JP6988765B2 - 温度異常検知システム、温度異常検知方法およびプログラム - Google Patents

温度異常検知システム、温度異常検知方法およびプログラム Download PDF

Info

Publication number
JP6988765B2
JP6988765B2 JP2018205488A JP2018205488A JP6988765B2 JP 6988765 B2 JP6988765 B2 JP 6988765B2 JP 2018205488 A JP2018205488 A JP 2018205488A JP 2018205488 A JP2018205488 A JP 2018205488A JP 6988765 B2 JP6988765 B2 JP 6988765B2
Authority
JP
Japan
Prior art keywords
temperature
target device
change rate
abnormality detection
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018205488A
Other languages
English (en)
Other versions
JP2020071137A (ja
Inventor
涼 池内
隆章 山田
健晃 小園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018205488A priority Critical patent/JP6988765B2/ja
Publication of JP2020071137A publication Critical patent/JP2020071137A/ja
Application granted granted Critical
Publication of JP6988765B2 publication Critical patent/JP6988765B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Temperature (AREA)

Description

本発明は、温度異常検知システム、温度異常検知方法およびプログラムに関し、より詳しくは、対象機器の温度異常を検知する温度異常検知システム、温度異常検知方法およびプログラムに関する。
従来、この種の温度異常検知システムとしては、例えば、特開2010−224680号公報に開示されているように、対象機器の温度の変化率を算出し、変化率が予め定められた閾値を超えたとき、温度異常が発生したと判定するものが知られている。
特開2010−224680号公報
しかしながら、特許文献1(特開2010−224680号公報)に記載のものでは、温度変化率のための閾値が適切であるか否か不明であり、温度上昇のメカニズムに詳しくないユーザにとって、温度異常を判定するための閾値を設定することが困難である、という問題点がある。
そこで、この発明の課題は、対象機器の温度異常を判定するための閾値を設定し易くできる温度異常検知システム、温度異常検知方法およびプログラムを提供することにある。
そこで、この開示の温度異常検知システムは、
対象機器の現在温度を、刻々、測定する温度測定部と、
上記測定した温度に基づいて温度変化率の極大値を検出する極大値検出部と、
上記温度変化率の極大値を検出してから、上記温度変化率が上記極大値に対して予め定められた減衰比まで低下する減衰期間を算出する減衰期間算出部と、
上記温度変化率の上記減衰期間に基づいて、上記対象機器の予測される到達温度を算出する予測温度算出部と、
算出された上記到達温度が、予め定められた温度閾値を超えているとき異常であると判定する異常判定部とを備え
上記現在温度をT とし、上記減衰期間をthとし、現在の温度変化率をΔT とし、予め定められた係数をkとし、上記到達温度をT inf としたとき、上記到達温度T inf を、
inf =T +k×th×ΔT
なる算出式により算出する
ことを特徴とする。
本明細書で、「対象機器」とは、温度測定の対象となる機器であり、動作時に温度上昇する可能性がある物を指す。
また、「予め定められた減衰比」とは、例えば、減衰比1/2、または、減衰比1/3というような値を指す。ただし、これに限られるものではない。なお、上記温度変化率が上記極大値から減衰比1/2まで低下するときの減衰期間を、特に「半減期」と呼ぶ。
