JP6982443B2 - Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method - Google Patents

Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method Download PDF

Info

Publication number
JP6982443B2
JP6982443B2 JP2017179457A JP2017179457A JP6982443B2 JP 6982443 B2 JP6982443 B2 JP 6982443B2 JP 2017179457 A JP2017179457 A JP 2017179457A JP 2017179457 A JP2017179457 A JP 2017179457A JP 6982443 B2 JP6982443 B2 JP 6982443B2
Authority
JP
Japan
Prior art keywords
power
power generation
fuel cells
generated
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017179457A
Other languages
Japanese (ja)
Other versions
JP2019057362A (en
Inventor
啓太 友道
悦朗 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017179457A priority Critical patent/JP6982443B2/en
Priority to PCT/JP2018/032986 priority patent/WO2019058979A1/en
Priority to CN201880059508.5A priority patent/CN111406337B/en
Publication of JP2019057362A publication Critical patent/JP2019057362A/en
Application granted granted Critical
Publication of JP6982443B2 publication Critical patent/JP6982443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明の実施形態は、燃料電池システム、燃料電池システムの指示装置、及び燃料電池システムの指示方法に関する。 Embodiments of the present invention relate to a fuel cell system, a fuel cell system instruction device, and a fuel cell system instruction method.

燃料ガスの有している化学エネルギーを直接電気に変換するシステムとして、燃料電池発電システムが知られている。この燃料電池発電システムは、燃料である水素と酸化剤である酸素とを電気化学的に反応させて、直接電気を取り出すものであり、高い発電効率で電気エネルギーを取り出すことが可能である。この燃料電池システムの中には、複数の燃料電池を連結して発電させる燃料電池システムが知られている。 A fuel cell power generation system is known as a system that directly converts the chemical energy of a fuel gas into electricity. In this fuel cell power generation system, hydrogen as a fuel and oxygen as an oxidant are electrochemically reacted to directly extract electricity, and it is possible to extract electric energy with high power generation efficiency. Among these fuel cell systems, a fuel cell system that connects a plurality of fuel cells to generate electricity is known.

ところが、このような複数の燃料電池を連結して発電させる燃料電池システムでは、複数の燃料電池それぞれの発電電力が同等となるように一般に運転させている。このため、燃料電池システム全体の発電効率が低下してしまう恐れがある。 However, in such a fuel cell system in which a plurality of fuel cells are connected to generate electricity, the fuel cells are generally operated so that the generated power of each of the plurality of fuel cells is equal. Therefore, there is a risk that the power generation efficiency of the entire fuel cell system will decrease.

特開昭60−37673号公報Japanese Unexamined Patent Publication No. 60-37673

本発明が解決しようとする課題は、複数の燃料電池により発電させても、発電効率の低下を抑制可能な燃料電池システム、燃料電池システムの指示装置、及び燃料電池システムの指示方法を提供する。 An object to be solved by the present invention is to provide a fuel cell system, a fuel cell system instruction device, and a fuel cell system instruction method capable of suppressing a decrease in power generation efficiency even when power is generated by a plurality of fuel cells.

本実施形態に係る燃料電池システムは、複数の燃料電池と、指示装置と、を備える。複数の燃料電池は、水素を用いて電力を発生し、特定の負荷時に発電効率が最大である。指示装置は、複数の燃料電池それぞれの発電指示量を指示する。指示装置は、電力取得部と、発電電力決定部と、指示部と、を有する。電力取得部は、複数の燃料電池が発電すべき総発電電力を取得する。発電電力決定部は、複数の燃料電池それぞれの発電効率の情報と、総発電電力とに基づき、複数の燃料電池それぞれに対する発電指示量を決定する。指示部は、複数の燃料電池それぞれに発電指示量を指示する。 The fuel cell system according to the present embodiment includes a plurality of fuel cells and an instruction device. Multiple fuel cells use hydrogen to generate electricity and have the highest power generation efficiency at a particular load. The instruction device instructs the power generation instruction amount of each of the plurality of fuel cells. The instruction device has a power acquisition unit, a generated power determination unit, and an instruction unit. The power acquisition unit acquires the total generated power to be generated by a plurality of fuel cells. The power generation power determination unit determines the power generation instruction amount for each of the plurality of fuel cells based on the information on the power generation efficiency of each of the plurality of fuel cells and the total power generation power. The instruction unit instructs each of the plurality of fuel cells to generate power.

本発明の効果は、複数の燃料電池により発電させても、発電効率の低下を抑制することができる。 The effect of the present invention is that even if power is generated by a plurality of fuel cells, it is possible to suppress a decrease in power generation efficiency.

第1実施形態に係る燃料電池システムの概略的な全体構成を示す図。The figure which shows the schematic whole structure of the fuel cell system which concerns on 1st Embodiment. 燃料電池の詳細な構成を示すブロック図。A block diagram showing a detailed configuration of a fuel cell. 指示装置の構成を示すブロック図。The block diagram which shows the structure of an instruction device. 燃料電池の発電効率の情報及び排熱回収効率の情報の一例を示す図。The figure which shows an example of the information of the power generation efficiency of a fuel cell and the information of the waste heat recovery efficiency. 燃料電池システムの発電処理の一例を示すフローチャート。A flowchart showing an example of power generation processing of a fuel cell system. ステップS110の処理内容を説明するフローチャート。The flowchart explaining the processing content of step S110. 図5及び図6のフローチャートにしたがい電指示量を決定した場合の発電効率の例を示す図。The figure which shows the example of the power generation efficiency at the time of determining the electric power instruction amount according to the flowchart of FIGS. 5 and 6. 第2実施形態に係る指示装置のブロック図。The block diagram of the instruction device which concerns on 2nd Embodiment. 第2実施形態に係る電力決定部及び評価部の処理例を示すフローチャート。The flowchart which shows the processing example of the electric power determination part and the evaluation part which concerns on 2nd Embodiment. 第3実施形態に係る指示装置のブロック図。The block diagram of the instruction apparatus which concerns on 3rd Embodiment. 第3実施形態に係る電力決定部及びモード選択部の処理例を示すフローチャート。The flowchart which shows the processing example of the power determination part and the mode selection part which concerns on 3rd Embodiment. 排熱回収効率モードにより燃料電池それぞれの発電量を決定した場合の発電効率及び排熱回収効率の例を示す図。The figure which shows the example of the power generation efficiency and the waste heat recovery efficiency when the power generation amount of each fuel cell is determined by the waste heat recovery efficiency mode.

以下、本発明の実施形態に係る距離計測装置について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 Hereinafter, the distance measuring device according to the embodiment of the present invention will be described in detail with reference to the drawings. The embodiments shown below are examples of the embodiments of the present invention, and the present invention is not limited to these embodiments. Further, in the drawings referred to in the present embodiment, the same parts or parts having similar functions may be designated by the same reference numerals or similar reference numerals, and the repeated description thereof may be omitted. Further, the dimensional ratio of the drawing may differ from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.

(第1実施形態)
図1は、第1実施形態に係る燃料電池システム1の概略的な全体構成を示す図である。この図1に示すように燃料電池システム1は、複数の燃料電池により発電行い、排熱回収が可能なシステムである。より具体的には、この燃料電池システム1は、複数の燃料電池10と、指示装置20と、操作装置22と、熱交換器30と、循環水管32と、を備えて構成されている。
(First Embodiment)
FIG. 1 is a diagram showing a schematic overall configuration of the fuel cell system 1 according to the first embodiment. As shown in FIG. 1, the fuel cell system 1 is a system capable of generating electricity from a plurality of fuel cells and recovering exhaust heat. More specifically, the fuel cell system 1 includes a plurality of fuel cells 10, an indicator device 20, an operating device 22, a heat exchanger 30, and a circulating water pipe 32.

燃料電池10は、水素を用いて電力を発生し、部分負荷時に発電効率が最大となる燃料電池である。この燃料電池10は、熱回収水管102と、を有している。熱回収水管102は、循環水管32に接続され、内部を流れる水により、燃料電池10の発電により発生した排熱を回収する水管である。 The fuel cell 10 is a fuel cell that uses hydrogen to generate electric power and maximizes power generation efficiency at the time of partial load. The fuel cell 10 has a heat recovery water pipe 102. The heat recovery water pipe 102 is a water pipe connected to the circulating water pipe 32 and recovers the waste heat generated by the power generation of the fuel cell 10 by the water flowing inside.

