2で得られたリン濃縮液のpHを2.5に調節し、エレクトロフェントン技術
によりリン濃縮液を処理し、エレクトロフェントン反応によって生成されたOH作用下で
、リン濃縮液中の次亜リン酸塩、亜リン酸塩が酸化されてオルトリン酸塩になり、オルト
リン酸塩がエレクトロフェントン反応系中のFe3+と反応してリン酸鉄結晶沈殿物を形
成し、得られたリン酸鉄結晶沈殿物を加工してリン酸鉄として回収して再利用し、エレク
トロフェントン技術で処理されたリン濃縮液をステップS2に返還させ分離および濃縮を
継続し、さらにリン濃縮液中のリンを回収し、返還回数が1回である、
リン酸鉄結晶沈殿物を加工してリン酸鉄を得るステップは、リン酸鉄結晶沈殿物を蒸留水
で3回洗浄し、洗浄したリン酸鉄結晶沈殿物を60℃で30分間乾燥した後、リン酸鉄結
晶沈殿物を焼結炉に置き、純度99.9%のアルゴンガスを焼結炉の保護ガスとして使用
し、5℃/分の昇温速度で焼結炉中の温度を130℃まで昇温させ、10分間保持した後
、10℃/分の昇温速度で焼結炉中の温度を360℃まで昇温させ、360℃条件下で2
5分間加熱してリン酸鉄を得る。
Example 7: Approximately the same as Example 1 except for the following:
S4, Post-treatment of phosphorus concentrate The pH of the phosphorus concentrate obtained in step S2 is adjusted to 2.5, the phosphorus concentrate is treated by the electrofenton technique, and under the OH action produced by the electrofenton reaction, the phosphorus concentrate is treated. Hypophosphate and phosphite in the phosphorus concentrate are oxidized to orthophosphate, and the orthophosphate reacts with Fe 3+ in the electrofenton reaction system to form an iron phosphate crystal precipitate. Then, the obtained iron phosphate crystal precipitate was processed, recovered as iron phosphate and reused, and the phosphorus concentrate treated by the electrofenton technique was returned to step S2 to continue separation and concentration, and further. Phosphorus in the phosphorus concentrate is recovered and returned once.
The step of processing the iron phosphate crystal precipitate to obtain iron phosphate is as follows: the iron phosphate crystal precipitate is washed three times with distilled water, and the washed iron phosphate crystal precipitate is dried at 60 ° C. for 30 minutes. , Iron phosphate crystal precipitate is placed in a sintered furnace, argon gas with a purity of 99.9% is used as a protective gas for the sintered furnace, and the temperature in the sintered furnace is 130 at a heating rate of 5 ° C./min. After raising the temperature to ° C and holding for 10 minutes, the temperature in the precipitating furnace is raised to 360 ° C at a heating rate of 10 ° C / min, and 2 under 360 ° C conditions.
Heat for 5 minutes to obtain iron phosphate.

実施例8:以下のことを除いて実施例1と大体同じである:
S4、リン濃縮液の後処理
ステップS2で得られたリン濃縮液のpHを4に調節し、エレクトロフェントン技術によ
りリン濃縮液を処理し、エレクトロフェントン反応によって生成されたOH作用下で、リ
ン濃縮液中の次亜リン酸塩、亜リン酸塩が酸化されてオルトリン酸塩になり、オルトリン
酸塩がエレクトロフェントン反応系中のFe3+と反応してリン酸鉄結晶沈殿物を形成し
、得られたリン酸鉄結晶沈殿物を加工してリン酸鉄として回収して再利用し、エレクトロ
フェントン技術で処理されたリン濃縮液をステップS2に返還させ分離および濃縮を継続
し、さらにリン濃縮液中のリンを回収し、返還回数が3回である、
リン酸鉄結晶沈殿物を加工してリン酸鉄を得るステップは、リン酸鉄結晶沈殿物を蒸留水
で5回洗浄し、洗浄したリン酸鉄結晶沈殿物を80℃で50分間乾燥した後、リン酸鉄結
晶沈殿物を焼結炉に置き、純度99.9%のアルゴンガスを焼結炉の保護ガスとして使用
し、5℃/分の昇温速度で焼結炉中の温度を150℃まで昇温させ、20分間保持した後
、10℃/分の昇温速度で焼結炉中の温度を370℃まで昇温させ、370℃条件下で2
0分間加熱してリン酸鉄を得る。
Example 8: Approximately the same as Example 1 except for the following:
S4, Post-treatment of phosphorus concentrate The pH of the phosphorus concentrate obtained in step S2 is adjusted to 4, the phosphorus concentrate is treated by the electrofenton technique, and the phosphorus concentrate is subjected to the OH action generated by the electrofenton reaction. Hypophosphate and phosphite in the liquid are oxidized to orthophosphate, and the orthophosphate reacts with Fe 3+ in the electrofenton reaction system to form an iron phosphate crystal precipitate. The obtained iron phosphate crystal precipitate is processed, recovered as iron phosphate and reused, and the phosphorus concentrate treated by the electrofenton technique is returned to step S2 to continue separation and concentration, and further phosphorus concentration. Phosphoric acid in the liquid is collected and returned 3 times.
The step of processing the iron phosphate crystal precipitate to obtain iron phosphate is as follows: the iron phosphate crystal precipitate is washed 5 times with distilled water, and the washed iron phosphate crystal precipitate is dried at 80 ° C. for 50 minutes. , Iron phosphate crystal precipitate is placed in a sintering furnace, argon gas with a purity of 99.9% is used as a protective gas for the sintering furnace, and the temperature in the sintering furnace is set to 150 at a heating rate of 5 ° C./min. The temperature was raised to 370 ° C., held for 20 minutes, and then the temperature in the precipitating furnace was raised to 370 ° C. at a heating rate of 10 ° C./min.
Heat for 0 minutes to obtain iron phosphate.

