JP6986260B2 - Substance identification device and identification method using electromagnetic waves - Google Patents

Substance identification device and identification method using electromagnetic waves Download PDF

Info

Publication number
JP6986260B2
JP6986260B2 JP2017233313A JP2017233313A JP6986260B2 JP 6986260 B2 JP6986260 B2 JP 6986260B2 JP 2017233313 A JP2017233313 A JP 2017233313A JP 2017233313 A JP2017233313 A JP 2017233313A JP 6986260 B2 JP6986260 B2 JP 6986260B2
Authority
JP
Japan
Prior art keywords
amplitude
resonance frequency
cavity resonator
substance
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233313A
Other languages
Japanese (ja)
Other versions
JP2019100912A (en
Inventor
謙一 渡部
雅弘 堀部
盛太郎 昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017233313A priority Critical patent/JP6986260B2/en
Publication of JP2019100912A publication Critical patent/JP2019100912A/en
Application granted granted Critical
Publication of JP6986260B2 publication Critical patent/JP6986260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、電磁波を用いた物質の同定装置、同定方法に関し、より具体的には、空洞共振器に複数の周波数の電磁波を送信し、受信する透過または反射の電磁波の共振周波数と振幅を基に物質を同定するための装置、方法に関する。 The present invention relates to a substance identification device and an identification method using electromagnetic waves, and more specifically, to transmit electromagnetic waves having a plurality of frequencies to a cavity resonator and to receive the transmitted or reflected electromagnetic waves based on the resonance frequency and amplitude. Regarding devices and methods for identifying substances.

非破壊で物質を同定する評価方法として、共振周波数変化と共振周波数での振幅変化の相関関係を利用する方法がある。例えば、非特許文献1は、農産物のアズキの水分量を同定する方法が提案されており、空洞共振器の中にアズキを入れ、マイクロ波を照射し、1つの電磁界共振モードの共振周波数変化と共振周波数での振幅変化を使って水分量を推定することを開示する。 As a non-destructive evaluation method for identifying a substance, there is a method using the correlation between the resonance frequency change and the amplitude change at the resonance frequency. For example, Non-Patent Document 1 proposes a method for identifying the water content of Azuki in agricultural products. Azuki is placed in a cavity resonator, microwaves are irradiated, and the resonance frequency change in one electromagnetic resonance mode. And discloses that the water content is estimated using the amplitude change at the resonance frequency.

しかし、非特許文献1の方法は、アズキ1粒毎の粒径(厚径、幅径)の情報が必要であり、また、測定は1粒ずつ行わなければならない。そのため、大量のサンプルの評価には長い時間を要するという問題がある。 However, the method of Non-Patent Document 1 requires information on the particle size (thickness diameter, width diameter) of each adzuki bean, and the measurement must be performed one by one. Therefore, there is a problem that it takes a long time to evaluate a large number of samples.

一方、サンプルの量にかかわらず非破壊で物質を同定する評価方法として、振幅変化と位相変化の相関関係を利用する方法がある。特許文献1は、マイクロ波の単一周波数での振幅変化と位相変化を解析して水分量を検出する水分量測定装置/方法を開示する。 On the other hand, as an evaluation method for nondestructively identifying a substance regardless of the amount of sample, there is a method using the correlation between amplitude change and phase change. Patent Document 1 discloses a water content measuring device / method for detecting a water content by analyzing an amplitude change and a phase change of a microwave at a single frequency.

しかし、特許文献1の方法で用いる位相変化の測定は、システムが複雑になり装置の価格が高価であること等の問題がある。 However, the measurement of the phase change used by the method of Patent Document 1 has a problem that the system becomes complicated and the price of the apparatus is high.

特開2015−161597号公報Japanese Unexamined Patent Publication No. 2015-161597

熊林他、“マイクロ波センサを利用したアズキ粒の非破壊水分測定”北海道立食品加工研究センター報告、No.3(1998)Kumabayashi et al., "Non-destructive moisture measurement of adzuki bean grains using microwave sensor" Hokkaido Prefectural Food Processing Research Center Report, No. 3 (1998)

本発明の目的は、サンプルの量にかかわらず、また位相変化を測定することなく物質を同定する評価装置/方法を提供することである。 It is an object of the present invention to provide an evaluation device / method for identifying a substance regardless of the amount of sample and without measuring the phase change.

本発明一態様では、電磁波を用いて物質を同定するための装置を提供する。その装置は、物質を内包可能な空洞共振器と、空洞共振器に複数の周波数の電磁波を送信し、受信する空洞共振器からの透過または反射の電磁波の共振周波数と振幅を測定するための電磁波測定手段と、測定された電磁波の共振周波数変化と振幅変化から空洞共振器に内包された物質を同定するための解析手段とを備える。
その解析手段は、(i)空洞共振器内の既知の物質の量の変化に対応して測定された電磁波の共振周波数変化、共振周波数での振幅変化、特定周波数での振幅変化を検出し、2つの異なる電磁界モードでの共振周波数変化の相関関係、共振周波数変化と共振周波数での振幅変化の相関関係、特定周波数での振幅変化の相関関係を求め、(ii)検査対象物質について検出した共振周波数変化、共振周波数での振幅変化、または特定周波数での振幅変化を既知の物質についての対応する相関関係の一つに当てはめることにより検査対象物質を同定する。
One aspect of the present invention provides an apparatus for identifying a substance using electromagnetic waves. The device is a cavity resonator that can contain a substance, and an electromagnetic wave for measuring the resonance frequency and amplitude of the transmitted or reflected electromagnetic wave from the cavity resonator that transmits and receives electromagnetic waves of multiple frequencies to the cavity resonator. It is provided with a measuring means and an analysis means for identifying a substance contained in the cavity resonator from the resonance frequency change and the amplitude change of the measured electromagnetic wave.
The analysis means detects (i) the resonance frequency change of the electromagnetic wave measured in response to the change in the amount of known substance in the cavity resonator, the amplitude change at the resonance frequency, and the amplitude change at a specific frequency. The correlation of the resonance frequency change in two different electromagnetic field modes, the correlation of the resonance frequency change and the amplitude change at the resonance frequency, and the correlation of the amplitude change at a specific frequency were obtained, and (ii) the substance to be inspected was detected. The material to be inspected is identified by applying a change in resonance frequency, a change in amplitude at the resonance frequency, or a change in amplitude at a specific frequency to one of the corresponding correlations for a known material.