指示装置20は、複数の燃料電池10それぞれの発電量を指示する。燃料電池10及び指示装置20の詳細な構成は後述する。操作装置22は、例えばパーソナルコンピュータであり、燃料電池10の発電効率の情報及び排熱回収効率の情報などを保存するとともに、例えば、発電効率の情報及び排熱回収効率の情報、総発電量の情報、モードの選択情報などを指示装置20に供給する。 The instruction device 20 instructs the amount of power generation of each of the plurality of fuel cells 10. The detailed configuration of the fuel cell 10 and the indicator device 20 will be described later. The operating device 22 is, for example, a personal computer, and stores information on the power generation efficiency of the fuel cell 10 and information on the exhaust heat recovery efficiency, and at the same time, for example, information on the power generation efficiency, information on the exhaust heat recovery efficiency, and the total power generation amount. Information, mode selection information, and the like are supplied to the instruction device 20.

熱交換器30は、複数の燃料電池10から回収した排熱を熱交換により放出する。循環水管32は、熱交換器30に接続されその内部を流れる水を熱交換器30に供給する。ポンプ34は、循環水管32に設けられ、循環水管32の内部の水を循環させる。 The heat exchanger 30 releases the waste heat recovered from the plurality of fuel cells 10 by heat exchange. The circulating water pipe 32 is connected to the heat exchanger 30 and supplies the water flowing inside the heat exchanger 30 to the heat exchanger 30. The pump 34 is provided in the circulating water pipe 32 and circulates the water inside the circulating water pipe 32.

図2は、燃料電池10の詳細な構成を示すブロック図である。図1と同等の構成には同一の番号を付して説明を省略する。 FIG. 2 is a block diagram showing a detailed configuration of the fuel cell 10. The same number is assigned to the configuration equivalent to that of FIG. 1, and the description thereof will be omitted.

この図2に示すように、この燃料電池10は、例えば固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)であり、熱回収水管102と、調整弁104と、燃料供給配管106と、燃料排出配管108と、大気供給配管110と、大気排出配管112と、燃料電池スタック114と、熱回収部116と、インバータ118と、制御部120とを備えて構成されている。 As shown in FIG. 2, the fuel cell 10 is, for example, a polymer electrolyte fuel cell (PEFC), and has a heat recovery water pipe 102, a regulating valve 104, a fuel supply pipe 106, and a fuel. It includes a discharge pipe 108, an air supply pipe 110, an air discharge pipe 112, a fuel cell stack 114, a heat recovery unit 116, an inverter 118, and a control unit 120.

燃料供給配管106は、燃料電池スタック114の吸気口に接続されている。この燃料供給配管106は、水素ガスを燃料電池スタック114のアノード114Aに供給する管である。燃料排出配管108は、燃料電池スタック114のアノード114Aの排出口に接続されている。この燃料排出配管108は、燃料電池スタック114のアノード114Aから排出されたガスを排出する。大気供給配管110は、燃料電池スタック114のカソード114Bの吸気口に接続され、大気中の酸素ガスをカソード114Bに供給する。大気排出配管112は、燃料電池スタック114のカソード114Bの排出口に接続されている。これにより、カソード114Bから排出されたガスは、燃料電池10の外部に排出される。 The fuel supply pipe 106 is connected to the intake port of the fuel cell stack 114. The fuel supply pipe 106 is a pipe that supplies hydrogen gas to the anode 114A of the fuel cell stack 114. The fuel discharge pipe 108 is connected to the discharge port of the anode 114A of the fuel cell stack 114. The fuel discharge pipe 108 discharges the gas discharged from the anode 114A of the fuel cell stack 114. The air supply pipe 110 is connected to the intake port of the cathode 114B of the fuel cell stack 114, and supplies oxygen gas in the atmosphere to the cathode 114B. The atmospheric discharge pipe 112 is connected to the discharge port of the cathode 114B of the fuel cell stack 114. As a result, the gas discharged from the cathode 114B is discharged to the outside of the fuel cell 10.

燃料電池スタック114は、電解質膜を挟んで設けられたアノード114Aとカソード114Bとを備えている。すなわち、この燃料電池スタック114は、燃料供給配管106を介してアノード114Aに供給された水素ガスと、大気供給配管110を介してカソード114Bに供給された大気中の酸素ガスとを用いて発電する。 The fuel cell stack 114 includes an anode 114A and a cathode 114B provided with an electrolyte membrane interposed therebetween. That is, the fuel cell stack 114 generates electricity using hydrogen gas supplied to the anode 114A via the fuel supply pipe 106 and oxygen gas in the atmosphere supplied to the cathode 114B via the atmosphere supply pipe 110. ..

熱回収部116は、燃料電池スタック114の発電により発生した排熱を回収する。例えば、熱回収部116は、熱回収水管102の内部を流れる水を介して回収した排熱を熱交換器30(図1)に供給する。 The heat recovery unit 116 recovers the waste heat generated by the power generation of the fuel cell stack 114. For example, the heat recovery unit 116 supplies the waste heat recovered through the water flowing inside the heat recovery water pipe 102 to the heat exchanger 30 (FIG. 1).

インバータ118は、燃料電池スタック114の電極に接続され、燃料電池スタック114の発電量を調整する。このインバータ118、例えば燃料電池スタック114が発電した直流電力を交流電力に変換する。つまり、インバータ118は、交流電力に変換する電力を調整することにより、燃料電池スタック114の発電量を調整する。 The inverter 118 is connected to the electrode of the fuel cell stack 114 and adjusts the power generation amount of the fuel cell stack 114. The DC power generated by the inverter 118, for example, the fuel cell stack 114, is converted into AC power. That is, the inverter 118 adjusts the amount of power generated by the fuel cell stack 114 by adjusting the power to be converted into AC power.

制御部120は、例えばCPU(Central Processing Unit)であり、指示装置20(図1)から指示された発電量の電力をインバータ118に発電させる。 The control unit 120 is, for example, a CPU (Central Processing Unit), and causes the inverter 118 to generate electric power of the amount of power generation instructed by the instruction device 20 (FIG. 1).

図3は、指示装置20の詳細な構成を示すブロック図である。この図3に示すように、本実施形態に係る指示装置20は、情報取得部200と、電力取得部202と、発電電力決定部204と、記憶部206と、指示部208とを、備えて構成されている。 FIG. 3 is a block diagram showing a detailed configuration of the instruction device 20. As shown in FIG. 3, the instruction device 20 according to the present embodiment includes an information acquisition unit 200, a power acquisition unit 202, a power generation power determination unit 204, a storage unit 206, and an instruction unit 208. It is configured.

情報取得部200は、複数の燃料電池10それぞれの発電効率の情報を取得する。また、情報取得部200は、複数の燃料電池10それぞれの排熱回収効率の情報を取得する。例えば、
情報取得部200は、操作装置22(図1)から発電効率の情報及び排熱回収効率の情報を取得する。なお、複数の燃料電池10それぞれの発電効率の情報、及び複数の燃料電池10それぞれの排熱回収効率の情報を記憶部206に予め記憶させておいてもよい。この場合、情報取得部200は、記憶部206に記憶させているこれらの情報を用いて複数の燃料電池10それぞれの発電効率の情報、及び複数の燃料電池10それぞれの排熱回収効率の情報を取得してもよい。
The information acquisition unit 200 acquires information on the power generation efficiency of each of the plurality of fuel cells 10. Further, the information acquisition unit 200 acquires information on the waste heat recovery efficiency of each of the plurality of fuel cells 10. for example,
The information acquisition unit 200 acquires power generation efficiency information and waste heat recovery efficiency information from the operating device 22 (FIG. 1). Information on the power generation efficiency of each of the plurality of fuel cells 10 and information on the waste heat recovery efficiency of each of the plurality of fuel cells 10 may be stored in advance in the storage unit 206. In this case, the information acquisition unit 200 uses these information stored in the storage unit 206 to obtain information on the power generation efficiency of each of the plurality of fuel cells 10 and information on the exhaust heat recovery efficiency of each of the plurality of fuel cells 10. You may get it.

図4は、燃料電池10の発電効率の情報及び排熱回収効率の情報の一例を示す図である。横軸は、燃料電池10の発電量を示し、縦軸は、発電効率と排熱回収効率とを示している。この図4に示すように、この燃料電池10の発電効率は、特定の負荷時に最大となる。ここで、燃料電池10の定格は、最大の発電電力を意味し、部分負荷は、発電電力よりも小さい発電電力を意味する。この燃料電池10の発電効率は、発電電力が増加するにしたがい単調増加し、部分負荷時に最大値を示した後、発電電力が増加するにしたがい単調減少する。一方で、この燃料電池10の排熱回収効率は、発電電力が増加するにしたがい単調増加する。 FIG. 4 is a diagram showing an example of information on the power generation efficiency of the fuel cell 10 and information on the waste heat recovery efficiency. The horizontal axis shows the amount of power generated by the fuel cell 10, and the vertical axis shows the power generation efficiency and the waste heat recovery efficiency. As shown in FIG. 4, the power generation efficiency of the fuel cell 10 is maximized at a specific load. Here, the rating of the fuel cell 10 means the maximum generated power, and the partial load means the generated power smaller than the generated power. The power generation efficiency of the fuel cell 10 increases monotonically as the generated power increases, reaches a maximum value at the time of partial load, and then monotonically decreases as the generated power increases. On the other hand, the waste heat recovery efficiency of the fuel cell 10 increases monotonically as the generated power increases.

