JP6983937B2 - 畳み込みニューラルネットワークにおける構造学習 - Google Patents
畳み込みニューラルネットワークにおける構造学習 Download PDFInfo
- Publication number
- JP6983937B2 JP6983937B2 JP2020042897A JP2020042897A JP6983937B2 JP 6983937 B2 JP6983937 B2 JP 6983937B2 JP 2020042897 A JP2020042897 A JP 2020042897A JP 2020042897 A JP2020042897 A JP 2020042897A JP 6983937 B2 JP6983937 B2 JP 6983937B2
- Authority
- JP
- Japan
- Prior art keywords
- layers
- neural network
- layer
- heterogeneous
- heterogeneous layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013527 convolutional neural network Methods 0.000 title description 6
- 238000013528 artificial neural network Methods 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 72
- 238000012545 processing Methods 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 18
- 230000006872 improvement Effects 0.000 claims description 14
- 238000012549 training Methods 0.000 claims description 10
- 230000003190 augmentative effect Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims 1
- 238000013459 approach Methods 0.000 description 35
- 230000006870 function Effects 0.000 description 23
- 230000008569 process Effects 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 10
- 238000000638 solvent extraction Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000013135 deep learning Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 210000000613 ear canal Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000004424 eye movement Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000016339 iris pattern Diseases 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000008555 neuronal activation Effects 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 210000002763 pyramidal cell Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24137—Distances to cluster centroïds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/192—Recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references
- G06V30/194—References adjustable by an adaptive method, e.g. learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Description
本発明は、例えば、以下を提供する。
(項目1)
プロセッサを用いて実装される方法であって、
ニューラルネットワークを作成するステップと、
前記ニューラルネットワークから出力を生成するステップと、
前記ニューラルネットワークから低性能層を識別するステップと、
新しいスペシャリスト層を前記低性能層に挿入するステップと、
前記ニューラルネットワークの最上位層に到達するまで繰り返すステップと
を含む、方法。
(項目2)
更新されたモデルは、複数の新しいスペシャリスト層と、少なくとも1つのジェネラリスト層とを備える、項目1に記載の方法。
(項目3)
前記新しいスペシャリスト層は、別のスペシャリスト層によってハンドリングされるサブドメインと明確に異なるデータの特定のサブドメインに焦点を当てる、項目1に記載の方法。
(項目4)
複数の損失層が、前記ニューラルネットワークに追加される、項目1に記載の方法。
(項目5)
前記複数の損失層は、前記ニューラルネットワークの各層に追加される、項目4に記載の方法。
(項目6)
予測が、各損失層において生成され、1つまたはそれを上回る混同行列に変換され、前記ニューラルネットワークに関する前記1つまたはそれを上回る混同行列の全てを有するテンソルTを形成する、項目4に記載の方法。
(項目7)
Tの構造は、深度および幅の両方の観点から、分析され、前記ニューラルネットワークの既存の構造を修正および強化する、項目6に記載の方法。
(項目8)
前記ニューラルネットワークは、垂直分割および水平分割の両方を受ける、項目1に記載の方法。
(項目9)
K分割法が、前記水平分割を実装するために行われる、項目8に記載の方法。
(項目10)
前記ネットワークの各層は、独立して対処され、所与の層は、貪欲選択を行い、層を分割させることによって、分割を受け、これは、訓練損失に関する最良改良を提供する、項目1に記載の方法。
(項目11)
オール・オア・ナッシングハイウェイネットワークが、除去されるべき前記ニューラルネットワーク内の層を識別するために採用される、項目1に記載の方法。
(項目12)
前記ニューラルネットワークは、仮想現実または拡張現実システムのために捕捉された画像を分類するために採用される、項目1に記載の方法。
(項目13)
システムであって、
プロセッサと、
プログラマブルコードを保持するためのメモリと
を備え、前記プログラマブルコードは、方法1−12のいずれかを実行するための命令を含む、システム。
(項目14)
コンピュータ可読媒体上で具現化されるコンピュータプログラム製品であって、前記コンピュータ可読媒体は、プロセッサによって実行されると、前記プロセッサに方法1−12のいずれかを実行させる、その上に記憶される命令のシーケンスを有する、コンピュータプログラム製品。
(拡張現実およびコンピューティングシステムアーキテクチャ)
Claims (20)
- プロセッサを用いて実装される方法であって、
オブジェクトの分類を行うように構成されるニューラルネットワークを作成することであって、前記ニューラルネットワークは、複数の層を備える、ことと、
前記ニューラルネットワークが、処理タスクを行い、出力を生成することと、
前記複数の層から異質層を識別することと、
前記ニューラルネットワークから前記異質層を除去することと、
他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去することと
を含み、
前記ニューラルネットワークは、垂直分割および水平分割の両方を受け、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、方法。 - オール・オア・ナッシングハイウェイネットワークが、前記ニューラルネットワーク内の除去されるべき前記異質層を識別するために採用される、請求項1に記載の方法。
- 前記異質層の使用とペナルティを関連付けることをさらに含む、請求項2に記載の方法。
- 前記ペナルティの大きさは、前記異質層によって使用される計算能力の量に対応する、請求項3に記載の方法。
- 前記ペナルティの大きさは、変動させられる、請求項4に記載の方法。
- プロセッサを用いて実装される方法であって、
オブジェクトの分類を行うように構成されるニューラルネットワークを作成することであって、前記ニューラルネットワークは、複数の層を備える、ことと、
前記ニューラルネットワークが、処理タスクを行い、出力を生成することと、
前記複数の層から異質層を識別することであって、オール・オア・ナッシングハイウェイネットワークが、前記ニューラルネットワーク内の除去されるべき前記異質層を識別するために採用される、ことと、
前記ニューラルネットワークから前記異質層を除去することと、
他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去することと、
前記異質層の使用とペナルティを関連付けることと
を含み、
前記プロセッサがクラウドコンピューティングプラットフォームの一部であるとき、前記ペナルティは、0に設定され、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、方法。 - 前記オール・オア・ナッシングハイウェイネットワークは、前記異質層を使用しないようにバイナリ決定を生成する、請求項2に記載の方法。
- プロセッサを用いて実装される方法であって、
オブジェクトの分類を行うように構成されるニューラルネットワークを作成することであって、前記ニューラルネットワークは、複数の層を備える、ことと、
前記ニューラルネットワークが、処理タスクを行い、出力を生成することと、