本発明の一態様では、電磁波を用いた物質の同定方法を提供する。その同定方法は、(a)未知の物質が内包された空洞共振器に複数の周波数の電磁波を照射して、透過または反射する電磁波を受信するステップと、(b)受信された電磁波の共振周波数を検出するステップと、(c)空洞共振器の2つの異なる電磁界モードにおいて、予め得られた未知の物質を内包しない状態の空洞共振器の共振周波数と、検出された電磁波の共振周波数との周波数差を求めるステップと、(d)2つの異なる電磁界モードにおける周波数差を、複数の既知の物質の各々についてその量を変えながらステップ(a)〜(c)により予め得られた複数の2つの異なる電磁界モードにおける周波数差の相関関係に当てはめることにより、未知の物質を同定するステップと、を含む。 One aspect of the present invention provides a method for identifying a substance using electromagnetic waves. The identification method consists of (a) irradiating a hollow resonator containing an unknown substance with electromagnetic waves of multiple frequencies to receive the transmitted or reflected electromagnetic waves, and (b) the resonance frequency of the received electromagnetic waves. And (c) the resonance frequency of the cavity resonator in a state where it does not contain an unknown substance obtained in advance and the resonance frequency of the detected electromagnetic wave in two different electromagnetic field modes of the cavity resonator. A plurality of 2 previously obtained in steps (a) to (c) while changing the amount of the step of obtaining the frequency difference and (d) the frequency difference in two different electromagnetic wave modes for each of the plurality of known substances. It involves identifying unknown substances by fitting the correlation of frequency differences in two different electromagnetic wave modes.

本発明によれば、非接触・非破壊で測定できるため、高いスループットが得られ全数検査も可能であり、オンラインでリアルタイム測定も可能である。本発明によれば、サンプルの量に依存しないので、測定者の技量や経験によらず正確に測定可能である。本発明によれば、位相変化を測定しないため、システムが簡易になり、装置価格を安価にすることができる。本発明によれば、同じ測定原理で電磁波の幅広い周波数の選択性があるので、測定の対象物に応じた周波数の選択が可能となる。 According to the present invention, since the measurement can be performed in a non-contact and non-destructive manner, high throughput can be obtained, 100% inspection is possible, and real-time measurement is also possible online. According to the present invention, since it does not depend on the amount of the sample, accurate measurement can be performed regardless of the skill and experience of the measurer. According to the present invention, since the phase change is not measured, the system can be simplified and the device price can be reduced. According to the present invention, since there is a wide range of frequency selectivity of electromagnetic waves based on the same measurement principle, it is possible to select a frequency according to an object to be measured.

本発明の一実施形態の同定装置の構成を示す図である。It is a figure which shows the structure of the identification apparatus of one Embodiment of this invention. 本発明の一実施形態の空洞共振器の構成を示す断面図である。It is sectional drawing which shows the structure of the cavity resonator of one Embodiment of this invention. 本発明の一実施形態の水量を変えたときの共振特性を示す図である。It is a figure which shows the resonance characteristic at the time of changing the amount of water of one Embodiment of this invention. 本発明の一実施形態の水量を変えたときの共振特性を示す図である。It is a figure which shows the resonance characteristic at the time of changing the amount of water of one Embodiment of this invention. 本発明の一実施例の測定結果(共振周波数変化vs共振周波数変化)を示す図である。It is a figure which shows the measurement result (resonance frequency change vs. resonance frequency change) of one Example of this invention. 本発明の一実施例の測定結果(振幅変化vs振幅変化)を示す図である。It is a figure which shows the measurement result (amplitude change vs. amplitude change) of one Example of this invention. 本発明の一実施例の測定結果(共振周波数変化vs振幅変化)を示す図である。It is a figure which shows the measurement result (resonance frequency change vs amplitude change) of one Example of this invention.

図面を参照しながら本発明の実施の形態を説明する。図1は、本発明の一実施形態の電磁波を用いて物質を同定するための装置(以下、同定装置と呼ぶ)の構成を示す図である。同定装置100は、解析手段1と電磁波測定手段3と空洞共振器6を含む。解析手段1は、例えばパーソナルコンピューター(PC)からなり、所定のソフトウェアの実行下で後述する本発明の同定方法のための各種処理(解析)を行う。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of an apparatus for identifying a substance using an electromagnetic wave according to an embodiment of the present invention (hereinafter referred to as an identification apparatus). The identification device 100 includes an analysis means 1, an electromagnetic wave measuring means 3, and a cavity resonator 6. The analysis means 1 is composed of, for example, a personal computer (PC), and performs various processes (analysis) for the identification method of the present invention described later under the execution of predetermined software.

電磁波測定手段3は、例えばネットワークアナライザからなり、解析手段1(以下、PCと記す)とケーブル2(例えばGP−IBケーブル、USBケーブル等)を介して相互に通信可能に接続する。ネットワークアナライザには、ベクトルネットワークアナライザとスカラーネットワークアナライザが含まれる。本発明では位相測定を行わないので、後者のスカラーネットワークアナライザを用いることも可能である。 The electromagnetic wave measuring means 3 is composed of, for example, a network analyzer, and is connected to each other so as to be communicable with each other via an analysis means 1 (hereinafter referred to as a PC) and a cable 2 (for example, a GP-IB cable, a USB cable, etc.). Network analyzers include vector network analyzers and scalar network analyzers. Since phase measurement is not performed in the present invention, the latter scalar network analyzer can also be used.

電磁波測定手段3(以下、ネットワークアナライザと記す)は、入出力ポート7、8に接続された同軸ケーブル4、5を介して空洞共振器6と通信可能に接続する。ネットワークアナライザ3は、空洞共振器6に複数の周波数の電磁波を送信し、受信する空洞共振器6からの透過または反射の電磁波の共振周波数と振幅を測定する。ネットワークアナライザ3は、測定した周波数と振幅のデータをケーブルを介してPC1に送信することができ、同時に内蔵するモニターにそれらを表示することができる。PC1は、測定された電磁波の共振周波数変化と振幅変化から空洞共振器に内包された物質を同定するための各種解析を行う。その解析内容については後述する。 The electromagnetic wave measuring means 3 (hereinafter referred to as a network analyzer) is communicably connected to the cavity resonator 6 via coaxial cables 4 and 5 connected to the input / output ports 7 and 8. The network analyzer 3 transmits electromagnetic waves having a plurality of frequencies to the cavity resonator 6 and measures the resonance frequency and amplitude of the transmitted or reflected electromagnetic wave from the received cavity resonator 6. The network analyzer 3 can transmit the measured frequency and amplitude data to the PC 1 via a cable, and at the same time can display them on the built-in monitor. The PC1 performs various analyzes for identifying the substance contained in the cavity resonator from the measured resonance frequency change and amplitude change of the measured electromagnetic wave. The contents of the analysis will be described later.

図2は、本発明の一実施形態の空洞共振器6の構成を示す断面図である。図2では、円筒形の金属製の容器の対向する側面に電磁波の入力ポートと出力ポートがあり、各ポートにはアンテナプローブ63、64が容器内に突出するように設けられている。容器の上側から内部に向けて細長い容器(以下、チューブと呼ぶ)61が挿入できるようになっている。図2のチューブ61は試験管のような形状をしているが、チューブの形状はこれに限られず、直方体等の形状であっても良く、また注入される物質の量の変化を目視できる透明なあるいは半透明なガラスや樹脂等で作られた容器が好ましい。 FIG. 2 is a cross-sectional view showing the configuration of the cavity resonator 6 according to the embodiment of the present invention. In FIG. 2, there are an electromagnetic wave input port and an output port on opposite side surfaces of a cylindrical metal container, and antenna probes 63 and 64 are provided in each port so as to project into the container. An elongated container (hereinafter referred to as a tube) 61 can be inserted from the upper side of the container toward the inside. The tube 61 in FIG. 2 has a shape like a test tube, but the shape of the tube is not limited to this, and may be a rectangular parallelepiped or the like, and the change in the amount of the injected substance can be visually observed. A container made of translucent glass or resin is preferable.