この開示の温度異常検知システムでは、温度検出部は、対象機器の現在温度を、刻々検出する。極大値検出部は、上記測定した温度に基づいて温度変化率の極大値を検出する。減衰期間算出部は、上記温度変化率の極大値を検出してから、上記温度変化率が上記極大値に対して予め定められた減衰比まで低下する減衰期間を算出する。予測温度算出部は、上記温度変化率の上記減衰期間に基づいて、上記対象機器の予測される到達温度を算出する。異常判定部は、算出された上記到達温度が、予め定められた温度閾値を超えているとき異常であると判定する。このように判定が行われる場合、ユーザは、温度変化率のための閾値を設定する必要が無く、上記到達温度に対する温度閾値を設定しておけばよい。したがって、ユーザは、対象機器の温度異常を判定するための閾値を設定し易くなる。また、対象機器の到達温度は、上記算出式によって正確に算出可能である。その結果、精度よく対象機器の異常を検知することができる。
一実施形態の温度異常検知システムは、上記予め定められた係数kの数値範囲は、
0.8/log(m)≦k≦1.2/log(m)
により規定され、ここで、mは上記減衰比の逆数である実数であり、かつm>1であり、logは自然対数であることを特徴とする。
この一実施形態の温度異常検知システムでは、対象機器の到達温度は、上記算出式によってより正確に算出可能である。その結果、より精度よく対象機器の異常を検知することができる。
一実施形態の温度異常検知システムは、上記対象機器が複数ある場合に、対象機器毎に順次到達温度が算出され、上記対象機器毎に異常であるか否かが判定されることを特徴とする温度異常検知システム。
この一実施形態の温度異常検知システムでは、上記対象機器毎に異常であるか否かが判定される。その結果、対象機器毎の異常を精度よく検知することができる。
別の局面では、この開示の温度異常検知方法は、
対象機器の温度を検知する温度異常検知方法であって、
対象機器の現在温度を、刻々、測定するステップと、
上記測定した温度に基づいて温度変化率の極大値を検出するステップと、
上記温度変化率の極大値を検出してから、上記温度変化率が上記極大値に対して予め定められた減衰比まで低下する減衰期間を算出するステップと、
上記温度変化率の上記減衰期間に基づいて、上記対象機器の予測される到達温度を算出するステップと、
算出された上記到達温度が、予め定められた温度閾値を超えているとき異常であると判定するステップとを備え
上記現在温度をT とし、上記減衰期間をthとし、現在の温度変化率をΔT とし、予め定められた係数をkとし、上記到達温度をT inf としたとき、上記到達温度T inf を、
inf =T +k×th×ΔT
なる算出式により算出する
ことを特徴とする。
この開示の温度異常検知方法では、ユーザは、対象機器の温度異常を判定するための閾値を設定し易くできる。また、対象機器の到達温度は、上記算出式によって正確に算出可能である。その結果、精度よく対象機器の異常を検知することができる。


さらに別の局面では、この開示のプログラムは、上記温度異常検知方法をコンピュータに実行させるためのプログラムである。
この開示のプログラムをコンピュータに実行させることによって、上記温度異常検知方法を実施することができる。
以上より明らかなように、この本開示の温度異常検知システム、温度異常検知方法によれば、対象機器の温度異常を判定するための閾値を設定し易くできる。また、この開示のプログラムをコンピュータに実行させることによって、上記温度異常検知方法を実施することができる。
図1(A)は、この発明の一実施形態の温度異常検知システムの概略構成を示す図である。図1(B)は、図1(A)中の制御盤の前扉が閉じられた状態で、この制御盤内に設けられた、温度異常検知の対象となる対象機器と、センサ筐体との配置を模式的に示す図である。 図2(A)は、上記センサ筐体に搭載されたセンサアレイモジュールの外観を示す図である。図2(B)は、上記センサアレイモジュールに含まれた放射温度センサの感温素子アレイを示す図である。 上記温度異常検知システムの機能的なブロック構成を示す図である。 上記温度異常検知システムが実行する温度異常検知の動作フローを示す図である。 対象機器の時間経過に伴う温度の変化を近似する関数を示す図である。 図5の関数を時間微分して得られた、時間経過に伴う温度変化率の変化を示す図である。 或る対象機器の異常動作時の時間経過に伴う温度の変化を例示的に示す図である。 別の対象機器の異常動作時の時間経過に伴う温度の変化を例示的に示す図である。
以下、この開示の実施の形態を、図面を参照しながら詳細に説明する。
(システムの構成)
図1(A)は、この発明の一実施形態の温度異常検知システム1の概略構成を模式的に示している。この例では、温度異常検知システム1は、制御盤90内に配置された対象機器91の温度異常を検知するものであり、大別して、制御盤90の前扉90fの内側に配置された放射温度センサ97と、制御盤90の外部に配置された異常判定装置100とを備えている。この例では、制御盤90内の放射温度センサ97と異常判定装置100とは、信号ケーブル99,180を介して通信可能に接続されている。なお、放射温度センサ97と異常判定装置100とは、無線で通信可能になっていてもよい。