実施例9:以下のことを除いて実施例1と大体同じである:
S5、ニッケル濃縮液の後処理
旋廻流式電解装置を使用してステップS3で得られたニッケル濃縮液を処理し、ニッケル
濃縮液中のニッケルイオンが還元されて陰極に堆積され、得られた金属ニッケルを回収し
て再利用し、旋廻流式電解処理されたニッケル濃縮液をステップS3に返還させ分離およ
び濃縮を継続し、さらにニッケル濃縮液中のニッケルを回収し、返還回数が1回である。
Example 9: Approximately the same as Example 1 except for the following:
S5, Post-treatment of nickel concentrate The nickel concentrate obtained in step S3 is treated using a rotating electrolysis device, and the nickel ions in the nickel concentrate are reduced and deposited on the cathode, and the obtained metal is obtained. Nickel is recovered and reused, and the nickel concentrate that has been subjected to the cyclic electrolytic treatment is returned to step S3 to continue separation and concentration, and the nickel in the nickel concentrate is recovered, and the number of returns is one. ..

実施例10:以下のことを除いて実施例1と大体同じである:
S5、ニッケル濃縮液の後処理
旋廻流式電解装置を使用してステップS3で得られたニッケル濃縮液を処理し、ニッケル
濃縮液中のニッケルイオンが還元されて陰極に堆積され、得られた金属ニッケルを回収し
て再利用し、旋廻流式電解処理されたニッケル濃縮液をステップS3に返還させ分離およ
び濃縮を継続し、さらにニッケル濃縮液中のニッケルを回収し、返還回数が5回である。
Example 10: Approximately the same as Example 1 except for the following:
S5, Post-treatment of nickel concentrate The nickel concentrate obtained in step S3 is treated using a swirl-flow type electrolytic device, and the nickel ions in the nickel concentrate are reduced and deposited on the cathode, and the obtained metal is obtained. Nickel is recovered and reused, and the nickel concentrate that has been subjected to the cyclic electrolytic treatment is returned to step S3 to continue separation and concentration, and the nickel in the nickel concentrate is recovered, and the number of returns is 5 times. ..