チューブ61には、被検査対象物である試料(物質)62がその量を任意に変えながら入れられるようになっている。本発明の一実施形態の同定装置100では、このチューブ61内の物資を同定する。なお、本発明で利用可能な空洞共振器は、図2の円筒形の空洞共振器6に限定されず他の形状の空洞共振器を利用することも可能である。 The sample (substance) 62, which is the object to be inspected, can be put into the tube 61 while the amount thereof is arbitrarily changed. The identification device 100 according to the embodiment of the present invention identifies the material in the tube 61. The cavity resonator that can be used in the present invention is not limited to the cylindrical cavity resonator 6 in FIG. 2, and a cavity resonator having another shape can also be used.

以下、図3〜図7を参照しながら図1及び図2の一実施形態の同定装置を用いた本発明の一実施形態の物質の同定方法について説明する。最初に本発明の一実施形態の同定方法について本出願の発明者らが得た知見とその方法の概要について説明する。 Hereinafter, a method for identifying a substance according to an embodiment of the present invention using the identification apparatus according to the embodiment of FIGS. 1 and 2 will be described with reference to FIGS. 3 to 7. First, the findings obtained by the inventors of the present application regarding the identification method of one embodiment of the present invention and the outline of the method will be described.

本発明者らは、電磁界共振モードの共振周波数変化、共振周波数での振幅変化(減衰量)、特定周波数での振幅変化に着目し、物質の量の変化は、異なる電磁界共振モードの共振周波数変化の相関、共振周波数変化と共振周波数での振幅変化の相関、または特定周波数での振幅変化の相関として検出されることを見出した。そして、物質の量を変えて異なる電磁界共振モードの共振周波数変化、共振周波数での振幅変化、または特定周波数での振幅変化を測定しプロットすれば、物質固有の相関関係を求めることができることを創案した。 The present inventors focused on the resonance frequency change in the electromagnetic field resonance mode, the amplitude change (attenuation amount) at the resonance frequency, and the amplitude change at a specific frequency, and the change in the amount of the substance is the resonance of different electromagnetic field resonance modes. It has been found that it is detected as a correlation of frequency change, a correlation between a resonance frequency change and an amplitude change at a resonance frequency, or a correlation of an amplitude change at a specific frequency. Then, by measuring and plotting the resonance frequency change, the amplitude change at the resonance frequency, or the amplitude change at a specific frequency by changing the amount of the substance, the correlation peculiar to the substance can be obtained. I devised it.

すなわち、最初に、(a)予め既知の種々の物質の量を変えて、複数の異なる周波数の電磁波を照射し、物質を透過または反射した電磁波の周波数と振幅を測定して、(b)共振周波数変化、共振周波数での振幅変化、特定周波数での振幅変化を検出し、相関関係を予め求めておく。次に、(c)被検査対象物に、複数の異なる周波数の電磁波を照射し、被検査対象物を透過または反射した電磁波の周波数と振幅を測定して、(d)共振周波数変化、共振周波数での振幅変化、特定周波数での振幅変化を検出し、(e)予め求めておいた相関関係に当てはめれば物質を同定(評価や分別も)することができる。以上が同定方法の概要である。 That is, first, (a) the amount of various substances known in advance is changed, electromagnetic waves of a plurality of different frequencies are irradiated, and the frequency and amplitude of the electromagnetic waves transmitted or reflected by the substances are measured, and (b) resonance is performed. The frequency change, the amplitude change at the resonance frequency, and the amplitude change at a specific frequency are detected, and the correlation is obtained in advance. Next, (c) the object to be inspected is irradiated with electromagnetic waves of a plurality of different frequencies, and the frequency and amplitude of the electromagnetic waves transmitted or reflected through the object to be inspected are measured, and (d) the resonance frequency change and the resonance frequency are measured. It is possible to identify (evaluate and separate) the substance by detecting the change in amplitude and the change in amplitude at a specific frequency in (e) and applying it to the correlation obtained in advance. The above is the outline of the identification method.

次に具体的に同定方法を説明する。なお、以下の説明では、被検査対象物の物質として、水、エタノール、小麦粉、及び脱脂粉乳を用いた場合の例(実験結果)を基に説明しているが、本発明の実施態様の同定方法の被検査対象物はこれらの物質に限定されるものではない。すなわち、チューブ61にその量を変えながら入れることが可能な物質であれば、液体または固体、粘性体、粒状体、あるいは粉状体などその種類や形態を任意に選択することができる。 Next, the identification method will be specifically described. In the following description, water, ethanol, wheat flour, and defatted milk powder are used as the substances to be inspected, based on an example (experimental result). The objects to be inspected by the method are not limited to these substances. That is, any substance such as a liquid or a solid, a viscous body, a granular body, or a powdery body can be arbitrarily selected as long as it is a substance that can be put into the tube 61 while changing its amount.

<実施形態1:共振周波数変化の相関関係を用いる場合>
最初に、被検査対象物の測定に先立って、予め既知の水について、異なる量を入れたチューブ61を順番に図1、2の空洞共振器6の中に設置し、ネットワークアナライザ3によって周波数2〜4GHzの複数の異なる電磁波を照射して透過した電磁波を受信する。図3は、ネットワークアナライザ3によって得られる、水の量を3種類変えたとき((1)水の量1、(2)水の量2、(3)水の量3)の電磁界共振モードTE111の共振特性(周波数vs振幅)の例を示したグラフである。(0)は、水をチューブ61に入れていない場合である。水なしの共振周波数2.628GHzに対して、水の量を1、2、3と増やすにつれて、共振周波数(共振点)、すなわち(1)、(2)、(3)の各波形のピーク(◆印)の周波数が小さくなっていくことがわかる。同時に共振周波数(共振点)での振幅も徐々に小さくなっていることがわかる。
<Embodiment 1: When using the correlation of resonance frequency change>
First, prior to the measurement of the object to be inspected, tubes 61 containing different amounts of water known in advance are sequentially placed in the cavity resonator 6 of FIGS. 1 and 2, and the frequency 2 is measured by the network analyzer 3. It irradiates a plurality of different electromagnetic waves of ~ 4 GHz and receives the transmitted electromagnetic wave. FIG. 3 shows the electromagnetic resonance mode obtained by the network analyzer 3 when the amount of water is changed by three types ((1) amount of water 1, (2) amount of water 2, (3) amount of water 3). It is a graph which showed the example of the resonance characteristic (frequency vs. amplitude) of TE111. (0) is a case where water is not put in the tube 61. As the amount of water is increased to 1, 2, and 3 with respect to the resonance frequency of 2.628 GHz without water, the resonance frequency (resonance point), that is, the peak of each waveform of (1), (2), and (3) ( It can be seen that the frequency marked with) becomes smaller. At the same time, it can be seen that the amplitude at the resonance frequency (resonance point) gradually decreases.