制御盤90は、一般的な構成のものであり、この例では、直方体状の外形をもつ筐体90Mと、この筐体90M内に配置された対象機器91と、この対象機器91に電力を供給する電源部92(後述の図3参照)とを備えている。この例では、筐体90Mは、図1(A)中に矢印Eで示すように開閉可能な前扉90fを有している。図1(B)(前扉90fが閉じられた状態で制御盤90の内部を右側方から見たところを模式的に示す)に示すように、対象機器91は、筐体90Mの後壁90rの内面に沿って取り付けられている。
対象機器91としては、例えば、直流電源、コンタクタ、調節計、モータドライバ、ブレーカなどの各種機器のほか、機器の一部をなすパワー半導体、リレー、ヒートシンク、電力系配線、端子など、動作時に温度上昇する可能性があるものが挙げられる。
放射温度センサ97は、この放射温度センサ97を収容するセンサ筐体95Mを備えている。
図2(A)に示すように、この例では、放射温度センサ97は、センサ基板96に搭載された円筒状のキャンケース97bと、このキャンケース97bの先端開口を塞ぐように取り付けられたレンズ97aと、キャンケース97b内でセンサ基板96に沿って配置された感温素子アレイ97cとを備えている。レンズ97aは、対象機器91が放射した赤外線を集光して感温素子アレイ97c上に入射させる。感温素子アレイ97cは、この例では、サーモパイル(熱電堆)からなり、図2(B)に示すように、8行×8列の感温素子191,191,…の配列によって構成されている。これらの感温素子191,191,…がレンズ97aを通してこの放射温度センサ97の視野内のそれぞれ別の方向を見ることによって、視野内の温度分布を表す複数(この例では、64個)の温度信号を出力することが可能になっている。後述のように、これらの64個の温度信号のうち、選択された信号が表す温度が温度T(n)として取得される。この例では、n=1〜64である。
このように、放射温度センサ97を備える場合、この放射温度センサ97によって、対象機器91が示す温度Tを、制御盤90の筐体90M内で対象機器91から離れた位置で測定できる。したがって、たとえ対象機器91が異常に温度上昇したとしても、その温度上昇による被害を受け難い。また、放射温度センサ97自体は、例えば熱電対温度センサに比して、短絡、発火などの危険が少ないという利点がある。
この例では、この放射温度センサ97の視野には、1個の対象機器91のみが図示されているが、これに限られるものではない。放射温度センサ97の視野には、動作時に温度上昇する可能性がある複数の対象機器が含まれていてもよい。また、対象機器91の複数の部分がそれぞれ動作時に温度上昇する場合であっても、放射温度センサ97は、それらの複数の部分の温度をそれぞれ観測することができる。
図1(B)中に示すように、放射温度センサ97を搭載したセンサ基板96は、上述のセンサ筐体95Mに、放射温度センサ97のレンズ97aが外部に面する状態で搭載されている。センサ筐体95Mは、図示しない取付金具によって、制御盤90の前扉90fの内面に、堅固に取り付けられている。この例では、センサ筐体95M(およびセンサ基板96)は、放射温度センサ97の視野に対象機器91が入るように、前扉90fの鉛直な内面に対して傾斜した状態で取り付けられている。
なお、この例では、放射温度センサ97は、センサ筐体95Mに搭載された図示しない電池からの電力供給によって動作する構成になっている。ただし、放射温度センサ97は、制御盤90の電源部92から電力供給を受けてもよい。
図3は、温度異常検知システム1の機能的なブロック構成を示している。
温度異常検知システム1に含まれた異常判定装置100は、この例では、操作部103、記憶部102、制御部101、通信部104、および警報部105を備えている。
操作部103は、この例ではキーボードとマウスからなっている。この例では、操作部103は、特に、ユーザが処理開始/終了指示、および、温度異常の判定のための閾値Thを入力するために用いられる。
記憶部102は、この例では、非一時的にデータを記憶し得るEEPROM(電気的に書き換え可能な不揮発性メモリ)、および、一時的にデータを記憶し得るRAM(ランダム・アクセス・メモリ)を含んでいる。この記憶部102には、制御部101を制御するためのソフトウェア(コンピュータプログラム)が格納されている。また、この例では、記憶部102は、ユーザによって入力された温度異常の判定のための閾値Thを記憶する。また、後述のように、記憶部102は、温度T、温度変化率ΔT、温度変化率の極大値ΔTmaxなどの数値を記憶する。