図3に示すように、電力取得部202は、複数の燃料電池10が発電すべき総発電電力を取得する。この電力取得部202は、例えば、複数の燃料電池10が発電すべき総発電電力を操作装置22(図1)から取得する。 As shown in FIG. 3, the power acquisition unit 202 acquires the total power generation power to be generated by the plurality of fuel cells 10. The power acquisition unit 202 acquires, for example, the total generated power to be generated by the plurality of fuel cells 10 from the operating device 22 (FIG. 1).

発電電力決定部204は、情報取得部200が取得した複数の燃料電池10それぞれの発電効率の情報と、電力取得部202が取得した複数の燃料電池10が発電すべき総発電電力とに基づき、運転台数と、複数の燃料電池それぞれに対する発電指示量とを決定する。例えば、発電電力決定部204は、(2)式を拘束条件として、(1)式で示す発電効率Eを最大とする発電指示量を決定する。 The power generation power generation determination unit 204 is based on the information on the power generation efficiency of each of the plurality of fuel cells 10 acquired by the information acquisition unit 200 and the total power generation power to be generated by the plurality of fuel cells 10 acquired by the power acquisition unit 202. Determine the number of operating units and the amount of power generation instructions for each of the multiple fuel cells. For example, the power generation power determination unit 204 determines the power generation instruction amount that maximizes the power generation efficiency E represented by the power generation efficiency E represented by the power generation efficiency E, with the power generation power determination unit 204 as a constraint condition.

Figure 0006982443
Figure 0006982443
ここでは、Viは燃料電池iの発電指示量を示す表記であり、関数Fi(Vi)は燃料電池iの発電指示量Viに対する発電効率を示す関数の表記であり、nは複数の燃料電池10の数を示す表記である。また、Tallは、複数の燃料電池10が発電すべき総発電電力の表記である。この評価関数Eを最大とする発電指示量は、一般的な最適化問題を解く手法を用いて解くことが可能である。また、Vi=0の場合は、燃料電池iは発電しないことを示している。発電電力決定部204の詳細な処理例は後述する。
Figure 0006982443
Figure 0006982443
Here, Vi is a notation indicating the power generation instruction amount of the fuel cell i, function Fi (Vi) is a notation of a function indicating the power generation efficiency with respect to the power generation instruction amount Vi of the fuel cell i, and n is a notation indicating the power generation efficiency of the plurality of fuel cells 10. It is a notation indicating the number of. Further, Tall is a notation of the total generated power to be generated by the plurality of fuel cells 10. The power generation instruction amount that maximizes the evaluation function E can be solved by using a method for solving a general optimization problem. Further, when Vi = 0, it is shown that the fuel cell i does not generate electricity. A detailed processing example of the generated power determination unit 204 will be described later.

記憶部206は、発電電力決定部204で決定した運転台数と、複数の燃料電池10それぞれの発電指示量を記憶する。記憶部304は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。 The storage unit 206 stores the number of operating units determined by the power generation power determination unit 204 and the power generation instruction amount of each of the plurality of fuel cells 10. The storage unit 304 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, an optical disk, or the like.

指示部208は、記憶部に記憶された複数の燃料電池10それぞれに発電指示量を指示する。燃料電池10の発電を停止させる場合の発電指示量は0である。 The instruction unit 208 instructs the power generation instruction amount to each of the plurality of fuel cells 10 stored in the storage unit. When the power generation of the fuel cell 10 is stopped, the power generation instruction amount is 0.

なお、本実施形態に係る指示装置20は、例えば、プロセッサにより構成される。ここで、プロセッサという文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit: ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device: SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device: CPLD)、及び、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array: FPGA)等の回路を意味する。プロセッサは、記憶部206に保存されたプログラムを読み出して実行することにより機能を実現する。なお、記憶部206にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成して構わない。 The instruction device 20 according to the present embodiment is composed of, for example, a processor. Here, the word processor is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an integrated circuit for a specific application (Application Specific Integrated Circuit: ASIC), a programmable logic device (for example, a simple programmable logic device). (Simple Program Logic Device: SPLD), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (field Programgable Gate Array: FPGA), etc. The function is realized by reading and executing the stored program. Instead of storing the program in the storage unit 206, the program may be configured to be directly incorporated in the circuit of the processor.

ここで、発電電力決定部204の詳細な処理例を説明する。この発電電力決定部204は、複数の燃料電池10それぞれの発電効率が最大となる最大効率電力に基づき、複数の燃料電池それぞれの発電指示量を決定する。以下では、計算を高速化するための簡易的な方法を説明する。また、説明を簡単にするために、最大効率電力は、複数の燃料電池10それぞれで共通の第1発電電力として説明する。 Here, a detailed processing example of the generated power determination unit 204 will be described. The power generation power determination unit 204 determines the power generation instruction amount of each of the plurality of fuel cells based on the maximum efficiency power that maximizes the power generation efficiency of each of the plurality of fuel cells 10. In the following, a simple method for speeding up the calculation will be described. Further, for the sake of simplicity, the maximum efficiency power will be described as the first power generation power common to each of the plurality of fuel cells 10.

発電電力決定部204は、第1発電電力に複数の燃料電池10の全台数を乗算した第2発電電力よりも総発電電力が小さいか否かを判定し、総発電電力が第2発電電力以上の場合に、総発電電力を全台数で除算した均等電力により、複数の燃料電池10それぞれの発電指示量とする。 The power generation power determination unit 204 determines whether or not the total power generation power is smaller than the second power generation power obtained by multiplying the first power generation power by the total number of the plurality of fuel cells 10, and the total power generation power is equal to or higher than the second power generation power. In the case of, the power generation instruction amount of each of the plurality of fuel cells 10 is obtained by the equal power generation obtained by dividing the total power generation power by the total number of units.

一方で、発電電力決定部204は、第2発電電力よりも総発電電力が小さい場合に、複数の燃料電池10の中で発電を行わせる運転台数を決定する。より具体的には、発電電力決定部204は、運転台数に第1発電電力を乗算した電力が総発電電力よりも小さく且つ最大となる第1運転台数、又は運転台数に第1発電電力を乗算した電力が総発電電力よりも大きく且つ最小となる第2運転台数の中の発電効率が大きくなる方を、運転台数として決定する。例えば、発電電力決定部204は、燃料電池10それぞれの発電指示量が異なる第1発電効率E1、第2発電効率E2、第3発電効率E3、及び第4発電効率E4を演算し、この四つの発電効率E1、E2、E3、E4の中で最も高い発電効率を選択し、選択した発電効率を得るための運燃料電池10それぞれの発電指示量を、最終的な発電指示量として決定する。すなわち、発電電力決定部204は、(1)式で示す評価関数を4つの発電効率E1、E2、E3、E4に限定することで、処理を簡易に高速化する。 On the other hand, the power generation power determination unit 204 determines the number of operating units for generating power in the plurality of fuel cells 10 when the total power generation power is smaller than the second power generation power. More specifically, the generated power generation determination unit 204 multiplies the number of operating units by the first generated power, the first operating number at which the power is smaller and maximum than the total generated power, or the operating number is multiplied by the first generated power. Among the second operating units in which the generated power is larger and the minimum than the total generated power, the one with the higher power generation efficiency is determined as the operating number. For example, the power generation power determination unit 204 calculates the first power generation efficiency E1, the second power generation efficiency E2, the third power generation efficiency E3, and the fourth power generation efficiency E4, each of which has a different power generation instruction amount for each of the fuel cells 10. The highest power generation efficiency among the power generation efficiencies E1, E2, E3, and E4 is selected, and the power generation instruction amount of each of the fuel cell 10 for obtaining the selected power generation efficiency is determined as the final power generation instruction amount. That is, the generated power determination unit 204 simply speeds up the processing by limiting the evaluation function represented by the equation (1) to the four power generation efficiencies E1, E2, E3, and E4.

より詳細に4つの発電効率E1、E2、E3、E4を説明すると、発電電力決定部204は、第1発電効率E1の演算では、第1運転台数に第1発電電力を乗算した電力と、総発電電力との差分の差分電力を求め、差分電力と第1発電電力とを加算した加算電力を、1台の発電指示量とする。そして、運転させる燃料電池10の中でこの1台を除く燃料電池10それぞれの発電指示量を燃料電池10の発電効率が最大となる第1発電電力とする。 Explaining the four power generation efficiencies E1, E2, E3, and E4 in more detail, the power generation power determination unit 204 calculates the first power generation efficiency E1 by multiplying the first operating number by the first power generation power, and the total power generation power. The difference power of the difference from the generated power is obtained, and the added power obtained by adding the difference power and the first generated power is used as a power generation instruction amount for one unit. Then, among the fuel cells 10 to be operated, the power generation instruction amount of each of the fuel cells 10 excluding this one is set as the first power generation power at which the power generation efficiency of the fuel cell 10 is maximized.

第2発電効率E2の演算では、発電電力決定部204は、総発電電力を第1運転台数で除算した均等電力を、発電を行わせる燃料電池それぞれの発電指示量とする。 In the calculation of the second power generation efficiency E2, the power generation power determination unit 204 sets the equal power generation by dividing the total power generation power by the first operating number as the power generation instruction amount of each fuel cell to generate power.

第3発電効率E3の演算では、第2運転台数に第1発電電力を乗算した電力から総発電電力を減算した電力を、第1発電電力から更に減算した電力を、1台の発電指示量とする。そして、運転させる燃料電池10の中でこの1台を除く燃料電池10それぞれの発電指示量を第1発電電力とする。このように、第2運転台数とすると、運転させる燃料電池10の中で1台を除く燃料電池10それぞれの発電指示量を燃料電池10の発電効率が最大となる第1発電電力とすることが可能となる。 In the calculation of the third power generation efficiency E3, the power obtained by subtracting the total power generation power from the power obtained by multiplying the second operating number by the first power generation power, and the power further subtracted from the first power generation power is used as the power generation instruction amount of one unit. do. Then, among the fuel cells 10 to be operated, the power generation instruction amount of each of the fuel cells 10 excluding this one is set as the first power generation power. As described above, when the number of units to be operated is the second, the power generation instruction amount of each of the fuel cells 10 except for one of the fuel cells 10 to be operated can be set as the first power generation power at which the power generation efficiency of the fuel cell 10 is maximized. It will be possible.

第4発電効率E4の演算では、発電電力決定部204は、総発電電力を第2運転台数で除算した均等電力を、発電を行わせる燃料電池それぞれの発電指示量とする。 In the calculation of the fourth power generation efficiency E4, the power generation power determination unit 204 sets the equal power generation by dividing the total power generation power by the second operating number as the power generation instruction amount of each fuel cell to generate power.

例えば、図4に示すように、発電効率は、電力が第1発電電力に達するまで、電力の増加に対して単調増加し、電力が第1発電電力に達した後は単調減少する。これらから分かるように、複数の燃料電池10の中で運転させる運転台数を第1運転台数、又は第2運転台数とすると、運転させる燃料電池10全体の発電効率を最大化させることが可能となる。 For example, as shown in FIG. 4, the power generation efficiency increases monotonically with respect to the increase in power until the power reaches the first generated power, and decreases monotonically after the power reaches the first generated power. As can be seen from these, if the number of operating units to be operated in the plurality of fuel cells 10 is the first operating number or the second operating number, it is possible to maximize the power generation efficiency of the entire fuel cell 10 to be operated. ..

換言すると、第1発電電力に複数の燃料電池10の全台数を乗算した第2発電電力よりも総発電電力が小さい場合に、(1)、(2)式により最適解を得ると、運転台数は第1運転台数、又は第2運転台数となる。本実施形態に係る発電電力決定部204は、発電効率E1、E2、E3、E4の中で最大の発電効率を選択することで、簡易に演算処理を高速化している。これにより、複数の燃料電池10全体の発電効率の低下が抑制される。 In other words, when the total generated power is smaller than the second generated power obtained by multiplying the first generated power by the total number of the plurality of fuel cells 10, the number of operating units is obtained by obtaining the optimum solution by the equations (1) and (2). Is the first operating number or the second operating number. The power generation power generation determination unit 204 according to the present embodiment easily speeds up the arithmetic processing by selecting the maximum power generation efficiency among the power generation efficiencies E1, E2, E3, and E4. As a result, the decrease in power generation efficiency of the plurality of fuel cells 10 as a whole is suppressed.

図5は本実施形態に係る燃料電池システム1の発電処理の一例を示すフローチャートである。ここでは、複数の燃料電池10それぞれの発電性能を同一とし、複数の燃料電池10の台数を10台とし、発電効率が最大となる第1発電電力を50キロワットとし、燃料電池10の定格電力を100キロワットとし、燃料電池システム1の定格電力を1000キロワットとして説明する。 FIG. 5 is a flowchart showing an example of power generation processing of the fuel cell system 1 according to the present embodiment. Here, the power generation performance of each of the plurality of fuel cells 10 is the same, the number of the plurality of fuel cells 10 is 10, the first power generation power that maximizes the power generation efficiency is 50 kW, and the rated power of the fuel cell 10 is set. It will be described as 100 kW and the rated power of the fuel cell system 1 is 1000 kW.

この図5に示すように、電力取得部202は、操作装置22から複数の燃料電池10が発電すべき総発電電力を取得する(ステップS100)。 As shown in FIG. 5, the power acquisition unit 202 acquires the total power generation power to be generated by the plurality of fuel cells 10 from the operation device 22 (step S100).

次に、発電電力決定部204は、総発電電力が燃料電池システム1の定格電力か否かを判断する(ステップS102)。総発電電力が燃料電池システム1の定格電力1000キロワットである場合(ステップS102のYES)、発電電力決定部204は、運転台数を全台数10とし、複数の燃料電池10のそれぞれの発電指示量を最大電力100キロワットに決定する。指示部208は、この発電指示量100キロワットに基づき、10台の燃料電池10のそれぞれに最大出力、すなわち定格100キロワットによる発電を指示し(ステップS104)、全処理を終了する。 Next, the generated power determination unit 204 determines whether or not the total generated power is the rated power of the fuel cell system 1 (step S102). When the total generated power is the rated power of 1000 kW of the fuel cell system 1 (YES in step S102), the generated power determination unit 204 sets the total number of operating units to 10 and sets the power generation instruction amount of each of the plurality of fuel cells 10 to 10. Determine the maximum power of 100 kW. Based on this power generation instruction amount of 100 kW, the instruction unit 208 instructs each of the 10 fuel cells 10 to generate power with the maximum output, that is, the rated power generation of 100 kW (step S104), and ends all the processing.

一方で、総発電電力が定格電力1000キロワットでない場合(ステップS102のNO)、発電電力決定部204は、総発電電力が燃料電池10の発電効率が最大となる第1発電電力50キロワットに複数の燃料電池10の台数10を乗算した第2発電電力500キロワット以下か否かを判断する(ステップS106)。例えば、総発電電力が270キロワットである場合、総発電電力270キロワットは、第2発電電力500キロワット以下であるので(ステップS106のYES)、発電電力決定部204は、総発電電力が270キロワットを発電効率が最大となる第1発電電力50キロワットで除算する(ステップS108)。総発電電力270キロワットを発電効率が最大となる第1発電電力50キロワットで除算すると5.4であるので、発電電力決定部204は、第1運転台数を5台、第2運転台数を6台とする(ステップS110)。 On the other hand, when the total generated power is not the rated power of 1000 kW (NO in step S102), the generated power determination unit 204 has a plurality of total generated power in the first generated power of 50 kW where the power generation efficiency of the fuel cell 10 is maximized. It is determined whether or not the second generated power is 500 kilowatts or less multiplied by the number 10 of the fuel cells 10 (step S106). For example, when the total generated power is 270 kW, the total generated power is 270 kW or less because the second generated power is 500 kW or less (YES in step S106). Divide by the first generated power of 50 kilowatts, which maximizes the power generation efficiency (step S108). Dividing the total power generation power of 270 kW by the first power generation power of 50 kW, which maximizes the power generation efficiency, is 5.4. Therefore, the power generation power determination unit 204 has 5 units for the first operation and 6 units for the second operation. (Step S110).

図6は、ステップS110の処理内容を説明するフローチャートである。この図6に示すように、第1発電効率E1の演算では、第1運転台数5に第1発電電力50キロワットを乗算した電力250キロワットと総発電電力270キロワットとの差分の差分電力20キロワットと、第1発電電力50キロワットとを加算した加算電力70キロワットを、発電を行わせる燃料電池の中のいずれか1台の発電指示量とし、第1発電電力50キロワットを、発電を行わせる燃料電池の中のいずれか4台の発電指示量とする(ステップS1100)。 FIG. 6 is a flowchart illustrating the processing content of step S110. As shown in FIG. 6, in the calculation of the first power generation efficiency E1, the difference power of the difference between the power 250 kW obtained by multiplying the first operating number 5 by the first power generation power 50 kW and the total power generation power 270 kW is 20 kW. , The additional power of 70 kW, which is the sum of the first generated power of 50 kW, is used as the power generation instruction amount of any one of the fuel cells for generating power, and the first generated power of 50 kW is used as the fuel cell for generating power. The power generation instruction amount of any of the four units is set (step S1100).

