JP6986737B2 - New isonicotinonitrile derivative and organic EL device using it - Google Patents

New isonicotinonitrile derivative and organic EL device using it Download PDF

Info

Publication number
JP6986737B2
JP6986737B2 JP2017121023A JP2017121023A JP6986737B2 JP 6986737 B2 JP6986737 B2 JP 6986737B2 JP 2017121023 A JP2017121023 A JP 2017121023A JP 2017121023 A JP2017121023 A JP 2017121023A JP 6986737 B2 JP6986737 B2 JP 6986737B2
Authority
JP
Japan
Prior art keywords
mmol
derivative
pxzinn
light emitting
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017121023A
Other languages
Japanese (ja)
Other versions
JP2018035135A (en
Inventor
久宏 笹部
淳二 城戸
夏樹 大沼
勇次 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JP2018035135A publication Critical patent/JP2018035135A/en
Application granted granted Critical
Publication of JP6986737B2 publication Critical patent/JP6986737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高い発光効率を有する新規イソニコチノニトリル誘導体、及びそれを用いた有機EL素子に関する。 The present invention relates to a novel isonicotinonitrile derivative having high luminous efficiency and an organic EL device using the novel isonicotinonitrile derivative.

有機EL(エレクトロニクス)素子では、一対の電極間に電圧を印加することにより、陽極から正孔が、陰極から電子が、発光材料として有機化合物を含む発光層にそれぞれ注入され、注入された電子及び正孔が再結合することによって、発光性の有機化合物中に励起子が形成され、励起された有機化合物から発光を得ることができる。 In an organic EL (electronics) element, by applying a voltage between a pair of electrodes, holes from the anode and electrons from the cathode are injected into a light emitting layer containing an organic compound as a light emitting material, and the injected electrons and electrons and the injected electrons. By recombination of holes, excitons are formed in the luminescent organic compound, and light emission can be obtained from the excited organic compound.

このような有機EL素子の実用性を向上させる手段の一つは、発光効率を上げることにある。有機化合物が形成する励起子には、一重項励起子(ES1)及び三重項励起子(ET1)があり、一重項励起子(ES1)からの蛍光発光と、三重項励起子(ET1)からのリン光発光とがあるが、素子におけるこれらの統計的な生成比率は、ES1:ET1=1:3であり、蛍光発光を用いる有機EL素子では内部量子効率25%が限界といわれる。そのため、電子からフォトンへの変換効率(内部量子効率)を向上させるべく、三重項励起状態を発光に変換することが可能なリン光発光材料が開発され、最近、このリン光発光を利用した有機EL素子が報告されている。 One of the means for improving the practicality of such an organic EL element is to increase the luminous efficiency. The excitons organic compound forms, there are singlet excitons (E S1) and triplet exciton (E T1), and the fluorescence emission from singlet excitons (E S1), triplet excitons (E There is phosphorescent emission from T1 ), but the statistical generation ratio of these in the element is E S1 : E T1 = 1: 3, and the internal quantum efficiency of 25% is the limit for organic EL elements using fluorescent emission. It is said that. Therefore, in order to improve the conversion efficiency from electrons to photons (internal quantum efficiency), a phosphorescent light emitting material capable of converting a triplet excited state into light emission has been developed, and recently, an organic substance using this phosphorescent light emission has been developed. EL elements have been reported.

また、このような発光材料を有機EL素子のなかで利用するにあたっては、ホスト材料にドーパント材料をドーピングする方法が知られている。ドーピング法で形成された発光層では、ホストに注入された電荷から効率良く励起子を生成することができる。そして、生成された励起子の励起子エネルギーをドーパントに移動させ、ドーパントから高効率の発光を得ることができる。 Further, in using such a light emitting material in an organic EL device, a method of doping a host material with a dopant material is known. In the light emitting layer formed by the doping method, excitons can be efficiently generated from the electric charge injected into the host. Then, the exciton energy of the generated excitons can be transferred to the dopant, and high-efficiency light emission can be obtained from the dopant.

ここで、ホストからリン光発光性のリン光ドーパントに分子間エネルギー移動を行うためには、ホストの三重項エネルギーEgHが、リン光ドーパントの三重項エネルギーEgDよりも大きいことが必要である。 Here, in order to transfer intermolecular energy from the host to the phosphorescent phosphorescent dopant, it is necessary that the triplet energy E gH of the host is larger than the triplet energy E gD of the phosphorescent dopant. ..

三重項エネルギーEgHが有効に大きい材料としては、例えば、CBP(4,4’−ビス(N−カルバゾリル)ビフェニル)等が知られている。このような材料をホストとすれば、所定の発光波長(例えば、赤、緑)を有するリン光ドーパントに三重項励起子間でエネルギー移動させることで、高効率の発光素子が得られる。 As a material having an effectively large triplet energy E gH , for example, CBP (4,4'-bis (N-carbazolyl) biphenyl) and the like are known. If such a material is used as a host, a highly efficient light emitting element can be obtained by transferring energy between triplet excitons to a phosphorescent dopant having a predetermined light emitting wavelength (for example, red or green).

ところで、非特許文献1に記載された熱活性化遅延蛍光(TADF;thermally activated delayed fluorescence)材料は蛍光材料でありながら、リン光材料と同様、理論上100%の励起子生成確率を実現することが可能であり、高効率化に有用である。さらにレアメタルフリーの分子設計につき、低コスト化が可能である。したがって、このTADFを利用した発光材料を開発することにより、低コストでかつ、高効率の発光素子が得られると考えられる。 By the way, although the thermally activated delayed fluorescence (TADF) material described in Non-Patent Document 1 is a fluorescent material, it realizes a theoretically 100% exciton generation probability like a phosphorescent material. Is possible and useful for high efficiency. Furthermore, it is possible to reduce the cost due to the rare metal-free molecular design. Therefore, by developing a light-emitting material using this TADF, it is considered that a low-cost and high-efficiency light-emitting element can be obtained.

特許文献1では、有機EL素子に用いる発光材料として、カルバゾール構造を含むピリジンカルボニトリル化合物がTADF材料になりうることが報告されている。 Patent Document 1 reports that a pyridinecarbonitrile compound containing a carbazole structure can be a TADF material as a light emitting material used for an organic EL element.

さらに、非特許文献3では、TADF材料として、カルバゾール/ピリジンジカルボニトリル誘導体を用いた青色の有機EL素子が記載され、外部量子効率21.2%と発光効率を示すことが報告されている。 Further, Non-Patent Document 3 describes a blue organic EL element using a carbazole / pyridinedicarbonitrile derivative as a TADF material, and reports that it exhibits an external quantum efficiency of 21.2% and a luminous efficiency.

特開2015−172166号公報Japanese Unexamined Patent Publication No. 2015-172166

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,492, 234.H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,492, 234. Wei Liu, Cai-Jun Zheng, Kai Wang, Zhan Chen, Dong-Yang Chen, Fan Li, Xue-Mei Ou, Yu-Ping Dong, and Xiao-Hong Zhang, Applied Materials & Interfaces 2015, 7, 18930Wei Liu, Cai-Jun Zheng, Kai Wang, Zhan Chen, Dong-Yang Chen, Fan Li, Xue-Mei Ou, Yu-Ping Dong, and Xiao-Hong Zhang, Applied Materials & Interfaces 2015, 7, 18930

本発明は、水色〜緑色に発光を示し、かつ、高効率に発光する新規イソニコチノニトリル誘導体、及びこれを用いた有機EL素子を提供することを課題とする。 An object of the present invention is to provide a novel isonicotinonitrile derivative that emits light from light blue to green and emits light with high efficiency, and an organic EL device using the same.

本発明は以下の事項からなる。
本発明のイソニコチノニトリル誘導体は、下記一般式(1)で表されることを特徴とする。

Figure 0006986737
(一般式(1)中、R1及びR2はそれぞれ独立に水素原子、炭素原子数1〜6のアルキル基、炭素原子数1〜6のアルコキシ基、アリール基、又はアミノ基を表し、R3及びR4はそれぞれ独立に水素原子、メチル基、エチル基、プロピル基、イソプロピル基、メトキシ基、又はフェニル基を表し、nは1〜4の整数を表す。) The present invention comprises the following matters.
The isonicotinonitrile derivative of the present invention is characterized by being represented by the following general formula (1).
Figure 0006986737
(In the general formula (1), R 1 and R 2 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group, or an amino group, respectively, and R 3 and R 4 independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a methoxy group, or a phenyl group, and n represents an integer of 1 to 4).

前記一般式(1)中、nは1又は2であることが好ましい。
上記イソニコチノニトリル誘導体は、下記構造式で表される化合物であることが好ましい。

Figure 0006986737
In the general formula (1), n is preferably 1 or 2.
The isonicotinonitrile derivative is preferably a compound represented by the following structural formula.
Figure 0006986737

本発明のイソニコチノニトリル誘導体は、下記構造式で表されることを特徴とする。

Figure 0006986737
The isonicotinonitrile derivative of the present invention is characterized by being represented by the following structural formula.
Figure 0006986737

本発明の有機EL素子は、上記イソニコチノニトリル誘導体を用いたものであることを特徴とする。 The organic EL device of the present invention is characterized by using the above-mentioned isonicotinonitrile derivative.

本発明のイソニコチノニトリル誘導体は、熱活性化遅延蛍光(TADF)を示し、かつ、高効率に水色〜緑色に発光するため、有機EL素子に好適に用いることができる。 The isonicotinonitrile derivative of the present invention exhibits thermally activated delayed fluorescence (TADF) and emits light from light blue to green with high efficiency, so that it can be suitably used for an organic EL element.

図1(a)はPXZINNの単膜、及び10wt%CBPドープ共蒸着膜のUV−vis吸収スペクトルを表し、図1(b)はPXZINNの単膜、及び10wt%CBPドープ共蒸着膜のPLスペクトルを表す図である。FIG. 1 (a) shows the UV-vis absorption spectrum of the PXZINN single film and the 10 wt% CBP-doped co-deposited film, and FIG. 1 (b) shows the PL spectrum of the PXZINN single film and the 10 wt% CBP-doped co-deposited film. It is a figure showing. 図2(a)はPXZINNの10wt%CBPドープ共蒸着膜のPLスペクトルを表し、図2(b)はPXZINNの10wt%CBPドープ共蒸着膜の300K及び5Kにおける過渡PLスペクトルを表す図である。FIG. 2 (a) is a diagram showing the PL spectrum of the 10 wt% CBP-doped co-deposited film of PXZINN, and FIG. 2 (b) is a diagram showing the transient PL spectra of the 10 wt% CBP-doped co-deposited film of PXZINN at 300K and 5K. 図3は、デバイス1又は2において、発光層をPXZINNの10wt%CBPドープ共蒸着膜(デバイス1)、及びPXZINNの10wt%TCTAドープ共蒸着膜(デバイス2)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 3 shows the hole transport layer when the light emitting layer is a PXZINN 10 wt% CBP-doped co-deposited film (device 1) and a PXZINN 10 wt% TCTA-doped co-deposited film (device 2) in the device 1 or 2. It is an energy diagram of a light emitting layer and an electron transporting layer. 図4(a)は、デバイス1又は2の電流密度−電圧特性の関係を表し、図4(b)は、デバイス1又は2の輝度−電圧特性の関係を表し、図4(c)は、デバイス1又は2の外部量子効率−輝度特性の関係を表し、図4(d)は、デバイス1又は2の外部量子効率−電流密度の関係を表し、図4(e)は、デバイス1又は2の電流密度−輝度特性の関係を表し、図4(f)は、デバイス1又は2の電力効率−輝度特性の関係を表す図である。FIG. 4A shows the current density-voltage characteristic relationship of the device 1 or 2, FIG. 4B shows the brightness-voltage characteristic relationship of the device 1 or 2, and FIG. 4C shows the relationship. The relationship between the external quantum efficiency of the device 1 or 2 and the brightness characteristic is shown, FIG. 4 (d) shows the relationship between the external quantum efficiency of the device 1 or 2 and the current density, and FIG. 4 (e) shows the relationship between the device 1 or 2 and the device 1 or 2. 4 (f) is a diagram showing the relationship between the power efficiency of the device 1 or 2 and the brightness characteristic. 図5(a)はデバイス1又は2に電流1mAを流したときのELスペクトルを表し、図5(b)は、発光層が、TCTAのみ、B3PyPBのみ、又は、TCTA及びB3PyPBのエキサイプレックス(B3PyPB:TCTA)のそれぞれの場合のデバイスと、デバイス2とについて、ELスペクトルを比較した図である。FIG. 5 (a) shows an EL spectrum when a current of 1 mA is passed through the device 1 or 2, and FIG. 5 (b) shows an exhibix (B3PyPB) in which the light emitting layer is CTTA only, B3PyPB only, or TCTA and B3PyPB. : TCTA) is a diagram comparing EL spectra of the device and the device 2 in each case. 図6は、デバイス1又は3において、発光層をPXZINNの10wt%CBPドープ共蒸着膜とし、電子輸送層をB3PyPB(デバイス1)、又はB4PyPB(デバイス3)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 6 shows the hole transport layer and light emission when the light emitting layer is a 10 wt% CBP-doped co-deposited film of PXZINN and the electron transport layer is B3PyPB (device 1) or B4PyPB (device 3) in the device 1 or 3. It is an energy diagram of a layer and an electron transport layer. 図7(a)は、デバイス1又は3の電流密度−電圧特性の関係を表し、図7(b)は、デバイス1又は3の輝度−電圧特性の関係を表し、図7(c)は、デバイス1又は3の外部量子効率−輝度特性の関係を表し、図7(d)は、デバイス1又は3の外部量子効率−電流密度の関係を表し、図7(e)は、デバイス1又は3の電流密度−輝度特性の関係を表し、図7(f)は、デバイス1又は3の電力効率−輝度特性の関係を表す図である。7 (a) shows the current density-voltage characteristic relationship of the device 1 or 3, FIG. 7 (b) shows the brightness-voltage characteristic relationship of the device 1 or 3, and FIG. 7 (c) shows the relationship. The relationship between the external quantum efficiency of the device 1 or 3 and the brightness characteristic is shown, FIG. 7 (d) shows the relationship between the external quantum efficiency of the device 1 or 3 and the current density, and FIG. 7 (e) shows the relationship between the device 1 or 3 and the device 1 or 3. 7 (f) is a diagram showing the relationship between the power efficiency of the device 1 or 3 and the brightness characteristic. 図8は、デバイス1又は3に電流1mAを流したときのELスペクトルを表す図である。FIG. 8 is a diagram showing an EL spectrum when a current of 1 mA is passed through the device 1 or 3. 図9は、デバイス3又は4において、発光層をPXZINNの10wt%CBPドープ共蒸着膜(10nm厚)(デバイス3)、及び、PXZINNの10wt%TCTAドープ共蒸着膜(5nm厚)、及び、PXZINNの10wt%CBPドープ共蒸着膜(5nm厚)(デバイス4)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。In FIG. 9, in the device 3 or 4, the light emitting layer is a 10 wt% CBP-doped co-deposited film (10 nm thick) of PXZINN (device 3), a 10 wt% TCTA-doped co-deposited film of PXZINN (5 nm thick), and PXZINN. It is an energy diagram of the hole transport layer, the light emitting layer and the electron transport layer when the 10 wt% CBP-doped co-deposited film (5 nm thickness) (device 4) is used. 図10(a)は、デバイス3又は4の電流密度−電圧特性の関係を表し、図10(b)は、デバイス3又は4の輝度−電圧特性の関係を表し、図10(c)は、デバイス3又は4の電流密度−輝度特性の関係を表し、図10(d)は、デバイス3又は4の電力効率−輝度特性の関係を表し、図10(e)は、デバイス3又は4の外部量子効率−輝度特性の関係を表し、図10(f)は、デバイス3又は4の外部量子効率−電流密度の関係を表す図である。10 (a) shows the current density-voltage characteristic relationship of the device 3 or 4, FIG. 10 (b) shows the brightness-voltage characteristic relationship of the device 3 or 4, and FIG. 10 (c) shows the relationship. The current density-brightness characteristic of the device 3 or 4 is shown, FIG. 10 (d) shows the power efficiency-brightness characteristic of the device 3 or 4, and FIG. 10 (e) shows the outside of the device 3 or 4. FIG. 10F shows the relationship between the quantum efficiency and the brightness characteristic, and FIG. 10F is a diagram showing the relationship between the external quantum efficiency and the current density of the device 3 or 4.