前記複数の層から異質層を識別することであって、オール・オア・ナッシングハイウェイネットワークが、前記ニューラルネットワーク内の除去されるべき前記異質層を識別するために採用される、ことと、
前記ニューラルネットワークから前記異質層を除去することと、
他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去することと、
前記オール・オア・ナッシングハイウェイネットワークが、混合行列を導入し、前記異質層に対応するスキップ接続を変換する方法を判定することと
を含み、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、方法。 - スカラー値によって前記混合行列をパラメトライズすることをさらに含む、請求項8に記載の方法。
- 前記スカラー値が0であるとき、前記異質層への入力が、前記異質層からの出力と等しく、これにより、前記ニューラルネットワークから前記異質層を除去する前に前記異質層をスキップする、請求項9に記載の方法。
- 恒等写像を使用して、前記異質層に対応するスキップ接続を変換することをさらに含む、請求項2に記載の方法。
- 前記ニューラルネットワークに関するモデルを更新し、更新されたモデルを取得することをさらに含み、前記異質層は、前記更新されたモデルを取得するために前記モデルから除去される、請求項1に記載の方法。
- 複数の損失層が、前記ニューラルネットワークに追加される、請求項1に記載の方法。
- プロセッサを用いて実装される方法であって、
オブジェクトの分類を行うように構成されるニューラルネットワークを作成することであって、前記ニューラルネットワークは、複数の層を備える、ことと、
前記ニューラルネットワークが、処理タスクを行い、出力を生成することと、
前記複数の層から異質層を識別することと、
前記ニューラルネットワークから前記異質層を除去することと、
他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去することと、
複数の損失層を前記ニューラルネットワークに追加することと、
前記損失層のうちの1つにおいて予測を生成し、前記予測を、テンソルTを形成する1つまたは複数の混同行列に変換することと
を含み、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、方法。 - Tの構造は、深度および幅の両方の観点から、分析され、前記ニューラルネットワークの既存の構造を修正および強化する、請求項14に記載の方法。
- K分割法が、前記水平分割を実装するために行われる、請求項1に記載の方法。
- プロセッサを用いて実装される方法であって、
オブジェクトの分類を行うように構成されるニューラルネットワークを作成することであって、前記ニューラルネットワークは、複数の層を備える、ことと、
前記ニューラルネットワークが、処理タスクを行い、出力を生成することと、
前記複数の層から異質層を識別することと、
前記ニューラルネットワークから前記異質層を除去することと、
他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去することと
を含み、
前記ニューラルネットワークの各層は、独立して対処され、前記ニューラルネットワークの所与の層は、貪欲選択を行って前記所与の層を分割することによって、分割を受け、これは、訓練損失に関する最良改良を提供し、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、方法。 - 前記ニューラルネットワークは、仮想現実または拡張現実システムのために捕捉された画像を分類するために採用される、請求項1に記載の方法。
- システムであって、
プロセッサと、
プログラマブルコードを保持するためのメモリと
を備え、
前記プログラマブルコードは、オブジェクトの分類を行うように構成されるニューラルネットワークを作成するための命令であって、前記ニューラルネットワークは、複数の層を備える、命令と、前記ニューラルネットワークが処理タスクを行って出力を生成するための命令と、前記複数の層から異質層を識別するための命令と、前記ニューラルネットワークから前記異質層を除去するための命令と、他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去するための命令とを含み、前記ニューラルネットワークは、垂直分割および水平分割の両方を受け、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、システム。 - 命令のシーケンスを記憶した非一時的コンピュータ可読媒体であって、前記命令のシーケンスは、プロセッサによって実行されると、
オブジェクトの分類を行うように構成されるニューラルネットワークを作成することであって、前記ニューラルネットワークは、複数の層を備える、ことと、
前記ニューラルネットワークが、処理タスクを行い、出力を生成することと、
前記複数の層から異質層を識別することと、
前記ニューラルネットワークから前記異質層を除去することと、
他の異質層が識別されなくなるまで、前記複数の層から他の異質層を識別して除去することと
を含む方法を前記プロセッサに実行させ、
前記ニューラルネットワークは、垂直分割および水平分割の両方を受け、
前記異質層は、前記複数の層のうちの他の層と比較して分類の正確度の最低改良を提供する層である、非一時的コンピュータ可読媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662307071P | 2016-03-11 | 2016-03-11 | |
US62/307,071 | 2016-03-11 | ||
JP2018547429A JP6889728B2 (ja) | 2016-03-11 | 2017-03-13 | 畳み込みニューラルネットワークにおける構造学習 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018547429A Division JP6889728B2 (ja) | 2016-03-11 | 2017-03-13 | 畳み込みニューラルネットワークにおける構造学習 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020091922A JP2020091922A (ja) | 2020-06-11 |
JP2020091922A5 JP2020091922A5 (ja) | 2021-07-26 |
JP6983937B2 true JP6983937B2 (ja) | 2021-12-17 |
Family
ID=59786882
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018547429A Active JP6889728B2 (ja) | 2016-03-11 | 2017-03-13 | 畳み込みニューラルネットワークにおける構造学習 |
JP2020042897A Active JP6983937B2 (ja) | 2016-03-11 | 2020-03-12 | 畳み込みニューラルネットワークにおける構造学習 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018547429A Active JP6889728B2 (ja) | 2016-03-11 | 2017-03-13 | 畳み込みニューラルネットワークにおける構造学習 |
Country Status (9)
Country | Link |
---|---|
US (3) | US10255529B2 (ja) |
EP (1) | EP3427192A4 (ja) |
JP (2) | JP6889728B2 (ja) |
KR (2) | KR20200035499A (ja) |
CN (2) | CN108780519B (ja) |
AU (2) | AU2017230184B2 (ja) |
CA (1) | CA3015658A1 (ja) |
IL (1) | IL261245A (ja) |
WO (1) | WO2017156547A1 (ja) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5554927B2 (ja) | 2006-02-15 | 2014-07-23 | ホロジック, インコーポレイテッド | トモシンセシスシステムを使用した乳房バイオプシおよびニードル位置特定 |
CN102481146B (zh) | 2009-10-08 | 2016-08-17 | 霍罗吉克公司 | 乳房的穿刺活检系统及其使用方法 |
US9075903B2 (en) | 2010-11-26 | 2015-07-07 | Hologic, Inc. | User interface for medical image review workstation |
CA2829349C (en) | 2011-03-08 | 2021-02-09 | Hologic, Inc. | System and method for dual energy and/or contrast enhanced breast imaging for screening, diagnosis and biopsy |
EP2782505B1 (en) | 2011-11-27 | 2020-04-22 | Hologic, Inc. | System and method for generating a 2d image using mammography and/or tomosynthesis image data |
CN104135935A (zh) | 2012-02-13 | 2014-11-05 | 霍罗吉克公司 | 用于利用合成图像数据导航层析堆的系统和方法 |
JP6388347B2 (ja) | 2013-03-15 | 2018-09-12 | ホロジック, インコーポレイテッドHologic, Inc. | 腹臥位におけるトモシンセシス誘導生検 |