図4は、図3の場合と同様に、ネットワークアナライザ3によって得られる、水の量を3種類変えたとき((1)水の量1、(2)水の量2、(3)水の量3)の電磁界共振モードTE211の共振特性(周波数vs振幅)の例を示したグラフである。(0)は、水をチューブ61に入れていない場合である。水なしの共振周波数3.919GHzに対して、水の量を1、2、3と増やすにつれて、共振周波数(共振点)、すなわち(1)、(2)、(3)の各波形のピーク(◆印)の周波数が小さくなっていくことがわかる。同時に共振周波数(共振点)での振幅も徐々に小さくなっていることがわかる。 FIG. 4 shows, as in the case of FIG. 3, when the amount of water obtained by the network analyzer 3 is changed by three types ((1) amount of water 1, (2) amount of water 2, (3) water. It is a graph which showed the example of the resonance characteristic (frequency vs. amplitude) of the electromagnetic field resonance mode TE211 of the quantity 3). (0) is a case where water is not put in the tube 61. As the amount of water is increased to 1, 2, and 3 with respect to the resonance frequency of 3.919 GHz without water, the resonance frequency (resonance point), that is, the peak of each waveform of (1), (2), and (3) ( It can be seen that the frequency marked with) becomes smaller. At the same time, it can be seen that the amplitude at the resonance frequency (resonance point) gradually decreases.

図3及び図4の結果(グラフ)から、PC1によって、電磁界共振モードTE111の共振周波数変化A、すなわち図3の(0)波形のピーク(○印)の2.628GHzの周波数と(1)〜(3)の波形の各共振点(◆印)での周波数との差と、TE211の共振周波数変化B、すなわち図4の(0)波形のピーク(○印)の3.919GHzの周波数と(1)〜(3)の波形の各共振点(◆印)での周波数との差を検出する。そして、横軸がTE111の共振周波数変化A、縦軸がTE211の共振周波数変化Bのグラフにプロットすると図5のグラフの●印のようになる。すなわち、図5の(0)−(1)、(0)−(2)、(0)−(3)は、上記した図3の電磁界共振モードTE111の共振周波数変化Aを横軸に、図4のTE211の共振周波数変化Bを縦軸にそれぞれプロットしたものである。 From the results (graphs) of FIGS. 3 and 4, the resonance frequency change A of the electromagnetic resonance mode TE111, that is, the frequency of 2.628 GHz of the peak (○) of the waveform (0) in FIG. 3 and (1) by PC1. ~ (3) The difference from the frequency at each resonance point (◆ mark) of the waveform and the resonance frequency change B of TE211, that is, the frequency of 3.919 GHz of the peak (○ mark) of the waveform (0) in FIG. The difference between the frequency and the frequency at each resonance point (marked with ◆) of the waveforms (1) to (3) is detected. Then, when the horizontal axis is plotted on the graph of the resonance frequency change A of TE111 and the vertical axis is plotted on the graph of the resonance frequency change B of TE211, it becomes as shown by ● in the graph of FIG. That is, in FIGS. 5 (0)-(1), (0)-(2), and (0)-(3), the resonance frequency change A of the electromagnetic field resonance mode TE111 of FIG. The resonance frequency change B of TE211 in FIG. 4 is plotted on the vertical axis.

水に代えてチューブ61内にエタノールを入れてその量を変えながら図3と図4と同様な共振特性(周波数vs振幅)のグラフを得てから、横軸にTE111の共振周波数変化A、縦軸にTE211の共振周波数変化Bのグラフにプロットすると図5のグラフの▲印のようになる。図5の水(●印)とエタノール(▲印)のグラフを物質同定のための相関関係とする。この相関関係を求めるまでを、被検査対象物の測定に先立って予め行っておく。 After obtaining a graph of resonance characteristics (frequency vs. amplitude) similar to those in FIGS. 3 and 4 by putting ethanol in the tube 61 instead of water and changing the amount, the horizontal axis is the resonance frequency change A of TE111, and the vertical axis is vertical. When plotted on the graph of the resonance frequency change B of TE211 on the axis, it becomes as shown by the ▲ mark in the graph of FIG. The graph of water (● mark) and ethanol (▲ mark) in FIG. 5 is used as the correlation for substance identification. Prior to the measurement of the object to be inspected, the process until this correlation is obtained is performed in advance.

次に被検査対象物を入れたチューブ61を空洞共振器6内に設置し、ネットワークアナライザ3によって周波数2〜4GHzの複数の異なる電磁波を照射して透過した電磁波を受信する。PC1によって、電磁界共振モードTE111の共振周波数変化とTE211の共振周波数変化を検出し、予め求めていた図5のグラフの相関関係に当てはめれば、物質の同定、すなわち図5の例では水かエタノールかの同定が可能となる。水やエタノールに代えて他の既知の物質について図5と同様な相関関係を予め得ておけば、他の未知の物質の同定も基本的に可能となる。 Next, the tube 61 containing the object to be inspected is installed in the cavity resonator 6, and the network analyzer 3 irradiates a plurality of different electromagnetic waves having a frequency of 2 to 4 GHz to receive the transmitted electromagnetic wave. If the resonance frequency change of the electromagnetic resonance mode TE111 and the resonance frequency change of TE211 are detected by the PC1 and applied to the correlation of the graph of FIG. 5 obtained in advance, the substance can be identified, that is, water in the example of FIG. It is possible to identify whether it is ethanol. If the same correlation as in FIG. 5 is obtained in advance for other known substances instead of water or ethanol, it is basically possible to identify other unknown substances.

<実施形態2:特定周波数での振幅変化の相関関係を用いる場合>
特定周波数での振幅変化の相関関係を用いた物質の同定方法の例を示す。被検査対象物の測定に先立って、予め既知の水について、異なる量を入れたチューブ61を順番に空洞共振器6の中に設置し、ネットワークアナライザ3によって周波数2.628GHzと3.919GHzの電磁波を照射して透過した電磁波を受信する。図3の3つの■印は、水の量を3種類変えたとき((1)水の量1、(2)水の量2、(3)水の量3)の2.628GHzのデータの例を示したグラフである。(0)は、水をチューブ61に入れていない場合である。同様に、図4の3つの■印は、上記と同じ水の量のときの3.919GHzのデータの例を示したグラフである。
<Embodiment 2: When using the correlation of the amplitude change at a specific frequency>
An example of a substance identification method using the correlation of amplitude change at a specific frequency is shown. Prior to the measurement of the object to be inspected, tubes 61 containing different amounts of water known in advance are sequentially installed in the cavity resonator 6, and electromagnetic waves having frequencies of 2.628 GHz and 3.919 GHz are measured by a network analyzer 3. Irradiates and receives the transmitted electromagnetic wave. The three ■ marks in FIG. 3 indicate the 2.628 GHz data when the amount of water is changed by three types ((1) amount of water 1, (2) amount of water 2, (3) amount of water 3). It is a graph which showed an example. (0) is a case where water is not put in the tube 61. Similarly, the three ■ marks in FIG. 4 are graphs showing an example of 3.919 GHz data when the amount of water is the same as described above.