図11は、デバイス3又は4に電流1mAを流したときのELスペクトルを表す図である。FIG. 11 is a diagram showing an EL spectrum when a current of 1 mA is passed through the device 3 or 4. 図12は、デバイス5〜7において、正孔輸送層をTAPC(25nm厚)及びTCTA(5nm厚)とし、発光層をPXZINNの10wt%CBPドープ共蒸着膜としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 12 shows the hole transport layer and light emission when the hole transport layer is TAPC (25 nm thick) and TCTA (5 nm thickness) and the light emitting layer is a 10 wt% CBP-doped co-deposited film of PXZINN in devices 5 to 7. It is an energy diagram of a layer and an electron transport layer. 図13(a)は、デバイス5〜7の電流密度−電圧特性の関係を表し、図13(b)は、デバイス5〜7の輝度−電圧特性の関係を表し、図13(c)は、デバイス5〜7の電流密度−輝度特性の関係を表し、図13(d)は、デバイス5〜7の電力効率−輝度特性の関係を表し、図13(e)は、デバイス5〜7の外部量子効率−輝度特性の関係を表し、図13(f)は、デバイス5〜7の外部量子効率−電流密度の関係を表す図である。13 (a) shows the current density-voltage characteristic relationship of devices 5 to 7, FIG. 13 (b) shows the brightness-voltage characteristic relationship of devices 5 to 7, and FIG. 13 (c) shows the relationship. The current density-brightness characteristics of the devices 5 to 7 are shown, FIG. 13 (d) shows the power efficiency-brightness characteristics of the devices 5 to 7, and FIG. 13 (e) shows the outside of the devices 5 to 7. FIG. 13 (f) is a diagram showing the relationship between the quantum efficiency and the brightness characteristic, and FIG. 13 (f) shows the relationship between the external quantum efficiency and the current density of the devices 5 to 7. 図14は、デバイス5〜7に電流1mAを流したときのELスペクトルを表す図である。FIG. 14 is a diagram showing an EL spectrum when a current of 1 mA is passed through the devices 5 to 7. 図15は、デバイス8において、発光層をACINNの10wt%DPEPOドープ共蒸着膜としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 15 is an energy diagram of a hole transport layer, a light emitting layer, and an electron transport layer when the light emitting layer is a 10 wt% DPEPO-doped co-deposited film of ACINN in the device 8. 図16(a)は、デバイス8の電流密度−電圧特性の関係を表し、図16(b)は、デバイス8の輝度−電圧特性の関係を表し、図16(c)は、デバイス8の電流密度−輝度特性の関係を表し、図16(d)は、デバイス8の電力効率−輝度特性の関係を表し、図16(e)は、デバイス8の外部量子効率−輝度特性の関係を表し、図16(f)は、デバイス8の外部量子効率−電流密度の関係を表す図である。16A shows the current density-voltage characteristic relationship of the device 8, FIG. 16B shows the brightness-voltage characteristic relationship of the device 8, and FIG. 16C shows the current of the device 8. The density-brightness characteristic is shown, FIG. 16 (d) shows the power efficiency-brightness characteristic of the device 8, and FIG. 16 (e) shows the external quantum efficiency-brightness characteristic of the device 8. FIG. 16 (f) is a diagram showing the relationship between the external quantum efficiency and the current density of the device 8. 図17は、デバイス8に電流1mAを流したときのELスペクトルを表す図である。FIG. 17 is a diagram showing an EL spectrum when a current of 1 mA is passed through the device 8. 図18は、2AcINN、3AcINN、2AcNN及び5AcNNの(a):トルエン溶液(10-5M)、(b):単膜、(c):10wt%DPEPOドープ共蒸着膜のUV−vis吸収スペクトルを表す図である。FIG. 18 shows the UV-vis absorption spectra of (a): toluene solution ( 10-5 M), (b): single film, and (c): 10 wt% DPEPO-doped co-deposited film of 2AcINN, 3AcINN, 2AcNN and 5AcNN. It is a figure which shows. 図19は、2AcINN、3AcINN、2AcNN及び5AcNNの(a):トルエン溶液(10-5M)、(b):単膜、(c):10wt%DPEPOドープ共蒸着膜のPLスペクトルを表す図である。FIG. 19 is a diagram showing the PL spectra of (a): toluene solution ( 10-5 M), (b): single film, and (c): 10 wt% DPEPO-doped co-deposited film of 2AcINN, 3AcINN, 2AcNN and 5AcNN. be. 図20は、5AcNNの10wt%PyCN誘導体:30wt%DPEPOドープ共蒸着膜の300K及び5Kにおける過渡PLスペクトルを表す図である。FIG. 20 is a diagram showing transient PL spectra of a 5AcNN 10 wt% PyCN derivative: 30 wt% DPEPO-doped co-deposited film at 300K and 5K.

図21は、2AcNNの10wt%PyCN誘導体:30wt%DPEPOドープ共蒸着膜の300K及び5Kにおける過渡PLスペクトルを表す図である。FIG. 21 is a diagram showing transient PL spectra of a 2AcNN 10 wt% PyCN derivative: 30 wt% DPEPO-doped co-deposited film at 300K and 5K. 図22は、3AcINNの10wt%PyCN誘導体:30wt%DPEPOドープ共蒸着膜の300K及び5Kにおける過渡PLスペクトルを表す図である。FIG. 22 is a diagram showing transient PL spectra of a 10 wt% PyCN derivative of 3AcINN: 30 wt% DPEPO-doped co-deposited film at 300K and 5K. 図23は、5AcNNの5wt%Ir(ppz)3:PyCN誘導体(30nm)ドープ共蒸着膜の5Kにおける過渡PLスペクトルを表す図である。FIG. 23 is a diagram showing a transient PL spectrum at 5K of a 5 AcNN 5 wt% Ir (ppz) 3 : PyCN derivative (30 nm) -doped co-deposited film. 図24は、2AcNNの5wt%Ir(ppz)3:PyCN誘導体(30nm)ドープ共蒸着膜の5Kにおける過渡PLスペクトルを表す図である。FIG. 24 is a diagram showing a transient PL spectrum at 5K of a 5 wt% Ir (ppz) 3 : PyCN derivative (30 nm) -doped co-deposited film of 2AcNN. 図25は、3AcINNの5wt%Ir(ppz)3:PyCN誘導体(30nm)ドープ共蒸着膜の5Kにおける過渡PLスペクトルを表す図である。FIG. 25 is a diagram showing a transient PL spectrum at 5K of a 5 wt% Ir (ppz) 3 : PyCN derivative (30 nm) -doped co-deposited film of 3AcINN. 図26は、実施例10のデバイスにおいて、正孔輸送層をTAPC(25nm厚)及びmCP(5nm厚)とし、発光層を各ドーパントの10wt%CBPドープ共蒸着膜としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 26 shows the hole transport layer in the device of Example 10 when the hole transport layer is TAPC (25 nm thick) and mCP (5 nm thickness) and the light emitting layer is a 10 wt% CBP-doped co-deposited film of each dopant. , Energy diagram of light emitting layer and electron transport layer. 図27は、実施例10のデバイスの電流密度−電圧特性の関係(a)、輝度−電圧特性の関係(b)、電流効率−輝度特性の関係(c)、電力効率−輝度特性の関係(d)、外部量子効率−電流密度特性の関係(e)、外部量子効率−輝度特性の関係(f)を表す図である。FIG. 27 shows the current density-voltage characteristic relationship (a), the brightness-voltage characteristic relationship (b), the current efficiency-brightness characteristic relationship (c), and the power efficiency-brightness characteristic relationship (a) of the device of the tenth embodiment. d) is a figure showing the relationship (e) of the external quantum efficiency-current density characteristic, and the relationship (f) of the external quantum efficiency-brightness characteristic. 図28は、実施例10のデバイスに電流1mAを流したときのELスペクトルである。FIG. 28 is an EL spectrum when a current of 1 mA is passed through the device of Example 10. 図29は有機EL素子の典型的な構成を示す図である。FIG. 29 is a diagram showing a typical configuration of an organic EL element.

以下、本発明について、詳細に説明する。
[イソニコチノニトリル誘導体]
本発明のイソニコチノニトリル誘導体は、下記一般式(1)で表される。
Hereinafter, the present invention will be described in detail.
[Isonicotinonitrile derivative]
The isonicotinonitrile derivative of the present invention is represented by the following general formula (1).

Figure 0006986737
Figure 0006986737

一般式(1)中、R1及びR2はそれぞれ独立に水素原子、炭素数1〜6のアルキル基、又は炭素数1〜6のアルコキシ基、フェニル基、又はアミノ基を表し、R3及びR4はそれぞれ独立に水素原子、メチル基、エチル基、プロピル基、イソプロピル基、又はメトキシ基を表し、nは1〜4の整数を表す。 In the general formula (1), R 1 and R 2 independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group, a phenyl group, or an amino group having 1 to 6 carbon atoms, respectively, and represent R 3 and R 2. R 4 independently represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, or a methoxy group, and n represents an integer of 1 to 4.

上記イソニコチノニトリル誘導体はπ共役系を有する。π共役系を持つ分子は可視領域に光吸収帯を有し、その多くが色素として機能しうることが知られている。さらに、このような分子に官能基を適宜付加して電子的性質を変えることで、エネルギーギャップを調節することができる。すなわち、本発明では、イソニコチノニトリル誘導体における、一重項励起状態(ES1)と三重項励起状態(ET1)とのエネルギーギャップをできるだけ小さくするよう分子設計することで、いったん三重項励起状態に移ったエネルギーを、再び一重項励起状態に戻すことが可能となり、効率の高い蛍光を取り出すことができる。 The isonicotinonitrile derivative has a π-conjugated system. It is known that molecules having a π-conjugated system have a light absorption band in the visible region, and many of them can function as dyes. Furthermore, the energy gap can be adjusted by appropriately adding a functional group to such a molecule to change its electronic properties. That is, in the present invention, in isonicotinonitrile derivatives, by molecular design to minimize the energy gap between the singlet excited state (E S1) and a triplet excited state (E T1), once a triplet excited state The energy transferred to can be returned to the singlet excited state again, and highly efficient fluorescence can be extracted.

本発明のイソニコチノニトリル誘導体は、熱活性化遅延蛍光(TADF)分子であり、かつ、水色〜緑色(480〜530nm)で発光する化合物である。
さらに、前記一般式(1)中、nが1又は2であるとき、上記イソニコチノニトリル誘導体は、安定的にπ共役系を維持できるため、長寿命の水色〜緑色発光を示すことができる。
The isonicotinonitrile derivative of the present invention is a thermally activated delayed fluorescent (TADF) molecule and is a compound that emits light in light blue to green (480 to 530 nm).
Further, when n is 1 or 2 in the general formula (1), the isonicotinonitrile derivative can stably maintain a π-conjugated system, and thus can exhibit long-life light blue to green light emission. ..

具体的には、上記一般式(1)で表されるイソニコチノニトリル誘導体は、以下の構造式で表される化合物であることが好ましい。 Specifically, the isonicotinonitrile derivative represented by the general formula (1) is preferably a compound represented by the following structural formula.

Figure 0006986737
Figure 0006986737

また、上記一般式(1)で表されるイソニコチノニトリル誘導体は、以下の構造式で表される化合物である。

Figure 0006986737
The isonicotinonitrile derivative represented by the general formula (1) is a compound represented by the following structural formula.
Figure 0006986737

[イソニコチノニトリル誘導体の製造方法]
本発明のイソニコチノニトリル誘導体は、例えば、以下に示す方法により製造することができる。PXZINNの製造方法を一例に示す。
[Manufacturing method of isonicotinonitrile derivative]
The isonicotinonitrile derivative of the present invention can be produced, for example, by the method shown below. The manufacturing method of PXZINN is shown as an example.

Figure 0006986737
Figure 0006986737

2,6−ジクロロイソニコチノニトリルと、該2,6−ジクロロイソニコチノニトリルに対して2倍モル量の4−クロロフェニルボロン酸と、炭酸ナトリウムとを水に溶解させ、さらにアセトニトリルを添加して、窒素雰囲気下、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(PdCl2(PPh32)の存在下に加熱することにより、2ClPhINNを得る。次いで、2ClPhINNと、該2ClPhINNに対して2倍モル量のフェノキサジンと、炭酸カリウム(K2CO3)とをトルエンに溶解させて、窒素雰囲気下、酢酸パラジウム(II)(Pd(OAc)2)及びトリt−ブチルホスフィン(P(tBu)3)の存在下に加熱することにより、収率96%でPXZINNを得る。 2,6-Dichloroisonicotinonitrile, 4-chlorophenylboronic acid in a double molar amount with respect to the 2,6-dichloroisonicotinonitrile, and sodium carbonate are dissolved in water, and acetonitrile is further added. Then, 2ClPhINN is obtained by heating in the presence of bis (triphenylphosphine) palladium (II) dichloride (PdCl 2 (PPh 3 ) 2) in a nitrogen atmosphere. Next, 2ClPhINN, phenoxazine in a double molar amount with respect to the 2ClPhINN, and potassium carbonate (K 2 CO 3 ) were dissolved in toluene, and palladium (II) acetate (Pd (OAc) 2) was dissolved in toluene. ) And tri-t-butylphosphine (P (tBu) 3 ) to give PXZINN in 96% yield.

ただし、上記一般式(1)で表されるイソニコチノニトリル誘導体は、上記した方法に限られず、種々の公知の方法で製造することができる。 However, the isonicotinonitrile derivative represented by the general formula (1) is not limited to the above-mentioned method, and can be produced by various known methods.

[有機EL素子]
本発明の有機EL素子は、上記イソニコチノニトリル誘導体を用いたものである。
ここで、図29に上記有機EL素子の典型的な層構造を示す。
上記有機EL素子は、典型的には、基板1上に陽極2として、例えば、ITO等を成膜し、その上に正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極がこの順に積層されてなる。
[Organic EL element]
The organic EL device of the present invention uses the above-mentioned isonicotinonitrile derivative.
Here, FIG. 29 shows a typical layer structure of the organic EL element.
In the organic EL element, for example, an ITO or the like is formed as an anode 2 on a substrate 1, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection are formed therein. The layers and cathodes are laminated in this order.

基板1には、透明かつ平滑であって、少なくとも70%以上の全光線透過率を有するものが用いられ、具体的には、フレキシブルな透明基板である、数μm厚のガラス基板や特殊な透明プラスチック等が用いられる。 The substrate 1 is transparent and smooth, and has a total light transmittance of at least 70%. Specifically, it is a flexible transparent substrate, such as a glass substrate having a thickness of several μm or a special transparent substrate. Plastic or the like is used.

基板上に形成される、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8といった薄膜は、真空蒸着法又は塗布法で積層される。真空蒸着法を用いる場合、通常10-3Pa以下に減圧した雰囲気で、蒸着物を加熱して行う。各層の膜厚は、層の種類や使用する材料によって異なるが、通常、陽極2及び陰極8は100nm程度、発光層5を含む他の層は50nm未満である。なお、電子注入層7等は、例えば1nm以下の厚みで形成されることもある。 The thin films such as the anode 2, the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, the electron injection layer 7, and the cathode 8 formed on the substrate are laminated by a vacuum vapor deposition method or a coating method. Will be done. When the vacuum vapor deposition method is used, the vapor deposition is usually heated in an atmosphere reduced to 10 -3 Pa or less. The film thickness of each layer varies depending on the type of layer and the material used, but usually, the anode 2 and the cathode 8 have a film thickness of about 100 nm, and the other layers including the light emitting layer 5 have a film thickness of less than 50 nm. The electron injection layer 7 and the like may be formed with a thickness of, for example, 1 nm or less.