EP3646798B1 (en) | 2013-10-24 | 2023-09-27 | Hologic, Inc. | System and method for navigating x-ray guided breast biopsy |
EP3868301B1 (en) | 2014-02-28 | 2023-04-05 | Hologic, Inc. | System and method for generating and displaying tomosynthesis image slabs |
CN114758406B (zh) | 2015-05-11 | 2024-02-23 | 奇跃公司 | 用于使用神经网络的生物特征用户识别的设备、方法和系统 |
CA3015658A1 (en) | 2016-03-11 | 2017-09-14 | Magic Leap, Inc. | Structure learning in convolutional neural networks |
WO2018048934A1 (en) * | 2016-09-06 | 2018-03-15 | Deepmind Technologies Limited | Generating audio using neural networks |
CN109844773B (zh) | 2016-09-06 | 2023-08-01 | 渊慧科技有限公司 | 使用卷积神经网络处理序列 |
US11080591B2 (en) * | 2016-09-06 | 2021-08-03 | Deepmind Technologies Limited | Processing sequences using convolutional neural networks |
WO2018081089A1 (en) | 2016-10-26 | 2018-05-03 | Deepmind Technologies Limited | Processing text sequences using neural networks |
KR102415506B1 (ko) * | 2016-10-26 | 2022-07-01 | 삼성전자주식회사 | 뉴럴 네트워크 간소화 방법 및 장치 |
WO2018093796A1 (en) | 2016-11-15 | 2018-05-24 | Magic Leap, Inc. | Deep learning system for cuboid detection |
JP7174710B2 (ja) | 2017-03-30 | 2022-11-17 | ホロジック, インコーポレイテッド | 合成乳房組織画像を生成するための標的オブジェクト増強のためのシステムおよび方法 |
US11455754B2 (en) | 2017-03-30 | 2022-09-27 | Hologic, Inc. | System and method for synthesizing low-dimensional image data from high-dimensional image data using an object grid enhancement |
WO2018183548A1 (en) | 2017-03-30 | 2018-10-04 | Hologic, Inc. | System and method for hierarchical multi-level feature image synthesis and representation |
US20180293486A1 (en) * | 2017-04-07 | 2018-10-11 | Tenstorrent Inc. | Conditional graph execution based on prior simplified graph execution |
US11734584B2 (en) * | 2017-04-19 | 2023-08-22 | International Business Machines Corporation | Multi-modal construction of deep learning networks |
WO2018236565A1 (en) * | 2017-06-20 | 2018-12-27 | Hologic, Inc. | METHOD AND SYSTEM FOR MEDICAL IMAGING WITH DYNAMIC SELF-LEARNING |
JP7142420B2 (ja) * | 2017-07-10 | 2022-09-27 | キヤノン株式会社 | 画像処理装置、学習方法、学習済モデル、画像処理方法 |
AU2018337653A1 (en) | 2017-09-20 | 2020-01-16 | Magic Leap, Inc. | Personalized neural network for eye tracking |
CN109543139B (zh) | 2017-09-22 | 2021-09-17 | 杭州海康威视数字技术股份有限公司 | 卷积运算方法、装置、计算机设备及计算机可读存储介质 |
CN111373419A (zh) | 2017-10-26 | 2020-07-03 | 奇跃公司 | 用于深度多任务网络中自适应损失平衡的梯度归一化系统和方法 |
CN109784325A (zh) * | 2017-11-10 | 2019-05-21 | 富士通株式会社 | 开集识别方法和设备及计算机可读存储介质 |
CN110110734B (zh) * | 2018-02-01 | 2023-04-07 | 富士通株式会社 | 开集识别方法、信息处理设备以及存储介质 |
US20190266482A1 (en) * | 2018-02-26 | 2019-08-29 | Gsi Technology Inc. | Distance based deep learning |
JP6831347B2 (ja) * | 2018-04-05 | 2021-02-17 | 日本電信電話株式会社 | 学習装置、学習方法および学習プログラム |
WO2019210295A1 (en) | 2018-04-27 | 2019-10-31 | Carnegie Mellon University | Polynomial convolutional neural network with early fan-out |
US10818080B2 (en) * | 2018-07-25 | 2020-10-27 | Disney Enterprises, Inc. | Piecewise-polynomial coupling layers for warp-predicting neural networks |
CN109409198B (zh) * | 2018-08-31 | 2023-09-05 | 平安科技(深圳)有限公司 | Au检测方法、装置、设备及介质 |
US11103763B2 (en) | 2018-09-11 | 2021-08-31 | Real Shot Inc. | Basketball shooting game using smart glasses |
US11141645B2 (en) | 2018-09-11 | 2021-10-12 | Real Shot Inc. | Athletic ball game using smart glasses |
US11645509B2 (en) * | 2018-09-27 | 2023-05-09 | Salesforce.Com, Inc. | Continual neural network learning via explicit structure learning |
CN109274625B (zh) * | 2018-11-12 | 2020-06-19 | 北京邮电大学 | 一种信息调制方式确定方法、装置、电子设备及存储介质 |
US10657447B1 (en) * | 2018-11-29 | 2020-05-19 | SparkCognition, Inc. | Automated model building search space reduction |
US11775812B2 (en) * | 2018-11-30 | 2023-10-03 | Samsung Electronics Co., Ltd. | Multi-task based lifelong learning |
US10977548B2 (en) | 2018-12-05 | 2021-04-13 | Bank Of America Corporation | Generation of capsule neural networks for enhancing image processing platforms |
JP6991960B2 (ja) * | 2018-12-28 | 2022-01-13 | Kddi株式会社 | 画像認識装置、画像認識方法及びプログラム |
CN109829443B (zh) * | 2019-02-23 | 2020-08-14 | 重庆邮电大学 | 基于图像增强与3d卷积神经网络的视频行为识别方法 |
CA3129731A1 (en) * | 2019-03-13 | 2020-09-17 | Elliot Meyerson | System and method for implementing modular universal reparameterization for deep multi-task learning across diverse domains |
US11783195B2 (en) | 2019-03-27 | 2023-10-10 | Cognizant Technology Solutions U.S. Corporation | Process and system including an optimization engine with evolutionary surrogate-assisted prescriptions |