実施例11:無電解ニッケルメッキ廃液中のニッケルおよびリン資源を回収し再利用する
方法は、主に以下のステップを含む:
S1、廃液濾過
多段セキュリティフィルターシステムによって無電解ニッケルメッキ廃液を濾過し、無電
解ニッケルメッキ廃液中の粒子不純物を去除し、多段セキュリティフィルターシステムの
濾過方法は以下のとおりである:無電解ニッケルメッキ廃液を多段セキュリティフィルタ
ーシステムに導入し、多段セキュリティフィルターシステム中の複数組の濾過タンクによ
って無電解ニッケルメッキ廃液中の粒子を段階的に濾過および遮断し、濾過タンクの濾過
開口径が上から下に向かって徐々に減少し、濾過後、濾過タンク頂端のスプレー洗浄装置
を使用して濾過で得られた粒子の表面を洗浄し、濾過粒子に付着した無電解ニッケルメッ
キ廃液を分離して無電解ニッケルメッキ廃液本体に返還させる、
S2、廃液中のリン、ニッケルを同期に分離および濃縮する
図3に示すように、同期電気透析システムは、無電解ニッケルメッキ廃液を通過させる双
方向膜組1a、双方向膜組1a両側に設けられた陽極電極タンク2a、陰極電極タンク3
aを含み、
双方向膜組1aの陽極電極タンク2aに近い側が陰イオン交換膜11aであり、陰イオン
交換膜11aと陽極電極タンク2aの間にリン濃縮プール14aが設けられ、無電解ニッ
ケルメッキ廃液中の次亜リン酸塩、亜リン酸塩が電界力の作用下で、陰イオン交換膜11
aを通過してリン濃縮液14aに入り、無電解ニッケルメッキ廃液中のリンを分離および
濃縮してリン濃縮液を得る、
双方向膜組1aの陰極電極タンク3aに近い側が陽イオン交換膜12aであり、陽イオン
交換膜12aと陰極電極タンク3aの間にニッケル濃縮プール24aが設けられ、無電解
ニッケルメッキ廃液中のニッケルイオンが電界力の作用下で、陽イオン交換膜12aを通
過してニッケル濃縮プール14aに入り、無電解ニッケルメッキ廃液中のニッケルを分離
および濃縮してニッケル濃縮液を得る、
S3、リン濃縮液の後処理
ステップS2で得られたリン濃縮液のpHを3に調節し、エレクトロフェントン技術によ
りリン濃縮液を処理し、エレクトロフェントン反応によって生成されたOH作用下で、リ
ン濃縮液中の次亜リン酸塩、亜リン酸塩が酸化されてオルトリン酸塩になり、オルトリン
酸塩がエレクトロフェントン反応系中のFe3+と反応してリン酸鉄結晶沈殿物を形成し
、得られたリン酸鉄結晶沈殿物を加工してリン酸鉄として回収して再利用し、エレクトロ
フェントン技術処理されたリン濃縮液をステップS2に返還させ分離および濃縮を継続し
、さらにリン濃縮液中のリンを回収し、返還回数が2回である、
リン酸鉄結晶沈殿物を加工してリン酸鉄を得るステップは、リン酸鉄結晶沈殿物を蒸留水
で4回洗浄し、洗浄したリン酸鉄結晶沈殿物を70℃で40分間乾燥した後、リン酸鉄結
晶沈殿物を焼結炉に置き、純度99.9%のアルゴンガスを焼結炉の保護ガスとして使用
し、5℃/分の昇温速度で焼結炉中の温度を140℃まで昇温させ、15分間保持した後
、10℃/分の昇温速度で焼結炉中の温度を350℃まで昇温させ、350℃条件下で3
0分間加熱してリン酸鉄を得る。
S4、ニッケル濃縮液の後処理
旋廻流式電解装置を使用してステップS2で得られたニッケル濃縮液を処理し、ニッケル
濃縮液中のニッケルイオンが還元されて陰極に堆積され、得られた金属ニッケルを回収し
て再利用し、旋廻流式電解処理されたニッケル濃縮液をステップS2に返還させ分離およ
び濃縮を継続し、さらにニッケル濃縮液中のニッケルを回収し、返還回数が3回である。
Example 11: A method for recovering and reusing nickel and phosphorus resources in electroless nickel plating waste liquid mainly includes the following steps:
S1, Waste liquid filtration The non-electrolytic nickel plating waste liquid is filtered by the multi-stage security filter system to remove particle impurities in the non-electrolytic nickel plating waste liquid, and the filtration method of the multi-stage security filter system is as follows: Was introduced into the multi-stage security filter system, and the particles in the electroless nickel-plated waste liquid were gradually filtered and blocked by multiple sets of filtration tanks in the multi-stage security filter system, and the filtration opening diameter of the filtration tank was directed from top to bottom. After filtration, the surface of the particles obtained by filtration is cleaned using a spray cleaning device at the top of the filtration tank, and the electroless nickel plating waste liquid adhering to the filtered particles is separated and electroless nickel plating. Return to the waste liquid body,
S2, phosphorus and nickel in the waste liquid are separated and concentrated synchronously. As shown in FIG. 3, the synchronous electrodialysis system is provided on both sides of the bidirectional membrane set 1a and the bidirectional membrane set 1a through which the electroless nickel plating waste liquid is passed. Anode electrode tank 2a, cathode electrode tank 3
Including a
The side of the bidirectional membrane assembly 1a near the anode electrode tank 2a is the anion exchange membrane 11a, and a phosphorus concentration pool 14a is provided between the anion exchange membrane 11a and the anode electrode tank 2a. Anion exchange membrane 11 under the action of sulphate and sulphate under the action of electric field force
It passes through a and enters the phosphorus concentrate 14a, and the phosphorus in the electroless nickel plating waste liquid is separated and concentrated to obtain a phosphorus concentrate.
The side of the bidirectional film assembly 1a close to the cathode electrode tank 3a is the cation exchange film 12a, and a nickel concentration pool 24a is provided between the cation exchange film 12a and the cathode electrode tank 3a, and nickel in the non-electrolytic nickel plating waste liquid is provided. Under the action of electric field force, ions pass through the cation exchange film 12a and enter the nickel concentration pool 14a, and the nickel in the non-electrolytic nickel plating waste liquid is separated and concentrated to obtain a nickel concentrate.
S3, Post-treatment of phosphorus concentrate The pH of the phosphorus concentrate obtained in step S2 is adjusted to 3, the phosphorus concentrate is treated by the electrofenton technique, and the phosphorus concentrate is subjected to the OH action generated by the electrofenton reaction. Hypophosphate and phosphite in the liquid are oxidized to orthophosphate, and the orthophosphate reacts with Fe 3+ in the electrofenton reaction system to form an iron phosphate crystal precipitate. The obtained iron phosphate crystal precipitate is processed, recovered as iron phosphate and reused, and the phosphorus concentrate treated with electrofenton technology is returned to step S2 to continue separation and concentration, and further phosphorus concentrate. The phosphorus inside is collected and returned twice.
The step of processing the iron phosphate crystal precipitate to obtain iron phosphate is as follows: the iron phosphate crystal precipitate is washed 4 times with distilled water, and the washed iron phosphate crystal precipitate is dried at 70 ° C. for 40 minutes. , Iron phosphate crystal precipitate is placed in a sintering furnace, argon gas with a purity of 99.9% is used as a protective gas for the sintering furnace, and the temperature in the sintering furnace is raised to 140 at a heating rate of 5 ° C./min. After raising the temperature to ° C and holding for 15 minutes, the temperature in the precipitating furnace was raised to 350 ° C at a heating rate of 10 ° C / min, and 3 under 350 ° C conditions.
Heat for 0 minutes to obtain iron phosphate.
S4, Post-treatment of nickel concentrate The nickel concentrate obtained in step S2 is treated using a swirl-flow type electrolytic device, and the nickel ions in the nickel concentrate are reduced and deposited on the cathode, and the obtained metal is obtained. Nickel is recovered and reused, and the nickel concentrate that has been subjected to the cyclic electrolytic treatment is returned to step S2 to continue separation and concentration, and the nickel in the nickel concentrate is recovered, and the number of returns is three. ..