陽極2には、仕事関数が大きく、また全光線透過率は通常80%以上であるものが用いられる。具体的には、陽極2から発光した光を透過させるため、ITOやZnO等の透明導電性セラミックス、PEDOT/PSSやポリアニリン等の透明導電性高分子、その他の透明導電性材料が用いられる。陽極2の膜厚は、通常10〜200nmである。 As the anode 2, a anode having a large work function and a total light transmittance of 80% or more is usually used. Specifically, in order to transmit the light emitted from the anode 2, transparent conductive ceramics such as ITO and ZnO, transparent conductive polymers such as PEDOT / PSS and polyaniline, and other transparent conductive materials are used. The film thickness of the anode 2 is usually 10 to 200 nm.

発光層5には、有機EL素子で用いられる他の発光層と同様に、本発明の発光材料であるイソニコチノニトリル誘導体と共にホスト化合物を併用することが好ましい。ホスト化合物としては、蛍光及びTADFに基づく発光特性を損なわないものであれば、制限されないが、例えば、ビス[2−(ジフェニルホスフィノ)フェニル]エーテルオキシド(DPEPO)、PO9、4,4’−ビス(N−カルバゾリル)−1,1’−ビフェニル(CBP)、トリス(4−カルバゾイル−9−イルフェニル)アミン(TCTA)、2,8−ビス(ジフェニルホスホリル)ジベンゾチオフェン(PPT)、アダマンタン・アントラセン(Ad−Ant)、ルブレン、及び2,2’−ビ(9,10−ジフェニルアントラセン)(TPBA)等が挙げられる。発光層5を構成する成分中、本発明の発光材料(イソニコチノニトリル誘導体)及びホスト化合物の含有率は、1〜50wt%、好ましくは5〜10wt%である。 As with other light emitting layers used in organic EL elements, it is preferable to use a host compound together with the isonicotinonitrile derivative which is the light emitting material of the present invention in the light emitting layer 5. The host compound is not limited as long as it does not impair the emission characteristics based on fluorescence and TADF, and is, for example, bis [2- (diphenylphosphino) phenyl] ether oxide (DPEPO), PO9, 4,4'-. Bis (N-carbazolyl) -1,1'-biphenyl (CBP), tris (4-carbazoyl-9-ylphenyl) amine (TCTA), 2,8-bis (diphenylphosphoryl) dibenzothiophene (PPT), adamantane. Examples include anthracene (Ad-Ant), rubrene, and 2,2'-bi (9,10-diphenylanthracene) (TPBA). The content of the light emitting material (isonicotinonitrile derivative) and the host compound of the present invention in the components constituting the light emitting layer 5 is 1 to 50 wt%, preferably 5 to 10 wt%.

陽極2から正孔を効率良く発光層に輸送するために陽極2と発光層5の間に正孔輸送層4が設けられる。正孔輸送層4を形成する正孔輸送材料には、例えば、TAPC、N,N’−ジフェニル−N,N’−ジ(m−トリル)ベンジジン(TPD)、N,N’−ジ(1−ナフチル)−N,N’−ジフェニルベンジジン(α−NPD)、1,3−ジ(カルバゾリル−9−イル)ベンゼン)(mCP)及び4,4’,4’’−トリス[フェニル(m−トリル)アミノ]トリフェニルアミン等が挙げられる。 A hole transport layer 4 is provided between the anode 2 and the light emitting layer 5 in order to efficiently transport holes from the anode 2 to the light emitting layer. Examples of the hole transport material forming the hole transport layer 4 include TAPC, N, N'-diphenyl-N, N'-di (m-tolyl) benzidine (TPD), N, N'-di (1). -Naphthyl) -N, N'-diphenylbenzidine (α-NPD), 1,3-di (carbazolyl-9-yl) benzene) (mCP) and 4,4', 4''-tris [phenyl (m-) Trill) Amino] Triphenylamine and the like can be mentioned.

陰極から電子を効率良く発光層に輸送するために陰極8と発光層5の間に電子輸送層6が設けられる。電子輸送層6を形成する電子輸送材料には、例えば、B3PymPm、B4PyPPm、2−(4−ビフェニリル)−5−(p−t−ブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)、1,3−ビス[5−(4−t−ブチルフェニル)−2−[1,3,4]オキサジアゾリル]ベンゼン(OXD−7)、3−(ビフェニル−4−イル)−5−(4−t−ブチルフェニル)−4−フェニル−4H−1,2,4−トリアゾール(TAZ)、バソクプロイン(BCP)、1,3,5−トリス(1−フェニル−1H−ベンズイミダゾール−2−イル)ベンゼン(TPBi)等が挙げられる。 An electron transport layer 6 is provided between the cathode 8 and the light emitting layer 5 in order to efficiently transport electrons from the cathode to the light emitting layer. Examples of the electron transport material forming the electron transport layer 6 include B3PymPm, B4PyPPm, 2- (4-biphenylyl) -5- (pt-butylphenyl) -1,3,4-oxadiazole (tBu-). PBD), 1,3-bis [5- (4-t-butylphenyl) -2- [1,3,4] oxadiazolyl] benzene (OXD-7), 3- (biphenyl-4-yl) -5 (4-t-Butylphenyl) -4-phenyl-4H-1,2,4-triazole (TAZ), bathocuproine (BCP), 1,3,5-tris (1-phenyl-1H-benzimidazole-2-) Il) benzene (TPBi) and the like can be mentioned.

陰極8には、仕事関数が低く(4eV以下)、かつ、化学的に安定なものが用いられる。
具体的には、Al、MgAg合金、又は、AlLiやAlCa等のAlとアルカリ金属との合金等の陰極材料が用いられる。これらの陰極材料は、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、又はイオンプレーティング法により成膜される。陰極の厚さは、通常10nm〜1μm、好ましくは50〜500nmである。
As the cathode 8, a cathode having a low work function (4 eV or less) and chemically stable is used.
Specifically, a cathode material such as an Al, MgAg alloy, or an alloy of Al and an alkali metal such as AlLi or AlCa is used. These cathode materials are formed by, for example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, or an ion plating method. The thickness of the cathode is usually 10 nm to 1 μm, preferably 50 to 500 nm.

上記正孔輸送層4又は電子輸送層6のうち、それぞれ、陽極2又は陰極8からの電荷注入効率を改善する機能を有し、有機EL素子の駆動電圧を下げる効果を発揮させる層として、正孔注入層3及び電子注入層7を設けてもよい。さらに、正孔阻止層、電子阻止層及び励起子阻止層等の層が必要に応じて形成される。 Of the hole transport layer 4 and the electron transport layer 6, each of them has a function of improving the charge injection efficiency from the anode 2 or the cathode 8, and is positive as a layer that exerts the effect of lowering the drive voltage of the organic EL element. The hole injection layer 3 and the electron injection layer 7 may be provided. Further, layers such as a hole blocking layer, an electron blocking layer and an exciton blocking layer are formed as needed.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

[一般式(1)で表されるイソニコチノニトリル誘導体の合成]
合成物の同定に使用した機器及び測定条件は以下のとおりである。
(1)1H核磁気共鳴(NMR)装置
日本電子(株)製(400MHz)JNM−EX270FT−NMR型
(2)質量分析(MS)装置
日本電子(株)製JMS−K9[卓上GCQMS]及びWaters(株)製Zspray(SQ検出器2)
(3)昇華精製装置
温度斜傾型電気炉、形式:NPF80−500型、会社名:コスモ・テック(株)
サーマル定流量装置、形式:MC−1A、会社名:コフロック(株)
ロータリーポンプ、形式:GLD−136C、会社名:アルバック機工(株)
(4)元素分析装置
Perkin Elmer 2400II CHNS/O アナライザー
測定モード:CHNモード
[Synthesis of isonicotinonitrile derivative represented by the general formula (1)]
The equipment and measurement conditions used to identify the compound are as follows.
(1) 1 H Nuclear Magnetic Resonance (NMR) Device JEM-EX270FT-NMR Type (2) Mass Spectrometry (MS) Device manufactured by JEOL Ltd. (400 MHz) JMS-K9 [Desktop GCQMS] manufactured by JEOL Ltd. Zspray manufactured by Waters Co., Ltd. (SQ detector 2)
(3) Sublimation refining equipment Temperature tilt type electric furnace, type: NPF80-500 type, company name: Cosmo Tech Co., Ltd.
Thermal constant flow rate device, type: MC-1A, company name: Koflock Co., Ltd.
Rotary pump, type: GLD-136C, company name: ULVAC Kiko Co., Ltd.
(4) Elemental analyzer PerkinElmer 2400II CHNS / O analyzer Measurement mode: CHN mode

[実施例1]PXZINNの合成

Figure 0006986737
[Example 1] Synthesis of PXZINN
Figure 0006986737

(i)2ClPhINNの合成
窒素置換した100mL四口フラスコに、2,6−ジクロロイソニコチノニトリルを0.69g(4.0mmol)、4−クロロフェニルボロン酸を1.37g(8.8mmol)、炭酸ナトリウム(Na2CO3)2.2gを水20mLに溶解させた1MNa2CO3水溶液を加え、アセトニトリルを56mL入れて、1時間窒素バブリングを行った。その後、PdCl2(PPh2を0.14g(0.2mmol)加えて、80℃、窒素雰囲気下に加熱した。1時間後、TLCにより原料が消費されたのを確認し、反応を停止した。吸引ろ過を行い、ろ物をクロロホルム150mLに溶解させ、分液ロートにて水100mLで2回、飽和食塩水で1回洗浄した。硫酸マグネシウムにて脱水後、濃縮した。さらに、トルエンにて熱ろ過し、白色固体0.84g(収率65%)を得た。
1H−NMR(400MHz、DMSO−D6):δ8.46(dd;J=12.9、9.3Hz;2H)、8.31(dt;J=9.2、 2.3Hz;4H)、7.73−7.52(m;4H)ppm
MS:[m/z]325
(I) Synthesis of 2ClPhINN In a nitrogen-substituted 100 mL four-necked flask, 0.69 g (4.0 mmol) of 2,6-dichloroisonicotinonitrile, 1.37 g (8.8 mmol) of 4-chlorophenylboronic acid, and carbonic acid were added. A 1 MNa 2 CO 3 aqueous solution prepared by dissolving 2.2 g of sodium (Na 2 CO 3 ) in 20 mL of water was added, 56 mL of acetonitrile was added, and nitrogen bubbling was performed for 1 hour. Then, 0.14 g (0.2 mmol) of PdCl 2 (PPh 3 ) 2 was added, and the mixture was heated at 80 ° C. under a nitrogen atmosphere. After 1 hour, it was confirmed that the raw material was consumed by TLC, and the reaction was stopped. Suction filtration was performed, the filtrate was dissolved in 150 mL of chloroform, and washed twice with 100 mL of water and once with saturated brine in a liquid separation funnel. After dehydration with magnesium sulfate, it was concentrated. Further, it was thermally filtered with toluene to obtain 0.84 g (yield 65%) of a white solid.
1 1 H-NMR (400 MHz, DMSO-D6): δ8.46 (dd; J = 12.9, 9.3 Hz; 2H), 8.31 (dt; J = 9.2, 2.3 Hz; 4H), 7.73-7.52 (m; 4H) ppm
MS: [m / z] 325

(ii)PXZINNの合成
窒素置換した50mL四口フラスコに、2ClPh−INNを0.54g(1.6mmol)、フェノキサジンを0.67g(3.6mmol)、炭酸カリウムを1.52g(11mmol)、トルエン50mLを入れ、1時間窒素バブリングを行った。その後、Pd(OAc)2を25.0mg(0.1mmol)とP(tBu)3 を0.097mL(0.4mmol)を加え、110℃、窒素雰囲気下に加熱還流を行った。25時間後、TLC(展開溶媒ジクロロメタン:ヘキサン=1:1)により原料の消費を確認し、反応を停止した。MSにて目的物の分子量があることを確認し、クロロホルムに溶解させ、水100mLで2回、飽和食塩水100mLで分液を行い、硫酸マグネシウムにて脱水し、濃縮した。その後、トルエンで熱ろ過を行った。シリカゲルカラムクロマトグラフィー(展開溶媒ジクロロメタン:ヘキサン=1:2→1:1)により精製し、黄色固体の目的物を0.99g(収率96%)を得た。
PXZINNについて、1H−NMR、MS、元素分析、熱重量測定(TGA)、及び真空TGAの結果を以下に示す。
1H−NMR(400MHz、DMSO−D6):δ8.60(d;J=10.0Hz;6H)、7.63(d;J=8.2Hz;4H)、6.85−6.61(m;12H)、6.08−5.88(m;4H)ppm
MS:[m/z]618
元素分析:組成式 C422642
理論値:C,81.54%;H,4.24%;N,9.06%;O,5.17%
実測値:C,81.51%;H,4.25%;N,9.05%
5%重量減衰温度:463℃
昇華温度(10-4Torr):277℃
(Ii) Synthesis of PXZINN In a nitrogen-substituted 50 mL four-necked flask, 0.54 g (1.6 mmol) of 2ClPh-INN, 0.67 g (3.6 mmol) of phenoxazine, and 1.52 g (11 mmol) of potassium carbonate. 50 mL of toluene was added and nitrogen bubbling was performed for 1 hour. Then, 25.0 mg (0.1 mmol) of Pd (OAc) 2 and 0.097 mL (0.4 mmol) of P (tBu) 3 were added, and the mixture was heated under reflux at 110 ° C. under a nitrogen atmosphere. After 25 hours, the consumption of the raw material was confirmed by TLC (developing solvent dichloromethane: hexane = 1: 1), and the reaction was stopped. After confirming that the target product had a molecular weight by MS, it was dissolved in chloroform, separated twice with 100 mL of water and separated with 100 mL of saturated brine, dehydrated with magnesium sulfate, and concentrated. Then, thermal filtration was performed with toluene. Purification by silica gel column chromatography (developing solvent dichloromethane: hexane = 1: 2 → 1: 1) gave 0.99 g (yield 96%) of the target product as a yellow solid.
The results of 1 H-NMR, MS, elemental analysis, thermogravimetric analysis (TGA), and vacuum TGA for PXZINN are shown below.
1 1 H-NMR (400 MHz, DMSO-D6): δ8.60 (d; J = 10.0 Hz; 6H), 7.63 (d; J = 8.2 Hz; 4H), 6.85-6.61 ( m; 12H), 6.08-5.88 (m; 4H) ppm
MS: [m / z] 618
Elemental analysis: Composition formula C 42 H 26 N 4 O 2
Theoretical value: C, 81.54%; H, 4.24%; N, 9.06%; O, 5.17%
Measured value: C, 81.51%; H, 4.25%; N, 9.05%
5% weight decay temperature: 463 ° C
Sublimation temperature (10 -4 Torr): 277 ° C

[実施例2]2AcINNの合成

Figure 0006986737
[Example 2] Synthesis of 2AcINN
Figure 0006986737

(i)ClPhINNの合成
窒素置換した200mL四口フラスコに、2−クロロイソニコチノニトリルを1.38g(8.0mmol)、4−クロロフェニルボロン酸を1.37g(8.8mmol)、炭酸ナトリウム4.4gを水40mLに溶解させた1M炭酸ナトリウム水溶液を加え、アセトニトリルを112mL入れて、1時間窒素バブリングを行った。その後、PdCl2(PPh2を0.14g(0.2mmol)加えて、80℃、窒素雰囲気下で加熱を行い、反応を開始させた。TLCにて原料が消費されたのを確認して反応を停止した。分液ロートにて水50mLで2回、飽和食塩水50mLで1回洗浄した。硫酸マグネシウムにて脱水後、濃縮した。分液ロートに移し、ろ過するときにトルエンを少量使用したため、濃縮をアセトニトリルのみ飛ばした後、少量のトルエン溶液のみ残した。この溶液12mLをインジェクションとし、カラム精製を行った。Φ4.2cmカラム管にシリカゲルを高さ10cmまで充填した。展開溶媒をトルエンとした(Rf値:0.20)。100mLずつ回収し目的物を単離したフラクションを回収し、濃縮した。得られた無色粘体を減圧乾燥した後、白色固体1.68g(収率98%)を得た。
1H−NMR(400MHz、DMSO−D6):δ8.91(d;J=5.0Hz;1H)、8.53(s;1H)、8.19(dt;J=8.9、 2.3Hz;2H)、7.84(dd;J=5.0、 1.4Hz;1H)、7.60(dt;J=9.2、 2.3Hz;2H)ppm
MS:[m/z]214
(I) Synthesis of ClPhINN 1.38 g (8.0 mmol) of 2-chloroisonicotinonitrile, 1.37 g (8.8 mmol) of 4-chlorophenylboronic acid, and sodium carbonate 4 in a nitrogen-substituted 200 mL four-necked flask. A 1 M aqueous sodium carbonate solution in which 4 g was dissolved in 40 mL of water was added, 112 mL of acetonitrile was added, and nitrogen bubbling was performed for 1 hour. Then, 0.14 g (0.2 mmol) of PdCl 2 (PPh 3 ) 2 was added, and the mixture was heated at 80 ° C. under a nitrogen atmosphere to initiate the reaction. After confirming that the raw material was consumed by TLC, the reaction was stopped. It was washed twice with 50 mL of water and once with 50 mL of saturated saline in a separating funnel. After dehydration with magnesium sulfate, it was concentrated. Since a small amount of toluene was used when transferring to a separating funnel and filtering, only acetonitrile was skipped for concentration, and then only a small amount of toluene solution was left. Column purification was performed using 12 mL of this solution as injection. A Φ4.2 cm column tube was filled with silica gel to a height of 10 cm. The developing solvent was toluene (Rf value: 0.20). Fractions from which the target product was isolated by collecting 100 mL each were collected and concentrated. The obtained colorless viscous body was dried under reduced pressure to obtain 1.68 g (yield 98%) of a white solid.
1 1 H-NMR (400 MHz, DMSO-D6): δ8.91 (d; J = 5.0 Hz; 1H), 8.53 (s; 1H), 8.19 (dt; J = 8.9, 2. 3Hz; 2H), 7.84 (dd; J = 5.0, 1.4Hz; 1H), 7.60 (dt; J = 9.2, 2.3Hz; 2H) ppm
MS: [m / z] 214

(ii)2AcINNの合成
窒素置換した50mL四つ口フラスコに、ClPhINNを1.49g(6.96mmol)、9,10−ジヒドロ−9,9−ジメチルアクリジンを1.60g(7.66mmol)、炭酸カリウムを1.92g(13.9mmol)、トルエン35mLを入れ、1時間窒素バブリングを行った。その後、Pd(OAc)2を79.0mg(0.35mmol)と[(tBu)3PH]BF4を308mg(1.05mmol)加え、110℃、窒素雰囲気下に加熱還流を行った。TLC(展開溶媒ジクロロメタン)により原料の消費を確認し、反応を停止した。吸引ろ過をしてから、水50mLで2回と飽和食塩水50mLにて分液を行い、硫酸マグネシウムにて脱水し、濃縮した。Φ4.2cmカラム管にシリカゲルを高さ15cmまで充填し、シリカゲルカラムクロマトグラフィー(展開溶媒トルエン)により目的物を単離した(Rf値:0.2)。これを回収し、濃縮し、減圧乾燥し、白色〜薄黄色固体2.09g(収率77%)を得た。
2AcINNについて、1H−NMR、MS、元素分析、熱重量測定(TGA)、及び真空TGAの結果を以下に示す。
1H−NMR(400MHz、DMSO−D6):δ8.97(dd;J=5.0、0.9Hz;1H)、8.63(s;1H)、8.47(dd;J=6.8、 1.8Hz;2H)、7.88(dd;J=5.0、1.4Hz;1H)、7.52(td;J=8.4、 2.0Hz;4H)、6.95(dtd;J=27.6、 7.5、1.4Hz;4H)、6.22(dd;J=7.9、1.1Hz;2H)、1.63(s;6H)ppm
MS:[m/z]214
元素分析:C27213
理論値:C,83.69%;H,5.46%;N,10.84%
実測値:C,83.69%;H,5.34%;N,10.84%
5%重量減衰温度:312℃
昇華温度(10-4Torr):156℃
(Ii) Synthesis of 2AcINN 1.49 g (6.96 mmol) of ClPhINN, 1.60 g (7.66 mmol) of 9,10-dihydro-9,9-dimethylacridine and carbonic acid in a nitrogen-substituted 50 mL four-necked flask. 1.92 g (13.9 mmol) of potassium and 35 mL of toluene were added, and nitrogen bubbling was performed for 1 hour. Then, 79.0 mg (0.35 mmol) of Pd (OAc) 2 and 308 mg (1.05 mmol) of [(tBu) 3 PH] BF 4 were added, and the mixture was heated under reflux at 110 ° C. under a nitrogen atmosphere. Consumption of the raw material was confirmed by TLC (developing solvent dichloromethane), and the reaction was stopped. After suction filtration, the mixture was separated twice with 50 mL of water and 50 mL of saturated brine, dehydrated with magnesium sulfate, and concentrated. Silica gel was filled in a Φ4.2 cm column tube to a height of 15 cm, and the target product was isolated by silica gel column chromatography (developing solvent toluene) (Rf value: 0.2). This was recovered, concentrated, and dried under reduced pressure to obtain 2.09 g (yield 77%) of a white to pale yellow solid.
The results of 1 H-NMR, MS, elemental analysis, thermogravimetric analysis (TGA), and vacuum TGA for 2AcINN are shown below.
1 1 H-NMR (400 MHz, DMSO-D6): δ8.97 (dd; J = 5.0, 0.9 Hz; 1H), 8.63 (s; 1H), 8.47 (dd; J = 6. 8, 1.8Hz; 2H), 7.88 (dd; J = 5.0, 1.4Hz; 1H), 7.52 (td; J = 8.4, 2.0Hz; 4H), 6.95 (Dtd; J = 27.6, 7.5, 1.4Hz; 4H), 6.22 (dd; J = 7.9, 1.1Hz; 2H), 1.63 (s; 6H) ppm
MS: [m / z] 214
Elemental analysis: C 27 H 21 N 3
Theoretical value: C, 83.69%; H, 5.46%; N, 10.84%
Measured value: C, 83.69%; H, 5.34%; N, 10.84%
5% weight decay temperature: 312 ° C
Sublimation temperature (10 -4 Torr): 156 ° C

[実施例3]PXZINN−MPAの合成

Figure 0006986737
[Example 3] Synthesis of PXZINN-MPA
Figure 0006986737

(i)ClPhPXZの合成
窒素置換した50mL四口フラスコに、フェノキサジンを1.83g(10mmol)、1−ブロモ−4−クロロベンゼンを1.92g(10mmol)、炭酸カリウムを2.76g(20mmol)、及びトルエンを50mL入れて、窒素バブリングを1時間行った。その後、[(tBu)3PH]BF4を0.44g(1.5mmol)、Pd(OAc)2を0.11g(0.5mmol)加えて、110℃、窒素雰囲気下に加熱撹拌を行い、反応を開始した。3.5時間後にTLCにより原料のフェノキサジンがほぼ消費されたのを確認し、さらに1時間後に反応を停止した。MSにより目的物由来のピークが観測された。その後、吸引ろ過により塩などを除去し、分液ロートにて水50mLで2回、飽和食塩水50mLにて1回洗浄を行った。硫酸ナトリウムにて脱水し、除去してから濃縮を行った。黄色〜灰色固体2.9gを得た。次にカラムクロマトグラフィーにより精製を行った。TLC上で1スポットであったため、抜きカラム程度であった。Φ4.2cmカラム管にシリカゲルを140cc(高さ約10cm)相当を充填し、展開溶媒(トルエン:ヘキサン=1:4)にて行った。目的物のスポットを回収し、濃縮して白色固体3.0gを得た。減圧乾燥器で乾燥した後、白色固体は2.51g(収率85%)であった。
1H−NMR(400MHz、DMSO−D6):δ7.72(dt;J=9.4、 2.6Hz;2H)、7.47(dt;J=9.2、2.5Hz;2H)、6.85−6.56(m;6H)、5.96−5.76(m;2H)ppm
MS:[m/z]293
(I) Synthesis of ClPhPXZ In a nitrogen-substituted 50 mL four-necked flask, 1.83 g (10 mmol) of phenoxazine, 1.92 g (10 mmol) of 1-bromo-4-chlorobenzene, 2.76 g (20 mmol) of potassium carbonate, and the like. And 50 mL of toluene was added, and nitrogen bubbling was performed for 1 hour. Then, 0.44 g (1.5 mmol) of [(tBu) 3 PH] BF 4 and 0.11 g (0.5 mmol) of Pd (OAc) 2 were added, and the mixture was heated and stirred at 110 ° C. under a nitrogen atmosphere. The reaction was started. After 3.5 hours, it was confirmed that the raw material phenoxazine was almost consumed by TLC, and the reaction was stopped after another 1 hour. A peak derived from the target substance was observed by MS. Then, salts and the like were removed by suction filtration, and washing was performed twice with 50 mL of water and once with 50 mL of saturated saline in a liquid separation funnel. It was dehydrated with sodium sulfate, removed, and then concentrated. 2.9 g of a yellow to gray solid was obtained. Next, purification was performed by column chromatography. Since there was only one spot on the TLC, it was about a blank column. A Φ4.2 cm column tube was filled with silica gel equivalent to 140 cc (height about 10 cm), and the process was carried out with a developing solvent (toluene: hexane = 1: 4). The spot of interest was recovered and concentrated to obtain 3.0 g of a white solid. After drying in a vacuum dryer, the white solid weighed 2.51 g (yield 85%).
1 1 H-NMR (400 MHz, DMSO-D6): δ7.72 (dt; J = 9.4, 2.6 Hz; 2H), 7.47 (dt; J = 9.2, 2.5 Hz; 2H), 6.85-6.56 (m; 6H) 5.96-5.76 (m; 2H) ppm
MS: [m / z] 293

(ii)ClPhPXZ−Brの合成
窒素置換した四口フラスコに、ClPhPXZ 3.12g(1.06mmol)、塩化メチレンを20〜30mL入れて、0℃以下にして窒素フローを行った。その後、残りの塩化メチレン90〜100mLにN−ブロモスクシンイミド(NBS)1.88g(1.06mmol)を溶解させて滴下ロートに入れた。系全体をアルミホイルにて遮光し、滴下を開始し、反応を開始させた。全て滴下した後、一置換体のスポットが濃く、原料が薄くほとんどないと判断し反応を終了させた。MSにより目的物由来のピークが観測された。その後、分液ロートにて水50mLで2回、飽和食塩水50mLにて1回洗浄を行った。硫酸マグネシウムにて脱水し、シリカゲルにて原点抜きを行った。色の抜けた溶液を濃縮・減圧乾燥し、白〜薄い黄色固体3.90g(収率98%)を得た。
同じ操作を行い、目的物であるClPhPXZ−Brを合計5.91g得た。
1H−NMR(400MHz、DMSO−D6):δ7.70(dd;J=6.3、 2.3Hz;2H)、7.48−7.40(m;2H)、6.92(t;J=2.0Hz;1H)、6.82(td;J=9.3、2.3Hz;1H)、6.75−6.61(m;3H)、5.84(td;J=3.5、2.1Hz;1H)、5.76(dd;J=8.6、 2.7Hz;1H)ppm
MS:[m/z]373
(Ii) Synthesis of ClPhPXZ-Br In a nitrogen-substituted four-necked flask, 3.12 g (1.06 mmol) of ClPhPXZ and 20 to 30 mL of methylene chloride were placed, and nitrogen flow was performed at 0 ° C. or lower. Then, 1.88 g (1.06 mmol) of N-bromosuccinimide (NBS) was dissolved in the remaining 90 to 100 mL of methylene chloride and placed in a dropping funnel. The entire system was shielded from light with aluminum foil, dripping was started, and the reaction was started. After dropping all of them, it was judged that the spot of the monosubstituted product was dark and the raw material was thin and almost no, and the reaction was terminated. A peak derived from the target substance was observed by MS. Then, it was washed twice with 50 mL of water and once with 50 mL of saturated saline in a separating funnel. It was dehydrated with magnesium sulfate, and the origin was removed with silica gel. The decolorized solution was concentrated and dried under reduced pressure to obtain 3.90 g (yield 98%) of a white to pale yellow solid.
The same operation was carried out to obtain a total of 5.91 g of the target product, ClPhPXZ-Br.
1 1 H-NMR (400 MHz, DMSO-D6): δ7.70 (dd; J = 6.3, 2.3 Hz; 2H), 7.48-7.40 (m; 2H), 6.92 (t; J = 2.0Hz; 1H), 6.82 (td; J = 9.3, 2.3Hz; 1H), 6.75-6.61 (m; 3H), 5.84 (td; J = 3) .5, 2.1Hz; 1H) 5.76 (dd; J = 8.6, 2.7Hz; 1H) ppm
MS: [m / z] 373

(iii)ClPhPXZ−MPAの合成
窒素置換した四口フラスコに、3−ブロモ−10−(4−クロロフェニル)フェノキサジン(ClPhPXZ−Br)1.00g(2.68mmol)、炭酸カリウム0.74g(5.36mmol)、及びトルエン20mLを入れて、窒素バブリングを1時間行った。その後、N−メチルアニリン0.29mL(2.68mmol)、[(tBu)3PH]BF4 0.11g(0.40mmol)、及びPd(OAc)2 0.03g(0.13mmol)を加えて、110℃、窒素雰囲気下に加熱しながら撹拌を行った。途中で、上記と同量の触媒及び配位子を追加し、追加から24時間後にTLCにて原料が消費されたのを確認し、反応を停止した。室温に冷却後、吸引ろ過を行い、ろ液を水50mLにて2回、飽和食塩水50mLで1回分液ロートにて洗浄した。さらに水層をトルエン20mLにて抽出した。硫酸マグネシウムにて脱水し、ろ過で除去してから濃縮した。黄色粘体を得た。カラム管にシリカゲル高さ約15cmまでヘキサンにて充填した。展開溶媒をジクロロメタン:ヘキサン=1:3に設定(目的物:Rf値0.25)した。黄色粘体をトルエン少量で薄めてインジェクションを作成した。スポットが現れてから50mLずつ回収を行った。2本目のフラクションまではゴミのスポットが薄く混ざってしまったが、その後は目的物のみを単離した。フラクション6本目までで目的物が含まれていたためこれを濃縮した。黄色粘体0.85g(収率79%)を得た。
同じ操作を行い、目的物であるClPhPXZ−MPAを合計3.65g得た。
MS:[m/z]399
(Iii) Synthesis of ClPhPXZ-MPA In a nitrogen-substituted four-necked flask, 1.00 g (2.68 mmol) of 3-bromo-10- (4-chlorophenyl) phenoxazine (ClPhPXZ-Br) and 0.74 g (5) of potassium carbonate were placed. .36 mmol) and 20 mL of toluene were added and nitrogen bubbling was performed for 1 hour. Then, N- methylaniline 0.29 mL (2.68 mmol), was added the [(tBu) 3 PH] BF 4 0.11g (0.40mmol), and Pd (OAc) 2 0.03g (0.13mmol ) , 110 ° C., stirring while heating in a nitrogen atmosphere. On the way, the same amount of catalyst and ligand as above were added, and 24 hours after the addition, it was confirmed by TLC that the raw material was consumed, and the reaction was stopped. After cooling to room temperature, suction filtration was performed, and the filtrate was washed twice with 50 mL of water and once with 50 mL of saturated saline in a separate solution funnel. Further, the aqueous layer was extracted with 20 mL of toluene. It was dehydrated with magnesium sulfate, removed by filtration, and then concentrated. Obtained a yellow viscous body. The column tube was filled with hexane to a height of silica gel of about 15 cm. The developing solvent was set to dichloromethane: hexane = 1: 3 (object: Rf value 0.25). Injection was created by diluting the yellow viscous body with a small amount of toluene. After the spots appeared, 50 mL each was collected. Up to the second fraction, dust spots were mixed thinly, but after that, only the target object was isolated. Since the target substance was contained up to the sixth fraction, this was concentrated. 0.85 g (yield 79%) of yellow viscous substance was obtained.
The same operation was carried out to obtain a total of 3.65 g of ClPhPXZ-MPA, which is the target product.
MS: [m / z] 399

(iv)BPinPhPXZ−MPAの合成
窒素置換した25mL四口フラスコに、ClPhPXZ−MPA 2.80g(7.02mmol)、ビス(ピナコラト)ジボロン3.55g(8.42mmol)、KOAc2.08g(21.2mmol)、及び1,4−ジオキサン66mLを入れて、窒素バブリングを1時間行った。その後、2−ジシクロヘキシルホスフィノ−2,6’−ジメトキシビフェニル(S−Phos)148mg(0.33mmol)、及びPd(OAc)279mg(0.33mmol)を加えて、100℃、窒素雰囲気下に加熱撹拌を行い、反応を開始した。翌日TLCにて原料の消費を確認後、反応を停止した。室温に戻した後、吸引ろ過を行い、ろ液を水50mLにて2回、飽和食塩水50mLで1回分液ロートにて洗浄した。さらに水層をトルエンにて抽出した。硫酸マグネシウムにて脱水し、濃縮し、黄色粘体を得た。
カラム管にシリカゲルを高さ約20cmまで充填した。展開溶媒をジクロロメタン:ヘキサン=1:2に設定(目的物:Rf値0.25)した。シリカガルカラムクロマトグラフィーにより回収したフラクションの溶液を濃縮し、減圧乾燥を行い、黄色固体2.62g(収率:72%)を得た。
同じ操作を行い、目的物であるBPinPhPXZ−MPAを合計3.14g得た。
1H−NMR(400MHz、DMSO−D6):δ7.94(dd;J=8.2、2.7Hz;2H)、7.45−7.38(m;2H)、7.25−7.13(m;2H)、6.88−6.79(m;2H)、6.77−6.56(m;4H)、6.49(d;J=2.7Hz;1H)、6.39(dd;J=8.6、 2.3Hz;1H)、5.91−5.81(m;2H)、3.12(d;J=13.1Hz;3H)、1.31(d;J=12.7Hz;12H)ppm
MS:[m/z]490
(Iv) Synthesis of BPinPhPXZ-MPA In a nitrogen-substituted 25 mL four-necked flask, 280 g (7.02 mmol) of ClPhPXZ-MPA, 3.55 g (8.42 mmol) of bis (pinacolato) diboron, and 2.08 g (21.2 mmol) of KOAc. ) And 66 mL of 1,4-dioxane were added and nitrogen bubbling was performed for 1 hour. Then, 2-dicyclohexyl phosphino-2,6'-dimethoxy biphenyl (S-Phos) 148mg (0.33mmol ), and the addition of Pd (OAc) 2 79mg (0.33mmol ), 100 ℃, under a nitrogen atmosphere The reaction was started by heating and stirring. The next day, after confirming the consumption of the raw material by TLC, the reaction was stopped. After returning to room temperature, suction filtration was performed, and the filtrate was washed twice with 50 mL of water and once with 50 mL of saturated saline in a separate solution funnel. Further, the aqueous layer was extracted with toluene. It was dehydrated with magnesium sulfate and concentrated to obtain a yellow viscous body.
The column tube was filled with silica gel to a height of about 20 cm. The developing solvent was set to dichloromethane: hexane = 1: 2 (object: Rf value 0.25). The solution of the fraction recovered by silica gallam column chromatography was concentrated and dried under reduced pressure to obtain 2.62 g (yield: 72%) of a yellow solid.
The same operation was carried out to obtain a total of 3.14 g of the target product, BPinPhPXZ-MPA.
1 1 H-NMR (400 MHz, DMSO-D6): δ7.94 (dd; J = 8.2, 2.7 Hz; 2H), 7.45-7.38 (m; 2H), 7.25-7. 13. (m; 2H), 6.88-6.79 (m; 2H), 6.77-6.56 (m; 4H), 6.49 (d; J = 2.7Hz; 1H), 6. 39 (dd; J = 8.6, 2.3Hz; 1H), 5.91-5.81 (m; 2H), 3.12 (d; J = 13.1Hz; 3H), 1.31 (d) J = 12.7Hz; 12H) ppm
MS: [m / z] 490

(v)PXZINN−MPAの合成
窒素置換した四口フラスコに、BPinPhPXZ−MPA 2.62g(5.34mmol)、2,6−ジクロロイソニコチノニトリル 440mg(2.54mmol)、1,4−ジオキサン31.7mL、及び、K3PO4 1.61gを水6.6mLに溶解させた水溶液を加えて、窒素バブリングを1時間行った。その後、Pd2(dba)3209mg(0.51mmol)、及びSPhos 476mg(0.51mmol)を加えて、100℃、窒素雰囲気下に加熱撹拌を行った。22時間後、TLCによりBPinPhPXZ−MPAが消費されたのを確認し、反応を停止した。室温に戻した後、吸引ろ過を行い、ろ液を水にて2回、飽和食塩水で1回分液ロートにて洗浄した。硫酸マグネシウムにて脱水し、ろ過で除去してから濃縮した。オレンジ色固体0.7gを得た。カラム管Φ4.2cmにシリカゲル(高さ約20cm)をヘキサンにて充填した。インジェクションをトルエンに溶解させ作成した。展開溶媒はトルエン:ヘキサン=3:1(Rf:2.0)に設定した。50mLずつ回収して7本目から単離した。これをスポットがなくなるまで流し、回収を行い、濃縮した。オレンジ色固体1.32g(収率63%)を得た。
同じ操作を行い、目的物であるPXZINN−MPAを合計1.54g得た。
PXZINN−MPAについて、1H−NMR、MS、熱重量測定(TGA)、及び真空TGAの結果を以下に示す。
1H−NMR(400 MHz、DMSO−D6):δ8.70−8.50(m;6H)、7.64(d;J=8.2Hz;4H)、7.27−7.15(m;4H)、6.96−6.62(m;12H)、6.59−6.36(m;4H)、6.09−5.89(m;4H)、3.17(d;J=15.4Hz;6H)ppm
MS:[m/z]829
5%重量減衰温度:435℃
昇華温度(×10-4Torr):333℃
(V) Synthesis of PXZINN-MPA In a nitrogen-substituted four-necked flask, 2.62 g (5.34 mmol) of BPinPhPXZ-MPA, 440 mg (2.54 mmol) of 2,6-dichloroisonicotinonitrile, 1,4-dioxane 31 Nitrogen bubbling was performed for 1 hour by adding an aqueous solution prepared by dissolving 1.6 mL of K 3 PO 4 in 6.6 mL of water. Then, 209 mg (0.51 mmol) of Pd 2 (dba) 3 and 476 mg (0.51 mmol) of SPhos were added, and the mixture was heated and stirred at 100 ° C. under a nitrogen atmosphere. After 22 hours, it was confirmed that BPinPhPXZ-MPA was consumed by TLC, and the reaction was stopped. After returning to room temperature, suction filtration was performed, and the filtrate was washed twice with water and once with saturated brine in a separate funnel. It was dehydrated with magnesium sulfate, removed by filtration, and then concentrated. 0.7 g of orange solid was obtained. The column tube Φ4.2 cm was filled with silica gel (height about 20 cm) with hexane. It was prepared by dissolving the injection in toluene. The developing solvent was set to toluene: hexane = 3: 1 (Rf: 2.0). 50 mL each was collected and isolated from the 7th bottle. This was poured until there were no spots, collected, and concentrated. 1.32 g (yield 63%) of an orange solid was obtained.
The same operation was performed to obtain a total of 1.54 g of the target product, PXZINN-MPA.
The results of 1 H-NMR, MS, thermogravimetric analysis (TGA), and vacuum TGA for PXZINN-MPA are shown below.
1 1 H-NMR (400 MHz, DMSO-D6): δ8.70-8.50 (m; 6H), 7.64 (d; J = 8.2Hz; 4H), 7.27-7.15 (m) 4H), 6.96-6.62 (m; 12H), 6.59-6.36 (m; 4H), 6.09-5.89 (m; 4H), 3.17 (d; J) = 15.4Hz; 6H) ppm
MS: [m / z] 829
5% weight decay temperature: 435 ° C
Sublimation temperature (× 10 -4 Torr): 333 ° C

[実施例4]3AcINNの合成

Figure 0006986737
[Example 4] Synthesis of 3AcINN
Figure 0006986737

窒素置換した50mLの四口フラスコに、4−(ジオキサボロラン)フェニル−9,9−ジメチルアクリジンを1.16g(2.83mmol)、3−クロロ−4−シアノピリジンを0.39g(2.83mmol)、1,4−ジオキサンを35.4mL、K3PO4を1.81g入れ、水7.4mLを加えて溶解させ、窒素バブリングを1時間行った。その後、Pd2(dba)3を0.13g(0.14mmol)、SPhosを0.057g(0.14mmol)加えて、100℃にて加熱攪拌を行った。1時間後サンプリングを行い、TLCにて新たなスポットが生成していることを確認した。Massにより目的物由来のピークを確認した。14時間後、TLCにて原料が消費されたことを確認し、反応を停止した。その後、Φ4.2cmカラム管にシリカゲルを10cm充填し、展開溶媒をジクロロメタンとするカラムクロマトグラフィーにより、目的物を単離した(Rf値:0.1)。濃縮、減圧乾燥後、白色〜薄黄色固体0.7gを得た。収率77%。
1H−NMR(400MHz,DMSO−D6)δ9.08(s,1H),8.88(d,J=5.4Hz,1H),8.12−7.91(m,3H),7.68−7.43(m,4H),7.11−6.84(m,4H),6.22(dd,J=8.2,1.4Hz,2H),1.64(s,6H)ppm
MS:[m/z]388
5%重量減衰温度:300.7℃
元素分析:組成式 C27213
理論値:C,83.69%;H,5.46%;N,10.84%
実測値:C,83.83%;H,5.62%;N,10.91%
1.16 g (2.83 mmol) of 4- (dioxaborolane) phenyl-9,9-dimethylacridine and 0.39 g (2.83 mmol) of 3-chloro-4-cyanopyridine in a nitrogen-substituted 50 mL four-necked flask. , 1,4-dioxane (35.4 mL) and K 3 PO 4 ( 1.81 g) were added, and 7.4 mL of water was added to dissolve the mixture, and nitrogen bubbling was performed for 1 hour. Then, 0.13 g (0.14 mmol) of Pd 2 (dba) 3 and 0.057 g (0.14 mmol) of SPhos were added, and the mixture was heated and stirred at 100 ° C. Sampling was performed after 1 hour, and it was confirmed by TLC that a new spot was generated. A peak derived from the target product was confirmed by Mass. After 14 hours, it was confirmed by TLC that the raw material was consumed, and the reaction was stopped. Then, 10 cm of silica gel was filled in a Φ4.2 cm column tube, and the target product was isolated by column chromatography using dichloromethane as the developing solvent (Rf value: 0.1). After concentration and drying under reduced pressure, 0.7 g of a white to pale yellow solid was obtained. Yield 77%.
1 1 H-NMR (400 MHz, DMSO-D6) δ9.08 (s, 1H), 8.88 (d, J = 5.4 Hz, 1H), 8.12-7.91 (m, 3H), 7. 68-7.43 (m, 4H), 7.11-6.84 (m, 4H), 6.22 (dd, J = 8.2, 1.4Hz, 2H), 1.64 (s, 6H) ) Ppm
MS: [m / z] 388
5% weight decay temperature: 300.7 ° C
Elemental analysis: Composition formula C 27 H 21 N 3
Theoretical value: C, 83.69%; H, 5.46%; N, 10.84%
Measured value: C, 83.83%; H, 5.62%; N, 10.91%

[実施例5]2AcNNの合成

Figure 0006986737
[Example 5] Synthesis of 2AcNN
Figure 0006986737

窒素置換した50mLの四口フラスコに、4−(ジオキサボロラン)フェニル−9,9−ジメチルアクリジンを1.16g(2.83mmol)、2−クロロ−3−シアノピリジンを0.39g(2.83mmol)、1,4−ジオキサンを35.4mL、K3PO4を1.81g入れ、水7.4mLを加えて溶解させ窒素バブリングを1時間行った。その後、Pd2(dba)3を0.13g(0.14mmol)、SPhosを0.057g(0.14mmol)加えて、100℃にて加熱攪拌を行った。1時間後サンプリングを行い、TLCにて新たなスポットが生成していることを確認した。Massにより目的物由来のピークを確認した。14時間後にTLCにて原料が消費されたことを確認し、反応を停止した。その後、Φ4.2cmカラム管にシリカゲルを10cm充填し、展開溶媒をジクロロメタンとするカラムクロマトグラフィーにより、目的物を単離した(Rf値:0.1)。濃縮、減圧乾燥後、白色〜薄黄色固体0.74gを得た。収率67%。
1H−NMR(400MHz,DMSO−D6)δ9.08(s,1H),8.88(d,J=5.4Hz,1H),8.12−7.91(m,3H),7.68−7.43(m,4H),7.11−6.84(m,4H),6.22(dd,J=8.2,1.4Hz,2H),1.64(s,6H)ppm
MS:[m/z]388
5%重量減衰温度:303.9℃
元素分析:組成式 C27213
理論値:C,83.69%;H,5.46%;N,10.84%
実測値:C,83.82%;H,5.39%;N,10.81%
1.16 g (2.83 mmol) of 4- (dioxaborolane) phenyl-9,9-dimethylacridine and 0.39 g (2.83 mmol) of 2-chloro-3-cyanopyridine in a nitrogen-substituted 50 mL four-necked flask. , 1,4-dioxane (35.4 mL) and K 3 PO 4 ( 1.81 g) were added, and 7.4 mL of water was added to dissolve the mixture, and nitrogen bubbling was performed for 1 hour. Then, 0.13 g (0.14 mmol) of Pd 2 (dba) 3 and 0.057 g (0.14 mmol) of SPhos were added, and the mixture was heated and stirred at 100 ° C. Sampling was performed after 1 hour, and it was confirmed by TLC that a new spot was generated. A peak derived from the target product was confirmed by Mass. After 14 hours, it was confirmed by TLC that the raw material was consumed, and the reaction was stopped. Then, 10 cm of silica gel was filled in a Φ4.2 cm column tube, and the target product was isolated by column chromatography using dichloromethane as the developing solvent (Rf value: 0.1). After concentration and drying under reduced pressure, 0.74 g of a white to pale yellow solid was obtained. Yield 67%.
1 1 H-NMR (400 MHz, DMSO-D6) δ9.08 (s, 1H), 8.88 (d, J = 5.4 Hz, 1H), 8.12-7.91 (m, 3H), 7. 68-7.43 (m, 4H), 7.11-6.84 (m, 4H), 6.22 (dd, J = 8.2, 1.4Hz, 2H), 1.64 (s, 6H) ) Ppm
MS: [m / z] 388
5% weight decay temperature: 303.9 ° C
Elemental analysis: Composition formula C 27 H 21 N 3
Theoretical value: C, 83.69%; H, 5.46%; N, 10.84%
Measured value: C, 83.82%; H, 5.39%; N, 10.81%

[実施例6]5AcNNの合成

Figure 0006986737
[Example 6] Synthesis of 5AcNN
Figure 0006986737

窒素置換した50mLの四口フラスコ(50mL)に、4−(ジオキサボロラン)フェニル−9,9−ジメチルアクリジンを0.89g(2.18mmol)、5−ブロモ−3−ピリジンカルボニトリルを0.40g(2.18mmol)、1,4−ジオキサンを27.3mL、K3PO4を1.39g入れ、水5.7mLを加えて溶解させて、窒素バブリングを1時間行った。その後、Pd2(dba)3を0.20g(0.22mmol)、SPhosを0.09g(0.22mmol)加えて、100℃にて加熱撹拌を行った。1時間後サンプリングを行い、TLCにて新たなスポットが生成していることを確認した。Massにより目的物由来のピークを確認した。41時間後にTLCにて原料が消費されたのを確認し、反応を停止した。カラム精製を行った。インジェクションをジクロロメタンにより20mLで調製した。その後、Φ4.2cmカラム管にシリカゲルを10cm充填し、展開溶媒をジクロロメタンとするカラムクロマトグラフィーにより、目的物を単離した(Rf値:0.1)。濃縮、減圧乾燥後、白色〜薄黄色固体0.7gを得た。収率83%。
1H−NMR(400MHz,DMSO−D6)δ9.34(d,J=2.3Hz,1H),9.07(d,J=1.8Hz,1H),8.80(t,J=2.0Hz,1H),8.16(d,J=8.2Hz,2H),7.59−7.44(m,4H),7.03−6.82(m,4H),6.21(d,J=8.2Hz,2H),1.60(d,J=27.2Hz,6H)ppm
MS:[m/z]388
5%重量減衰温度:306.8℃
元素分析:組成式 C27213
理論値:C,83.69%;H,5.46%;N,10.84%
実測値:C,83.78%;H,5.39%;N,10.82%
0.89 g (2.18 mmol) of 4- (dioxaborolane) phenyl-9,9-dimethylacridine and 0.40 g of 5-bromo-3-pyridinecarbonitrile in a nitrogen-substituted 50 mL four-necked flask (50 mL) ( 2.18 mmol), 27.3 mL of 1,4-dioxane and 1.39 g of K 3 PO 4 were added, and 5.7 mL of water was added to dissolve the mixture, and nitrogen bubbling was performed for 1 hour. Then, 0.20 g (0.22 mmol) of Pd 2 (dba) 3 and 0.09 g (0.22 mmol) of SPhos were added, and the mixture was heated and stirred at 100 ° C. Sampling was performed after 1 hour, and it was confirmed by TLC that a new spot was generated. A peak derived from the target product was confirmed by Mass. After 41 hours, it was confirmed by TLC that the raw material was consumed, and the reaction was stopped. Column purification was performed. Injection was prepared with dichloromethane in 20 mL. Then, 10 cm of silica gel was filled in a Φ4.2 cm column tube, and the target product was isolated by column chromatography using dichloromethane as the developing solvent (Rf value: 0.1). After concentration and drying under reduced pressure, 0.7 g of a white to pale yellow solid was obtained. Yield 83%.
1 1 H-NMR (400MHz, DMSO-D6) δ9.34 (d, J = 2.3Hz, 1H), 9.07 (d, J = 1.8Hz, 1H), 8.80 (t, J = 2) .0Hz, 1H), 8.16 (d, J = 8.2Hz, 2H), 7.59-7.44 (m, 4H), 7.03-6.82 (m, 4H), 6.21 (D, J = 8.2Hz, 2H), 1.60 (d, J = 27.2Hz, 6H) ppm
MS: [m / z] 388
5% weight decay temperature: 306.8 ° C
Elemental analysis: Composition formula C 27 H 21 N 3
Theoretical value: C, 83.69%; H, 5.46%; N, 10.84%
Measured value: C, 83.78%; H, 5.39%; N, 10.82%

[光学特性評価]
光学特性評価に用いた機器及び測定条件は以下のとおりである。
(1)紫外・可視(UV−vis)分光光度計
(株)島津製作所製 UV−3150
測定条件;スキャンスピード 中速、測定範囲 200〜800nm サンプリングピッチ 0.5nm、スリット幅 0.5nm
(2)フォトルミネッセンス(PL)測定装置
(株)堀場製作所製Fluoro MAX−2
常温及び低温において、PLスペクトル、及び、ストリークカメラ(浜松ホトニクス(株)製C4334)を用いた時間分解PLスペクトル(過渡PLスペクトル)を測定した。
(3)光電子収量分光(PYS)装置
住友重機械工業(株)製イオン化ポテンシャル測定装置
イオン化ポテンシャル測定装置を用いて、真空中でイオン化ポテンシャル(Ip)の測定を行った。
なお、電子親和力(E)は、UV−vis吸収スペクトルの吸収端よりエネルギーギャップ(E)を見積もることによって算出した。
[Evaluation of optical characteristics]
The equipment and measurement conditions used for the optical characteristic evaluation are as follows.
(1) Ultraviolet / visible (UV-vis) spectrophotometer UV-3150 manufactured by Shimadzu Corporation
Measurement conditions; Scan speed Medium speed, Measurement range 200 to 800 nm Sampling pitch 0.5 nm, Slit width 0.5 nm
(2) Photoluminescence (PL) measuring device Fluoro MAX-2 manufactured by HORIBA, Ltd.
The PL spectrum and the time-resolved PL spectrum (transient PL spectrum) using a streak camera (C4334 manufactured by Hamamatsu Photonics Co., Ltd.) were measured at room temperature and low temperature.
(3) Photoelectron yield spectroscopy (PYS) device Ionization potential measuring device manufactured by Sumitomo Heavy Industries, Ltd. Ionization potential (Ip) was measured in vacuum using an ionization potential measuring device.
The electron affinity (E a) was calculated by estimating the energy gap (E g) than the absorption edge of the UV-vis absorption spectra.

[実施例7]光学特性評価
実施例1で合成したPXZINNの膜状態での光学特性評価を行った。PXZINNの単膜、PXZINNをCBPに10wt%ドープした膜を、それぞれ蛍光ガラスチャンバーを用いて作製し、評価した。
また、実施例2及び4〜6で合成した2AcINN、3AcINN、2AcNN、及び5AcNNのトルエン希釈溶液(10-5M)、及び、薄膜での光学特性評価を行った。薄膜は、2AcINN、3AcINN、2AcNN、及び5AcNNの単膜と、これらとDPEPOとの共蒸着膜(10wt%in DPEPO)を、それぞれ蛍光ガラスチャンバーを用いて作製し、評価した。
[Example 7] Evaluation of optical characteristics The optical characteristics of the PXZINN synthesized in Example 1 were evaluated in the film state. A single film of PXZINN and a film obtained by doping CBP with 10 wt% of PXZINN were prepared using a fluorescent glass chamber and evaluated.
In addition, the optical characteristics of 2AcINN, 3AcINN, 2AcNN, and 5AcNN synthesized in Examples 2 and 4 to 6 in a toluene diluted solution ( 10-5 M) and a thin film were evaluated. As the thin film, a single film of 2AcINN, 3AcINN, 2AcNN, and 5AcNN and a co-deposited film (10 wt% in DPEPO) of these and DPEPO were prepared using a fluorescent glass chamber and evaluated.

(1)UV−vis吸収スペクトル、PLスペクトル、及びPLQY測定
PXZINNの光学特性評価
UV−vis吸収スペクトル測定の結果から、ドープ膜でPXZINNとCBPの吸収由来のピークが観測された。
PLスペクトル測定では、単膜では発光波長がλmax=560nmの黄色発光を示した。CBPへのドープ膜では、PXZINNが分散しているため、凝集によるレッドシフトがみられず、λmax=520nmの緑色発光を示した。
さらに、それぞれのPLQYを測定したところ、単膜では約32%、ドープ膜では約79%となり、ドープ膜で高い量子収率を得られた。
結果を図1(a)及び(b)に示す。
(1) UV-vis absorption spectrum, PL spectrum, and PLQY measurement Optical characteristic evaluation of PXZINN From the results of UV-vis absorption spectrum measurement, peaks derived from absorption of PXZINN and CBP were observed in the dope film.
In the PL spectrum measurement, the single film showed yellow emission with an emission wavelength of λ max = 560 nm. In the CBP-doped film, since PXZINN was dispersed, no red shift due to aggregation was observed , and green emission at λ max = 520 nm was exhibited.
Further, when each PLQY was measured, it was about 32% for the single film and about 79% for the doped film, and a high quantum yield was obtained for the doped film.
The results are shown in FIGS. 1 (a) and 1 (b).

2AcINN、3AcINN、2AcNN、5AcNNの光学特性評価
UV−vis吸収スペクトルを測定した結果、これらドーパント由来のCT吸収(360〜390nm付近)はどの分子でも強い吸収を示さず、かつ大幅にシフトしない結果となった。後述するPLスペクトルでは5AcNNだけ大きく短波長化を示しているため、CT吸収が他に比べて弱いと考えていたが大きな差は見られなかった。そのため、5AcNNはこの誘導体の中で最もストークスシフトの小さな分子であると言える。
PLスペクトルの測定結果、450〜510nmの純青色から青緑色の発光が観測された。共蒸着膜では5AcNNが純青色発光を示し、その他が同等の水色発光を示した。シアノ基の置換位置とピリジンのN原子の位置による特性の変化を検証した結果、N原子に対してシアノ基がパラ位に修飾しているものがより強いCT性を示すことがわかった。その中でもピリジンよりも電子供与性の強いシアノ基がドナー部位側に修飾しているものの方が、よりCT性が強くなり長波長シフトを起こしている。さらに、N原子とシアノ基がメタ位に修飾しているものでも、パラ位のものと同様にドナー部位側に近いもののほうが、CT性が強くより長波長にシフトしていると考えられる。
Optical characterization of 2AcINN, 3AcINN, 2AcNN, 5AcNN As a result of measuring UV-vis absorption spectra, CT absorption (around 360 to 390 nm) derived from these dopants did not show strong absorption in any molecule and did not shift significantly. became. Since the PL spectrum, which will be described later, shows a large shortening of wavelength by 5 AcNN, it was thought that CT absorption was weaker than the others, but no significant difference was observed. Therefore, it can be said that 5AcNN is the molecule with the smallest Stokes shift among these derivatives.
As a result of measuring the PL spectrum, luminescence from pure blue to bluish green of 450 to 510 nm was observed. In the co-deposited film, 5AcNN showed pure blue emission, and the others showed equivalent light blue emission. As a result of verifying the change in the characteristics depending on the substitution position of the cyano group and the position of the N atom of pyridine, it was found that the one in which the cyano group was modified to the para position with respect to the N atom showed stronger CT properties. Among them, the one in which the cyano group having a stronger electron donating property is modified on the donor site side than the pyridine has stronger CT property and causes a long wavelength shift. Further, even if the N atom and the cyano group are modified to the meta position, the one closer to the donor site side as in the para position is considered to have stronger CT property and shift to a longer wavelength.

(2)PYS及び過渡PL測定
PXZINNの光学特性評価
PYS用にはPXZINNの単膜、過渡PL測定用にはPXZINNをCBPに10wt%ドープした膜を用いた。
PYS測定の結果、イオン化ポテンシャル(Ip)は約5.63eVとなり、膜の状態では計算値の5.16eVよりも非常に深い値であることがわかった。UV−visスペクトルから見積もったエネルギーギャップ(Eg)から電子親和力(Ea)を算出した。
過渡PL測定はストリークカメラを用いて、ΔESTの実測値及び温度可変での発光寿命を測定した。この結果、ΔESTは0.06eVと見積もられた。この値は、計算値の0.004eVに比べて大きいが0.1eV以下と、比較的小さいΔESTを有していることがわかった。しかし、遅延成分の発光寿命は26.9μsと、やや長かった。
(2) PYS and transient PL measurement Optical characteristic evaluation of PXZINN A single film of PXZINN was used for PYS, and a film obtained by doping CBP with 10 wt% of PXZINN was used for transient PL measurement.
As a result of PYS measurement, it was found that the ionization potential (I p ) was about 5.63 eV, which was much deeper than the calculated value of 5.16 eV in the state of the membrane. The electron affinity (E a ) was calculated from the energy gap (E g ) estimated from the UV-vis spectrum.
Transient PL measurements using a streak camera, to measure the light emission life of the actual measurement values and the variable temperature Delta] E ST. As a result, ΔE ST was estimated to be 0.06 eV. It was found that this value is larger than the calculated value of 0.004 eV, but has a relatively small ΔE ST of 0.1 eV or less. However, the emission lifetime of the delayed component was 26.9 μs, which was rather long.

測定結果及び光学特性を表1及び図2(a)及び(b)に示す。

Figure 0006986737
The measurement results and optical characteristics are shown in Table 1 and FIGS. 2 (a) and 2 (b).
Figure 0006986737

2AcINN、3AcINN、2AcNN、5AcNNの光学特性評価
イソニコチノニトリル誘導体がTADF特性を有した発光材料であるのか、及びその発光寿命がどの程度のものなのかを検証するために、3AcINN、2AcNN、5AcNNについて、時間分解過渡PL減衰スペクトルの測定を行った。測定は、10wt%PyCN(4−シアノピリジン)誘導体:DPEPO(30nm)の膜を作製し、300Kと5Kの温度条件にて行った。
図20〜22に示すように、いずれの誘導体においても、遅延成分の発光強度が5Kより300Kの条件のほうが増加していたため、温度依存性により熱活性化遅延蛍光由来の発光であることが示唆された。しかし、300K条件下での発光寿命が250〜460μsと非常に長い発光寿命を有していることがわかった。2AcINNの発光寿命も450μs程度と非常に長かったことを加味すると、このピリジンカルボニトリル誘導体は通常のTADF材料と比較して、発光寿命が長くなる傾向にあると考えられる。その原因としては、CN基同士の凝集等が考えられる。
続いて、低温リン光スペクトルの測定を行い、蛍光成分及びリン光成分の立ち上がりからそれぞれS1、T1を見積もり、TADF材料に重要なパラメータであるDESTの大きさを算出した。温度条件は時間分解過渡PL減衰スペクトルと同様に行ったが、上述の共蒸着膜ではリン光成分が観測されなかったため、5wt%Ir(ppz)3:PyCN誘導体(30nm)にて測定を行った。
図23〜25に示すように、2AcINN(S1 2.97eV/T1 2.67eV/DEST0.30eV)と比べて、3AcINN、2AcNN、及び5AcNNのいずれも、T1のエネルギー準位が向上し、DESTも小さくなっていることがわかる。これは、2AcINNがドナー基側にN原子が存在し、かつCN基がドナー基側に向いていないことで最もプラナーな構造を有しているためT1のエネルギー準位が低かったと考えられる。しかし、これらの誘導体では、ドナー基側に嵩高いCN基を導入したものや、どちらもドナー基側に向いていない分子を設計したことで、ねじれた構造を有しているためにT1のエネルギー準位が向上したと考えられる。これにより通常であれば、より効率的なTADF特性を期待できるが先の実験により遅延成分の発光寿命が長いためにTADF特性は2AcINNと同等であると考えられる。結果を表2に示す。
Optical characterization of 2AcINN, 3AcINN, 2AcNN, 5AcNN 3AcINN, 2AcNN, 5AcNN to verify whether the isonicotinonitrile derivative is a light emitting material with TADF properties and how long its light emitting life is. The time-resolved transient PL attenuation spectrum was measured. The measurement was carried out under the temperature conditions of 300K and 5K by preparing a film of 10 wt% PyCN (4-cyanopyridine) derivative: DPEPO (30 nm).
As shown in FIGS. 20 to 22, in all the derivatives, the emission intensity of the delayed component was higher under the condition of 300K than at 5K, suggesting that the emission is derived from thermal activated delayed fluorescence due to temperature dependence. Was done. However, it was found that the emission lifetime under 300K conditions was 250 to 460 μs, which was a very long emission lifetime. Considering that the emission lifetime of 2AcINN was also very long, about 450 μs, it is considered that this pyridinecarbonitrile derivative tends to have a longer emission lifetime as compared with a normal TADF material. The cause may be agglutination between CN groups.
Subsequently, the low-temperature phosphorescence spectrum was measured, S 1 and T 1 were estimated from the rise of the fluorescent component and the phosphorescence component, respectively, and the magnitude of DE ST , which is an important parameter for the TADF material, was calculated. The temperature conditions were the same as for the time-resolved transient PL attenuation spectrum, but the phosphorescence component was not observed in the above-mentioned co-deposited film, so the measurement was performed with 5 wt% Ir (ppz) 3 : PyCN derivative (30 nm). ..
As shown in FIGS. 23 to 25, the energy level of T 1 is higher in all of 3AcINN, 2AcNN, and 5AcNN as compared with 2AcINN (S 1 2.97 eV / T 1 2.67 eV / DE ST 0.30 eV). It can be seen that it has improved and the DE ST has also become smaller. It is probable that the energy level of T 1 was low because 2AcINN had the most planar structure because the N atom was present on the donor group side and the CN group was not oriented toward the donor group side. However, these derivatives, those obtained by introducing a bulky CN group to the donor group side or both that were designed molecules that are not facing the donor group side, of T 1 to have a twisted structure It is considered that the energy level has improved. As a result, more efficient TADF characteristics can be expected normally, but it is considered that the TADF characteristics are equivalent to 2AcINN because the emission lifetime of the delayed component is long according to the previous experiment. The results are shown in Table 2.

Figure 0006986737
Figure 0006986737

[有機EL素子の作製及び評価]
有機EL素子の評価に用いた機器は以下のとおりである。
EL(エレクトロルミネッセンス)スペクトル
装置;(株)浜松ホトニクス製 PHOTONIC MULTI−CHANNEL ANALYZER PMA−1
[Manufacturing and evaluation of organic EL elements]
The equipment used for the evaluation of the organic EL element is as follows.
EL (Electroluminescence) Spectrum Device; Hamamatsu Photonics Co., Ltd. PHOTONIC MULTI-CHANNEL ANALYZER PMA-1

[実施例8]PXZINNの素子評価
(1)ホスト材料の検証
実施例1で合成したPXZINNを用いて、以下に示す素子構造(Device 1及び2)を作製した。
[Example 8] Device evaluation of PXZINN (1) Verification of host material Using the PXZINN synthesized in Example 1, the device structures (Devices 1 and 2) shown below were produced.

(i)Device 1
[ITO/KLHIP:PPBI(20nm)/TAPC(30nm)/10wt%PXZINN:CBP(10nm)/B3PyPB(50nm)/LiF/Al]
(ii)Device 2
[ITO/KLHIP:PPBI(20nm)/TAPC(30nm)/10wt%PXZINN:TCTA(10nm)/B3PyPB(50nm)/LiF/Al]

Figure 0006986737
(I) Device 1
[ITO / KLHIP: PPBI (20 nm) / TAPC (30 nm) / 10 wt% PXZINN: CBP (10 nm) / B3PyPB (50 nm) / LiF / Al]
(Ii) Device 2
[ITO / KLHIP: PPBI (20 nm) / TAPC (30 nm) / 10 wt% PXZINN: TCTA (10 nm) / B3PyPB (50 nm) / LiF / Al]
Figure 0006986737

すなわち、Device 1では、ホスト材料にCBPを、Device 2では、ホスト材料に、CBPよりも低電圧駆動を期待できるTCTAを用いた素子構造とした。これらの素子構造のエネルギーダイアグラム及び初期状態のエネルギー値を図3に示す。
Device 1及び2の特性を図4及び5に示す。また、表3に、輝度が1cd/m2、100cd/m2及び1000cd/m2である場合のDevice 1及び2の電圧(V)、電力効率(PE)、電流効率(CE)、及び外部量子効率(EQE)を示す。
That is, in Device 1, the host material is CBP, and in Device 2, the host material is CTTA, which can be expected to be driven at a lower voltage than CBP. The energy diagram of these element structures and the energy value in the initial state are shown in FIG.
The characteristics of Devices 1 and 2 are shown in FIGS. 4 and 5. Table 3 also shows the voltage (V), power efficiency (PE), current efficiency (CE), and external of Devices 1 and 2 when the luminance is 1 cd / m 2 , 100 cd / m 2 and 1000 cd / m 2. Quantum efficiency (EQE) is shown.

Figure 0006986737
Figure 0006986737

ホスト材料にCBPとTCTAを使用した結果、CBPの方が100cd/m2時で外部量子効率が約22%と、高い効率を示した。しかし、電流密度−電圧特性を見ると、高電流密度領域で低電圧化している(図4(a))。これは、TCTAの方がIpのエネルギー準位が低いので、効率的にホールが輸送されたために起こったと考えられる。 As a result of using CBP and TCTA as host materials, CBP showed higher efficiency with an external quantum efficiency of about 22% at 100 cd / m 2. However, looking at the current density-voltage characteristics, the voltage is lowered in the high current density region (FIG. 4A). It is probable that this was caused by the efficient transport of holes because TCTA has a lower energy level of I p.

さらに、ELスペクトルを比較すると、TCTAを使用したDevice 2では、400nm付近にドーパント由来ではない発光が弱く観測された(図5(a))。この検証のために、周辺材料であるTCTA及びB3PyPBと、TCTA及びB3PyPBがエキサイプレックス(B3PyPB:TCTA)を形成する場合とで、発光スペクトルとの比較を行ったところ(図5(b))、TCTAとB3PyPB:TCTAとでは、発光スペクトルがほぼ重なっているが、B3PyPB:TCTA由来の発光の方が、Device 2のELスペクトルとのピークトップの重なりがやや近かった。そのため、TCTAとB3PyPBとの界面で励起子が再結合し、エキサイプレックス由来の発光が見られたと考えられる。これは、効率低下の要因にも繋がる。よって、効率ではCBPを用いた方が優れるものの、TCTAを用いた方が低電圧で駆動することから、最適化するには、これらを両方用いてダブル発光層とすることが望ましいと考えられる。 Further, when the EL spectra were compared, in Device 2 using TCTA, light emission not derived from the dopant was observed weakly in the vicinity of 400 nm (FIG. 5 (a)). For this verification, a comparison was made between the emission spectra of the peripheral materials TCTA and B3PyPB and the case where TCTA and B3PyPB form an exciplex (B3PyPB: TCTA) (FIG. 5 (b)). The emission spectra of TCTA and B3PyPB: TCTA almost overlap, but the emission of B3PyPB: TCTA-derived emission has a peak top overlap with the EL spectrum of Device 2 slightly closer. Therefore, it is considered that excitons were recombined at the interface between TCTA and B3PyPB, and emission derived from exciplex was observed. This also leads to factors that reduce efficiency. Therefore, although it is better to use CBP in terms of efficiency, it is considered desirable to use both of them to form a double light emitting layer in order to optimize it because it is driven at a lower voltage by using TCTA.

(2)電子輸送材料の検証
以下に示す素子構造(Device 1及び3)を作製し、電子輸送材料の検討を行った。
(i)Device 1
[ITO/KLHIP:PPBI(20nm)/TAPC(30nm)/10wt%PXZINN:CBP(10nm)/B3PyPB(50nm)/LiF/Al]
(ii)Device 3
[ITO/KLHIP:PPBI(20nm)/TAPC(30nm)/10wt%PXZINN:CBP(10nm)/B4PyPPM(50nm)/LiF/Al]
(2) Verification of electron transport material The device structures (Devices 1 and 3) shown below were prepared, and the electron transport material was examined.
(I) Device 1
[ITO / KLHIP: PPBI (20 nm) / TAPC (30 nm) / 10 wt% PXZINN: CBP (10 nm) / B3PyPB (50 nm) / LiF / Al]
(Ii) Device 3
[ITO / KLHIP: PPBI (20 nm) / TAPC (30 nm) / 10 wt% PXZINN: CBP (10 nm) / B4PyPPM (50 nm) / LiF / Al]

すなわち、電子輸送材料をB3PyPBからより深いLUMO準位を有するB4PyPPMに変更することにより、低電圧化及び高電力効率化を行った。ホスト材料は「(1)ホスト材料の検証」において、高効率を示したCBPを使用した。これらの素子構造のエネルギーダイアグラム及び初期状態のエネルギー値を図6に示す。
Device 1及び3の特性を図7及び8に示す。また、表4に、輝度が1cd/m2、100cd/m2及び1000cd/m2である場合のDevice 1及び3の電圧(V)、電力効率(PE)、電流効率(CE)、及び外部量子効率(EQE)を示す。
That is, by changing the electron transport material from B3PyPB to B4PyPPM having a deeper LUMO level, the voltage was lowered and the power efficiency was improved. As the host material, CBP showing high efficiency was used in "(1) Verification of host material". The energy diagram of these element structures and the energy value in the initial state are shown in FIG.
The characteristics of Devices 1 and 3 are shown in FIGS. 7 and 8. Table 4 also shows the voltage (V), power efficiency (PE), current efficiency (CE), and external of Devices 1 and 3 when the luminance is 1 cd / m 2 , 100 cd / m 2 and 1000 cd / m 2. Quantum efficiency (EQE) is shown.

Figure 0006986737
Figure 0006986737

B4PyPPMを使用したDevice 3では、外部量子効率が低下し、最大でも20%程度となった。これはB3PyPBを使用した時よりもキャリアバランスが崩れたからであると考えられる。しかし、1cd/m2時の発光開始電圧が、Device 1と比べて、2.8Vから2.3Vと0.5V低下したため、最大電力効率は89lm/Wと、このドーパントを使用した素子で最も高い値を示した(図7(f))。よって、さらなる素子の最適化には、電子輸送材料にB4PyPPMを使用し、TCTA及びCBPの両方を用いたダブル発光層とし、これらのホスト材料の界面で励起子生成を起こさせることでキャリアバランスの調整を行うことが考えられる。さらに、TCTAを挟むことで、正孔輸送性を上げ、低電圧・高電力効率化が期待できると考えられる。 In Device 3 using B4PyPPM, the external quantum efficiency decreased to about 20% at the maximum. It is considered that this is because the carrier balance is lost as compared with the case where B3PyPB is used. However, since the emission start voltage at 1 cd / m 2 was 0.5 V lower than 2.8 V to 2.3 V compared to Device 1, the maximum power efficiency was 89 lm / W, which is the highest among devices using this dopant. It showed a high value (FIG. 7 (f)). Therefore, for further device optimization, B4PyPPM is used as the electron transport material, a double light emitting layer using both TCTA and CBP is used, and excitons are generated at the interface of these host materials to achieve carrier balance. It is possible to make adjustments. Furthermore, by sandwiching the TCTA, it is considered that hole transportability can be improved and low voltage and high power efficiency can be expected.

(3)ダブル発光層の検証
TCTA及びCBPの両方をホストに用いたダブル発光層を有する素子構造(Device 4)を作製し、Device 3との対比において、さらなる高効率化を検討した。すなわち、TCTAを用いることで、ホールがより効率的に輸送されて低電圧化するとともに、TCTAとCBPとの界面での励起子生成を誘導し、キャリアバランスが改善されることを期待した。
(3) Verification of double light emitting layer An element structure (Device 4) having a double light emitting layer using both TCTA and CBP as a host was prepared, and further improvement in efficiency was examined in comparison with Device 3. That is, it was expected that by using TCTA, the holes would be transported more efficiently and the voltage would be lowered, and exciton generation at the interface between TCTA and CBP would be induced to improve the carrier balance.

(i)Device 3
[ITO/KLHIP:PPBI(20nm)/TAPC(30nm)/10wt%PXZINN:CBP(10nm)/B4PyPPM(50nm)/LiF/Al]
(ii)Device 4
[ITO/KLHIP:PPBI(20nm)/TAPC(30nm)/10wt%PXZINN:TCTA(5nm)/10wt%PXZINN:CBP(5nm)/B4PyPPM(50nm)/LiF/Al]
(I) Device 3
[ITO / KLHIP: PPBI (20 nm) / TAPC (30 nm) / 10 wt% PXZINN: CBP (10 nm) / B4PyPPM (50 nm) / LiF / Al]
(Ii) Device 4
[ITO / KLHIP: PPBI (20 nm) / TAPC (30 nm) / 10 wt% PXZINN: TCTA (5 nm) / 10 wt% PXZINN: CBP (5 nm) / B4PyPPM (50 nm) / LiF / Al]

これらの素子構造のエネルギーダイアグラム及び初期状態のエネルギー値を図9に示す。
Device 3及び4の特性を図10及び11に示す。また、表5に、輝度が1cd/m2、100cd/m2及び1000cd/m2である場合のDevice 3及び4の電圧(V)、電力効率(PE)、電流効率(CE)、及び外部量子効率(EQE)を示す。
The energy diagram of these element structures and the energy value in the initial state are shown in FIG.
The characteristics of Devices 3 and 4 are shown in FIGS. 10 and 11. Table 5 also shows the voltage (V), power efficiency (PE), current efficiency (CE), and external of Devices 3 and 4 when the luminance is 1 cd / m 2 , 100 cd / m 2 and 1000 cd / m 2. Quantum efficiency (EQE) is shown.

Figure 0006986737
Figure 0006986737

Device 4では、ホスト材料にCBPのみを用いたDevice 3よりも低電圧化し、1000cd/m2時には0.3V低下した。一方で、外部量子効率(EQE)と電力効率(PE)が伸び悩む結果となった。TCTAを使用した部分でのPLQYがCBPに比べて低いために効率が下がったものと考えられる。ただし、TCTAとの共蒸着膜でのPLQYを測定し、検証する余地はある。
表4及び図10、11の結果から、TCTAとCBPとのダブル発光層では、TCTA側の効率が下がるため、ホストはCBPのみにした方が良いと考えられる。
In Device 4, the voltage was lower than that in Device 3 in which only CBP was used as the host material, and the voltage dropped by 0.3 V at 1000 cd / m 2. On the other hand, the external quantum efficiency (EQE) and power efficiency (PE) have been sluggish. It is probable that the efficiency was reduced because the PLQY in the part where TCTA was used was lower than that of CBP. However, there is room for measuring and verifying PLQY in the co-deposited film with TCTA.
From the results of Table 4 and FIGS. 10 and 11, it is considered that the host should be only CBP because the efficiency on the TCTA side is lowered in the double light emitting layer of TCTA and CBP.

(4)TCTA挿入素子及びドープ濃度の検証
「(3)ダブル発光層の検証」において、Device 4では、TCTAホストのPLQYが低いためか、効率が低下した。しかし、駆動電圧の低下がみられたことから、TAPCからCBPへの正孔輸送性は向上したと考えられる。そこで、TCTAを発光層のホスト材料として用いるのではなく、正孔輸送層と発光層との間に挿入することで、効率維持及び低電圧化を検討した。
(4) Verification of TCTA insertion element and doping concentration In "(3) Verification of double light emitting layer", the efficiency of Device 4 was lowered probably because the PLQY of the TCTA host was low. However, it is considered that the hole transportability from TAPC to CBP was improved because the drive voltage was lowered. Therefore, instead of using TCTA as a host material for the light emitting layer, we investigated maintaining efficiency and reducing the voltage by inserting it between the hole transport layer and the light emitting layer.

さらに、Device 5(ドープ濃度:10wt%)において、ドープ濃度を20wt%及び30wt%と変更した素子を作製し、ドープ濃度の最適化を行った。
(i)Device 5
[ITO/KLHIP:PPBI(20nm)/TAPC(25nm)/TCTA(5nm)/10wt%PXZINN:CBP(10nm)/B4PyPPM(50nm)/LiF/Al]
(ii)Device 6
[ITO/KLHIP:PPBI(20nm)/TAPC(25nm)/TCTA(5nm)/20wt%PXZINN:CBP(10nm)/B4PyPPM(50nm)/LiF/Al]
(iii)Device 7
[ITO/KLHIP:PPBI(20nm)/TAPC(25nm)/TCTA(5nm)/30wt%PXZINN:CBP(10nm)/B4PyPPM(50nm)/LiF/Al]
Further, in Device 5 (doping concentration: 10 wt%), an element in which the doping concentration was changed to 20 wt% and 30 wt% was produced, and the doping concentration was optimized.
(I) Device 5
[ITO / KLHIP: PPBI (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 10 wt% PXZINN: CBP (10 nm) / B4PyPPM (50 nm) / LiF / Al]
(Ii) Device 6
[ITO / KLHIP: PPBI (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 20 wt% PXZINN: CBP (10 nm) / B4PyPPM (50 nm) / LiF / Al]
(Iii) Device 7
[ITO / KLHIP: PPBI (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 30 wt% PXZINN: CBP (10 nm) / B4PyPPM (50 nm) / LiF / Al]

これらの素子構造のエネルギーダイアグラム及び初期状態のエネルギー値を図10に示す。
Device 5〜7の特性を図13及び14に示す。また、表6に、輝度が1cd/m2、100cd/m2及び1000cd/m2である場合のDevice 5〜7の電圧(V)、電力効率(PE)、電流効率(CE)、及び外部量子効率(EQE)を示す。
The energy diagram of these element structures and the energy value in the initial state are shown in FIG.
The characteristics of Devices 5 to 7 are shown in FIGS. 13 and 14. Table 6 also shows the voltage (V), power efficiency (PE), current efficiency (CE), and external of Devices 5 to 7 when the luminance is 1 cd / m 2 , 100 cd / m 2 and 1000 cd / m 2. Quantum efficiency (EQE) is shown.

Figure 0006986737
Figure 0006986737

ダブル発光層とはせず、ホスト材料にはCBPのみ用い、TCTAは、正孔輸送層(TAPC)と発光層(PXZINN:CBP)との間に挿入することで、高い効率を維持しつつ、低電圧化することができた。また、ドープ濃度が10wt%であるDevice 5では、駆動電圧2.3V、最大外部量子効率21.0%、及び最大電力効率89.2lm/Wであった(表5及び図13(d)、(e))。ドープ濃度を20wt%にすると、駆動電圧2.2V、最大外部量子効率22.2%、及び最大電力効率99.0lm/Wと、PXZINNを用いた素子で最も高い効率を達成した(Device6)(表5及び図13(d)、(e))。ドープ濃度をさらに30wt%に上げると、バイポーラ分子であるドーパントの良好な電荷輸送性により、駆動電圧の低下がみられた。ただし、効率が下がったために電力効率も伸びなかった(表5及び図13(d))。これは、ドープ濃度30wt%では、ドーパントの濃度消光が起きたためと考えられる。 Instead of using a double light emitting layer, only CBP is used as the host material, and TCTA is inserted between the hole transport layer (TAPC) and the light emitting layer (PXZINN: CBP) to maintain high efficiency while maintaining high efficiency. It was possible to reduce the voltage. In Device 5 having a doping concentration of 10 wt%, the drive voltage was 2.3 V, the maximum external quantum efficiency was 21.0%, and the maximum power efficiency was 89.2 lm / W (Table 5 and FIG. 13 (d)). (E)). When the doping concentration was set to 20 wt%, the drive voltage was 2.2 V, the maximum external quantum efficiency was 22.2%, and the maximum power efficiency was 99.0 lm / W. Table 5 and FIGS. 13 (d) and 13 (e)). When the doping concentration was further increased to 30 wt%, a decrease in the driving voltage was observed due to the good charge transportability of the dopant, which is a bipolar molecule. However, the power efficiency did not increase because the efficiency decreased (Table 5 and FIG. 13 (d)). It is considered that this is because the concentration of the dopant was quenched at the doping concentration of 30 wt%.

[実施例9]2AcINNの素子評価
実施例2で合成した2AcINNを用いて、以下に示す素子構造(Device 8)を作製し、素子評価を行った。
Device 8
[ITO/KLHIP:PPBI(20nm)/TAPC(25nm)/mCP(5nm)/10wt%2AcINN:DPEPO(10nm)/B3PyPB(50nm)/LiF/Al]

Figure 0006986737
すなわち、発光層のホスト材料にDPEPOを使用し、正孔輸送層にTAPC、励起子ブロック層にmCP、電子輸送層にB3PyPBを使用した。この素子構造のエネルギーダイアグラム及び初期状態のエネルギー値を図15に示す。
Device 8の特性を図16及び17に示す。また、表7に、輝度が1cd/m2、100cd/m2及び1000cd/m2である場合のDevice 8の電圧(V)、電力効率(PE)、電流効率(CE)、及び外部量子効率(EQE)を示す。 [Example 9] Device evaluation of 2AcINN Using the 2AcINN synthesized in Example 2, the device structure (Device 8) shown below was prepared and device evaluation was performed.
Device 8
[ITO / KLHIP: PPBI (20 nm) / TAPC (25 nm) / mCP (5 nm) / 10 wt% 2AcINN: DPEPO (10 nm) / B3PyPB (50 nm) / LiF / Al]
Figure 0006986737
That is, DPEPO was used as the host material of the light emitting layer, TAPC was used as the hole transport layer, mCP was used as the exciton block layer, and B3PyPB was used as the electron transport layer. The energy diagram of this device structure and the energy value in the initial state are shown in FIG.
The characteristics of Device 8 are shown in FIGS. 16 and 17. Table 7 also shows the voltage (V), power efficiency (PE), current efficiency (CE), and external quantum efficiency of Device 8 when the luminance is 1 cd / m 2 , 100 cd / m 2 and 1000 cd / m 2. (EQE) is shown.

Figure 0006986737
λEL=486nmとドーパント由来の発光が確認された(図17)。0.1cd/m2時に最大外部量子効率(EQE)15.2%を示した(図16(e))。しかし、100cd/m2時では6.9%、1000cd/m2時では2.9%と、非常にロールオフが大きい結果となった(図16(e))。キャリアバランスの調整によってロールオフを抑制できる可能性がある。
Figure 0006986737
Emission derived from the dopant was confirmed at λ EL = 486 nm (Fig. 17). The maximum external quantum efficiency (EQE) of 15.2% was shown at 0.1 cd / m 2 (FIG. 16 (e)). However, 6.9% in at 100 cd / m 2, and 2.9% at times 1000 cd / m 2, was a very results rolloff is large (FIG. 16 (e)). Roll-off may be suppressed by adjusting the carrier balance.

[実施例10]2AcINN、3AcINN、2AcNN、5AcNNの素子評価
実施例2、4〜6で合成した2AcINN、3AcINN、2AcNN、5AcNNを用いて、以下に示す素子構造のデバイスを4種類作製した。
[Example 10] Device evaluation of 2AcINN, 3AcINN, 2AcNN, 5AcNN Using 2AcINN, 3AcINN, 2AcNN, and 5AcNN synthesized in Examples 2, 4 to 6, four types of devices having the element structure shown below were produced.

ITO/KLHIP:PPBI(20nm)/TAPC(25nm)/mCP(5nm)/10wt% dopant:DPEPO(20nm)/B3PyPB(50nm)/LiF(0.5nm)/Al(100nm)
なお、dopantは、2AcINN、3AcINN、2AcNN、又は5AcNNを表す。
ITO / KLHIP: PPBI (20nm) / TAPC (25nm) / mCP (5nm) / 10wt% dopant: DPEPO (20nm) / B3PyPB (50nm) / LiF (0.5nm) / Al (100nm)
The dopant represents 2AcINN, 3AcINN, 2AcNN, or 5AcNN.

上記デバイスの特性を図27及び28に示す。また、表8に、輝度が1cd/m2、100cd/m2及び1000cd/m2、及び、最大輝度である場合の上記デバイスの電圧(V)、電力効率(PE)、電流効率(CE)、及び外部量子効率(EQE)を示す。 The characteristics of the device are shown in FIGS. 27 and 28. In addition, Table 8 shows the voltage (V), power efficiency (PE), and current efficiency (CE) of the above-mentioned devices when the brightness is 1 cd / m 2 , 100 cd / m 2 and 1000 cd / m 2, and the maximum brightness. , And external quantum efficiency (EQE).

素子評価の結果、ELスペクトルからはドーパント由来の発光のみが得られた。そのため、ホスト材料からのエネルギー移動は効率的に行われていると考えられる。最も短波長で発光した5AcNNはλEL=454nm、CIE(0.16,0.19)の純青色発光を示したが、EQEは最大6.7%であり、蛍光の理論限界を超えなかった。これはそもそもドーパントのPLQYが約35%程度と発光特性が弱まっていることに起因すると考えられる。しかし、PLQYから見積もるEQEは蛍光の場合で考えると2.6%になるので、TADFもしくは他のプロセスにより三重項励起子が発光に寄与していると考えられる。これは他のドーパントも同様である。4種類のデバイスのうち、青緑色に発光を示した3AcINNが最も効率が高い値を示した。ここで効率全般のグラフに注目すると、どれも同様に激しくロールオフを示している。2AcNN及び3AcINNはフェニル基側にシアノ基を導入していることで、立体障害のよるねじれを誘発させることで共役を切り、三重項状態のエネルギー準位が高くなっていると考えられる。しかし、ロールオフが同様な低下傾向を示していることから、DESTの大小は議論できないが発光寿命は同程度であると考えられる。ストリーク測定の結果を踏まえないと正しい議論はできないが、ホスト材料のDPEPOではこの誘導体の発光寿命を短くすることは困難ではないかと考えられる。 As a result of device evaluation, only the light emission derived from the dopant was obtained from the EL spectrum. Therefore, it is considered that the energy transfer from the host material is performed efficiently. 5AcNN emitted at the shortest wavelength showed pure blue emission of λ EL = 454 nm and CIE (0.16, 0.19), but EQE was 6.7% at maximum, which did not exceed the theoretical limit of fluorescence. .. It is considered that this is because the PLQY of the dopant is about 35% and the emission characteristics are weakened in the first place. However, the EQE estimated from PLQY is 2.6% in the case of fluorescence, so it is considered that triplet excitons contribute to emission by TADF or other processes. This also applies to other dopants. Of the four types of devices, 3AcINN, which emitted blue-green light, showed the highest efficiency. Focusing on the overall efficiency graph here, they all show a similarly violent roll-off. It is considered that 2AcNN and 3AcINN have a cyano group introduced on the phenyl group side, thereby inducing a twist due to steric hindrance, thereby breaking the conjugation and increasing the energy level of the triplet state. However, since the roll-off shows a similar downward trend, the magnitude of DE ST cannot be discussed, but it is considered that the emission lifetime is about the same. Although a correct argument cannot be made based on the results of streak measurement, it may be difficult to shorten the emission lifetime of this derivative with DPEPO, which is the host material.

Figure 0006986737
Figure 0006986737

1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極
1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode

Claims (2)

下記構造式で表されるイソニコチノニトリル誘導体。
Figure 0006986737
An isonicotinonitrile derivative represented by the following structural formula.
Figure 0006986737
請求項1に記載のイソニコチノニトリル誘導体を用いた有機EL素子。 An organic EL device using the isonicotinonitrile derivative according to claim 1.
JP2017121023A 2016-08-30 2017-06-21 New isonicotinonitrile derivative and organic EL device using it Active JP6986737B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167453 2016-08-30
JP2016167453 2016-08-30

Publications (2)

Publication Number Publication Date
JP2018035135A JP2018035135A (en) 2018-03-08
JP6986737B2 true JP6986737B2 (en) 2021-12-22

Family

ID=61566943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121023A Active JP6986737B2 (en) 2016-08-30 2017-06-21 New isonicotinonitrile derivative and organic EL device using it

Country Status (1)

Country Link
JP (1) JP6986737B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102637108B1 (en) * 2018-10-25 2024-02-19 삼성전자주식회사 Condensed cyclic compound, composition including the same and organic light emitting device including the same
CN109369616A (en) * 2018-12-05 2019-02-22 武汉华星光电半导体显示技术有限公司 Green light thermal activation delayed fluorescence material and its synthetic method, electroluminescent device
US11205756B2 (en) 2018-12-05 2021-12-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Green light thermally activated delayed fluorescence (TADF) material and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488965A (en) * 2013-05-09 2017-03-08 日东电工株式会社 Luminophor for luminescent device
JP6326251B2 (en) * 2014-03-12 2018-05-16 株式会社カネカ Luminescent material and organic EL device using the same
CN106661001A (en) * 2014-05-14 2017-05-10 哈佛学院院长等 Organic light-emitting diode materials
JP6756613B2 (en) * 2014-07-31 2020-09-16 コニカミノルタ株式会社 Organic electroluminescence device material, organic electroluminescence device, luminescent thin film, display device and lighting device
WO2016116529A1 (en) * 2015-01-20 2016-07-28 Cynora Gmbh Organic molecules, in particular for use in optoelectronic components
CN104725298A (en) * 2015-01-23 2015-06-24 南京工业大学 Carbazole compounds, and synthesis and application thereof in OLEDs (Organic Light-Emitting diodes)
CN105037247B (en) * 2015-06-26 2019-11-08 南京工业大学 One kind joins the synthesis of carbazole derivates and applies in organic electroluminescent

Also Published As

Publication number Publication date
JP2018035135A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6326251B2 (en) Luminescent material and organic EL device using the same
CN107431136B (en) Organic electroluminescent element, electronic device, and compound
CN106848074B (en) Organic electroluminescent element and electronic device
TWI637944B (en) Light-emitting material, organic light-emitting device and compound
KR101999881B1 (en) Compound, light-emitting material, and organic light-emitting element
TWI549931B (en) Organic electroluminescent device
WO2020039708A1 (en) Organic electroluminescence element
TWI641604B (en) Compound having diazatriphenylene ring structure, and organic electroluminescent device
KR101511788B1 (en) m-CARBAZOLYLPHENYL COMPOUNDS
CN107978693B (en) Organic electroluminescent device
KR20170016936A (en) Pyrimidine derivative and organic electroluminescent element
TW201348228A (en) Material for organic electroluminescent element, and element using same
JP6813876B2 (en) Pyrimidine derivative, light emitting material made of it, and organic EL device using it
JP2018127402A (en) Novel benzofuropyrimidine compound, and organic el element prepared therewith
TWI790280B (en) Organic electroluminescence device
JP6986737B2 (en) New isonicotinonitrile derivative and organic EL device using it
CN111868954A (en) Organic electroluminescent element and electronic device
CN111868953A (en) Organic electroluminescent element and electronic device
JP6975959B2 (en) Arylamine derivatives, hole transport materials using them, and organic EL devices
WO2021149510A1 (en) Pyrromethene boron complex, light-emitting element containing same, light-emitting element, display device, and illumination device
CN107406760B (en) Light-emitting material and organic electroluminescent device
JP2022132140A (en) Narrow-bandwidth luminescent material
RU2671964C1 (en) PYRAZOLO [1,5-a]GADOLINIUM PYRIMIDINCARBOXYLATES AND FOLLOWING ORGANIC LEDS
JP6716138B2 (en) Terpyridine derivative, light emitting material comprising the same, and organic EL device using the same
TW202106668A (en) Compound having benzotriazole ring structure and organic electroluminescence element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6986737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150