WO2020231049A1 (en) | 2019-05-16 | 2020-11-19 | Samsung Electronics Co., Ltd. | Neural network model apparatus and compressing method of neural network model |
KR20200132627A (ko) * | 2019-05-16 | 2020-11-25 | 삼성전자주식회사 | 신경망 모델 장치 및 신경망 모델의 압축 방법 |
CN113874883A (zh) | 2019-05-21 | 2021-12-31 | 奇跃公司 | 手部姿势估计 |
CN111684472A (zh) * | 2019-05-31 | 2020-09-18 | 深圳市大疆创新科技有限公司 | 网络结构搜索的方法及装置、计算机存储介质和计算机程序产品 |
KR20220028096A (ko) * | 2019-06-28 | 2022-03-08 | 삼성전자주식회사 | 신경망 모델들을 관리하는 방법 및 장치 |
CN110363198B (zh) * | 2019-07-04 | 2022-12-09 | 武汉科技大学 | 一种神经网络权重矩阵拆分与组合的方法 |
US10956791B2 (en) * | 2019-07-19 | 2021-03-23 | LayerJot, Inc. | Interactive generation and publication of an augmented-reality application |
US11947570B2 (en) * | 2019-09-03 | 2024-04-02 | International Business Machines Corporation | Data augmentation |
CN110633797B (zh) * | 2019-09-11 | 2022-12-02 | 北京百度网讯科技有限公司 | 网络模型结构的搜索方法、装置以及电子设备 |
US11816574B2 (en) * | 2019-10-25 | 2023-11-14 | Alibaba Group Holding Limited | Structured pruning for machine learning model |
US11475280B2 (en) * | 2019-11-15 | 2022-10-18 | Disney Enterprises, Inc. | Data object classification using an optimized neural network |
US12099934B2 (en) | 2020-04-07 | 2024-09-24 | Cognizant Technology Solutions U.S. Corporation | Framework for interactive exploration, evaluation, and improvement of AI-generated solutions |
CN111754471A (zh) * | 2020-06-12 | 2020-10-09 | 中国科学院地质与地球物理研究所 | 一种土石混合体原位实时加压下岩石破裂检测方法 |
US11775841B2 (en) | 2020-06-15 | 2023-10-03 | Cognizant Technology Solutions U.S. Corporation | Process and system including explainable prescriptions through surrogate-assisted evolution |
US11605118B2 (en) * | 2020-08-18 | 2023-03-14 | Salesforce.Com, Inc. | Systems and methods for next basket recommendation with dynamic attributes modeling |
EP4022534A4 (en) | 2020-11-06 | 2022-11-30 | Visenze Pte Ltd | SYSTEM AND METHOD FOR GENERATING AN IMAGE RECOGNITION MODEL AND CLASSIFYING AN INPUT IMAGE |
US12112112B2 (en) * | 2020-11-12 | 2024-10-08 | Samsung Electronics Co., Ltd. | Method for co-design of hardware and neural network architectures using coarse-to-fine search, two-phased block distillation and neural hardware predictor |
US11068786B1 (en) * | 2020-12-17 | 2021-07-20 | Moffett Technologies Co., Limited | System and method for domain specific neural network pruning |
KR20220096021A (ko) * | 2020-12-30 | 2022-07-07 | 삼성전자주식회사 | 전자 장치 및 이의 제어 방법 |
KR102594163B1 (ko) | 2021-01-05 | 2023-10-26 | 한국전자통신연구원 | 음향 신호를 인식하는 학습 모델의 트레이닝 방법과 그 학습 모델을 이용한 음향 신호의 인식 방법 및 그 방법들을 수행하는 장치 |
KR102658473B1 (ko) | 2021-03-17 | 2024-04-18 | 한국전자통신연구원 | 다중 음향 이벤트 구간에서의 레이블 인코딩 방법 및 장치 |
CN113189968B (zh) * | 2021-05-08 | 2022-08-26 | 哈尔滨工业大学 | 互联工业过程的分布式故障诊断方法 |
CN113570106B (zh) * | 2021-05-17 | 2023-11-17 | 国网山东省电力公司潍坊供电公司 | 基于高速公路神经网络的电力负荷预测方法及设备 |
US20220414449A1 (en) * | 2021-06-25 | 2022-12-29 | GE Precision Healthcare LLC | Temporalizing or spatializing networks |
WO2023034043A1 (en) * | 2021-09-01 | 2023-03-09 | The Board Of Regents Of The University Of Texas System | Methods and systems for deep distilling |
WO2023104158A1 (en) * | 2021-12-09 | 2023-06-15 | Dolby Laboratories Licensing Corporation | Method for neural network training with multiple supervisors |
CN116884005B (zh) * | 2023-09-08 | 2023-11-07 | 江西财经大学 | 一种结合卷积网络与图特征的快速语义分割方法与系统 |
CN117952650A (zh) * | 2024-01-30 | 2024-04-30 | 和源顺(湖州)工艺品有限公司 | 基于大数据的工艺品电子商务销售管理系统 |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1025552A (en) | 1905-09-19 | 1912-05-07 | Metropolitan Sewing Machine Company | Trimming mechanism for sewing-machines. |
US1027590A (en) | 1910-06-03 | 1912-05-28 | Ernst Bucher | Dirigible airship. |
JP2885823B2 (ja) | 1989-04-11 | 1999-04-26 | 株式会社豊田中央研究所 | 視覚認識装置 |
JPH0695192A (ja) | 1991-05-01 | 1994-04-08 | Matsushita Electric Ind Co Ltd | 画像認識装置及び画像入力方法 |
US5291560A (en) | 1991-07-15 | 1994-03-01 | Iri Scan Incorporated | Biometric personal identification system based on iris analysis |
US5579471A (en) | 1992-11-09 | 1996-11-26 | International Business Machines Corporation | Image query system and method |
TW226454B (en) * | 1993-11-02 | 1994-07-11 | Ind Tech Res Inst | Pattern recognition method for car plate |
US5572596A (en) | 1994-09-02 | 1996-11-05 | David Sarnoff Research Center, Inc. | Automated, non-invasive iris recognition system and method |
US5850470A (en) | 1995-08-30 | 1998-12-15 | Siemens Corporate Research, Inc. | Neural network for locating and recognizing a deformable object |