この2つの周波数2.628GHzと3.919GHzは、空洞共振器6のチューブ61に水とエタノールをフル(満タン)に入れて周波数2〜6GHzの電磁波を照射して予め測定した透過特性(周波数vs振幅)において、振幅変化の大きい電磁界共振モードTE111とTE211の周波数として選択したものである。したがって、振幅変化の大きい他の電磁界共振モードの周波数を選択することもできる。また、空洞共振器6の種類(形状)や測定物質が変わればその共振周波数の値は変化するので、空洞共振器6の種類(形状)等に応じて適宜2つの共振周波数を選択することになる。 These two frequencies, 2.628 GHz and 3.919 GHz, are transmission characteristics (frequency) measured in advance by irradiating the tube 61 of the cavity resonator 6 with water and ethanol in full (full tank) and irradiating electromagnetic waves with a frequency of 2 to 6 GHz. In vs. amplitude), it was selected as the frequency of the electromagnetic wave resonance modes TE111 and TE211 having a large amplitude change. Therefore, it is possible to select the frequency of another electromagnetic field resonance mode having a large amplitude change. Further, since the value of the resonance frequency changes if the type (shape) of the cavity resonator 6 and the material to be measured change, it is decided to appropriately select two resonance frequencies according to the type (shape) of the cavity resonator 6 and the like. Become.

PC1によって、周波数2.628GHzでの振幅変化(図3の○印の振幅と■印の振幅の差)と、3.919GHzの振幅変化(図4の○印の振幅と■印の振幅の差)を検出する。そして、横軸が2.628GHzでの振幅変化、縦軸が3.919GHzでの振幅変化のグラフにプロットすると図6のグラフの●印のようになる。同様な手順により、エタノールの場合について振幅変化のグラフを得ると図6の▲印のようになる。図6の水(●印)とエタノール(▲印)のグラフを物質同定のための相関関係とする。この相関関係を求めるまでを、被検査対象物の測定に先立って予め行っておく。 Depending on the PC1, the amplitude change at a frequency of 2.628 GHz (difference between the amplitudes marked with ○ and the amplitude marked with ■ in FIG. 3) and the amplitude change at 3.919 GHz (difference between the amplitudes marked with ○ and the amplitude marked with ■ in FIG. 4). ) Is detected. Then, when the horizontal axis is plotted on the graph of the amplitude change at 2.628 GHz and the vertical axis is plotted on the graph of the amplitude change at 3.919 GHz, it becomes as shown by the ● mark in the graph of FIG. By the same procedure, a graph of the change in amplitude for ethanol is obtained as shown by the ▲ mark in FIG. The graph of water (● mark) and ethanol (▲ mark) in FIG. 6 is used as the correlation for substance identification. Prior to the measurement of the object to be inspected, the process until this correlation is obtained is performed in advance.

次に被検査対象物を入れたチューブ61を空洞共振器6内に設置し、ネットワークアナライザ3によって周波数2.628GHzと3.919GHzの電磁波を照射して透過した電磁波を受信する。PC1によって、周波数2.628GHzの振幅変化と3.919GHzの振幅変化を検出し、予め求めていた図6のグラフの相関関係にあてはめれば、物質の同定、すなわち図6の例では水かエタノールかの同定が可能となる。水やエタノールに代えて他の既知の物質について図6と同様な相関関係を予め得ておけば、他の未知の物質の同定も基本的に可能となる。 Next, the tube 61 containing the object to be inspected is installed in the cavity resonator 6, and the electromagnetic wave having a frequency of 2.628 GHz and 3.919 GHz is irradiated by the network analyzer 3 to receive the transmitted electromagnetic wave. If the amplitude change of the frequency 2.628 GHz and the amplitude change of 3.919 GHz are detected by PC1 and applied to the correlation of the graph of FIG. 6 obtained in advance, the substance can be identified, that is, water or ethanol in the example of FIG. Can be identified. If the same correlation as in FIG. 6 is obtained in advance for other known substances instead of water or ethanol, it is basically possible to identify other unknown substances.

<実施形態3:共振周波数変化と共振周波数での振幅変化の相関関係を用いる場合>
共振周波数変化と共振周波数での振幅変化の相関関係を用いた物質の同定方法の例を示す。ここでは、水とエタノールに代えて小麦粉と脱脂粉乳を用いた場合の例を示す。被検査対象物の測定に先立って、予め既知の小麦粉について、異なる量を入れたチューブ61を順番に空洞共振器6の中に設置し、ネットワークアナライザ3によって周波数2〜4GHzの複数の異なる電磁波を照射して透過した電磁波を受信する。
<Embodiment 3: When the correlation between the resonance frequency change and the amplitude change at the resonance frequency is used>
An example of a substance identification method using the correlation between the resonance frequency change and the amplitude change at the resonance frequency is shown. Here, an example is shown in the case where wheat flour and skim milk powder are used instead of water and ethanol. Prior to the measurement of the object to be inspected, tubes 61 containing different amounts of wheat flour known in advance are sequentially installed in the cavity resonator 6, and a plurality of different electromagnetic waves having a frequency of 2 to 4 GHz are transmitted by a network analyzer 3. Receives electromagnetic waves that have been irradiated and transmitted.

PC1によって、電磁界共振モードTE111の共振周波数変化とTE211の共振周波数での振幅変化を検出し、横軸がTE111の共振周波数変化、縦軸がTE211の共振周波数での振幅変化のグラフにプロットすると図7のグラフの●印のようになる。TE111の共振周波数変化の例は、図3の○印の周波数と◆印の周波数の差である。TE211の共振周波数での振幅変化の例は、図4の○印の振幅と◆印の振幅の差である。同様に脱脂粉乳の場合について求めると、図7の▲印のようになる。図7の小麦粉(●印)と脱脂粉乳(▲印)のグラフを物質同定のための相関関係とする。この相関関係を求めるまでを、被検査対象物の測定に先立って予め行っておく。 When PC1 detects the change in resonance frequency of electromagnetic field resonance mode TE111 and the change in amplitude at the resonance frequency of TE211 and plots it on the graph of the change in resonance frequency of TE111 on the horizontal axis and the change in amplitude at the resonance frequency of TE211 on the vertical axis. It looks like the ● mark in the graph in Fig. 7. An example of the resonance frequency change of TE111 is the difference between the frequency marked with ◯ and the frequency marked with ◆ in FIG. An example of the amplitude change at the resonance frequency of TE211 is the difference between the amplitudes marked with ◯ and the amplitudes marked with ◆ in FIG. Similarly, when the case of skim milk powder is obtained, it is as shown by the ▲ mark in FIG. The graph of wheat flour (● mark) and skim milk powder (▲ mark) in FIG. 7 is used as the correlation for substance identification. Prior to the measurement of the object to be inspected, the process until this correlation is obtained is performed in advance.

次に、被検査対象物を入れたチューブ61を空洞共振器6内に設置し、ネットワークアナライザ3によって周波数2〜4GHzの複数の異なる電磁波を照射して透過した電磁波を受信する。PC1によって、電磁界共振モードTE111の共振周波数変化とTE211の共振周波数での振幅変化を検出し、予め求めていた図7のグラフの相関関係に当てはめれば、物質の同定、すなわち図7の例では小麦粉か脱脂粉乳かの同定が可能となる。小麦粉や脱脂粉乳に代えて他の既知の物質について図7と同様な相関関係を予め得ておけば、他の未知の物質の同定も基本的に可能となる。 Next, the tube 61 containing the object to be inspected is installed in the cavity resonator 6, and the network analyzer 3 irradiates a plurality of different electromagnetic waves having a frequency of 2 to 4 GHz to receive the transmitted electromagnetic wave. If the resonance frequency change of the electromagnetic resonance mode TE111 and the amplitude change at the resonance frequency of TE211 are detected by the PC1 and applied to the correlation of the graph of FIG. 7 obtained in advance, the substance can be identified, that is, the example of FIG. Then, it is possible to identify whether it is wheat flour or defatted milk powder. If the same correlation as in FIG. 7 is obtained in advance for other known substances instead of wheat flour and skim milk powder, it is basically possible to identify other unknown substances.

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。 An embodiment of the present invention has been described with reference to the drawings. However, the present invention is not limited to these embodiments. Further, the present invention can be carried out in a mode in which various improvements, modifications and modifications are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明の電磁波を用いて物質を同定するための装置/方法は、物質の量にかかわらず非破壊で物質を同定できる評価装置/方法として、公立及び民間の分析機関、製造業界、食品業界会等で広く利用、応用することができる。 The device / method for identifying a substance using the electromagnetic wave of the present invention is an evaluation device / method capable of non-destructively identifying a substance regardless of the amount of the substance, and is used by public and private analytical institutions, manufacturing industries, and food industry associations. It can be widely used and applied in such cases.

1:解析手段(パーソナルコンピューター(PC))
2:ケーブル
3:電磁波測定手段(ネットワークアナライザ)
4、5:同軸ケーブル
6:空洞共振器
7、8:入出力ポート
61:容器(チューブ)
62:物質(試料、非検査対象物)
63、64:アンテナプローブ
100:同定装置
1: Analysis means (personal computer (PC))
2: Cable 3: Electromagnetic wave measuring means (network analyzer)
4, 5: Coaxial cable 6: Cavity resonator 7, 8: Input / output port 61: Container (tube)
62: Substance (sample, non-inspected object)
63, 64: Antenna probe 100: Identification device

Claims (13)

電磁波を用いて物質を同定するための装置であって、
物質を内包可能な空洞共振器と、
前記空洞共振器に複数の周波数の電磁波を送信し、受信する前記空洞共振器からの透過または反射の電磁波の共振周波数と振幅を測定するための電磁波測定手段と、
測定された前記電磁波の共振周波数変化と振幅変化から前記空洞共振器に内包された物質を同定するための解析手段と、を備え、
前記解析手段は、
(i)前記空洞共振器内の既知の物質の量の変化に対応して2つの異なる電磁界モードで測定された前記電磁波の共振周波数変化を検出し、前記2つの異なる電磁界モードでの共振周波数変化の相関関係を求め、
(ii)検査対象物質について検出した共振周波数変化を前記既知の物質についての対応する前記相関関係に当てはめることにより前記検査対象物質を同定する、装置。
A device for identifying substances using electromagnetic waves,
A cavity resonator that can contain substances and
An electromagnetic wave measuring means for measuring the resonance frequency and amplitude of the transmitted or reflected electromagnetic wave transmitted from the cavity resonator by transmitting electromagnetic waves having a plurality of frequencies to the cavity resonator and receiving the electromagnetic wave.
It is provided with an analysis means for identifying a substance contained in the cavity resonator from the measured resonance frequency change and amplitude change of the electromagnetic wave.
The analysis means is
(I) the detect known amounts resonant frequency change of the measured electromagnetic wave at two different electromagnetic field modes in response to changes in the material in the cavity resonator, the resonance of two different electromagnetic modes Find the correlation of frequency changes,
(Ii) An apparatus for identifying a substance to be inspected by applying a resonance frequency change detected for the substance to be inspected to the corresponding correlation with respect to the known substance.
電磁波を用いて物質を同定するための装置であって、
物質を内包可能な空洞共振器と、
前記空洞共振器に複数の周波数の電磁波を送信し、受信する前記空洞共振器からの透過または反射の電磁波の共振周波数と振幅を測定するための電磁波測定手段と、
測定された前記電磁波の共振周波数変化と振幅変化から前記空洞共振器に内包された物質を同定するための解析手段と、を備え、
前記解析手段は、
(i)前記空洞共振器内の既知の物質の量の変化に対応して2つの異なる電磁界モードで測定された前記電磁波の共振周波数変化と共振周波数での振幅変化を検出し、前記2つの異なる電磁界モードでの共振周波数変化と共振周波数での振幅変化の相関関係を求め、
(ii)検査対象物質について検出した共振周波数変化と共振周波数での振幅変化を前記既知の物質についての対応する前記相関関係に当てはめることにより前記検査対象物質を同定する、装置。
A device for identifying substances using electromagnetic waves,
A cavity resonator that can contain substances and
An electromagnetic wave measuring means for measuring the resonance frequency and amplitude of the transmitted or reflected electromagnetic wave transmitted from the cavity resonator by transmitting electromagnetic waves having a plurality of frequencies to the cavity resonator and receiving the electromagnetic wave.
It is provided with an analysis means for identifying a substance contained in the cavity resonator from the measured resonance frequency change and amplitude change of the electromagnetic wave.
The analysis means is
(I) said detected amplitude variations at a known resonance frequency change and the resonance frequency of the electromagnetic wave in response to changes in the amount measured at two different electromagnetic field modes of a substance in the cavity resonator, the two Find the correlation between the resonance frequency change in different electromagnetic wave modes and the amplitude change at the resonance frequency.
(Ii) An apparatus for identifying a substance to be inspected by applying the resonance frequency change detected for the substance to be inspected and the amplitude change at the resonance frequency to the corresponding correlation with respect to the known substance.
電磁波を用いて物質を同定するための装置であって、
物質を内包可能な空洞共振器と、
前記空洞共振器に複数の周波数の電磁波を送信し、受信する前記空洞共振器からの透過または反射の電磁波の共振周波数と振幅を測定するための電磁波測定手段と、
測定された前記電磁波の共振周波数変化と振幅変化から前記空洞共振器に内包された物質を同定するための解析手段と、を備え、
前記解析手段は、
(i)前記空洞共振器内の既知の物質の量の変化に対応して2つの異なる電磁界モードで測定された前記電磁波の特定周波数での振幅変化を検出し、前記2つの異なる電磁界モードでの特定周波数での振幅変化の相関関係を求め、
(ii)検査対象物質について検出した特定周波数での振幅変化を前記既知の物質についての対応する前記相関関係に当てはめることにより前記検査対象物質を同定する、装置。
A device for identifying substances using electromagnetic waves,
A cavity resonator that can contain substances and
An electromagnetic wave measuring means for measuring the resonance frequency and amplitude of the transmitted or reflected electromagnetic wave transmitted from the cavity resonator by transmitting electromagnetic waves having a plurality of frequencies to the cavity resonator and receiving the electromagnetic wave.
It is provided with an analysis means for identifying a substance contained in the cavity resonator from the measured resonance frequency change and amplitude change of the electromagnetic wave.
The analysis means is
(I) said detected amplitude variations at specific known frequencies of the electromagnetic wave in response to changes in the amount measured at two different electromagnetic field modes of a substance in the cavity resonator, the two different electromagnetic modes Find the correlation of the amplitude change at a specific frequency in
(Ii) An apparatus for identifying a substance to be inspected by applying a change in amplitude at a specific frequency detected for the substance to be inspected to the corresponding correlation for the known substance.
前記解析手段は、
前記空洞共振器の2つの異なる電磁界モードにおいて、前記検査対象物質を内包しない状態の前記空洞共振器の共振周波数と、複数の既知の物質の各々についてその量を変えながら測定された前記空洞共振器からの透過または反射の電磁波の共振周波数との周波数差を、前記2つの異なる電磁界モードでの共振周波数変化として、前記共振周波数変化の相関関係を求める、請求項1に記載の装置。
The analysis means is
In two different electromagnetic field modes of the cavity resonator, the resonance frequency of the cavity resonator in a state not containing the substance to be inspected and the cavity resonance measured while changing the amount of each of a plurality of known substances. The apparatus according to claim 1, wherein the frequency difference from the resonance frequency of the electromagnetic wave transmitted or reflected from the device is used as the resonance frequency change in the two different electromagnetic field modes to obtain the correlation of the resonance frequency change.
前記解析手段は、
前記空洞共振器の第1の電磁界モードにおいて、前記検査対象物質を内包しない状態の前記空洞共振器の共振周波数と、複数の既知の物質の各々についてその量を変えながら測定された前記空洞共振器からの透過または反射の電磁波の共振周波数との周波数差と、前記空洞共振器の第2の電磁界モードにおいて、前記検査対象物質を内包しない状態の前記空洞共振器の共振周波数での振幅と、前記複数の既知の物質の各々についてその量を変えながら測定された前記空洞共振器からの透過または反射の電磁波の共振周波数での振幅との振幅差を、前記共振周波数変化と共振周波数での振幅変化として、前記共振周波数変化と共振周波数での振幅変化の相関関係を求める、請求項に記載の装置。
The analysis means is
In the first electromagnetic wave mode of the cavity resonator, the resonance frequency of the cavity resonator in a state not containing the substance to be inspected and the cavity resonance measured while changing the amount of each of the plurality of known substances. The frequency difference from the resonance frequency of the electromagnetic wave transmitted or reflected from the vessel and the amplitude at the resonance frequency of the cavity resonator in the second electromagnetic field mode of the cavity resonator without containing the substance to be inspected. , The amplitude difference between the amplitude of the transmitted or reflected electromagnetic wave from the cavity resonator at the resonance frequency and the amplitude at the resonance frequency measured while changing the amount of each of the plurality of known substances. The apparatus according to claim 2 , wherein the correlation between the resonance frequency change and the amplitude change at the resonance frequency is obtained as the amplitude change.
前記解析手段は、
前記空洞共振器に2つの異なる周波数の電磁波を異なる電磁界モードで照射した際の、前記検査対象物質を内包しない状態の前記空洞共振器からの透過または反射の電磁波の振幅と、複数の既知の物質の各々についてその量を変えながら測定された前記空洞共振器からの透過または反射の電磁波の振幅との振幅差を、前記特定周波数での振幅変化として、前記特定周波数での振幅変化の相関関係を求める、請求項に記載の装置。
The analysis means is
Amplitude of transmitted or reflected electromagnetic waves from the cavity resonator in a state not containing the substance to be inspected when the cavity resonator is irradiated with electromagnetic waves of two different frequencies in different electromagnetic wave modes, and a plurality of known electromagnetic waves. The amplitude difference from the amplitude of the electromagnetic wave transmitted or reflected from the cavity resonator measured while changing the amount of each of the substances is defined as the amplitude change at the specific frequency, and the correlation of the amplitude change at the specific frequency. The device according to claim 3.
前記2つの異なる電磁界モードは、TE111モードとTE211モードを含む、請求項1またはに記載の装置。 The device according to claim 1 or 4 , wherein the two different electromagnetic field modes include a TE111 mode and a TE211 mode. 前記第1の電磁界モードはTE111モードを含み、前記第2の電磁界モードはTE211モードを含む、請求項に記載の装置。 The apparatus according to claim 5 , wherein the first electromagnetic field mode includes a TE111 mode, and the second electromagnetic field mode includes a TE211 mode. 電磁波を用いた物質の同定方法であって、
(a)未知の物質が内包された空洞共振器に複数の周波数の電磁波を照射して、透過または反射する電磁波を受信するステップと、
(b)受信された前記電磁波の共振周波数を検出するステップと、
(c)前記空洞共振器の2つの異なる電磁界モードにおいて、予め得られた前記未知の物質を内包しない状態の前記空洞共振器の共振周波数と、検出された前記電磁波の共振周波数との周波数差を求めるステップと、
(d)前記2つの異なる電磁界モードにおける前記周波数差を、複数の既知の物質の各々についてその量を変えながら前記ステップ(a)〜(c)により予め得られた複数の前記2つの異なる電磁界モードにおける前記周波数差の相関関係に当てはめることにより、前記未知の物質を同定するステップと、を含む同定方法。
It is a method of identifying substances using electromagnetic waves.
(A) A step of irradiating a cavity resonator containing an unknown substance with electromagnetic waves having a plurality of frequencies and receiving electromagnetic waves transmitted or reflected.
(B) A step of detecting the resonance frequency of the received electromagnetic wave and
(C) In two different electromagnetic field modes of the cavity resonator, the frequency difference between the resonance frequency of the cavity resonator in a state of not containing the unknown substance obtained in advance and the resonance frequency of the detected electromagnetic wave. And the steps to ask for
(D) A plurality of the two different electromagnetic fields obtained in advance by the steps (a) to (c) while changing the amount of the frequency difference in the two different electromagnetic field modes for each of the plurality of known substances. An identification method comprising the step of identifying the unknown substance by fitting to the correlation of the frequency difference in the field mode.
電磁波を用いた物質の同定方法であって、
(a)未知の物質が内包された空洞共振器に2つの異なる周波数の電磁波を異なる電磁界モードで照射して、透過または反射する電磁波を受信するステップと、
(b)受信された前記電磁波の共振周波数での振幅を検出するステップと、
(c)前記2つの異なる周波数の各々での、予め得られた前記未知の物質を内包しない状態の前記空洞共振器の共振周波数での振幅と、検出された前記電磁波の前記共振周波数での振幅との振幅差を求めるステップと、
(d)前記2つの異なる周波数の各々での前記振幅差を、複数の既知の物質の各々についてその量を変えながら前記ステップ(a)〜(c)により予め得られた複数の前記2つの異なる周波数での前記振幅差の相関関係に当てはめることにより、前記未知の物質を同定するステップと、を含む同定方法。
It is a method of identifying substances using electromagnetic waves.
(A) A step of irradiating a cavity resonator containing an unknown substance with two electromagnetic waves of different frequencies in different electromagnetic field modes to receive the transmitted or reflected electromagnetic waves.
(B) A step of detecting the amplitude of the received electromagnetic wave at the resonance frequency, and
(C) said at each of two different frequencies, and amplitudes at the resonant frequency of the cavity resonator in the state without containing the unknown material obtained in advance, the amplitude at the resonant frequency of the detected electromagnetic wave And the step to find the amplitude difference with
(D) A plurality of the two differences obtained in advance by the steps (a) to (c) while changing the amount of the amplitude difference at each of the two different frequencies for each of the plurality of known substances. An identification method comprising the step of identifying the unknown substance by fitting to the correlation of the amplitude difference in frequency.
電磁波を用いた物質の同定方法であって、
(a)未知の物質が内包された空洞共振器に複数の周波数の電磁波を照射して、透過または反射する電磁波を受信するステップと、
(b)受信された前記電磁波の共振周波数での振幅を検出するステップと、
(c)前記空洞共振器の第1の電磁界モードにおいて、予め得られた前記未知の物質を内包しない状態の前記空洞共振器の共振周波数と、前記電磁波の共振周波数との周波数差を求めるステップと、
(d)前記空洞共振器の第2の電磁界モードにおいて、予め得られた前記未知の物質を内包しない状態の前記空洞共振器の共振周波数での振幅と、検出された前記電磁波の共振周波数での振幅との振幅差を求めるステップと、
(e)前記第1の電磁界モードでの前記周波数差と、前記第2の電磁界モードでの前記振幅差を、複数の既知の物質の各々についてその量を変えながら前記ステップ(a)〜(d)により予め得られた複数の前記第1の電磁界モードでの前記周波数差と前記第2の電磁界モードでの前記振幅差との相関関係に当てはめることにより、前記未知の物質を同定するステップと、を含む同定方法。
It is a method of identifying substances using electromagnetic waves.
(A) A step of irradiating a cavity resonator containing an unknown substance with electromagnetic waves having a plurality of frequencies and receiving electromagnetic waves transmitted or reflected.
(B) A step of detecting the amplitude of the received electromagnetic wave at the resonance frequency, and
(C) In the first electromagnetic field mode of the cavity resonator, a step of obtaining a frequency difference between the resonance frequency of the cavity resonator in a state of not containing the unknown substance obtained in advance and the resonance frequency of the electromagnetic wave. When,
(D) In the second electromagnetic field mode of the cavity resonator, the amplitude at the resonance frequency of the cavity resonator in a state of not containing the unknown substance obtained in advance and the resonance frequency of the detected electromagnetic wave are used. And the step to find the amplitude difference from the amplitude of
(E) The steps (a) to (a) to change the amount of the frequency difference in the first electromagnetic field mode and the amplitude difference in the second electromagnetic field mode for each of a plurality of known substances. The unknown substance is identified by applying the correlation between the frequency difference in the first electromagnetic field mode and the amplitude difference in the second electromagnetic field mode obtained in advance in (d). Steps to be made, and identification methods including.
前記2つの異なる電磁界モードは、TE111モードとTE211モードを含む、請求項または10に記載の方法。 The method of claim 9 or 10 , wherein the two different electromagnetic field modes include a TE111 mode and a TE211 mode. 前記第1の電磁界モードはTE111モードを含み、前記第2の電磁界モードはTE211モードを含む、請求項11に記載の方法。 11. The method of claim 11 , wherein the first electromagnetic field mode comprises a TE111 mode and the second electromagnetic field mode comprises a TE211 mode.
JP2017233313A 2017-12-05 2017-12-05 Substance identification device and identification method using electromagnetic waves Active JP6986260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017233313A JP6986260B2 (en) 2017-12-05 2017-12-05 Substance identification device and identification method using electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233313A JP6986260B2 (en) 2017-12-05 2017-12-05 Substance identification device and identification method using electromagnetic waves

Publications (2)

Publication Number Publication Date
JP2019100912A JP2019100912A (en) 2019-06-24
JP6986260B2 true JP6986260B2 (en) 2021-12-22

Family

ID=66973356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233313A Active JP6986260B2 (en) 2017-12-05 2017-12-05 Substance identification device and identification method using electromagnetic waves

Country Status (1)

Country Link
JP (1) JP6986260B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7253792B2 (en) * 2019-07-08 2023-04-07 国立研究開発法人産業技術総合研究所 Identification device and identification method for identifying substances using electromagnetic waves
KR20210036716A (en) * 2019-09-26 2021-04-05 주식회사 케이티앤지 System for generating aerosol by using multiple aerosol generating substrate and apparatus thereof
CN111343560B (en) * 2020-03-17 2021-06-18 厦门傅里叶电子有限公司 Method for testing and tracking resonant frequency fo of mobile phone loudspeaker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373832A (en) * 1989-08-15 1991-03-28 Daipoole:Kk Instrument for measuring water content of wood
JPH11304763A (en) * 1998-04-27 1999-11-05 Omron Corp Moisture content measuring instrument
JP2007248097A (en) * 2006-03-14 2007-09-27 Kyocera Corp Method and apparatus for measuring anisotropy of dielectric constant
US8991240B2 (en) * 2010-01-28 2015-03-31 Oji Holdings Corporation Method and device for measuring basis weight and moisture content amount

Also Published As

Publication number Publication date
JP2019100912A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6986260B2 (en) Substance identification device and identification method using electromagnetic waves
US7246522B1 (en) Methods and apparatus for multi-parameter acoustic signature inspection
US10024806B2 (en) Microwave cavity sensor
US8040132B2 (en) Method for identifying a sample in a container, e.g. when conducting a traveler survey in the check-in area, by determining the resonance frequency and the quality of a dielectric resonator to which the container is arranged
US10663411B2 (en) Liquid scanning system and method for IV drug verification and identification
US20190257771A1 (en) Sensor System For Detection Of Material Properties
US9841448B2 (en) Resonant system and method of determining a dielectric constant of a sample
US11543374B2 (en) Non-invasive sample-interrogation device
CN103308778B (en) Dielectric constant measuring apparatus
Bogosanovic et al. Overview and comparison of microwave noncontact wood measurement techniques
CN101907551A (en) Ultrasonic detection device for Chinese medicament extract concentrated solution density and application
Reinecke et al. Low-cost sensor system for non-invasive monitoring of cell growth in disposable bioreactors
Betta et al. Thickness measurements with eddy current and ultrasonic techniques
Jiang et al. Nondestructive in-situ permittivity measurement of liquid within a bottle using an open-ended microwave waveguide
JP7253792B2 (en) Identification device and identification method for identifying substances using electromagnetic waves
WO2018168499A1 (en) Non-destructive detection method, non-destructive detection device, and non-destructive detection program
JP6652944B2 (en) Food inspection device and food inspection method
US20150308982A1 (en) Ultrasound method and device for inspecting the bulk of a weld for the presence of defects
Gibson et al. An overview of microwave techniques for the efficient measurement of food materials
US8614586B1 (en) Method and apparatus for measuring peanut moisture content
Manjunath et al. Microwave Single Ring Resonating Sensor for Food Sensing
Pearson et al. Development of A RF Biosensor Design to Detect Changes in Scattering Parameters of Aqueous Materials During Radio Frequency Wave Exposure
Saifuddin et al. Investigation of fat contamination using Microwave Non-Destructive Testing at X-Band
RAO et al. Process Analytical Technology-A Tool for Better Quality.
CN101581699A (en) Pulse eddy nondestructive testing method based on time gate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211119

R150 Certificate of patent or registration of utility model

Ref document number: 6986260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150