制御部101は、この例では、記憶部102に格納された制御プログラム(ソフトウェア)に従って動作するプロセッサによって構成されている。この制御部101は、ソフトウェアによって構成された温度変化率算出部141と、到達温度算出部142と、判定部143とを含んでいる。この温度変化率算出部141は、温度測定部と極大値検出部とを構成している。到達温度算出部142は、減衰期間算出部と予測温度算出部とを構成している。判定部143は異常判定部を構成している。この例では、制御部101はプロセッサを含むものとしたが、これに限るものではない。制御部101は、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などの、論理回路(集積回路)を含むものとしてもよい。この制御部101の動作については、図4の動作フローを用いて後に詳述する。
通信部104は、制御部101によって制御されて所定の情報を外部の装置に送信したり、また、外部の装置からの情報を受信して制御部101に受け渡したりする。この例では、通信部104は、外部の装置からの指示を受信する。また、通信部104は、図示しない上位装置へ温度異常信号ATを送信する。
警報部105は、この例では、LCD(液晶表示素子)からなる表示器151と、ブザー152とを含んでいる。表示器151は、制御部101からの信号に基づいて、各種情報を表示画面に表示する。ブザー152は、制御部101からの信号に基づいて、ブザー音を鳴動させる。
(到達温度の算出式の導出)
次に、対象機器である熱容量に一定の発熱量が加えられる場合、到達温度の算出式の導出過程を説明する。
熱容量に一定の発熱量が加えられる場合、伝達関数は1次遅れ特性で近似することができる。次に1次遅れ特性を表す式Eq1を示す。
G(s)=K/(τ・s+1) ・・・(Eq1)
ただし、sはラプラス演算子、Kはゲイン定数、τは時定数を表す。
このとき、この時間応答はインデンシャル応答またはステップ応答と呼ばれる。時間応答は次式Eq2により求められる。この例では、図5に示すように、対象機器が示す温度は、時間tによる関数A(t)によって近似される。
A(t)=K(1−exp(−t/τ)) ・・・(Eq2)
式Eq2のステップ応答A(t)の変化率は、式Eq2の時間微分で求められる。次に時間微分の式Eq3を示す。
A’(t)=(K/τ)・exp(−t/τ) ・・・(Eq3)
この変化率A’(t)は、時間tからxだけ経過すると、次式Eq4のような比率となる。
A’(t+x)/A’(t)
=((K/τ)・exp(−(t+x)/τ))/((K/τ)・exp(−t/τ))
=exp(−(t+x)/τ)/exp(−x/τ)
=exp(−x/τ) ・・・(Eq4)
したがって、変化率A’(t)は、どの時刻tから見ても、一定の時間比率で減少することが分かる。これは減衰期間は変化しないことを意味する。
ここで、ある時刻t0でのA(t0)とA’(t0)、変化率の減衰期間thを計測して、A(t)が到達する到達温度A(t→∞)を求める。
まず、A(t0)を初期値として、変化率A’(t0)から一定の減衰期間thで変化する温度の収束値(到達温度)T∞は、次式Eq5で計算することができる。
Figure 0006988765
・・・(Eq5)
ここで、次式Eq6で、a=0.5とした結果を、上記式Eq5に代入すると後述の式Eq7を得ることができる。この例では、a=0.5(これは半減期を意味する。)としたが、これに限られるものではない。aは任意の減衰比を取ることができる。例えば、減衰比1/3とすれば、a=0.333…を上記式Eq5に代入すればよい。
Figure 0006988765
≒1.44・th ・・・(Eq6)
T∞=A(t0)−A’(t0)・th/log(a)
=A(t0)−A’(t0)・th/log0.5
≒A(t0)+A’(t0)/1.44・th ・・・(Eq7)
以上により、到達温度T∞は、任意の時間t0で、温度A(t0)、温度変化率A’(t0)、変化率の減衰期間thを用いて式Eq7により算出することができる。
例えば、A(t0)=40℃、減衰期間th=10分、A’(t0)=0.1℃/分の場合、到達温度T∞=40℃+1.44・10分・0.1℃/分≒41.4℃のように計算することができる。
図6は、時間経過に伴う温度変化率の変化を示す。図6の関数A’(t)によって分かるように、温度変化率は、時間に伴って、極大値ΔTmaxまで上昇し、その後下降する。温度変化率の減衰期間thは、温度変化率の極大値ΔTmaxを示した時間からΔTmax/2までの時間までの期間thを表している。この例では、半減期ΔTmax/2としたが、これに限られるものではない。ΔTmax/3などの任意の減衰比となる時間を算出してもよい。
(温度異常検知の動作)
図4は、異常判定装置100が実行する温度異常検知処理(温度異常検知方法)のフローを示している。この例では、制御盤90の運転開始と同時に、異常判定装置100は図3中に示した操作部103を介した処理開始指示を受けて、この温度異常検知処理を開始するものとする。なお、この例では、図2(B)中に示すように、放射温度センサ97は、n個の感温素子191(温度セル)毎に分割された検知エリアに対応する対象機器91の温度を検出している。この例では、温度セルは64個に分割されており、n=1〜64であった。
まず、図4のステップS1に示すように、制御部101は温度警報を出力するための閾値Thを読み込む。なお、温度セルは、64個に分割されているので、n=1〜64それぞれの閾値Thを合計64回読み込む。ここで、閾値Thは、ユーザの操作部103を通した入力によって、記憶部102に予め記憶されている。制御部101は、図示しない入出力インタフェースを介して、放射温度センサ97が出力する温度セル毎の温度信号(温度T)を、刻々、入力している。また、制御部101は、現在温度Tを、刻々、時系列で記憶部102に記憶している。
次に、図4のステップS2に示すように、制御部101は温度変化率算出部141として働いて、今回のターンでの温度Tと前回ターンでの温度Ti−1の差分を算出することにより、温度変化率ΔTを求める。なお、この例では、1回のターンのための処理時間Δtが一定になっているので、今回のターンでの温度Tと前回ターンでの温度Ti−1の差分ΔTは、温度変化率として把握される。このようにして、求められた温度変化率ΔTは、時系列で記憶部102に記憶される。なお、n=1〜64の温度セル毎に合計64個の温度変化率ΔTを求める。
次に、図4のステップS3に示すように、制御部101は温度変化率算出部141として働いて、前回のターンでの温度変化率ΔTi−1に対して今回のターンでの温度変化率ΔTが減少していないか否か判断する。前回のターン時の温度変化率ΔTi−1に対して今回のターンでの温度変化率ΔTが減少していなければ(ステップS3でNO)、温度変化率が上昇中であると判断して、ステップS2に戻り次ターンの温度変化率を算出する。ステップS3で、時系列で記憶された前回のターン時の温度変化率ΔTi−1に対して今回のターンでの温度変化率ΔTが減少していれば(ステップS3でYES)、温度変化率が変化率の極大値(ここで前回のターン時の温度変化率ΔTi−1をΔTmaxとする。)に達したと判断して、ステップS4に進む。なお、n=1〜64の温度セル毎に合計64個の温度変化率の極大値ΔTmaxを求める。
次に、図4のステップS4に示すように、制御部101は、現在の温度変化率ΔTがΔTmax/2より減少していないか否か判断する。現在の温度変化率ΔTがΔTmax/2より減少していなければ(ステップS4でNO)、温度変化率ΔTが減少中であると判断して、ステップS4を繰り返す。ステップS4で、現在の温度変化率ΔTがΔTmax/2より減少していれば(ステップS4でYES)、現在の温度変化率ΔTがΔTmax/2に達したと判断して、ステップS5に進む。
次に、図4のステップS5に示すように、制御部101は、温度変化率の減衰期間thを算出する。具体的には、制御部101は、温度変化率ΔTを求めた際のカウント値を、ΔTmaxからΔTmax/2までの時間に換算することによって、減衰期間thの期間を算出する。この例では、半減期ΔTmax/2としたが、これに限られるものではない。ΔTmax/3などの任意の減衰比となる減衰期間を算出してもよい。これにより、温度変化率ΔTのノイズによる影響を低減することができる。その結果、到達温度を精度良く算出することができる。減衰期間thの算出後、ステップS6に進む。なお、n=1〜64の温度セル毎に合計64個の減衰期間thの期間を算出する。
次に、図4のステップS6に示すように、制御部101は、到達温度算出部142として働いて、現在温度をTとし、減衰期間をthとし、現在温度変化率をΔTとし、予め定められた係数をkとしたとき、到達温度Tinfを次式Eq8により算出する。
inf=T+k×th×ΔT ・・・(Eq8)
ここで、kは、1次遅れモデル(論理値)と実機の到達温度の差を補正するための係数である。好ましくは、0.5≦k≦1.5の数値範囲が採用される。より好ましくは、0.8/log(m)≦k≦1.2/log(m)、ここで、mは減衰比の逆数である実数であり、かつm>1であり、logは自然対数である数値範囲が採用される。
次に、図4のステップS7に示すように、制御部101は、判定部143として働いて、到達温度Tinfが閾値Thを超えたか否か判断する。到達温度Tinfが閾値Thを超えたとき(ステップS7でYES)、対象機器91温度異常が発生したと判定する。制御部101は、温度異常が発生したことを表す温度異常信号ATを作成して、図3中に示した警報部105へ出力する。これにより、警報部105に含まれた表示器151は、対象機器91の温度異常が発生したことを表す警報(例えば、「対象機器nに温度異常が発生しました」という表示)を表示画面に表示する。また、ブザー152は、警報としてブザー音を鳴動させる(ステップS9)。この例では、これと並行して、制御部101は通信部104を介して、図示しない外部の装置へ温度異常信号ATを出力する。
次に、判定部は、到達温度Tinfが閾値Thを超えていないと判断したとき(ステップS7でNO)、ステップS9に進む。この例では、n=1〜64の温度セル毎に合計64回到達温度Tinfを順次算出し順次各閾値Thと比較する。この場合、n=1〜64の温度セルのうち1個でも到達温度Tinfが閾値Thを超えたとき、閾値Thを超えた温度セルに対応する対象機器91を指定して警報を出力する。
次に、図4のステップS9に示すように、制御部101は、終了条件を充足するか否か判断する。具体的には、終了条件が充足されたというのは、放射温度センサ97による対象機器91の温度検知の終了時間が決まっている場合に、終了時間を超えたとき、または、ユーザの操作部103を通した指示により終了指示を受信したときなどを指す。終了条件を充足しないと判断されたとき(ステップS9でNO)、ステップS6に戻り、到達温度Tinfを算出する。一方、終了条件を充足すると判断されたとき(ステップS9でYES)、温度異常検知システムが実行する温度異常検知方法の処理フローを終了する。
このようにして温度異常が発生したか否かの判定が行われる場合、ユーザは、温度変化率のための閾値を設定する必要が無く、到達温度Tinfに対する温度閾値を設定しておけばよい。したがって、ユーザは、対象機器91の温度異常を判定するための閾値Thを設定し易くなる。
この例では、対象機器91の到達温度は、上記算出式Eq8によって正確に算出可能である。その結果、精度よく対象機器91の異常を検知することができる。
この例では、n=1〜64の温度セルに対応した対象機器91毎に異常であるか否かが判定される。その結果、放射温度センサ97の視野に、動作時に温度上昇する可能性がある複数の対象機器91が含まれている場合に、対象機器91毎の温度異常を検知することができる。また、対象機器91の複数の部分がそれぞれ動作時に温度上昇する場合であっても、それらの複数の部分毎の温度異常を検知することができる。
図7は、或る対象機器(これを91Aとする。)の異常動作時の時間の経過に伴う温度変化を例示している。この例では、閾値Th=100℃に設定されている。対象機器91Aの温度は、時間経過に伴って上昇するグラフCaによって示されている。この例では、対象機器91Aの予測される到達温度が閾値Th=100℃を超えることが、時刻taで判明する。したがって、時刻taで警報が出力される。これにより、対象機器91Aの温度異常を、実際に温度が閾値Th=100℃を超える時刻tarよりも早期に検知することができる。
図8は、別の対象機器(これを91Bとする。)の異常動作時の時間の経過に伴う温度変化を例示している。この例では、閾値Th=100℃に設定されている。図7の場合と同様に、対象機器91Bの温度は、時間経過に伴って上昇するグラフCbによって示されている。ただし、図7のグラフCaに比して、図8のグラフCbは、時間経過に伴って緩やかに上昇している。この例では、対象機器91の予測される到達温度が閾値Th=100℃を超えることが、時刻tbで判明する。したがって、時刻tbで警報が出力される。これにより、対象機器91Bの温度異常を、実際に温度が閾値Th=100℃を超える時刻tbrよりも早期に検知することができる。さらに、図8の例では、図7の例に比して、警報が出力される時刻tbは、実際に温度が閾値Th=100℃を超える時刻tbrよりも、極めて早くなる。このように早期に警報を発することは、ユーザにとって有益である。
なお、上述の温度異常検知方法を、ソフトウェア(コンピュータプログラム)として、CD(コンパクトディスク)、DVD(デジタル万能ディスク)、フラッシュメモリなどの非一時的(non-transitory)にデータを記憶可能な記録媒体に記録してもよい。このような記録媒体に記録されたソフトウェアを、パーソナルコンピュータ、PDA(パーソナル・デジタル・アシスタンツ)、スマートフォン、PLC(プログラマブルロジックコントローラ)などの実質的なコンピュータ装置にインストールすることによって、それらのコンピュータ装置に、上述の温度異常検知方法を実行させることができる。
また、上述の例では、制御盤90の外部に異常判定装置100が配置されたが、これに限られるものではない。例えば、制御盤90の内部に設けられたセンサ筐体95Mに、異常判定装置100を組み込んでもよい。その場合、異常判定装置100に無線通信可能な通信部を設けて、対象機器91の温度異常が発生した時、その通信部によって外部へ警報を送信するのが望ましい。ユーザは、その警報を受信することによって、制御盤90内に配置された対象機器91に温度異常が発生したことを直ちに認識でき、対象機器91を交換するなどの必要な対策を迅速にとることができる。
以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。
1 温度異常検知システム
90 制御盤
91 対象機器
97 放射温度センサ
100 異常判定装置
101 制御部
105 警報部
141 温度変化率算出部
142 到達温度算出部

Claims (5)

  1. 対象機器の現在温度を、刻々、測定する温度測定部と、
    上記測定した温度に基づいて温度変化率の極大値を検出する極大値検出部と、
    上記温度変化率の極大値を検出してから、上記温度変化率が上記極大値に対して予め定められた減衰比まで低下する減衰期間を算出する減衰期間算出部と、
    上記温度変化率の上記減衰期間に基づいて、上記対象機器の予測される到達温度を算出する予測温度算出部と、
    算出された上記到達温度が、予め定められた温度閾値を超えているとき異常であると判定する異常判定部とを備え
    上記現在温度をT とし、上記減衰期間をthとし、現在の温度変化率をΔT とし、予め定められた係数をkとし、上記到達温度をT inf としたとき、上記到達温度T inf を、
    inf =T +k×th×ΔT
    なる算出式により算出する
    ことを特徴とする温度異常検知システム。
  2. 請求項の温度異常検知システムにおいて、
    実数をmとしたとき、上記予め定められた係数kの数値範囲は、
    0.8/log(m)≦k≦1.2/log(m)
    により規定され、ここで、mは上記減衰比の逆数である実数であり、かつm>1であり、logは自然対数であることを特徴とする温度異常検知システム。
  3. 請求項1または2に記載の温度異常検知システムにおいて、
    上記対象機器が複数ある場合に、対象機器毎に順次到達温度が算出され、上記対象機器毎に異常であるか否かが判定されることを特徴とする温度異常検知システム。
  4. 対象機器の温度を検知する温度異常検知方法であって、
    対象機器の現在温度を、刻々、測定するステップと、
    上記測定した温度に基づいて温度変化率の極大値を検出するステップと、
    上記温度変化率の極大値を検出してから、上記温度変化率が上記極大値に対して予め定められた減衰比まで低下する減衰期間を算出するステップと、
    上記温度変化率の上記減衰期間に基づいて、上記対象機器の予測される到達温度を算出するステップと、
    算出された上記到達温度が、予め定められた温度閾値を超えているとき異常であると判定するステップとを備え
    上記現在温度をT とし、上記減衰期間をthとし、現在の温度変化率をΔT とし、予め定められた係数をkとし、上記到達温度をT inf としたとき、上記到達温度T inf を、
    inf =T +k×th×ΔT
    なる算出式により算出する
    ことを特徴とする温度異常検知方法。
  5. コンピュータに、請求項の温度異常検知方法を実行させるためのプログラム。
JP2018205488A 2018-10-31 2018-10-31 温度異常検知システム、温度異常検知方法およびプログラム Active JP6988765B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018205488A JP6988765B2 (ja) 2018-10-31 2018-10-31 温度異常検知システム、温度異常検知方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018205488A JP6988765B2 (ja) 2018-10-31 2018-10-31 温度異常検知システム、温度異常検知方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2020071137A JP2020071137A (ja) 2020-05-07
JP6988765B2 true JP6988765B2 (ja) 2022-01-05

Family

ID=70547592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205488A Active JP6988765B2 (ja) 2018-10-31 2018-10-31 温度異常検知システム、温度異常検知方法およびプログラム

Country Status (1)

Country Link
JP (1) JP6988765B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038659A (ja) 2020-08-27 2022-03-10 横河電機株式会社 異常温度検知装置、異常温度検知方法、及び異常温度検知プログラム
CN117214741B (zh) * 2023-11-09 2024-05-28 杭州高特电子设备股份有限公司 一种电池采集温度异常的诊断方法和电池系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575261A (en) * 1983-06-30 1986-03-11 Nl Industries, Inc. System for calculating formation temperatures
JPS62242827A (ja) * 1986-04-15 1987-10-23 Omron Tateisi Electronics Co 電子体温計
JPH0237340U (ja) * 1988-09-02 1990-03-12
JP2005098982A (ja) * 2003-08-21 2005-04-14 Omron Healthcare Co Ltd 電子体温計
JP2013149059A (ja) * 2012-01-19 2013-08-01 Hochiki Corp 電源コンセント監視システム
BR112018012689A2 (pt) * 2015-12-21 2018-12-04 Koninklijke Philips Nv método de prever uma temperatura de estabilização de um indivíduo, sensor de fluxo de calor e disposição de detecção de temperatura

Also Published As

Publication number Publication date
JP2020071137A (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
US9281653B2 (en) Intelligent laser interlock system
JP6988765B2 (ja) 温度異常検知システム、温度異常検知方法およびプログラム
JP4949649B2 (ja) 電子体温計及びその制御方法
JP6490096B2 (ja) 温度補償付シャント電流測定
US7503691B2 (en) Machine tool
US20070280329A1 (en) Optical fiber temperature sensing device
EP3839681A1 (en) Temperature threshold determining device, temperature abnormality determining system, temperature threshold determining method, and program
KR20080041702A (ko) 배터리에 관련된 상태 벡터를 추정하는 시스템 및 방법
US20170023956A1 (en) Motor driving device and detection method for detecting malfunction in heat radiation performance of heatsink
GB2405496A (en) A method for evaluating the aging of components
CA2597235A1 (en) Linear fire-detector alarming system based on data fusion and the method
CN204188265U (zh) 过程变量变送器
JP6744369B2 (ja) レーザ装置
US11177620B2 (en) Laser failure early warning indicator
EP1271118B1 (en) Method and apparatus for measuring temperature of movable object
US10317355B2 (en) Environmental sensor and method for measuring and predicting environmental parameters
CN112740130B (zh) 温度异常检测系统、温度异常检测方法和程序
JP2009254104A (ja) 受配電設備用導体監視装置
EP3954976A1 (en) Method and device for temperature prediction as well as sensor system with such a device
EP0784785B1 (en) Equipment stress monitor
JP6856449B2 (ja) 赤外線撮影装置
JP4161626B2 (ja) 温度調節器
JP4910867B2 (ja) 光ファイバ式温度センサ装置
KR20200132683A (ko) 온도 조절계 및 이상 판단 방법
JP6682485B2 (ja) 熱容量測定装置及び熱容量測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150