US6018728A (en) | 1996-02-09 | 2000-01-25 | Sarnoff Corporation | Method and apparatus for training a neural network to learn hierarchical representations of objects and to detect and classify objects with uncertain training data |
US6121953A (en) | 1997-02-06 | 2000-09-19 | Modern Cartoons, Ltd. | Virtual reality system for sensing facial movements |
US6035057A (en) | 1997-03-10 | 2000-03-07 | Hoffman; Efrem H. | Hierarchical data matrix pattern recognition and identification system |
EP1025517A1 (en) | 1997-10-27 | 2000-08-09 | Massachusetts Institute Of Technology | Image search and retrieval system |
US6138109A (en) * | 1997-12-23 | 2000-10-24 | Caterpillar Inc. | Neural network diagnostic classification of complex binary systems |
US6401082B1 (en) * | 1999-11-08 | 2002-06-04 | The United States Of America As Represented By The Secretary Of The Air Force | Autoassociative-heteroassociative neural network |
US6865302B2 (en) | 2000-03-16 | 2005-03-08 | The Regents Of The University Of California | Perception-based image retrieval |
US6768509B1 (en) | 2000-06-12 | 2004-07-27 | Intel Corporation | Method and apparatus for determining points of interest on an image of a camera calibration object |
GB2364590B (en) | 2000-07-07 | 2004-06-02 | Mitsubishi Electric Inf Tech | Method and apparatus for representing and searching for an object in an image |
US7016532B2 (en) | 2000-11-06 | 2006-03-21 | Evryx Technologies | Image capture and identification system and process |
US7099510B2 (en) | 2000-11-29 | 2006-08-29 | Hewlett-Packard Development Company, L.P. | Method and system for object detection in digital images |
US6829384B2 (en) | 2001-02-28 | 2004-12-07 | Carnegie Mellon University | Object finder for photographic images |
US7152051B1 (en) | 2002-09-30 | 2006-12-19 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
US9153074B2 (en) | 2011-07-18 | 2015-10-06 | Dylan T X Zhou | Wearable augmented reality eyeglass communication device including mobile phone and mobile computing via virtual touch screen gesture control and neuron command |
JP3855939B2 (ja) | 2003-01-31 | 2006-12-13 | ソニー株式会社 | 画像処理装置、画像処理方法及び撮影装置 |
KR20060011828A (ko) | 2003-04-03 | 2006-02-03 | 더블린 시티 유니버시티 | 멀티미디어 데이터를 인덱싱 및 검색하기 위한 형상 매칭방법 |
US7362892B2 (en) * | 2003-07-02 | 2008-04-22 | Lockheed Martin Corporation | Self-optimizing classifier |
EP2955662B1 (en) | 2003-07-18 | 2018-04-04 | Canon Kabushiki Kaisha | Image processing device, imaging device, image processing method |
JP4572834B2 (ja) * | 2003-08-28 | 2010-11-04 | Fdk株式会社 | 磁気光学デバイス |
WO2005022343A2 (en) * | 2003-08-29 | 2005-03-10 | Exscientia, Llc | System and methods for incrementally augmenting a classifier |
US7593550B2 (en) | 2005-01-26 | 2009-09-22 | Honeywell International Inc. | Distance iris recognition |
CN100573548C (zh) | 2004-04-15 | 2009-12-23 | 格斯图尔泰克股份有限公司 | 跟踪双手运动的方法和设备 |
JP4217664B2 (ja) | 2004-06-28 | 2009-02-04 | キヤノン株式会社 | 画像処理方法、画像処理装置 |
US7668376B2 (en) | 2004-06-30 | 2010-02-23 | National Instruments Corporation | Shape feature extraction and classification |
US7644049B2 (en) | 2004-11-19 | 2010-01-05 | Intel Corporation | Decision forest based classifier for determining predictive importance in real-time data analysis |
US20060245500A1 (en) * | 2004-12-15 | 2006-11-02 | David Yonovitz | Tunable wavelet target extraction preprocessor system |
US8488023B2 (en) | 2009-05-20 | 2013-07-16 | DigitalOptics Corporation Europe Limited | Identifying facial expressions in acquired digital images |
US7689008B2 (en) | 2005-06-10 | 2010-03-30 | Delphi Technologies, Inc. | System and method for detecting an eye |
US20060291697A1 (en) | 2005-06-21 | 2006-12-28 | Trw Automotive U.S. Llc | Method and apparatus for detecting the presence of an occupant within a vehicle |
US7603000B2 (en) | 2005-08-31 | 2009-10-13 | Siemens Medical Solutions Usa, Inc. | System and method for learning relative distance in a shape space using image based features |
US8890813B2 (en) | 2009-04-02 | 2014-11-18 | Oblong Industries, Inc. | Cross-user hand tracking and shape recognition user interface |
CN101055620B (zh) | 2006-04-12 | 2011-04-06 | 富士通株式会社 | 形状比较装置和方法 |
US8131011B2 (en) | 2006-09-25 | 2012-03-06 | University Of Southern California | Human detection and tracking system |
KR101363017B1 (ko) | 2007-08-23 | 2014-02-12 | 삼성전자주식회사 | 얼굴영상 촬영 및 분류 시스템과 방법 |
US8180112B2 (en) | 2008-01-21 | 2012-05-15 | Eastman Kodak Company | Enabling persistent recognition of individuals in images |
US8411910B2 (en) | 2008-04-17 | 2013-04-02 | Biometricore, Inc. | Computationally efficient feature extraction and matching iris recognition |