実験例1:多段濾過セキュリティシステムによるニッケルおよびリン資源のリサイクルに
対する影響を研究する
それぞれ実施例1、実施例2の方法によって無電解ニッケルメッキ廃液を処理し、結果が
以下の通りである:
実施例1:多段セキュリティシステムによる無電解ニッケルメッキ廃液中の不純物粒子の
濾過が比較的完全であり、後の電気透析処理では、陰イオン交換膜と陽イオン交換膜の詰
まり面積が小さく、交換膜の使用寿命が長く、スプレー洗浄された不純物粒子を直接埋め
たり加工処理したりでき、後の処理コストが低い、
実施例2:1段濾過による無電解ニッケルメッキ廃液中の不純物粒子の濾過が完全ではな
く、濾過タンクの詰まりが発生しやすく、後の電気透析処理では、陰イオン交換膜と陽イ
オン交換膜の詰まり面積が大きく、交換膜の使用寿命が短く、濾過で得られた不純物粒子
には無電解ニッケルメッキ廃液が付着しているため、直接に埋めたり加工処理したりでき
ず、後の処理コストが高い。
結論:本発明の実施例1によって提供される多段セキュリティフィルターシステムは、電
気透析処理中の交換膜の使用寿命を延ばし、不純物粒子を濾過した後の処理コストを削減
することができる。
実験例2:電極タンクの入れ替えによるニッケルおよびリン資源のリサイクルに対する影
響を研究する
実施例1、実施例3~6の方法によって無電解ニッケルメッキ廃液中のニッケル、リン資
源をリサイクルし、比較組1を設定し、比較組1は、以下のことを除いて実施例1と大体
同じであり、比較組1中の第1の陽極電極タンクと第1の陰極電極タンク、第2の陽極電
極タンクと第2の陰極電極タンクの位置を入れ替えず、処理結果が表1に示される:
表1 電極タンクの入れ替えによる無電解ニッケルメッキ廃液処理に対する影響の比較表
Experimental Example 1: Studying the effect of the multi-stage filtration security system on the recycling of nickel and phosphorus resources The electroless nickel plating waste liquid was treated by the methods of Example 1 and Example 2, respectively, and the results are as follows:
Example 1: Filtration of impurity particles in the electroless nickel plating waste liquid by a multi-stage security system is relatively complete, and in the subsequent electrodialysis treatment, the clogged area of the anion exchange membrane and the cation exchange membrane is small, and the exchange membrane is used. Has a long service life, can directly bury or process spray-cleaned impurity particles, and has low post-processing costs.
Example 2: Electrolytic nickel plating by one-stage filtration The filtration of impurity particles in the waste liquid is not complete, and the filtration tank is likely to be clogged. In the subsequent electrodialysis treatment, the anion exchange membrane and the cation exchange membrane are used. The clogged area is large, the service life of the exchange membrane is short, and the impurity particles obtained by filtration have non-electrodialytic nickel plating waste liquid attached to them, so they cannot be directly buried or processed, resulting in post-processing costs. high.
CONCLUSIONS: The multi-stage security filter system provided by Example 1 of the present invention can extend the useful life of the exchange membrane during electrodialysis treatment and reduce the treatment cost after filtering the impurity particles.
Experimental Example 2: Studying the effect of replacement of the electrode tank on the recycling of nickel and phosphorus resources The nickel and phosphorus resources in the electroless nickel plating waste liquid are recycled by the methods of Examples 1 and 3 to 6, and Comparative Group 1 The comparison group 1 is substantially the same as that of the first embodiment except for the following, and the first anode electrode tank, the first cathode electrode tank, and the second anode electrode tank in the comparison group 1 are used. The processing results are shown in Table 1 without swapping the positions of the second cathode electrode tank:
Table 1 Comparison table of the effect of replacing the electrode tank on the electroless nickel plating waste liquid treatment

Figure 0006990348000002
Figure 0006990348000002

結論:陰極電極タンクおよび陽極電極タンクを周期的に入り替えることで、陰イオン交換
膜と陽イオン交換膜の使用寿命を大幅に延ばし、処理コストを削減することができる。
実験例3:リン濃縮液の後処理液、ニッケル濃縮液の後処理液の返還回数によるニッケル
およびリン資源を回収し再利用する方法に対する影響を研究する
実施例1、実施例7~10の方法により無電解ニッケルメッキ廃液中のニッケル、リン資
源をリサイクルし、比較組2を設定し、比較組2は、以下のことを除いて実施例1と大体
同じであり、比較組2中のリン濃縮液の後処理液、ニッケル濃縮液の後処理液が直接排出
され、処理結果が表2に示される:
表2 後処理液の返還処理による無電解ニッケルメッキ廃液処理に対する影響の比較表
Conclusion: By periodically replacing the cathode electrode tank and the anode electrode tank, the service life of the anion exchange membrane and the cation exchange membrane can be significantly extended and the processing cost can be reduced.
Experimental Example 3: Methods of Examples 1 and 7 to 10 for studying the influence of the number of returns of the post-treatment solution of the phosphorus concentrate and the post-treatment solution of the nickel concentrate on the method of recovering and reusing nickel and phosphorus resources. The nickel and phosphorus resources in the electroless nickel plating waste liquid are recycled and the comparison group 2 is set. The comparison group 2 is almost the same as the example 1 except for the following, and the phosphorus concentration in the comparison group 2 is obtained. The post-treatment liquid of the liquid and the post-treatment liquid of the nickel concentrate are directly discharged, and the treatment results are shown in Table 2.
Table 2 Comparison table of the effect of the return treatment of the post-treatment liquid on the electroless nickel plating waste liquid treatment

Figure 0006990348000003
Figure 0006990348000003

結論:リン濃縮液の後処理液、ニッケル濃縮液の後処理液の返還処理回数が多いほど、排
出液中のリン、ニッケルの含有量が低くなるが、それに応じてコストが高くなり、表2か
ら分かるように、実施例1の方法は、コスト性能が高く、排出液中のリン、ニッケル含有
量が排出標準を満たし、且つ処理コストが比較的に低い。
実験例4:廃液中のリン、ニッケルの段階的分離濃縮と同期分離濃縮の区別を研究する
実施例1、実施例11の方法により無電解ニッケルメッキ廃液を処理し、結果が以下のと
おりである:
実施例1では、リン、ニッケルを段階的に分離および濃縮し、陰イオン一方向膜電気透析
システムでは、陽イオン一方向膜電気透析システムと電界力の強度が異なるため、処理時
間も異なり、段階的に処理すれば無電解ニッケルメッキ廃液中のリン、ニッケルを最大限
に分離および濃縮できるが、実施例11ではリン、ニッケルを同期して分離および濃縮し
、陰イオン一方向膜電気透析システムでは、陽イオン一方向膜電気透析システムと電界力
の強度が異なり、処理時間も異なるため、電界力要求の低いまたは高い電気透析システム
に従って電界力を印可すれば、分離効果が悪く、同様に、短いまたは長い処理時間とする
と分離および濃縮効率が低下するため、同期分離濃縮は統合性が高いものの、分離濃縮効
率が低いが、段階的分離濃縮は2段階であるが分離効率が高い。
Conclusion: The more times the post-treatment liquid of phosphorus concentrate and the post-treatment liquid of nickel concentrate are returned, the lower the content of phosphorus and nickel in the effluent, but the higher the cost, and Table 2 As can be seen from the above, the method of Example 1 has high cost performance, the phosphorus and nickel contents in the effluent satisfy the discharge standard, and the treatment cost is relatively low.
Experimental Example 4: Electroless nickel plating waste liquid is treated by the methods of Examples 1 and 11 for studying the distinction between the stepwise separation and concentration of phosphorus and nickel in the waste liquid and the synchronous separation and concentration, and the results are as follows. :
In Example 1, phosphorus and nickel are separated and concentrated stepwise, and the anion unidirectional membrane electrodialysis system has a different electric field force strength from the cationic unidirectional membrane electrodialysis system, so that the treatment time is also different and the stage. The phosphorus and nickel in the electroless nickel plating waste liquid can be separated and concentrated to the maximum extent, but in Example 11, phosphorus and nickel are separated and concentrated synchronously, and in the anion unidirectional membrane electrodialysis system. , The strength of the electric field force is different from that of the cation unidirectional membrane electrodialysis system, and the processing time is also different. Alternatively, if the treatment time is long, the separation and concentration efficiency is lowered, so that the synchronous separation and concentration has high integration, but the separation and concentration efficiency is low, but the stepwise separation and concentration is two-step, but the separation efficiency is high.

Claims (7)

ステップS1、廃液濾過
多段セキュリティフィルターシステムによって無電解ニッケルメッキ廃液を濾過し、無電
解ニッケルメッキ廃液中の粒子不純物を除去するステップと、
ステップS2、廃液中のリンの分離濃縮
陰イオン一方向膜電気透析システム(1)を使用して濾過された無電解ニッケルメッキ廃
液に対して電気透析処理を行い、無電解ニッケルメッキ廃液中の次亜リン酸塩と亜リン酸
塩が電界力の作用下で、陰イオン一方向膜(11)を通過してリン濃縮液プール(14)
に入り、無電解ニッケルメッキ廃液中のリンを分離濃縮してリン濃縮液を得るステップと

ステップS3、廃液中ニッケルの分離濃縮
陽イオン一方向膜電気透析システム(2)を使用して、ステップS2で処理された無電解
ニッケルメッキ廃液に対して電気透析処理を行い、無電解ニッケルメッキ廃液中のニッケ
ルイオンが電界力の作用下で、陽イオン一方向膜(21)を通過してニッケル濃縮液プー
ル(24)に入り、無電解ニッケルメッキ廃液中のニッケルを分離濃縮してニッケル濃縮
液を得るステップと、
ステップS4、リン濃縮液の後処理
ステップS2で得られたリン濃縮液のpHを2.5~4に調節し、エレクトロフェントン
技術を使用してリン濃縮液を処理し、エレクトロフェントン反応によって生成されたOH
の作用下で、リン濃縮液中の次亜リン酸塩、亜リン酸塩が酸化されてオルトリン酸塩にな
り、オルトリン酸塩とエレクトロフェントン反応系中のFe3+と反応してリン酸鉄結晶
沈殿物を形成し、得られたリン酸鉄結晶沈殿物を加工してリン酸鉄に回収して再利用する
ステップと、
ステップS5、ニッケル濃縮液の後処理
旋廻流式電解装置を使用してステップS3で得られたニッケル濃縮液を処理し、ニッケル
濃縮液中のニッケルイオンが還元されて陰極に堆積され、金属ニッケルを回収して再利用
するステップと、
を含むことを特徴とする無電解ニッケルメッキ廃液中のニッケルおよびリン資源を回収し
再利用する方法。
Step S1, the step of filtering the electroless nickel plating waste liquid by the waste liquid filtration multi-stage security filter system and removing the particle impurities in the electroless nickel plating waste liquid,
Step S2, Separation of Phosphorus in Waste Liquid Concentrated anion One-way membrane electrodialysis system (1) is used to perform electrodialysis treatment on the filtered non-electrolytic nickel-plated waste liquid, and the next step in the non-electrolytic nickel-plated waste liquid. Phosphorus and phosphite pass through the anion unidirectional membrane (11) under the action of electrodialysis and the phosphorus concentrate pool (14).
In the step of separating and concentrating phosphorus in the electroless nickel plating waste liquid to obtain a phosphorus concentrate,
Step S3, Separation of Nickel in Waste Liquid Using the concentrated cation unidirectional membrane electrodialysis system (2), electroless nickel plating waste liquid treated in step S2 is subjected to electrodialysis treatment to perform electroless nickel plating waste liquid. Under the action of electric field force, the nickel ions inside pass through the cation unidirectional film (21) and enter the nickel concentrate pool (24), and the nickel in the electroless nickel plating waste liquid is separated and concentrated to concentrate the nickel concentrate. And the steps to get
Step S4, Post-treatment of Phosphorus Concentrate The pH of the phosphorus concentrate obtained in Step S2 is adjusted to 2.5-4, the phosphorus concentrate is treated using electro-Fenton technology, and it is produced by the electro-Fenton reaction. OH
Under the action of, the hypophosphite and phosphite in the phosphorus concentrate are oxidized to orthophosphate, which reacts with the orthophosphate and Fe 3+ in the electrofenton reaction system to iron phosphate. A step of forming a crystal precipitate, processing the obtained iron phosphate crystal precipitate, recovering it into iron phosphate, and reusing it.
Step S5, Post-treatment of nickel concentrate The nickel concentrate obtained in step S3 is treated using a rotating electrolyzer, and the nickel ions in the nickel concentrate are reduced and deposited on the cathode to produce metallic nickel. Steps to collect and reuse,
A method for recovering and reusing nickel and phosphorus resources in an electroless nickel plating waste liquid, which comprises.
前記多段セキュリティフィルターシステムの濾過方法は、無電解ニッケルメッキ廃液を多
段セキュリティフィルターシステムに導入し、多段セキュリティフィルターシステム中の
複数組の濾過タンクによって無電解ニッケルメッキ廃液中の粒子を段階的に濾過および遮
断し、前記濾過タンクの濾過開口径が上から下に向かって徐々に減少し、濾過後、濾過タ
ンク頂端のスプレー洗浄装置を使用して、濾過によって得られた粒子の表面を洗浄し、濾
過粒子に付着した無電解ニッケルメッキ廃液を分離して無電解ニッケルメッキ廃液本体に
返還する、
ことを特徴とする請求項1に記載の無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法。
In the filtration method of the multi-stage security filter system, the non-electrolytic nickel-plated waste liquid is introduced into the multi-stage security filter system, and the particles in the non-electrolytic nickel-plated waste liquid are gradually filtered and filtered by a plurality of sets of filtration tanks in the multi-stage security filter system. After blocking, the filtration opening diameter of the filtration tank gradually decreases from top to bottom, and after filtration, the surface of the particles obtained by filtration is cleaned and filtered using a spray cleaning device at the top of the filtration tank. Separate the non-electrolytic nickel plating waste liquid adhering to the particles and return it to the main body of the non-electrolytic nickel plating waste liquid.
The method for recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid according to claim 1.
前記陰イオン一方向膜電気透析システム(1)は、無電解ニッケルメッキ廃液を通過させ
るための陰イオン一方向膜(11)、前記陰イオン一方向膜(11)両側に設けられた第
1の陽極電極タンク(12)、第1の陰極電極タンク(13)を含み、前記第1の陽極電
極タンク(12)と陰イオン一方向膜(11)の間にリン濃縮液プール(14)が設けら
れ、前記陰イオン一方向膜電気透析システム(1)を5~7日間運転した後、前記第1の
陽極電極タンク(12)と第1の陰極電極タンク(13)の位置を入れ替えて、同時にリ
ン濃縮液を第1の陽極電極タンク(12)と陰イオン一方向膜(11)間のリン濃縮液プ
ール(14)内に再び充填する、
ことを特徴とする請求項1に記載の無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法。
The anion unidirectional membrane electrodialysis system (1) is a first anion unidirectional membrane (11) for passing a non-electrolytic nickel plating waste liquid, and a first anion unidirectional membrane (11) provided on both sides of the anion unidirectional membrane (11). An anode electrode tank (12) and a first cathode electrode tank (13) are included, and a phosphorus concentrate pool (14) is provided between the first anode electrode tank (12) and the anion unidirectional film (11). After operating the anion unidirectional membrane electrodialysis system (1) for 5 to 7 days, the positions of the first anode electrode tank (12) and the first cathode electrode tank (13) are exchanged at the same time. The phosphorus concentrate is refilled in the phosphorus concentrate pool (14) between the first anode electrode tank (12) and the anion unidirectional membrane (11).
The method for recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid according to claim 1.
前記陽イオン一方向膜電気透析システム(2)は、無電解ニッケルメッキ廃液を通過させ
る陽イオン一方向膜(21)、前記陽イオン一方向膜(21)の両側に設けられた第2の
陽極電極タンク(22)、第2の陰極電極タンク(23)を含み、前記第2の陰極電極タ
ンク(23)と陽イオン一方向膜(21)間にニッケル濃縮液プール(24)が設けられ
、前記陽イオン一方向膜電気透析システム(2)を10~15日間を運転した後、前記第
2の陽極電極タンク(22)と第2の陰極電極タンク(23)の位置を入れ替えて、同時
にニッケル濃縮液を第2の陰極電極タンク(23)と陽イオン一方向膜(21)間のニッ
ケル濃縮液プール(24)内に再び充填する、
ことを特徴とする請求項1に記載の無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法。
The cation unidirectional membrane electrodialysis system (2) has a cation unidirectional membrane (21) through which a non-electrolytic nickel plating waste liquid is passed, and a second anode provided on both sides of the cation unidirectional membrane (21). A nickel concentrate pool (24) is provided between the second cathode electrode tank (23) and the cation unidirectional membrane (21), including an electrode tank (22) and a second cathode electrode tank (23). After operating the cation unidirectional membrane electrodialysis system (2) for 10 to 15 days, the positions of the second anode electrode tank (22) and the second cathode electrode tank (23) are exchanged, and at the same time, nickel is used. The concentrate is refilled in the nickel concentrate pool (24) between the second cathode electrode tank (23) and the cation unidirectional membrane (21).
The method for recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid according to claim 1.
前記リン酸鉄結晶沈殿物を加工してリン酸鉄を得るステップは、リン酸鉄結晶沈殿物を蒸
留水で3~5回洗浄し、洗浄したリン酸鉄結晶沈殿物を60~80℃で30~50分乾燥
し、そしてリン酸鉄結晶沈殿物を焼結炉に置き、純度99.9%のアルゴンガスを焼結炉
の保護ガスとして使用し、5℃/分の昇温速度で焼結炉中の温度を130~150℃まで
昇温させ、10~20分間保持した後、10℃/分の昇温速度で焼結炉中の温度を350
~370℃まで昇温させ、350~370℃の条件下で20~30分間加熱してリン酸鉄
を得ることを含む、
ことを特徴とする請求項1に記載の無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法。
In the step of processing the iron phosphate crystal precipitate to obtain iron phosphate, the iron phosphate crystal precipitate is washed with distilled water 3 to 5 times, and the washed iron phosphate crystal precipitate is washed at 60 to 80 ° C. After drying for 30 to 50 minutes, the iron phosphate crystal precipitate is placed in a sintering furnace, and argon gas having a purity of 99.9% is used as a protective gas for the sintering furnace and baked at a heating rate of 5 ° C./min. After raising the temperature in the furnace to 130-150 ° C and holding it for 10-20 minutes, the temperature in the sintering furnace is raised to 350 at a heating rate of 10 ° C / min.
Includes heating to ~ 370 ° C. and heating under conditions of 350 to 370 ° C. for 20-30 minutes to obtain iron phosphate.
The method for recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid according to claim 1.
前記エレクトロフェントン技術で処理されたリン濃縮液をステップS2に返還して分離お
よび濃縮を継続し、さらにリン濃縮液中のリンを回収し、返還回数が1~3回である、
ことを特徴とする請求項1に記載の無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法。
The phosphorus concentrate treated by the electrofenton technique is returned to step S2 to continue separation and concentration, and phosphorus in the phosphorus concentrate is recovered, and the number of returns is 1 to 3 times.
The method for recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid according to claim 1.
前記旋廻流式電解で処理されたニッケル濃縮液をステップS3に返還して分離および濃縮
を継続し、さらにニッケル濃縮液中のニッケルを回収し、返還回数が1~5回である、
ことを特徴とする請求項1に記載の無電解ニッケルメッキ廃液中のニッケルおよびリン資
源を回収し再利用する方法。
The nickel concentrate treated by the rotary electrolysis is returned to step S3 to continue separation and concentration, and nickel in the nickel concentrate is recovered, and the number of returns is 1 to 5 times.
The method for recovering and reusing nickel and phosphorus resources in the electroless nickel plating waste liquid according to claim 1.
JP2021138438A 2021-07-23 2021-08-26 How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid Active JP6990348B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110836834.6 2021-07-23
CN202110836834.6A CN113636691B (en) 2021-07-23 2021-07-23 Method for recycling nickel and phosphorus resources in chemical nickel plating waste liquid

Publications (2)

Publication Number Publication Date
JP6990348B1 true JP6990348B1 (en) 2022-01-12
JP2023016648A JP2023016648A (en) 2023-02-02

Family

ID=78418279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021138438A Active JP6990348B1 (en) 2021-07-23 2021-08-26 How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid

Country Status (2)

Country Link
JP (1) JP6990348B1 (en)
CN (1) CN113636691B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772779A (en) * 2022-04-18 2022-07-22 安徽志远环境工程有限公司 Treatment method of chemical nickel plating wastewater

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114247290B (en) * 2021-11-29 2023-09-19 无锡市道格环保科技有限公司 Electrodialysis enrichment facility of retrieving heavy metal in follow heavy metal waste water
CN114032558B (en) * 2021-12-14 2022-11-15 北京科技大学 Method for preparing NiP micron particles from chemical nickel plating waste liquid through electrolysis
CN116425134A (en) * 2023-02-10 2023-07-14 乐清力川环保科技有限公司 Method for preparing super-battery-level ferric phosphate by using chemical nickel plating aging liquid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754200A (en) * 1993-08-06 1995-02-28 Asahi Glass Co Ltd Treatment of waste nickel plating liquid
JPH11226596A (en) * 1998-02-15 1999-08-24 Warp Engineering:Kk Method and apparatus for treating electroless nickel plating waste solution
JP2004052029A (en) * 2002-07-18 2004-02-19 Okuno Chem Ind Co Ltd Treatment method and treatment apparatus for electroless nickel-plating liquid
JP2010229449A (en) * 2009-03-26 2010-10-14 C Uyemura & Co Ltd Method of regenerating electroless plating liquid
WO2013153692A1 (en) * 2012-04-13 2013-10-17 旭化成株式会社 Method for collecting lithium
CN108315558A (en) * 2018-02-27 2018-07-24 浙江迪萧环保科技有限公司 A kind of processing method of acidic chemical nickel Ageing solution
CN209583854U (en) * 2018-12-07 2019-11-05 杭州水处理技术研究开发中心有限公司 A kind of chemical nickle-plating wastewater processing equipment
JP2021090950A (en) * 2019-08-13 2021-06-17 学校法人沖縄科学技術大学院大学学園 Waste liquid treatment method and waste liquid treatment system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845623A (en) * 2010-04-13 2010-09-29 大连理工大学 Method for regenerating chemical nickel-plating ageing liquid by combining with electrochemical method and chemical method
JP5711503B2 (en) * 2010-11-08 2015-04-30 拓夫 川原 Method and apparatus for regenerating electroless nickel plating solution
CN102616961A (en) * 2012-03-29 2012-08-01 李朝林 Method for degrading organic pollutant and recycling phosphate in chemical nickel-plating waste liquid
CN104724795B (en) * 2015-03-23 2017-11-10 轻工业环境保护研究所 A kind of electrochemical treatments system and electrochemical method for handling nickel-containing waste water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754200A (en) * 1993-08-06 1995-02-28 Asahi Glass Co Ltd Treatment of waste nickel plating liquid
JPH11226596A (en) * 1998-02-15 1999-08-24 Warp Engineering:Kk Method and apparatus for treating electroless nickel plating waste solution
JP2004052029A (en) * 2002-07-18 2004-02-19 Okuno Chem Ind Co Ltd Treatment method and treatment apparatus for electroless nickel-plating liquid
JP2010229449A (en) * 2009-03-26 2010-10-14 C Uyemura & Co Ltd Method of regenerating electroless plating liquid
WO2013153692A1 (en) * 2012-04-13 2013-10-17 旭化成株式会社 Method for collecting lithium
CN108315558A (en) * 2018-02-27 2018-07-24 浙江迪萧环保科技有限公司 A kind of processing method of acidic chemical nickel Ageing solution
CN209583854U (en) * 2018-12-07 2019-11-05 杭州水处理技术研究开发中心有限公司 A kind of chemical nickle-plating wastewater processing equipment
JP2021090950A (en) * 2019-08-13 2021-06-17 学校法人沖縄科学技術大学院大学学園 Waste liquid treatment method and waste liquid treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772779A (en) * 2022-04-18 2022-07-22 安徽志远环境工程有限公司 Treatment method of chemical nickel plating wastewater

Also Published As

Publication number Publication date
CN113636691A (en) 2021-11-12
CN113636691B (en) 2023-04-04
JP2023016648A (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP6990348B1 (en) How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid
CN101269871B (en) Method for processing chrome wastewater
CN100488899C (en) Diaphragm separation electrolyzing integrated treatment method for waste water containing heavy metal copper
CN106830452B (en) A kind of method that nickel, buffer salt and water are reclaimed in chemically nickel plating Ageing solution
CN105858987B (en) The recycling treatment process of pure water pure nickel is reclaimed from electronickelling poaching wastewater
CN104478045B (en) A kind of efficient electric Dialytic desalination apparatus for coking chemical waste water and method
CN101555081B (en) Technology for processing and recycling electroplating wastewater containing cyanide and system thereof
CN102433443B (en) The method of copper is reclaimed from electroplating sludge, electroplating effluent
CN102358644A (en) Membrane treatment process for heavy metal waste water generated during PCB production process
CN103482783A (en) Treatment process for plumbic acid waste water generated in production process of lead storage batteries
CN106587472B (en) A kind of recycling recoverying and utilizing method of the electroplating wastewater containing palladium
Yu et al. Research progress on the removal, recovery and direct high-value materialization of valuable metal elements in electroplating/electroless plating waste solution
CN103966446A (en) Method for separating and recovering copper, nickel and iron from electroplating sludge
CN111410345A (en) Method and system for treating comprehensive wastewater generated by anodic oxidation process
CN102351351B (en) Process for treating chemical nickel-plating discarded liquid
CN106186185B (en) Method for preparing high-purity nickel salt by recycling industrial nickel-containing wastewater
CN113526752B (en) Method for recycling copper and phosphorus resources in pyrophosphoric acid copper plating wastewater
CN101402496A (en) Clean production process for treating electroplating poaching water with nona-filtering method
CN100396627C (en) Clean production method for treating electroplating waste water by nano filtering process
CN105731696B (en) Silicon carbide pickling waste water reclaiming treatment process
CN109208039B (en) Method for purifying aged copper electrolyte by diaphragm electrolysis method
CN204752384U (en) Electroplate rinsing effluent disposal system
CN113789547B (en) Purification method of copper electrolysis waste liquid
CN111333152A (en) Method for treating high-concentration nickel-phosphorus-containing organic waste liquid through electrolytic oxidation
CN215161862U (en) Electroplating wastewater full-membrane method device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6990348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150