第2発電効率E2の演算では、発電電力決定部204は、総発電電力270キロワットを運転台数5で除算した均等電力54キロワットを、発電を行わせる燃料電池それぞれの発電指示量とする(ステップS1102)。 In the calculation of the second power generation efficiency E2, the power generation power determination unit 204 sets the equal power of 54 kilowatts, which is obtained by dividing the total power generation power of 270 kilowatts by the number of operating units 5, as the power generation instruction amount of each fuel cell to generate power (step S1102). ).

第3発電効率E3の演算では、発電電力決定部204は、第2運転台数6に第1発電電力50キロワットを乗算した電力300キロワットと総発電電力270キロワットとの差分の差分電力30キロワットを、第1発電電力50キロワットから減算した減算電力20キロワットを、発電を行わせる燃料電池の中のいずれか1台の発電指示量とし、第1発電電力50キロワットを、発電を行わせる燃料電池の中のいずれか5台の発電指示量とする(ステップS1104)。 In the calculation of the third power generation efficiency E3, the power generation power determination unit 204 calculates the difference power of 300 kW, which is obtained by multiplying the second operating number 6 by 50 kW of the first power generation power, and the difference power of 30 kW, which is the difference between the total power generation power of 270 kW. The subtracted power of 20 kilowatts subtracted from the first generated power of 50 kilowatts is set as the power generation instruction amount of any one of the fuel cells for generating power, and the first generated power of 50 kilowatts is used in the fuel cell for generating power. The power generation instruction amount of any of the five units is set (step S1104).

第4発電効率E4の演算では、発電電力決定部204は、総発電電力270キロワットを運転台数6で除算した均等電力45キロワットを、発電を行わせる燃料電池それぞれの発電指示量とする(ステップS1106)。この例では、第1発電効率が最も高いので、発電電力決定部204は、5台に発電を行わせる。5台中の1台の発電指示量を70キロワットとし、4台それぞれの発電指示量を燃料電池10の発電効率が最大となる第1発電電力50キロワットとする(ステップS1108)。 In the calculation of the fourth power generation efficiency E4, the power generation power determination unit 204 sets the equal power of 45 kilowatts, which is obtained by dividing the total power generation power of 270 kilowatts by the number of operating units 6, as the power generation instruction amount of each fuel cell to generate power (step S1106). ). In this example, since the first power generation efficiency is the highest, the power generation power determination unit 204 causes five units to generate power. The power generation instruction amount of one of the five units is 70 kW, and the power generation instruction amount of each of the four units is 50 kW of the first power generation power at which the power generation efficiency of the fuel cell 10 is maximized (step S1108).

図5に示すように、指示部208は、これらの発電指示量50キロワットの発電を4台の燃料電池10に指示し、発電指示量70キロワットによる発電を1台の燃料電池10に指示し(ステップS112)、全処理を終了する。 As shown in FIG. 5, the instruction unit 208 instructs the four fuel cells 10 to generate power with these power generation instructions of 50 kilowatts, and instructs one fuel cell 10 to generate power with the power generation instruction amount of 70 kilowatts ( Step S112), all processing is completed.

一方で、総発電電力が第2発電電力500キロワット以下でない場合(ステップS106のNO)、例えば、総発電電力が700キロワットである場合、発電電力決定部204は、運転台数を全台数の10台とする(ステップS114)。次に、発電電力決定部204は、総発電電力700キロワットを全台数の10で除算して、全燃料電池10それぞれの発電指示量を70キロワットとする(ステップS116)。そして、指示部208は、これらの発電指示量70キロワットによる発電を10台の燃料電池10に指示し(ステップS118)、全処理を終了する。 On the other hand, when the total generated power is not 500 kW or less of the second generated power (NO in step S106), for example, when the total generated power is 700 kW, the generated power determination unit 204 operates 10 units in total. (Step S114). Next, the power generation power determination unit 204 divides the total power generation power of 700 kilowatts by 10 of the total number of units to set the power generation instruction amount of each of the total fuel cells 10 to 70 kilowatts (step S116). Then, the instruction unit 208 instructs the 10 fuel cells 10 to generate electricity with these power generation instruction amounts of 70 kW (step S118), and completes all the processing.

このように、発電電力決定部204は、燃料電池10の発電効率が最大となる第1発電電力効率の情報と、複数の燃料電池10が発電すべき総発電電力に基づき、運転台数及び発電指示量を決定する。 In this way, the power generation power determination unit 204 determines the number of operating units and the power generation instruction based on the information on the first power generation efficiency at which the power generation efficiency of the fuel cell 10 is maximized and the total power generation power to be generated by the plurality of fuel cells 10. Determine the amount.

図7は、図5及び図6のフローチャートにしたがい運転台数及び発電指示量を決定した場合の発電効率と排熱回収効率の例を示す図である。横軸は、複数の燃料電池10が発電すべき総発電電力を示し、縦軸は、発電効率と排熱回収効率を示している。丸印の点線は、複数の燃料電池10に均等に発電を指示した場合の発電効率を示し、丸印の実線は、図5及び図6のフローチャートにしたがい運転台数及び発電指示量を決定した場合の発電効率を示している。□印の点線は、複数の燃料電池10に均等に発電を指示した場合の排熱回収効率を示し、□印の実線は、図5及び図6のフローチャートにしたがい運転台数及び発電指示量を決定した場合の排熱回収効率を示している。この図7に示すように、上述の第1発電電力に複数の燃料電池10の全台数を乗算した第2発電電力よりも総発電電力が小さい領域において、従来のように複数の燃料電池10に均等に発電を指示した場合の発電効率より高くなる。また、排熱回収効率も複数の燃料電池10に均等に発電を指示した場合よりも高くなる。 FIG. 7 is a diagram showing an example of power generation efficiency and waste heat recovery efficiency when the number of operating units and the power generation instruction amount are determined according to the flowcharts of FIGS. 5 and 6. The horizontal axis shows the total generated power to be generated by the plurality of fuel cells 10, and the vertical axis shows the power generation efficiency and the exhaust heat recovery efficiency. The dotted line with a circle indicates the power generation efficiency when power generation is instructed evenly to a plurality of fuel cells 10, and the solid line with a circle indicates the number of operating units and the amount of power generation instructed according to the flowcharts of FIGS. 5 and 6. It shows the power generation efficiency of. The dotted line marked with □ indicates the waste heat recovery efficiency when power generation is instructed evenly to a plurality of fuel cells 10, and the solid line marked with □ determines the number of operating units and the amount of power generation instruction according to the flowcharts of FIGS. 5 and 6. It shows the waste heat recovery efficiency in the case of. As shown in FIG. 7, in a region where the total power generation power is smaller than the second power generation power obtained by multiplying the above-mentioned first power generation power by the total number of the plurality of fuel cells 10, the plurality of fuel cells 10 are used as in the conventional case. It will be higher than the power generation efficiency when power generation is instructed evenly. Further, the waste heat recovery efficiency is also higher than that in the case where the plurality of fuel cells 10 are evenly instructed to generate power.

以上のように本実施形態に係る燃料電池システム1によれば、発電電力決定部204が複数の燃料電池10それぞれの発電効率の情報と、複数の燃料電池10が発電すべき総発電電力とに基づき、複数の燃料電池10それぞれに対する発電指示量を決定することとした。これにより、複数の燃料電池10に総発電電力を発電させる際に、複数の燃料電池10全体の発電効率をより高くすることが可能となる。 As described above, according to the fuel cell system 1 according to the present embodiment, the power generation power determination unit 204 provides information on the power generation efficiency of each of the plurality of fuel cells 10 and the total power generation power to be generated by the plurality of fuel cells 10. Based on this, it was decided to determine the power generation instruction amount for each of the plurality of fuel cells 10. This makes it possible to further increase the power generation efficiency of the plurality of fuel cells 10 as a whole when the plurality of fuel cells 10 generate the total power generation.

(第2実施形態)
第2実施形態に係る燃料電池システム1は、指示装置20が更に評価部210と回復制御部212を更に備える点で第2実施形態に係る燃料電池システム1と相違する。他の構成は第1実施形態と同等なので説明を省略する。
(Second Embodiment)
The fuel cell system 1 according to the second embodiment is different from the fuel cell system 1 according to the second embodiment in that the instruction device 20 further includes an evaluation unit 210 and a recovery control unit 212. Since the other configurations are the same as those of the first embodiment, the description thereof will be omitted.

図8は、第2実施形態に係る指示装置20のブロック図である。この図8に示すように、評価部210は、複数の燃料電池10それぞれの発電性能を評価する。より具体的には、評価部210は、発電時の電圧と電流の関係を示すI−V特性を複数の燃料電池10それぞれから取得し評価する。例えば、I−V特性において、所定の電圧に対して電流の値が低くなる程、燃料電池10の性能が低下していることを示す。 FIG. 8 is a block diagram of the instruction device 20 according to the second embodiment. As shown in FIG. 8, the evaluation unit 210 evaluates the power generation performance of each of the plurality of fuel cells 10. More specifically, the evaluation unit 210 acquires and evaluates the IV characteristic indicating the relationship between the voltage and the current at the time of power generation from each of the plurality of fuel cells 10. For example, in the IV characteristic, the lower the current value with respect to a predetermined voltage, the lower the performance of the fuel cell 10.

回復制御部212は、評価部210の性能評価に基づき、複数の燃料電池10の回復制御を行う。より具体的には、回復制御部212は、評価部210の性能評価により、性能が低下した燃料電池10の発電時電流の上昇を抑制しつつ、発電時電圧を上昇させる制御を行う。これにより、性能が低下した燃料電池10の性能を回復させることが可能となる。 The recovery control unit 212 performs recovery control of the plurality of fuel cells 10 based on the performance evaluation of the evaluation unit 210. More specifically, the recovery control unit 212 controls the performance evaluation of the evaluation unit 210 to increase the power generation voltage while suppressing the increase in the power generation current of the fuel cell 10 whose performance has deteriorated. This makes it possible to recover the performance of the fuel cell 10 whose performance has deteriorated.

図9は、第2実施形態に係る発電電力決定部204及び評価部210の処理例を示すフローチャートである。図5と同等の処理は、同一の番号を付して説明を省略する。図9に示すように、発電指示量を指示する場合に、まず、評価部210は、複数の燃料電池10それぞれのI−V特性を取得する(ステップS200)。 FIG. 9 is a flowchart showing a processing example of the generated power determination unit 204 and the evaluation unit 210 according to the second embodiment. The same processing as in FIG. 5 is assigned the same number and the description thereof will be omitted. As shown in FIG. 9, when instructing the power generation instruction amount, the evaluation unit 210 first acquires the IV characteristics of each of the plurality of fuel cells 10 (step S200).

次に、評価部210は、複数の燃料電池10それぞれのI−V特性に基づき、複数の燃料電池10それぞれの評価を行い、評価が高い順に複数の燃料電池10の優先度を高くする(ステップS202)。次に、発電電力決定部204は、発電に使用する燃料電池を、優先度が高い順に選択する(ステップS204)。指示部208は、選択した燃料電池に指示量を指示する(ステップS112)。 Next, the evaluation unit 210 evaluates each of the plurality of fuel cells 10 based on the IV characteristics of each of the plurality of fuel cells 10, and raises the priority of the plurality of fuel cells 10 in descending order of evaluation (step). S202). Next, the generated power determination unit 204 selects the fuel cells used for power generation in descending order of priority (step S204). The indicator 208 instructs the selected fuel cell of the indicated amount (step S112).

以上のように本実施形態に係る燃料電池システム2によれば、発電電力決定部204が、評価部210が評価した燃料電池10の発電性能に基づき、複数の燃料電池10の中から発電に使用する燃料電池を決定することとした。これにより、複数の燃料電池10の中かから発電効率の高い順に燃料電池10を選択して使用可能となり、複数の燃料電池10全体の発電効率をより高くすることが可能となる。 As described above, according to the fuel cell system 2 according to the present embodiment, the generated power determination unit 204 is used for power generation from among a plurality of fuel cells 10 based on the power generation performance of the fuel cell 10 evaluated by the evaluation unit 210. It was decided to decide which fuel cell to use. As a result, the fuel cells 10 can be selected and used in descending order of power generation efficiency from the plurality of fuel cells 10, and the power generation efficiency of the plurality of fuel cells 10 as a whole can be further increased.

(第3実施形態)
第3実施形態に係る燃料電池システム1は、指示装置20が更にモード選択部214を更に備える点で第2実施形態に係る燃料電池システム1と相違する。他の構成は第2実施形態と同等なので説明を省略する。
(Third Embodiment)
The fuel cell system 1 according to the third embodiment is different from the fuel cell system 1 according to the second embodiment in that the instruction device 20 further includes a mode selection unit 214. Since the other configurations are the same as those of the second embodiment, the description thereof will be omitted.

図10は、第3実施形態に係る指示装置20のブロック図である。この図10に示すように、モード選択部214は、操作装置22からの操作に基づき、複数の燃料電池10の発電効率が最大となるように運転する発電効率モードと、複数の燃料電池10の排熱回収効率が最大となるように運転する排熱回収効率モードと、を選択する。 FIG. 10 is a block diagram of the instruction device 20 according to the third embodiment. As shown in FIG. 10, the mode selection unit 214 operates in a power generation efficiency mode in which the power generation efficiency of the plurality of fuel cells 10 is maximized based on the operation from the operation device 22, and the mode selection unit 214 of the plurality of fuel cells 10. Select the exhaust heat recovery efficiency mode, which operates so that the exhaust heat recovery efficiency is maximized.

図11は、第3実施形態に係る発電電力決定部204及びモード選択部214の処理例を示すフローチャートである。図5と同等の処理は、同一の番号を付して説明を省略する。図11に示すように、まず、モード選択部214は、操作装置22からモード選択指示を取得する(ステップS300)。 FIG. 11 is a flowchart showing a processing example of the generated power determination unit 204 and the mode selection unit 214 according to the third embodiment. The same processing as in FIG. 5 is assigned the same number and the description thereof will be omitted. As shown in FIG. 11, first, the mode selection unit 214 acquires a mode selection instruction from the operation device 22 (step S300).

次に、モード選択部214は、操作装置22からのモード選択指示が、発電効率モードであるか否かを判断し(ステップS302)、発電効率モードが選択された場合であれば(ステップS302のYES)、発電電力決定部204は、ステップS108からの処理を行う。 Next, the mode selection unit 214 determines whether or not the mode selection instruction from the operation device 22 is the power generation efficiency mode (step S302), and if the power generation efficiency mode is selected (step S302). YES), the generated power determination unit 204 performs the process from step S108.

一方で、発電効率モードが選択されていない場合であれば(ステップS302のNO)、発電電力決定部204は、複数の燃料電池10それぞれの排熱回収効率の情報に基づき、複数の燃料電池10それぞれの発電指示量を決定し(ステップS306)、処理全体を終了する。
(ステップS304)
On the other hand, if the power generation efficiency mode is not selected (NO in step S302), the power generation power determination unit 204 may use the plurality of fuel cells 10 based on the information on the exhaust heat recovery efficiency of each of the plurality of fuel cells 10. Each power generation instruction amount is determined (step S306), and the entire process is completed.
(Step S304)

図12は、排熱回収効率モードにより燃料電池10それぞれの発電量を決定した場合の発電効率及び排熱回収効率の例を示す図である。横軸は、複数の燃料電池10が発電すべき総発電電力を示し、縦軸は、発電効率と排熱回収効率とを示している。 FIG. 12 is a diagram showing an example of power generation efficiency and waste heat recovery efficiency when the power generation amount of each fuel cell 10 is determined by the waste heat recovery efficiency mode. The horizontal axis shows the total generated power to be generated by the plurality of fuel cells 10, and the vertical axis shows the power generation efficiency and the exhaust heat recovery efficiency.

□印で示す実線は、排熱回収効率モードにより発電指示量を決定した場合の発電効率の例を示し、□印で示す点線は、複数の燃料電池10に均等に発電を指示した場合の排熱回収効率を示している。丸印で示す実線は、排熱回収効率モードにより発電指示量を決定した場合の発電効率の例を示し、丸印で示す点線が、複数の燃料電池10に均等に発電を指示した場合の発電効率を示している。この図12に示すように、熱回収効率は総発電電力の全領域にわたり改善されている。一方で、発電効率は、総発電電力が相対的に小さな領域において、従来のように複数の燃料電池10に均等に発電を指示した場合の発電効率より高くなる。 The solid line indicated by □ indicates an example of power generation efficiency when the power generation instruction amount is determined by the exhaust heat recovery efficiency mode, and the dotted line indicated by □ indicates exhaust when power generation is evenly instructed to a plurality of fuel cells 10. It shows the heat recovery efficiency. The solid line indicated by the circle shows an example of the power generation efficiency when the power generation instruction amount is determined by the exhaust heat recovery efficiency mode, and the dotted line indicated by the circle indicates the power generation when the plurality of fuel cells 10 are evenly instructed to generate power. It shows efficiency. As shown in FIG. 12, the heat recovery efficiency is improved over the entire area of total generated power. On the other hand, the power generation efficiency is higher than the power generation efficiency when the plurality of fuel cells 10 are instructed to generate power evenly as in the conventional case in the region where the total power generation power is relatively small.

以上のように本実施形態に係る燃料電池システム2によれば、発電電力決定部204が、モード選択部214により選択されたモードにしたがい複数の燃料電池10それぞれの発電指示量を決定することとした。これにより、複数の燃料電池10が発電すべき総発電電力が同一であっても、発電効率を優先する発電と、排熱回収効率を優先する発電とを選択可能となる。 As described above, according to the fuel cell system 2 according to the present embodiment, the power generation power determination unit 204 determines the power generation instruction amount of each of the plurality of fuel cells 10 according to the mode selected by the mode selection unit 214. did. As a result, even if the total generated power to be generated by the plurality of fuel cells 10 is the same, it is possible to select between power generation that prioritizes power generation efficiency and power generation that prioritizes exhaust heat recovery efficiency.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1:燃料電池システム、10:燃料電池、20:指示装置、114:燃料電池スタック、116:熱回収部、200:情報取得部、202:電力取得部、204:発電電力決定部、208:指示部、210:評価部、212:回復制御部、214:モード選択部 1: Fuel cell system, 10: Fuel cell, 20: Indicator, 114: Fuel cell stack, 116: Heat recovery unit, 200: Information acquisition unit, 202: Power acquisition unit, 204: Power generation determination unit, 208: Instruction Unit, 210: Evaluation unit, 212: Recovery control unit, 214: Mode selection unit

Claims (11)

水素を用いて電力を発生し、特定の負荷時に発電効率が最大になる複数の燃料電池と、前記複数の燃料電池それぞれの発電指示量を指示する指示装置と、
を備え、
前記指示装置は、
前記複数の燃料電池が発電すべき総発電電力を取得する電力取得部と、
前記複数の燃料電池それぞれの発電効率の情報と、前記総発電電力とに基づき、前記複数の燃料電池それぞれの発電指示量を決定する発電電力決定部と、
前記複数の燃料電池それぞれに前記発電指示量を指示する指示部と、
を有し、
前記発電電力決定部は、前記複数の燃料電池それぞれの発電効率が最大となる最大効率電力である共通の第1発電電力に前記複数の燃料電池の全台数を乗算した第2発電電力よりも前記総発電電力が小さい場合に、運転台数に前記第1発電電力を乗算した電力が前記総発電電力よりも小さく且つ最大となる第1運転台数、又は運転台数に前記第1発電電力を乗算した電力が前記総発電電力よりも大きく且つ最小となる第2運転台数の中の発電効率が大きくなる方を、運転台数として決定する、燃料電池システム。
A plurality of fuel cells that generate electric power using hydrogen and maximize power generation efficiency at a specific load, an instruction device that instructs the power generation instruction amount of each of the plurality of fuel cells, and an instruction device.
Equipped with
The indicator is
The power acquisition unit that acquires the total power generated by the plurality of fuel cells,
A power generation power determination unit that determines the power generation instruction amount of each of the plurality of fuel cells based on the information on the power generation efficiency of each of the plurality of fuel cells and the total power generation power.
An instruction unit for instructing the power generation instruction amount to each of the plurality of fuel cells,
Have,
The power generation power determination unit is more than the second power generation power obtained by multiplying the common first power generation power, which is the maximum efficiency power at which the power generation efficiency of each of the plurality of fuel cells is maximum, by the total number of the plurality of fuel cells. When the total generated power is small, the number of operating units multiplied by the first generated power is smaller than the total generated power and the maximum is the first operating number, or the number of operating units multiplied by the first generated power. Is a fuel cell system in which the power generation efficiency of the second operating number, which is larger and the minimum than the total generated power, is determined as the operating number.
前記発電電力決定部は、前記総発電電力が前記第2発電電力以上である場合に、前記総発電電力を前記複数の燃料電池の総運転台数で除算した電力を、前記複数の燃料電池それぞれの発電電力に決定する、請求項に記載の燃料電池システム。 When the total generated power is equal to or higher than the second generated power, the generated power determination unit divides the total generated power by the total number of operating units of the plurality of fuel cells to obtain the power obtained by dividing the total generated power by the total number of operating units of the plurality of fuel cells. determining the generated power, the fuel cell system according to claim 1. 前記発電電力決定部は、前記運転台数を前記第1運転台数に決定した場合に、前記総発電電力から前記第1運転台数に前記第1発電電力を乗算した電力を減算した電力と、前記第1発電電力とを加算した加算電力を、前記発電を行わせる燃料電池の中のいずれか1台の発電電力に決定する、請求項に記載の燃料電池システム。 When the number of operating units is determined to be the first operating number, the generated power determination unit subtracts the power obtained by multiplying the first operating number by the first generated power from the total generated power, and the first. an addition power obtained by adding the first generator power is determined in any one of the power generated in the fuel cell to perform the power generation, the fuel cell system according to claim 1. 前記発電電力決定部は、前記運転台数を前記第1運転台数に決定した場合に、前記総発電電力を前記第1運転台数で除算した電力を、前記発電を行わせる燃料電池それぞれの発電電力に決定する、請求項に記載の燃料電池システム。 When the number of operating units is determined to be the first operating number, the generated power determination unit divides the total generated power by the first operating number into the generated power of each of the fuel cells for generating the power. determining fuel cell system according to claim 1. 前記発電電力決定部は、前記運転台数を前記第2運転台数に決定した場合に、前記第2運転台数に前記第1発電電力を乗算した電力から前記総発電電力を減算した電力を、前記第1発電電力から更に減算した電力を、前記発電を行わせる燃料電池の中のいずれか1台の発電電力に決定する、請求項に記載の燃料電池システム。 When the number of operating units is determined to be the number of second operating units, the generated power determination unit obtains the power obtained by subtracting the total generated power from the power obtained by multiplying the number of operating units by the first generated power. the power obtained by further subtracting from 1 the generated power is determined in any one of the power generated in the fuel cell to perform the power generation, the fuel cell system according to claim 1. 前記発電電力決定部は、前記運転台数を前記第2運転台数に決定した場合に、前記総発電電力を前記第2運転台数で除算した電力を、前記発電を行わせる燃料電池それぞれの発電電力に決定する、請求項に記載の燃料電池システム。 When the number of operating units is determined to be the second operating number, the generated power determination unit divides the total generated power by the second operating number into the generated power of each of the fuel cells for generating the power. determining fuel cell system according to claim 1. 前記指示装置は、前記複数の燃料電池それぞれの発電性能を評価する評価部を更に有し、
前記発電電力決定部は、前記発電性能に基づき、前記複数の燃料電池の中から発電に使用する燃料電池を決定する、請求項1乃至のいずれか一項に記載の燃料電池システム。
The instruction device further has an evaluation unit for evaluating the power generation performance of each of the plurality of fuel cells.
The fuel cell system according to any one of claims 1 to 6 , wherein the generated power determination unit determines a fuel cell to be used for power generation from the plurality of fuel cells based on the power generation performance.
前記指示装置は、前記評価部の性能評価に基づき、前記複数の燃料電池の回復制御を行う回復制御部を更に有する、請求項に記載の燃料電池システム。 The fuel cell system according to claim 7 , wherein the instruction device further includes a recovery control unit that controls recovery of the plurality of fuel cells based on the performance evaluation of the evaluation unit. 前記複数の燃料電池のそれぞれは、前記水素と酸素とを用いて発電する燃料電池スタックと、前記燃料電池スタックの排熱を少なくとも回収する排熱回収部と、を有し、
前記指示装置は、前記複数の燃料電池の発電効率が最大となるように運転する発電効率モードと、前記複数の燃料電池のそれぞれが有する前記排熱回収部で回収される熱全体の排熱回収効率が最大となるように運転する排熱回収効率モードと、を選択するモード選択部を更に有し、
前記発電電力決定部は、前記発電効率モードが選択された場合には、前記複数の燃料電池それぞれの発電効率の情報に基づき、前記複数の燃料電池それぞれの発電量を決定し、 前記排熱回収効率モードが選択された場合には、前記複数の燃料電池それぞれの排熱回収効率の情報に基づき、前記複数の燃料電池それぞれの発電量を取得する、請求項1乃至のいずれか一項に記載の燃料電池システム。
Each of the plurality of fuel cells has a fuel cell stack that generates electricity using the hydrogen and oxygen, and an exhaust heat recovery unit that recovers at least the exhaust heat of the fuel cell stack.
The indicator has a power generation efficiency mode in which the plurality of fuel cells are operated so as to maximize the power generation efficiency, and exhaust heat recovery of the entire heat recovered by the exhaust heat recovery unit of each of the plurality of fuel cells. It also has a mode selection unit for selecting an exhaust heat recovery efficiency mode that operates so as to maximize efficiency.
When the power generation efficiency mode is selected, the power generation power determination unit determines the power generation amount of each of the plurality of fuel cells based on the information of the power generation efficiency of each of the plurality of fuel cells, and recovers the exhaust heat. When the efficiency mode is selected, the power generation amount of each of the plurality of fuel cells is acquired based on the information of the exhaust heat recovery efficiency of each of the plurality of fuel cells, according to any one of claims 1 to 8. The fuel cell system described.
水素を用いて電力を発生し、特定の負荷時に発電効率が最大である複数の燃料電池を有する燃料電池システムの指示装置であって、
前記複数の燃料電池が発電すべき総発電電力を取得する電力取得部と、
前記複数の燃料電池それぞれの発電効率の情報と、前記総発電電力とに基づき、前記複数の燃料電池それぞれの発電指示量を決定する発電電力決定部と、
前記複数の燃料電池それぞれに前記発電指示量を指示する指示部と、
備え、
前記発電電力決定部は、前記複数の燃料電池それぞれの発電効率が最大となる最大効率電力である共通の第1発電電力に前記複数の燃料電池の全台数を乗算した第2発電電力よりも前記総発電電力が小さい場合に、運転台数に前記第1発電電力を乗算した電力が前記総発電電力よりも小さく且つ最大となる第1運転台数、又は運転台数に前記第1発電電力を乗算した電力が前記総発電電力よりも大きく且つ最小となる第2運転台数の中の発電効率が大きくなる方を、運転台数として決定する、燃料電池システムの指示装置。
An indicator for a fuel cell system that has multiple fuel cells that generate electricity using hydrogen and have maximum power generation efficiency at a specific load.
The power acquisition unit that acquires the total power generated by the plurality of fuel cells,
A power generation power determination unit that determines the power generation instruction amount of each of the plurality of fuel cells based on the information on the power generation efficiency of each of the plurality of fuel cells and the total power generation power.
An instruction unit for instructing the power generation instruction amount to each of the plurality of fuel cells,
Equipped with
The power generation power determination unit is more than the second power generation power obtained by multiplying the common first power generation power, which is the maximum efficiency power at which the power generation efficiency of each of the plurality of fuel cells is maximum, by the total number of the plurality of fuel cells. When the total generated power is small, the number of operating units multiplied by the first generated power is smaller than the total generated power and the maximum is the first operating number, or the number of operating units multiplied by the first generated power. Is a fuel cell system instruction device that determines as the number of operating units the one with the larger power generation efficiency among the second operating units that is larger and the minimum than the total generated power.
水素を用いて電力を発生し、特定の負荷時に発電効率が最大である複数の燃料電池を有する燃料電池システムの指示方法であって、
前記複数の燃料電池が発電すべき総発電電力を取得する電力取得工程と、
前記複数の燃料電池それぞれの発電効率の情報と、前記総発電電力とに基づき、前記複数の燃料電池それぞれの発電指示量を決定する発電電力決定工程と、
前記複数の燃料電池それぞれに前記発電指示量を指示する指示工程と、
備え、
前記発電電力決定工程は、前記複数の燃料電池それぞれの発電効率が最大となる最大効率電力である共通の第1発電電力に前記複数の燃料電池の全台数を乗算した第2発電電力よりも前記総発電電力が小さい場合に、運転台数に前記第1発電電力を乗算した電力が前記総発電電力よりも小さく且つ最大となる第1運転台数、又は運転台数に前記第1発電電力を乗算した電力が前記総発電電力よりも大きく且つ最小となる第2運転台数の中の発電効率が大きくなる方を、運転台数として決定する、燃料電池システムの指示方法。
It is a method of instructing a fuel cell system having multiple fuel cells that generate electricity using hydrogen and have the maximum power generation efficiency at a specific load.
The power acquisition process for acquiring the total generated power to be generated by the plurality of fuel cells, and
A power generation determination step of determining the power generation instruction amount of each of the plurality of fuel cells based on the information on the power generation efficiency of each of the plurality of fuel cells and the total power generation power.
An instruction process for instructing the power generation instruction amount to each of the plurality of fuel cells,
Equipped with
The power generation power determination step is more than the second power generation power obtained by multiplying the common first power generation power, which is the maximum efficiency power at which the power generation efficiency of each of the plurality of fuel cells is maximum, by the total number of the plurality of fuel cells. When the total generated power is small, the number of operating units multiplied by the first generated power is smaller than the total generated power and the maximum is the first operating number, or the number of operating units multiplied by the first generated power. Is a method for instructing a fuel cell system in which the power generation efficiency of the second operating number, which is larger and the minimum than the total generated power, is determined as the operating number.
JP2017179457A 2017-09-19 2017-09-19 Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method Active JP6982443B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017179457A JP6982443B2 (en) 2017-09-19 2017-09-19 Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method
PCT/JP2018/032986 WO2019058979A1 (en) 2017-09-19 2018-09-06 Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system
CN201880059508.5A CN111406337B (en) 2017-09-19 2018-09-06 Fuel cell system, indication device for fuel cell system, and indication method for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179457A JP6982443B2 (en) 2017-09-19 2017-09-19 Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method

Publications (2)

Publication Number Publication Date
JP2019057362A JP2019057362A (en) 2019-04-11
JP6982443B2 true JP6982443B2 (en) 2021-12-17

Family

ID=65811123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179457A Active JP6982443B2 (en) 2017-09-19 2017-09-19 Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method

Country Status (3)

Country Link
JP (1) JP6982443B2 (en)
CN (1) CN111406337B (en)
WO (1) WO2019058979A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117048435B (en) * 2023-10-11 2024-01-26 南方电网电力科技股份有限公司 Coordinated control method for power supply of multiple fuel cells and related device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100768B2 (en) * 1992-06-26 2000-10-23 関西電力株式会社 Distributed fuel cell power plant and operation control method thereof
JP2004178877A (en) * 2002-11-26 2004-06-24 Ebara Ballard Corp Fuel cell system
JP4669654B2 (en) * 2003-05-15 2011-04-13 関西電力株式会社 Small fuel cell system
JP2005327494A (en) * 2004-05-12 2005-11-24 Aisin Seiki Co Ltd Fuel cell power generation system for apartment house and its operation method
US8470484B2 (en) * 2005-10-31 2013-06-25 Kyocera Corporation Fuel cell system
JP2007149511A (en) * 2005-11-28 2007-06-14 Honda Motor Co Ltd Fuel cell system and starting method therefor
JP4917810B2 (en) * 2006-01-20 2012-04-18 株式会社Eneosセルテック FUEL CELL SYSTEM, FUEL CELL CONTROL SYSTEM, FUEL CELL SYSTEM CONTROL METHOD, AND PROGRAM
JP2009043520A (en) * 2007-08-08 2009-02-26 Panasonic Corp Power supply system
JP5446156B2 (en) * 2008-01-11 2014-03-19 パナソニック株式会社 Distributed power generation system and control method thereof
JP2012160336A (en) * 2011-01-31 2012-08-23 Toshiba Corp Fuel cell system and method of operating the same
JP6100012B2 (en) * 2013-02-06 2017-03-22 三菱日立パワーシステムズ株式会社 Power generation system and method for operating power generation system
EP3324472A4 (en) * 2015-07-16 2018-06-27 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and operating method for same

Also Published As

Publication number Publication date
WO2019058979A1 (en) 2019-03-28
CN111406337A (en) 2020-07-10
JP2019057362A (en) 2019-04-11
CN111406337B (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP4842577B2 (en) Operation method of water electrolysis system
JP5120594B2 (en) Fuel cell system and operation method thereof
JP2008269920A (en) Fuel cell system
JP2009016089A (en) Fuel cell system and its current-control method
CA3028360C (en) Fuel cell load cycling to support the electric grid
US10267862B2 (en) Fuel cell system with minimum cell voltage estimation
JP2008270047A (en) Fuel cell system
JP6982443B2 (en) Fuel cell system, fuel cell system instruction device, and fuel cell system instruction method
JP2005094917A (en) Fuel cell system
CN108701993A (en) Direct current (DC) load equalizer
US10971747B2 (en) Fuel cell system and fuel cell control program
EP2546911A1 (en) Fuel cell system and method for controlling electric current of same
CN110176611B (en) Fuel cell system and method of controlling fuel cell system
JP2019508841A (en) Fuel cell controller, fuel cell system, and operating method
JP2007012549A (en) Fuel cell system
JP2006318808A (en) Fuel cell system
JP6488112B2 (en) Fuel cell system
KR102651202B1 (en) Fuel cell power plant with active and reactive power modes
JP2016134258A (en) Control device for fuel battery system
JP2007123029A (en) Fuel cell system
JP2018147867A (en) Fuel cell system
US20240157803A1 (en) Fuel cell vehicle and control method of vehicle
JP5344271B2 (en) Fuel cell system
JPWO2012165245A1 (en) Secondary battery type fuel cell system
EP3089253A1 (en) Fuel battery system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211119

R150 Certificate of patent or registration of utility model

Ref document number: 6982443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150