KR101030613B1 (ko) | 2008-10-08 | 2011-04-20 | 아이리텍 잉크 | 아이이미지에서 관심영역정보 및 인식적 정보획득방법 |
CN101383008A (zh) * | 2008-10-23 | 2009-03-11 | 上海交通大学 | 基于视觉注意模型的图像分类方法 |
US8290208B2 (en) | 2009-01-12 | 2012-10-16 | Eastman Kodak Company | Enhanced safety during laser projection |
US8374404B2 (en) | 2009-02-13 | 2013-02-12 | Raytheon Company | Iris recognition using hyper-spectral signatures |
CN101510218A (zh) | 2009-03-26 | 2009-08-19 | 阿里巴巴集团控股有限公司 | 实现图片搜索的方法及网站服务器 |
JP2011170856A (ja) * | 2010-02-22 | 2011-09-01 | Ailive Inc | 複数の検出ストリームを用いたモーション認識用システム及び方法 |
US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
US8553989B1 (en) | 2010-04-27 | 2013-10-08 | Hrl Laboratories, Llc | Three-dimensional (3D) object recognition system using region of interest geometric features |
EP2569721A4 (en) | 2010-05-14 | 2013-11-27 | Datalogic Adc Inc | SYSTEMS AND METHODS FOR OBJECT DETECTION USING A LARGE DATABASE |
US8824747B2 (en) | 2010-06-29 | 2014-09-02 | Apple Inc. | Skin-tone filtering |
US8467599B2 (en) * | 2010-09-02 | 2013-06-18 | Edge 3 Technologies, Inc. | Method and apparatus for confusion learning |
WO2014158345A1 (en) | 2013-01-31 | 2014-10-02 | University Of Iowa Research Foundation | Methods and systems for vessel bifurcation detection |
US8488888B2 (en) | 2010-12-28 | 2013-07-16 | Microsoft Corporation | Classification of posture states |
CN102054178B (zh) * | 2011-01-20 | 2016-08-17 | 北京联合大学 | 一种基于局部语义概念的国画图像识别方法 |
US9064145B2 (en) | 2011-04-20 | 2015-06-23 | Institute Of Automation, Chinese Academy Of Sciences | Identity recognition based on multiple feature fusion for an eye image |
US8898091B2 (en) | 2011-05-11 | 2014-11-25 | Ari M. Frank | Computing situation-dependent affective response baseline levels utilizing a database storing affective responses |
US8767016B2 (en) | 2012-03-15 | 2014-07-01 | Shun-Ching Yang | Virtual reality interaction system and method |
US9082011B2 (en) | 2012-03-28 | 2015-07-14 | Texas State University—San Marcos | Person identification using ocular biometrics with liveness detection |
EP2648133A1 (fr) * | 2012-04-04 | 2013-10-09 | Biomerieux | Identification de microorganismes par spectrometrie et classification structurée |
US9101312B2 (en) | 2012-04-18 | 2015-08-11 | TBI Diagnostics LLC | System for the physiological evaluation of brain function |
CN102722714B (zh) * | 2012-05-18 | 2014-07-23 | 西安电子科技大学 | 基于目标跟踪的人工神经网络扩张式学习方法 |
JP2013250856A (ja) | 2012-06-01 | 2013-12-12 | Mitsubishi Electric Corp | 監視システム |
US9041622B2 (en) | 2012-06-12 | 2015-05-26 | Microsoft Technology Licensing, Llc | Controlling a virtual object with a real controller device |
US8873812B2 (en) | 2012-08-06 | 2014-10-28 | Xerox Corporation | Image segmentation using hierarchical unsupervised segmentation and hierarchical classifiers |
US9092896B2 (en) | 2012-08-07 | 2015-07-28 | Microsoft Technology Licensing, Llc | Augmented reality display of scene behind surface |
US8369595B1 (en) | 2012-08-10 | 2013-02-05 | EyeVerify LLC | Texture features for biometric authentication |
US10209946B2 (en) | 2012-08-23 | 2019-02-19 | Red Hat, Inc. | Augmented reality personal identification |
US8963806B1 (en) | 2012-10-29 | 2015-02-24 | Google Inc. | Device authentication |
US9449257B2 (en) * | 2012-12-04 | 2016-09-20 | Institute Of Semiconductors, Chinese Academy Of Sciences | Dynamically reconstructable multistage parallel single instruction multiple data array processing system |
US9111348B2 (en) | 2013-03-15 | 2015-08-18 | Toyota Motor Engineering & Manufacturing North America, Inc. | Computer-based method and system of dynamic category object recognition |
US9269022B2 (en) | 2013-04-11 | 2016-02-23 | Digimarc Corporation | Methods for object recognition and related arrangements |
US9147125B2 (en) | 2013-05-03 | 2015-09-29 | Microsoft Technology Licensing, Llc | Hand-drawn sketch recognition |
US10262462B2 (en) * | 2014-04-18 | 2019-04-16 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US9207771B2 (en) | 2013-07-08 | 2015-12-08 | Augmenta Oy | Gesture based user interface |
US9542626B2 (en) | 2013-09-06 | 2017-01-10 | Toyota Jidosha Kabushiki Kaisha | Augmenting layer-based object detection with deep convolutional neural networks |
US9730643B2 (en) | 2013-10-17 | 2017-08-15 | Siemens Healthcare Gmbh | Method and system for anatomical object detection using marginal space deep neural networks |
US9202144B2 (en) | 2013-10-30 | 2015-12-01 | Nec Laboratories America, Inc. | Regionlets with shift invariant neural patterns for object detection |
US9489765B2 (en) | 2013-11-18 | 2016-11-08 | Nant Holdings Ip, Llc | Silhouette-based object and texture alignment, systems and methods |
CN107329259B (zh) | 2013-11-27 | 2019-10-11 | 奇跃公司 | 虚拟和增强现实系统与方法 |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
WO2015078018A1 (en) | 2013-11-30 | 2015-06-04 | Xiaoou Tang | Method and system for face image recognition |
US9224068B1 (en) | 2013-12-04 | 2015-12-29 | Google Inc. | Identifying objects in images |
US20150186708A1 (en) | 2013-12-31 | 2015-07-02 | Sagi Katz | Biometric identification system |
WO2015123647A1 (en) | 2014-02-14 | 2015-08-20 | Nant Holdings Ip, Llc | Object ingestion through canonical shapes, systems and methods |
WO2015123646A1 (en) | 2014-02-14 | 2015-08-20 | Nant Holdings Ip, Llc | Edge-based recognition, systems and methods |
US9542645B2 (en) * | 2014-03-27 | 2017-01-10 | Qualcomm Incorporated | Plastic synapse management |
IL231862A (en) | 2014-04-01 | 2015-04-30 | Superfish Ltd | Image representation using a neural network |
US20150296135A1 (en) | 2014-04-10 | 2015-10-15 | Magna Electronics Inc. | Vehicle vision system with driver monitoring |
US9317785B1 (en) | 2014-04-21 | 2016-04-19 | Video Mining Corporation | Method and system for determining ethnicity category of facial images based on multi-level primary and auxiliary classifiers |
US9767615B2 (en) | 2014-04-23 | 2017-09-19 | Raytheon Company | Systems and methods for context based information delivery using augmented reality |
CN106716450B (zh) | 2014-05-06 | 2020-05-19 | 河谷控股Ip有限责任公司 | 利用边缘向量的基于图像的特征检测 |
US10620700B2 (en) | 2014-05-09 | 2020-04-14 | Google Llc | Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects |
WO2016054778A1 (en) | 2014-10-09 | 2016-04-14 | Microsoft Technology Licensing, Llc | Generic object detection in images |
KR102357326B1 (ko) | 2014-11-19 | 2022-01-28 | 삼성전자주식회사 | 얼굴 특징 추출 방법 및 장치, 얼굴 인식 방법 및 장치 |
US9418319B2 (en) | 2014-11-21 | 2016-08-16 | Adobe Systems Incorporated | Object detection using cascaded convolutional neural networks |
JP2016126510A (ja) | 2014-12-26 | 2016-07-11 | カシオ計算機株式会社 | 画像生成装置、画像生成方法及びプログラム |
US10223635B2 (en) * | 2015-01-22 | 2019-03-05 | Qualcomm Incorporated | Model compression and fine-tuning |
RU2703343C2 (ru) | 2015-03-20 | 2019-10-16 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Назначение оценки релевантности для искусственных нейронных сетей |
US10246753B2 (en) * | 2015-04-13 | 2019-04-02 | uBiome, Inc. | Method and system for characterizing mouth-associated conditions |
US9786036B2 (en) * | 2015-04-28 | 2017-10-10 | Qualcomm Incorporated | Reducing image resolution in deep convolutional networks |
CN114758406B (zh) | 2015-05-11 | 2024-02-23 | 奇跃公司 | 用于使用神经网络的生物特征用户识别的设备、方法和系统 |
US9911219B2 (en) | 2015-05-13 | 2018-03-06 | Intel Corporation | Detection, tracking, and pose estimation of an articulated body |
US11423311B2 (en) * | 2015-06-04 | 2022-08-23 | Samsung Electronics Co., Ltd. | Automatic tuning of artificial neural networks |
CN104933428B (zh) * | 2015-07-23 | 2018-05-01 | 苏州大学 | 一种基于张量描述的人脸识别方法及装置 |
RU2691195C1 (ru) | 2015-09-11 | 2019-06-11 | Айверифай Инк. | Качество изображения и признака, улучшение изображения и выделение признаков для распознавания по сосудам глаза и лицам, и объединение информации о сосудах глаза с информацией о лицах и/или частях лиц для биометрических систем |
JP6514089B2 (ja) | 2015-11-02 | 2019-05-15 | 株式会社ソニー・インタラクティブエンタテインメント | 情報処理装置、情報処理システム、および情報処理方法 |
CA3015658A1 (en) | 2016-03-11 | 2017-09-14 | Magic Leap, Inc. | Structure learning in convolutional neural networks |
US10872699B2 (en) * | 2016-03-25 | 2020-12-22 | Siemens Healthcare Gmbh | Case-based reasoning in the cloud using deep learning |
WO2018013200A1 (en) | 2016-07-14 | 2018-01-18 | Magic Leap, Inc. | Deep neural network for iris identification |
US20180024726A1 (en) | 2016-07-21 | 2018-01-25 | Cives Consulting AS | Personified Emoji |
KR20180020043A (ko) | 2016-08-17 | 2018-02-27 | 삼성전자주식회사 | 다시점 영상 제어 방법 및 이를 지원하는 전자 장치 |
KR102707594B1 (ko) | 2016-11-11 | 2024-09-19 | 삼성전자주식회사 | 홍채 영역 추출 방법 및 장치 |
US10783393B2 (en) | 2017-06-20 | 2020-09-22 | Nvidia Corporation | Semi-supervised learning for landmark localization |
US10269159B2 (en) | 2017-07-27 | 2019-04-23 | Rockwell Collins, Inc. | Neural network foreground separation for mixed reality |
CN111373419A (zh) | 2017-10-26 | 2020-07-03 | 奇跃公司 | 用于深度多任务网络中自适应损失平衡的梯度归一化系统和方法 |
KR102682524B1 (ko) | 2018-09-11 | 2024-07-08 | 삼성전자주식회사 | 증강 현실에서 가상 객체를 표시하기 위한 측위 방법 및 장치 |
-
2017
- 2017-03-13 CA CA3015658A patent/CA3015658A1/en active Pending
- 2017-03-13 WO PCT/US2017/022206 patent/WO2017156547A1/en active Application Filing
- 2017-03-13 KR KR1020207008940A patent/KR20200035499A/ko not_active Application Discontinuation
- 2017-03-13 CN CN201780016251.0A patent/CN108780519B/zh active Active
- 2017-03-13 EP EP17764297.2A patent/EP3427192A4/en not_active Ceased
- 2017-03-13 AU AU2017230184A patent/AU2017230184B2/en active Active
- 2017-03-13 CN CN202210954415.7A patent/CN115345278A/zh active Pending
- 2017-03-13 US US15/457,990 patent/US10255529B2/en active Active
- 2017-03-13 JP JP2018547429A patent/JP6889728B2/ja active Active
- 2017-03-13 KR KR1020187029132A patent/KR102223296B1/ko active IP Right Grant
-
2018
- 2018-08-20 IL IL261245A patent/IL261245A/en active IP Right Grant
-
2019
- 2019-03-27 US US16/366,047 patent/US10963758B2/en active Active
-
2020
- 2020-03-12 JP JP2020042897A patent/JP6983937B2/ja active Active
-
2021
- 2021-02-23 US US17/183,021 patent/US11657286B2/en active Active
- 2021-12-23 AU AU2021290336A patent/AU2021290336A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2021290336A1 (en) | 2022-02-03 |
IL261245A (en) | 2018-10-31 |
JP2019511777A (ja) | 2019-04-25 |
US20170262737A1 (en) | 2017-09-14 |
EP3427192A4 (en) | 2019-03-27 |
US10963758B2 (en) | 2021-03-30 |
AU2017230184B2 (en) | 2021-10-07 |
CN115345278A (zh) | 2022-11-15 |
CN108780519A (zh) | 2018-11-09 |
AU2017230184A1 (en) | 2018-09-06 |
KR20200035499A (ko) | 2020-04-03 |
CN108780519B (zh) | 2022-09-02 |
JP6889728B2 (ja) | 2021-06-18 |
US20210182636A1 (en) | 2021-06-17 |
JP2020091922A (ja) | 2020-06-11 |
KR20180117704A (ko) | 2018-10-29 |
US20190286951A1 (en) | 2019-09-19 |
EP3427192A1 (en) | 2019-01-16 |
WO2017156547A1 (en) | 2017-09-14 |
US11657286B2 (en) | 2023-05-23 |
KR102223296B1 (ko) | 2021-03-04 |
CA3015658A1 (en) | 2017-09-14 |
US10255529B2 (en) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6983937B2 (ja) | 畳み込みニューラルネットワークにおける構造学習 | |
Lemley et al. | Deep learning for consumer devices and services: pushing the limits for machine learning, artificial intelligence, and computer vision | |
KR102071582B1 (ko) | 딥 뉴럴 네트워크(Deep Neural Network)를 이용하여 문장이 속하는 클래스(class)를 분류하는 방법 및 장치 | |
JP6504590B2 (ja) | 画像のセマンティックセグメンテーションのためのシステム及びコンピューター実施方法、並びに非一時的コンピューター可読媒体 | |
CN105447498B (zh) | 配置有神经网络的客户端设备、系统和服务器系统 | |
KR102548732B1 (ko) | 신경망 학습 방법 및 이를 적용한 장치 | |
EP3514734A1 (en) | Method and apparatus for generating a chemical structure using a neural network | |
Planche et al. | Hands-On Computer Vision with TensorFlow 2: Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras | |
WO2020159890A1 (en) | Method for few-shot unsupervised image-to-image translation | |
US11386288B2 (en) | Movement state recognition model training device, movement state recognition device, methods and programs therefor | |
CN109508640A (zh) | 一种人群情感分析方法、装置和存储介质 | |
US20230004816A1 (en) | Method of optimizing neural network model and neural network model processing system performing the same | |
Oliva et al. | Advances and applications of optimised algorithms in image processing | |
Sun et al. | FGENet: a lightweight facial expression recognition algorithm based on FasterNet | |
Ikram | A benchmark for evaluating Deep Learning based Image Analytics | |
Murphy | The Application of Computer Vision, Machine and Deep Learning Algorithms Utilizing MATLAB® | |
KR102512598B1 (ko) | 헤어 스타일링 가상 체험용 인공 신경망의 학습을 위한 학습 데이터 생성 장치 및 방법, 및 이를 이용한 헤어 스타일링 가상 체험 장치 및 방법 | |
NZ786061A (en) | Structure learning in convolutional neural networks | |
Shome et al. | 13 Study Methods, of Different Models and Regression | |
Kaiser | Synaptic Learning for Neuromorphic Vision-Processing Address Events with Spiking Neural Networks | |
Naveen Kumar et al. | Automatic Facial Expression Recognition Using Modified LPQ and HOG Features with Stacked Deep Convolutional Autoencoders | |
Shome et al. | Study of Different Regression Methods, Models and Application in Deep Learning Paradigm | |
Prieto et al. | Automatic neural-based pattern classification of motion behaviors in autonomous robots | |
KR20210076554A (ko) | 깊은 신경망 내에서의 강화된 배치 정규화를 위한 전자 장치, 방법, 및 컴퓨터 판독가능 매체 | |
Cheng | State Representation for Problem Solving Using Reinforcement Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210514 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6983937 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |