JP6981126B2 - Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film - Google Patents

Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film Download PDF

Info

Publication number
JP6981126B2
JP6981126B2 JP2017178211A JP2017178211A JP6981126B2 JP 6981126 B2 JP6981126 B2 JP 6981126B2 JP 2017178211 A JP2017178211 A JP 2017178211A JP 2017178211 A JP2017178211 A JP 2017178211A JP 6981126 B2 JP6981126 B2 JP 6981126B2
Authority
JP
Japan
Prior art keywords
resin composition
insulating resin
photosensitive insulating
flame retardant
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017178211A
Other languages
Japanese (ja)
Other versions
JP2019052262A (en
Inventor
知明 原田
豪 阪口
祥太 森
遼太 梅澤
大将 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyochem Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017178211A priority Critical patent/JP6981126B2/en
Publication of JP2019052262A publication Critical patent/JP2019052262A/en
Application granted granted Critical
Publication of JP6981126B2 publication Critical patent/JP6981126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)
  • Fireproofing Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、表面処理難燃剤を含有する感光性絶縁性樹脂組成物、シート状感光性絶縁性樹脂組成物、および剥離性フィルム付きのシート状感光性絶縁性樹脂組成物に関する。 The present invention relates to a photosensitive insulating resin composition containing a surface-treated flame retardant, a sheet-shaped photosensitive insulating resin composition, and a sheet-shaped photosensitive insulating resin composition with a peelable film.

近年、エレクトロニクス分野の発展が目覚しく、特に電子機器の小型化、軽量化、高密度化が進み、プリント配線板をはじめとする電子材料には、薄型化、多層化、高精細化がますます要求されるようになっている。従来のガラスエポキシ基板等に代表される肉厚のリジッド基板の場合にも、狭いスペースに対応するために高い電気絶縁性(以下、絶縁性という)が求められてはいた。
しかし、フレキシブルプリント配線板(以下、FPCという)に代表される最近のプリント配線板やフラットケーブル等の電子材料には、肉厚のリジッド基板の場合に比して、遥かに狭いスペースに対応することが求められるので、絶縁性についてもより高度なレベルが求められている。
In recent years, the field of electronics has been remarkably developed, and in particular, electronic devices have become smaller, lighter, and higher in density, and electronic materials such as printed wiring boards are required to be thinner, more multi-layered, and have higher definition. It is supposed to be done. Even in the case of a thick rigid substrate typified by a conventional glass epoxy substrate or the like, high electrical insulation (hereinafter referred to as insulation) has been required in order to accommodate a narrow space.
However, recent electronic materials such as printed wiring boards and flat cables represented by flexible printed wiring boards (hereinafter referred to as FPCs) can accommodate much narrower spaces than thick rigid boards. Therefore, a higher level of insulation is also required.

また近年の環境問題から、ハロゲン系の難燃剤を使用することなく、非ハロゲン系の難燃剤で良好な難燃性を持つ材料も求められている。
例えば、特許文献1には、(A)カルボキシル基含有樹脂、(B)酸化チタン、(C)リン化合物を有することが開示されている。
Further, due to recent environmental problems, there is a demand for a non-halogen flame retardant material having good flame retardancy without using a halogen flame retardant.
For example, Patent Document 1 discloses that it has (A) a carboxyl group-containing resin, (B) titanium oxide, and (C) a phosphorus compound.

WO2011/105277WO2011 / 105277

特許文献1にはカルボキシル基含有樹脂、酸化チタン、リン化合物を含むポリエステル基材用の樹脂組成物を光硬化もしくは熱硬化することで、難燃性皮膜を提供できる旨が記載されている。
しかし、上記の樹脂組成物では難燃剤由来の不純物によって、高温高湿下での絶縁性が低下する可能性があると考えられる。
Patent Document 1 describes that a flame-retardant film can be provided by photo-curing or thermosetting a resin composition for a polyester base material containing a carboxyl group-containing resin, titanium oxide, and a phosphorus compound.
However, it is considered that the above resin composition may have a reduced insulating property under high temperature and high humidity due to impurities derived from the flame retardant.

絶縁層の厚みを厚くすることによって絶縁性の改良は期待できる。しかし、より狭いスペースへの対応が要求されるFPCやフラットケーブル等の場合、難燃性と絶縁性を両立させることは難しい。そこで本発明は、FPCやフラットケーブル等に好適に用いられる絶縁層を形成するための感光性絶縁性樹脂組成物であって、難燃性と高度な絶縁性を両立できる感光性絶縁性樹脂組成物を提供することを目的とする。 Improvement of insulation can be expected by increasing the thickness of the insulating layer. However, in the case of FPCs, flat cables, etc., which are required to accommodate narrower spaces, it is difficult to achieve both flame retardancy and insulation. Therefore, the present invention is a photosensitive insulating resin composition for forming an insulating layer suitably used for FPCs, flat cables and the like, and is a photosensitive insulating resin composition capable of achieving both flame retardancy and high insulating properties. The purpose is to provide things.

本発明者らは前記の課題を解決するため、鋭意検討の結果、固体の難燃剤の表面をシリカ等の無機酸化物で表面処理してなる難燃剤を用いることで、難燃性と絶縁性の両立が可能となり、以下の[1]〜[8]の発明を完成させるに至った。 In order to solve the above problems, the present inventors have made diligent studies, and as a result, by using a flame retardant obtained by surface-treating the surface of a solid flame retardant with an inorganic oxide such as silica, flame retardant and insulating properties are used. The following inventions [1] to [8] have been completed.

[1] 無機酸化物が、25℃で固体の難燃剤の表面の少なくとも一部に付着している表面処理難燃剤(A)と、活性エネルギー線硬化性成分(B)と、光重合開始剤(C)とを含有する感光性絶縁性樹脂組成物。 [1] A surface-treated flame retardant (A) in which an inorganic oxide adheres to at least a part of the surface of a solid flame retardant at 25 ° C., an active energy ray-curable component (B), and a photopolymerization initiator. A photosensitive insulating resin composition containing (C).

[2] 25℃で固体の難燃剤100質量部に対し、無機酸化物が0.01〜10質量部付着している前記[1]記載の感光性絶縁性樹脂組成物。
[3] 表面処理難燃剤(A)の表面にさらにシランカップリング剤が付着している、前記[1]または[2]記載の感光性絶縁性樹脂組成物。
[4] 活性エネルギー線硬化性成分(B)100質量部に対し、表面処理難燃剤(A)を0.1〜100質量部含有する前記[1]〜[3]いずれかに記載の感光性絶縁性樹脂組成物。
[5] 25℃で固体の難燃剤が、ホスフィン酸塩である前記[1]〜[4]いずれかに記載の感光性絶縁性樹脂組成物。
[6] 活性エネルギー線硬化性成分(B)がカルボキシル基を有する成分(B1)を含む、前記[1]〜[4]いずれかに記載の感光性絶縁性樹脂組成物。
[2] The photosensitive insulating resin composition according to the above [1], wherein 0.01 to 10 parts by mass of an inorganic oxide is attached to 100 parts by mass of a solid flame retardant at 25 ° C.
[3] The photosensitive insulating resin composition according to the above [1] or [2], wherein a silane coupling agent is further adhered to the surface of the surface-treated flame retardant (A).
[4] The photosensitive according to any one of the above [1] to [3], which contains 0.1 to 100 parts by mass of the surface treatment flame retardant (A) with respect to 100 parts by mass of the active energy ray-curable component (B). Insulating resin composition.
[5] The photosensitive insulating resin composition according to any one of the above [1] to [4], wherein the flame retardant solid at 25 ° C. is a phosphinate.
[6] The photosensitive insulating resin composition according to any one of [1] to [4] above, wherein the active energy ray-curable component (B) contains a component (B1) having a carboxyl group.

[7] シート状である、前記[1]〜[4]いずれかに記載の感光性絶縁性樹脂組成物。 [7] The photosensitive insulating resin composition according to any one of the above [1] to [4], which is in the form of a sheet.

[8] 前記[7]記載のシート状の感光性絶縁性樹脂組成物の両面が、剥離性フィルムで覆われている、剥離性フィルム付きのシート状感光性絶縁性樹脂組成物。 [8] A sheet-shaped photosensitive insulating resin composition with a peelable film, wherein both sides of the sheet-shaped photosensitive insulating resin composition according to the above [7] are covered with a peelable film.

固体の難燃剤の表面をシリカ等の無機酸化物で表面処理してなる難燃剤を用いることによって、FPCやフラットケーブル等に要求される難燃性と高度な絶縁性を両立できる感光性絶縁性樹脂組成物を提供することができるようになった。
By using a flame retardant whose surface is surface-treated with an inorganic oxide such as silica, the surface of the solid flame retardant is photosensitive and insulating, which can achieve both the flame retardancy required for FPCs and flat cables and a high degree of insulation. It has become possible to provide a resin composition.

本発明における絶縁性評価方法を説明するため模式図を示す。A schematic diagram is shown to explain the insulation evaluation method in the present invention.

<表面処理難燃剤(A)>
本発明で表面処理される対象とされる難燃剤は、25℃で固体である以外には特に限定されるものではなく、形状としては粉粒状等が挙げられる。
本発明において、25℃で固体とは、融点が25℃以上のものを指す。ただし融点での溶融と共に分解反応を含む場合もある。
<Surface treatment flame retardant (A)>
The flame retardant to be surface-treated in the present invention is not particularly limited except that it is solid at 25 ° C., and examples of the shape include powder granules and the like.
In the present invention, a solid at 25 ° C. means a solid having a melting point of 25 ° C. or higher. However, it may include a decomposition reaction as well as melting at the melting point.

例えば、リン酸メラミン、ポリリン酸メラミン、リン酸グアニジン、ポリリン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸アミドアンモニウム、ポリリン酸アミドアンモニウム、リン酸カルバメート、ポリリン酸カルバメート等の(ポリ)リン酸塩系化合物、有機リン酸エステル化合物、ホスファゼン化合物、ホスホン酸化合物、ジエチルホスフィン酸アルミニウム、メチルエチルホスフィン酸アルミニウム、ジフェニルホスフィン酸アルミニウム、エチルブチルホスフィン酸アルミニウム、メチルブチルホスフィン酸アルミニウム、ポリエチレンホスフィン酸アルミニウム等のホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、ホスホルアミド化合物等のリン系難燃剤;
炭酸アンモニウム、メラミンシアヌレート等の窒素系難燃剤;
水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム等の無機難燃剤等が挙げられる。
For example, (poly) phosphoric acid such as melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, ammonium phosphate, ammonium polyphosphate, carbamate phosphate, carbamate polyphosphate, etc. Salt-based compounds, organic phosphoric acid ester compounds, phosphazene compounds, phosphonic acid compounds, aluminum diethylphosphinate, aluminum methylethylphosphinate, aluminum diphenylphosphinate, aluminum ethylbutylphosphinate, aluminum methylbutylphosphinate, aluminum polyethylenephosphinate, etc. Phosphoric acid flame retardant such as phosphoric acid compound, phosphin oxide compound, phosphoran compound, phosphoramide compound;
Nitrogen flame retardants such as ammonium carbonate and melamine cyanurate;
Examples thereof include inorganic flame retardants such as aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, barium hydroxide and calcium hydroxide.

難燃剤としては、近年取り沙汰されている、環境への影響を配慮すると、リン系難燃剤や窒素系難燃剤等のノンハロゲン系難燃剤を使用することが望ましく、難燃性により効果のあるホスファゼン化合物、ホスフィン化合物、ポリリン酸メラミン、ポリリン酸アンモニウム、メラミンシアヌレート、水酸化化合物物等を用いることが好ましく、特にホスフィン化合物のうちホスフィン酸塩が好ましい。
また、誘電率や誘電正接を低下させる点では、ホスフィン化合物を使用することが好ましく、難燃性と絶縁性のバランスのみならず、誘電特性、接着性、屈曲性、耐熱性とのバランスに優れた硬化物を得ることができるようになる。
本発明において、これら難燃剤は、単独又は複数を併用して用いることができる。
As a flame retardant, it is desirable to use a non-halogen flame retardant such as a phosphorus flame retardant or a nitrogen flame retardant in consideration of the environmental impact, which has been popular in recent years, and a phosphazene compound that is more effective in flame retardancy. , Phosphine compounds, melamine polyphosphates, ammonium polyphosphates, melamine cyanurates, hydroxide compounds and the like are preferably used, and among the phosphine compounds, phosphinates are particularly preferable.
Further, in terms of reducing the dielectric constant and the dielectric loss tangent, it is preferable to use a phosphine compound, which is excellent not only in the balance between flame retardancy and insulating property but also in the balance between dielectric property, adhesiveness, flexibility and heat resistance. It becomes possible to obtain a cured product.
In the present invention, these flame retardants can be used alone or in combination of two or more.

これら難燃剤の平均粒子径は、0.1〜25μmであることが好ましい。0.1μmに近い平均粒子径を示す難燃剤を用いた場合、難燃剤による改質効果が得やすく、さらに分散性や分散液の安定性が向上しやすい。また、25μmに近い平均粒子径を示す難燃剤を用いた場合、硬化物の機械特性が向上しやすくなる。
なお、本発明でいう平均粒子径の指標として、D95は粒度分布において体積積算値95%が含まれる時の粒径を示す。
The average particle size of these flame retardants is preferably 0.1 to 25 μm. When a flame retardant having an average particle size close to 0.1 μm is used, the reforming effect of the flame retardant can be easily obtained, and the dispersibility and the stability of the dispersion liquid can be easily improved. Further, when a flame retardant having an average particle size close to 25 μm is used, the mechanical properties of the cured product are likely to be improved.
As an index of the average particle size in the present invention, D95 indicates the particle size when the volume integrated value of 95% is included in the particle size distribution.

本発明で用いる表面処理難燃剤(A)は、前記の25℃で固体の難燃剤の表面の少なくとも一部に、無機酸化物を付着させたものである。
付着させる無機酸化物としては特に指定されないが、シリカ、アルミナ、チタニア、ジルコニアなどが好適に用いられる。
The surface-treated flame retardant (A) used in the present invention has an inorganic oxide adhered to at least a part of the surface of the solid flame retardant at 25 ° C.
Although not particularly specified as the inorganic oxide to be adhered, silica, alumina, titania, zirconia and the like are preferably used.

付着させる無機酸化物の量は、前記の25℃で固体の難燃剤100質量部に対し、0.01〜10質量部であることが好ましく、より好ましくは0.1質量部〜10質量部、さらに好ましくは0.1質量部〜5質量部であることがより好ましい。0.01質量部以上とすることにより絶縁性を向上できる。また10質量部以下とすることにより難燃性が優れる。 The amount of the inorganic oxide to be attached is preferably 0.01 to 10 parts by mass, more preferably 0.1 part by mass to 10 parts by mass, based on 100 parts by mass of the solid flame retardant at 25 ° C. More preferably, it is 0.1 part by mass to 5 parts by mass. Insulation can be improved by using 0.01 parts by mass or more. Further, when the content is 10 parts by mass or less, the flame retardancy is excellent.

25℃で固体の難燃剤の表面の少なくとも一部に、無機酸化物を付着させる方法としては特に限定されないが、噴霧法、ゾルゲル法等が用いられる。例えば、無機酸化物の原料を表面処理の対象である難燃剤に噴霧したり、無機酸化物の原料と表面処理の対象である難燃剤とを混合しスラリーにしたりした後に、無機酸化物の原料を加水分解したり焼成したりすることによって、難燃剤の表面の少なくとも一部に無機酸化物を付着することができる。前記スラリーは、融解状態の無機酸化物の原料と表面処理の対象である難燃剤とを混合することによって得ることもできるし、いわゆる有機溶媒中に無機酸化物の原料と表面処理の対象である難燃剤とを分散することによって得ることもできる。 The method for adhering the inorganic oxide to at least a part of the surface of the solid flame retardant at 25 ° C. is not particularly limited, but a spray method, a sol-gel method, or the like is used. For example, the raw material of the inorganic oxide is sprayed on the flame retardant which is the target of the surface treatment, or the raw material of the inorganic oxide and the flame retardant which is the target of the surface treatment are mixed to form a slurry, and then the raw material of the inorganic oxide is prepared. By hydrolyzing or firing the flame retardant, an inorganic oxide can be attached to at least a part of the surface of the flame retardant. The slurry can also be obtained by mixing a raw material of a molten inorganic oxide and a flame retardant to be surface-treated, or is a raw material of an inorganic oxide and a target of surface treatment in a so-called organic solvent. It can also be obtained by dispersing with a flame retardant.

本発明では、25℃で固体の難燃剤の表面の少なくとも一部に、無機酸化物を付着させた表面処理難燃剤(A)の表面に、さらにシランカップリング剤を付着させたものを用いることが好ましい。さらにシランカップリング剤を付着させたものを用いることによって、難燃剤表面の疎水性が向上し、さらに絶縁性能を上げることができる。 In the present invention, a surface-treated flame retardant (A) having an inorganic oxide adhered to at least a part of the surface of a solid flame retardant at 25 ° C. is further attached with a silane coupling agent. Is preferable. Further, by using the one to which the silane coupling agent is attached, the hydrophobicity of the flame retardant surface can be improved, and the insulation performance can be further improved.

上述のシランカップリング剤は特に限定されないが、例えばビニルメトキシシラン、ビニルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、トリス−(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリアルコキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−フェニルアミノプロピルトリメトキシシラン、1,2−エタンジアミン,N−{3−(トリメトキシシリル)プロピル}−,N−{(エテニルフェニル)メチル}誘導体・塩酸塩、ビニルトリアセトキシシラン、アリルトリメトキシシランに加え、官能基がアルコキシ基で保護されたシランカップリング剤や、スルフィド・ポリスルフィド系のシランカップリング剤、ポリマー型のアルコキシオリゴマータイプや多官能基タイプシランカップリング剤などを用いることができる。 The above-mentioned silane coupling agent is not particularly limited, and for example, vinylmethoxysilane, vinylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycid. Xipropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxy Silane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltri Methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl)- 2-Aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, tris- (trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, 3-isoxapropyltriethoxysilane, 3-phenylaminopropyltrimethoxy In addition to silane, 1,2-ethanediamine, N- {3- (trimethoxysilyl) propyl}-, N- {(ethenylphenyl) methyl} derivative / hydrochloride, vinyltriacetoxysilane, allyltrimethoxysilane, A silane coupling agent in which the functional group is protected by an alkoxy group, a sulfide / polysulfide-based silane coupling agent, a polymer-type alkoxy oligomer type, a polyfunctional group type silane coupling agent, or the like can be used.

付着させるシランカップリング剤の量は、前記の25℃で固体の難燃剤100質量部に対し、0,005〜5質量部であることが好ましく、0.05〜2質量部であることがより好ましい。付着させるシランカップリング剤量が0.005質量部以上であることによって絶縁性が向上する。また付着量が5質量部以下であることによって難燃性が優れる。 The amount of the silane coupling agent to be attached is preferably 0,005 to 5 parts by mass, more preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the solid flame retardant at 25 ° C. preferable. When the amount of the silane coupling agent to be attached is 0.005 part by mass or more, the insulating property is improved. Further, the flame retardancy is excellent when the amount of adhesion is 5 parts by mass or less.

表面処理難燃剤(A)の表面にさらにシランカップリング剤を付着させる方法としては特に限定されないが、乾式法もしくは高精度な処理が可能である湿式法が好適に利用される。この湿式法は無機酸化物の付着した表面処理難燃剤を分散させた分散液中にシランカップリング剤を添加し、表面処理難燃剤の表面にシランカップリング剤を結合させ、その後分散媒を除去して乾燥させる方法である。 The method for further adhering the silane coupling agent to the surface of the surface treatment flame retardant (A) is not particularly limited, but a dry method or a wet method capable of high-precision treatment is preferably used. In this wet method, a silane coupling agent is added to a dispersion liquid in which a surface-treated flame retardant to which an inorganic oxide is attached is dispersed, a silane coupling agent is bonded to the surface of the surface-treated flame retardant, and then the dispersion medium is removed. It is a method of drying.

<活性エネルギー線硬化性成分(B)>
本発明で用いる活性エネルギー線硬化性成分(B)としては、ラジカル硬化性成分の他、カチオン硬化性の成分が挙げられる。
ラジカル硬化性成分としては、エチレン性不飽和二重結合を有する成分が挙げられ、エチレン性不飽和二重結合を有する官能基としては、アクリロイル基、メタクリロイル基が好ましく、アクリロイル基が好ましい。
アクリロイル基を有する活性エネルギー線硬化性成分(B)としては、1分子中にアクリロイル基を2個以上有する化合物が好ましい。
また、分子中にカルボキシル基のような酸性官能基を有するものを用いることによって、部分的に露光した場合、未露光部を塩基性の現像剤で現像することができる。なお現像の観点から質量平均分子量は1000〜100,000が好ましく、2000〜50,000が特に好ましい。このような分子量範囲とすることで、現像液に触れた際の露光部の膨潤を抑制できる。また、上述のカルボキシル基のような官能基を有する場合、前記官能基と熱硬化し得る官能基を有する成分を感光性絶縁性樹脂組成物中に配合しておくと、現像後に残った露光部をさらに熱硬化することができる。
さらに、活性エネルギー硬化性成分として、上記の分子量範囲外の比較的低分子量の成分を塗液の粘度調整等の用途で用いることも出来る。
<Active energy ray-curable component (B)>
Examples of the active energy ray-curable component (B) used in the present invention include a radical-curable component and a cationically curable component.
Examples of the radically curable component include a component having an ethylenically unsaturated double bond, and examples of the functional group having an ethylenically unsaturated double bond are preferably an acryloyl group and a methacryloyl group, and an acryloyl group is preferable.
As the active energy ray-curable component (B) having an acryloyl group, a compound having two or more acryloyl groups in one molecule is preferable.
Further, by using a molecule having an acidic functional group such as a carboxyl group, the unexposed portion can be developed with a basic developer when partially exposed. From the viewpoint of development, the mass average molecular weight is preferably 1000 to 100,000, and particularly preferably 2000 to 50,000. By setting the molecular weight in such a range, it is possible to suppress the swelling of the exposed portion when it comes into contact with the developing solution. Further, in the case of having a functional group such as the above-mentioned carboxyl group, if a component having a functional group capable of being thermosetting with the functional group is blended in the photosensitive insulating resin composition, the exposed portion remaining after development is prepared. Can be further thermoset.
Further, as the active energy curable component, a component having a relatively low molecular weight outside the above molecular weight range can be used for applications such as adjusting the viscosity of the coating liquid.

本発明の感光性絶縁性樹脂組成物は、活性エネルギー線硬化性成分(B)100質量部に対し、表面処理難燃剤(A)を0.1〜100質量部含有することが好ましく、5〜80質量部含有することがより好ましい。表面処理難燃剤(A)の含有量が0.1質量部以上であることによって難燃性が優れる。また含有量が80質量部以下であることによって絶縁性が優れる硬化塗膜を得ることができる。 The photosensitive insulating resin composition of the present invention preferably contains 0.1 to 100 parts by mass of the surface-treated flame retardant (A) with respect to 100 parts by mass of the active energy ray-curable component (B). It is more preferable to contain 80 parts by mass. When the content of the surface-treated flame retardant (A) is 0.1 part by mass or more, the flame retardancy is excellent. Further, when the content is 80 parts by mass or less, a cured coating film having excellent insulating properties can be obtained.

<光重合開始剤(C)>
本発明で用いる光重合開始剤(C)としては特に限定されないが、ピラゾリン化合物、キノン類、芳香族ケトン類、ホスフィンオキシド系、ベンゾインエーテル類、アクリジン化合物などが好適に用いられる。
<Photopolymerization initiator (C)>
The photopolymerization initiator (C) used in the present invention is not particularly limited, but pyrazoline compounds, quinones, aromatic ketones, phosphine oxides, benzoin ethers, acridine compounds and the like are preferably used.

本発明の感光性絶縁性樹脂組成物は、活性エネルギー線硬化性成分(B)100質量部に対し、光重合開始剤(C)を0.01〜30質量部含有することが好ましく、0.1〜10質量部含有することがより好ましい。感度の点から光重合開始剤の含有量は0.01質量部以上であることが好ましく、解像性の点から30質量部以下が好ましい。 The photosensitive insulating resin composition of the present invention preferably contains 0.01 to 30 parts by mass of the photopolymerization initiator (C) with respect to 100 parts by mass of the active energy ray-curable component (B). It is more preferable to contain 1 to 10 parts by mass. From the viewpoint of sensitivity, the content of the photopolymerization initiator is preferably 0.01 part by mass or more, and from the viewpoint of resolution, it is preferably 30 parts by mass or less.

本発明の感光性絶縁性樹脂組成物は、活性エネルギー線硬化性成分(B)に表面処理難燃剤(A)および光重合開始剤(C)を加えることによって得ることができる。
例えば、活性エネルギー線硬化性成分(B)に表面処理難燃剤(A)および光重合開始剤(C)を添加し3本ロールなどを用いて表面処理難燃剤(A)を分散する方法、表面処理難燃剤(A)を含む分散液を用意し、これを活性エネルギー線硬化性成分(B)と光重合開始剤(C)との混合物に添加する方法などが挙げられる。また、表面処理難燃剤(A)を良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等を感光性絶縁性樹脂組成物としての性能に影響を及ぼさない範囲で用いることもできる。あるいは、活性エネルギー線硬化性成分(B)の一部もしくは全部に表面処理難燃剤(A)を加え、表面処理難燃剤(A)を良好に分散させた後、残りの活性エネルギー線硬化性成分(B)と光重合開始剤(C)とを加えることもできる。
The photosensitive insulating resin composition of the present invention can be obtained by adding a surface-treated flame retardant (A) and a photopolymerization initiator (C) to the active energy ray-curable component (B).
For example, a method of adding a surface-treated flame retardant (A) and a photopolymerization initiator (C) to an active energy ray-curable component (B) and dispersing the surface-treated flame retardant (A) using a three-roll or the like, a surface. Examples thereof include a method of preparing a dispersion liquid containing the treated flame retardant (A) and adding it to a mixture of the active energy ray-curable component (B) and the photopolymerization initiator (C). Further, in order to disperse the surface-treated flame retardant (A) well and to stabilize the dispersed state, a dispersant, a thickener and the like are used within a range that does not affect the performance of the photosensitive insulating resin composition. You can also do it. Alternatively, the surface-treated flame retardant (A) is added to a part or all of the active energy ray-curable component (B) to satisfactorily disperse the surface-treated flame retardant (A), and then the remaining active energy ray-curable component. (B) and the photopolymerization initiator (C) can also be added.

本発明の感光性絶縁性樹脂組成物は、活性エネルギー線硬化性成分(B)に表面処理難燃剤(A)および光重合開始剤(C)の他に、いわゆる有機溶剤等の揮発性の液状媒体を含む、液状の感光性絶縁性樹脂組成物として用いることができる。
ポリイミド等の耐熱性フィルム上に設けられた導電性回路面を覆うように、液状の感光性絶縁性樹脂組成物を塗布し、前記の揮発性の液状媒体を揮発させた後、活性エネルギー線を照射し、感光性絶縁性樹脂組成物を硬化し、絶縁膜で導電性回路面を被覆することができる。
フォトマスクを用いる等して、所望のパターンに活性エネルギー線を照射(露光)すれば、部分的に感光性絶縁性樹脂組成物を硬化することができる。例えば、活性エネルギー線硬化性成分(B)としてカルボキシル基を有するものを用いると、塩基性の現像剤によって、未露光部を現像剤で除去することができる。
また、感光性絶縁性樹脂組成物が、加熱によって活性エネルギー線硬化性成分(B)中の官能基と硬化し得る官能基を有する硬化剤を含む場合、活性エネルギー線で硬化した後、さらに加熱して硬化することもできる。
The photosensitive insulating resin composition of the present invention has an active energy ray-curable component (B), a surface-treated flame retardant (A), a photopolymerization initiator (C), and a volatile liquid such as a so-called organic solvent. It can be used as a liquid photosensitive insulating resin composition containing a medium.
A liquid photosensitive insulating resin composition is applied so as to cover the conductive circuit surface provided on the heat-resistant film such as polyimide, the volatile liquid medium is volatilized, and then the active energy ray is emitted. The photosensitive insulating resin composition can be cured by irradiation, and the conductive circuit surface can be coated with an insulating film.
By irradiating (exposing) the desired pattern with active energy rays by using a photomask or the like, the photosensitive insulating resin composition can be partially cured. For example, if a component having a carboxyl group is used as the active energy ray-curable component (B), the unexposed portion can be removed by the developer with a basic developer.
When the photosensitive insulating resin composition contains a curing agent having a functional group in the active energy ray-curable component (B) and a functional group that can be cured by heating, it is further heated after being cured by the active energy ray. It can also be cured.

<シート状の感光性絶縁性樹脂組成物>
剥離性フィルムに液状の感光性絶縁性樹脂組成物を塗布し、前記の揮発性の液状媒体を揮発させ、シート状の感光性絶縁性樹脂組成物を得ることができる。形成されたシート状の感光性絶縁性樹脂組成物の他方の面に、別の他の剥離性フィルムを重ね、シート状の感光性絶縁性樹脂組成物の両面が、剥離性フィルムで覆われている、剥離性フィルム付きのシート状感光性絶縁性樹脂組成物とすることもできる。
ポリイミド等の耐熱性フィルム上に設けられた導電性回路面を覆うように、これらシート状の感光性絶縁性樹脂組成物を重ね、活性エネルギー線を照射し、感光性絶縁性樹脂組成物を硬化し、絶縁膜で導電性回路面を被覆することができる。
部分露光と現像剤の利用、活性エネルギー線後の熱硬化については、液状の感光性絶縁性樹脂組成物を直に使う場合と同様である。
剥離性シートとしては、ポリエステルフィルムを剥離処理したものなどが挙げられる。
<Sheet-like photosensitive insulating resin composition>
A liquid photosensitive insulating resin composition can be applied to a peelable film to volatilize the volatile liquid medium to obtain a sheet-shaped photosensitive insulating resin composition. Another release film is laminated on the other surface of the formed sheet-shaped photosensitive insulating resin composition, and both sides of the sheet-like photosensitive insulating resin composition are covered with the release film. It can also be a sheet-like photosensitive insulating resin composition with a peelable film.
These sheet-shaped photosensitive insulating resin compositions are laminated so as to cover the conductive circuit surface provided on the heat-resistant film such as polyimide, and irradiated with active energy rays to cure the photosensitive insulating resin composition. However, the conductive circuit surface can be covered with an insulating film.
The partial exposure, the use of the developer, and the thermosetting after the active energy ray are the same as in the case of directly using the liquid photosensitive insulating resin composition.
Examples of the peelable sheet include those obtained by peeling a polyester film.

以下に、実施例により、本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における、「部」および「%」は、「質量部」および「質量%」をそれぞれ意味する。 Hereinafter, the present invention will be described in more detail by way of examples, but the following examples do not limit the scope of rights of the present invention in any way. In the examples, "parts" and "%" mean "parts by mass" and "% by mass", respectively.

(合成例1)表面処理難燃剤(A1)の合成、および分散体の調整
オルトケイ酸テトラエチル(以下、TEOSともいう)のエタノール溶液(濃度:0.4%)800mlに、後述する方法で求めたD95粒子径が5μmのホスフィン酸アルミ1を10g加え、濃NH3水でpHを12に調整した後、3時間撹拌し、ろ過、エタノールで洗浄することで、ホスフィン酸アルミ1の表面にシリカが付着している表面処理難燃剤(A1)を得た。
表面に付着しているシリカの量を、後述するICP発光分光分析法により求めたところ、ホスフィン酸アルミ1が100質量部に対し、0.01質量部であった。
(Synthesis Example 1) Synthesis of Surface Treatment Flame Retardant (A1) and Adjustment of Dispersion Obtained in 800 ml of an ethanol solution (concentration: 0.4%) of tetraethyl orthosilicate (hereinafter, also referred to as TEOS) by the method described below. Add 10 g of aluminum phosphinate 1 having a D95 particle size of 5 μm , adjust the pH to 12 with concentrated NH 3 water, stir for 3 hours, filter, and wash with ethanol to remove silica on the surface of aluminum phosphinate 1. An attached surface-treated flame retardant (A1) was obtained.
When the amount of silica adhering to the surface was determined by ICP emission spectroscopic analysis described later, it was 0.01 part by mass with respect to 100 parts by mass of aluminum phosphinate 1.

<表面処理難燃剤の分散体の調整>
表面処理難燃剤(A1)100質量部に対して、分散剤としてDISPERBYK−2155(ビックケミー・ジャパン(株)製)を15部となるよう添加し、MEK溶剤で固形分濃度が35質量%になるよう配合した。その後スキャンデックスにて1時間振とうさせ、表面処理難燃剤(A1)の分散体を調整した。
<Adjustment of dispersion of surface-treated flame retardant>
Add 15 parts of DISPERBYK-2155 (manufactured by BIC Chemie Japan Co., Ltd.) as a dispersant to 100 parts by mass of the surface treatment flame retardant (A1), and the solid content concentration becomes 35% by mass with the MEK solvent. Was compounded. Then, the mixture was shaken with Scandex for 1 hour to prepare a dispersion of the surface-treated flame retardant (A1).

(合成例2〜7)
TEOSのエタノール溶液に加えるホスフィン酸アルミ1の量を代えた以外は合成例1と同様にして、ホスフィン酸アルミ1が100質量部に対し、表面に付着しているシリカの量が0.1、0.5、1、5、10、50質量部の表面処理難燃剤(A2)〜(A7)、および固形分35質量%の分散体を調整した。
(Synthesis Examples 2 to 7)
In the same manner as in Synthesis Example 1 except that the amount of aluminum phosphinate 1 added to the ethanol solution of TEOS was changed, the amount of silica adhering to the surface was 0.1 with respect to 100 parts by mass of aluminum phosphinate 1. 0.5, 1, 5, 10, 50 parts by mass of the surface-treated flame retardants (A2) to (A7), and a dispersion having a solid content of 35% by mass were prepared.

(合成例8〜13)
表面処理難燃剤(A1)100重量部をミキサーに入れ、窒素雰囲気下で撹拌しながら、シランカップリング剤である東レ・ダウコーニング(株)製のZ−6610を10質量部、エタノール10質量部を噴霧し、150℃で2時間加熱撹拌し、溶剤を除去して冷却した。このようにして前記表面処理難燃剤(A1)の表面にさらにシランカップリング剤が付着した表面処理難燃剤(A8)を得、合成例1と同様にして、固形分35質量%の分散体を調整した。
噴霧に使うシランカップリング剤の量を変更する以外は同様にして、(A9)〜(A13)の分散体を調整した。
なお、表面処理難燃剤(A8)〜(A13)中のシランカップリング剤の量は、後述する方法にて求めたものであり、前記表面処理難燃剤(A1)中のホスフィン酸アルミ1が100質量部に対し、シランカップリング剤の量が0.01、0.1、0.2、0.5、2.0、7.0質量部であった。
(Synthesis Examples 8 to 13)
10 parts by mass of Z-6610 manufactured by Toray Dow Corning Co., Ltd., which is a silane coupling agent, and 10 parts by mass of ethanol while stirring 100 parts by mass of the surface treatment flame retardant (A1) in a mixer and stirring in a nitrogen atmosphere. Was sprayed and heated and stirred at 150 ° C. for 2 hours to remove the solvent and cooled. In this way, a surface-treated flame retardant (A8) in which a silane coupling agent is further adhered to the surface of the surface-treated flame retardant (A1) is obtained, and a dispersion having a solid content of 35% by mass is obtained in the same manner as in Synthesis Example 1. It was adjusted.
The dispersions of (A9) to (A13) were prepared in the same manner except that the amount of the silane coupling agent used for spraying was changed.
The amount of the silane coupling agent in the surface-treated flame retardants (A8) to (A13) was determined by the method described later, and the aluminum phosphinate 1 in the surface-treated flame retardant (A1) was 100. The amount of the silane coupling agent was 0.01, 0.1, 0.2, 0.5, 2.0, 7.0 parts by mass with respect to the mass part.

(合成例14〜18)
ホスフィン酸アルミ1の代わりに、D95が10μmのホスフィン酸アルミ2、D95が20μmのホスフィン酸アルミ3、赤リン、ホスフィン酸マグネシウム6水和物、D95が10μmのメラミンシアヌレートを用いた以外は、合成例3と同様にして表面に付着しているシリカの量が0.5質量部である表面処理難燃剤(A14)〜(A18)、および各分散体を得た。
(Synthesis Examples 14-18)
Except for the use of aluminum phosphinate 2 with a D95 of 10 μm, aluminum phosphinate 3 with a D95 of 20 μm, red phosphorus, magnesium phosphinate hexahydrate, and melamine cyanurate with a D95 of 10 μm instead of aluminum phosphinate 1. Surface-treated flame retardants (A14) to (A18) having 0.5 parts by mass of silica adhering to the surface and each dispersion were obtained in the same manner as in Synthesis Example 3.

(合成例19)
ホスフィン酸アルミ1(D95粒子径5μm)50gを純水950gに分散させ、この難燃剤スラリーを還流基付反応器に入れ、濃度1重量%のNaOH水溶液にて分散液のpHを11に調整した後、撹拌しながら95℃にて30分間加熱し、難燃剤の塩基性スラリーを得た。
次いでAl23としての濃度が0.5重量%のアルミン酸ソーダ水溶液(Na2O/Al23=モル比1/2)1250gを5g/分の速度で上記難燃剤の塩基性スラリーに添加して、アルミナ表面処理層を有するホスフィン酸アルミ1の分散液を得た。
前記分散液に陽イオン交換樹脂を加えてpHが3になるまでイオン交換し、次いで陽イオン交換樹脂から難燃剤を含むスラリーを分離し、乾燥して、アルミナ表面処理層を有するホスフィン酸アルミ(A19)を得た。
(Synthesis Example 19)
50 g of aluminum phosphinate 1 (D95 particle diameter 5 μm) was dispersed in 950 g of pure water, this flame retardant slurry was placed in a reactor with a reflux base, and the pH of the dispersion was adjusted to 11 with a 1 wt% NaOH aqueous solution. Then, the mixture was heated at 95 ° C. for 30 minutes with stirring to obtain a basic slurry of the flame retardant.
Next, 1250 g of an aqueous solution of sodium aluminate (Na 2 O / Al 2 O 3 = molar ratio 1/2) having a concentration of 0.5% by weight as Al 2 O 3 was added at a rate of 5 g / min to the basic slurry of the flame retardant. To obtain a dispersion of aluminum phosphinate 1 having an alumina surface treatment layer.
A cation exchange resin is added to the dispersion and ion exchange is performed until the pH reaches 3, then a slurry containing a flame retardant is separated from the cation exchange resin, dried, and aluminum phosphinate having an alumina surface treatment layer (aluminum phosphinate having an alumina surface treatment layer). A19) was obtained.

(合成例20)
ホスフィン酸アルミ1(D95粒子径5μm)200gを、イソプロピルアルコール130gとチタンテトライソプロポキシド(Ti[OCH(CH324))7.56gとの混合溶液に、加え、室温で混合、攪拌してホスフィン酸アルミ1の表面にチタンテトライソプロポキシドを吸着させた。次に、ここにイオン交換水1.93gとイソプロピルアルコール1.93gとの混合水溶液を徐々に加え、チタンテトライソプロポキシドを加水分解処理し、洗浄し、加熱し、酸化チタン表面処理層を有するホスフィン酸アルミ(A20)を得た。
(Synthesis Example 20)
Add 200 g of aluminum phosphinic acid 1 (D95 particle diameter 5 μm) to a mixed solution of 130 g of isopropyl alcohol and 7.56 g of titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 )) and mix at room temperature. Titanium tetraisopropoxide was adsorbed on the surface of aluminum phosphinate 1 with stirring. Next, a mixed aqueous solution of 1.93 g of ion-exchanged water and 1.93 g of isopropyl alcohol is gradually added thereto, and titanium tetraisopropoxide is hydrolyzed, washed, heated, and has a titanium oxide surface-treated layer. Aluminum phosphinate (A20) was obtained.

(合成例21)
ホスフィン酸アルミ1(D95粒子径5μm)200gを500gの純水に添加し、水性スラリーを得た。
このスラリー500gを撹拌しながら40℃に昇温し、この温度とスラリーのpHを7に維持しながらホスフィン酸アルミ1に対しZrO換算で1質量%に相当する100g/lのオキシ塩化ジルコニウム水溶液と30%水酸化ナトリウムを60分間かけて同時に添加し、30分間かけて熟成した。このスラリーを洗浄、固液分離した。得られた個体を900℃で1時間加熱焼成し、酸化ジルコニウム表面処理層を有するホスフィン酸アルミ(A21)を得た。
(Synthesis Example 21)
200 g of aluminum phosphinate 1 (D95 particle diameter 5 μm) was added to 500 g of pure water to obtain an aqueous slurry.
While stirring 500 g of this slurry, the temperature was raised to 40 ° C., and while maintaining this temperature and the pH of the slurry at 7, a 100 g / l zirconium oxychloride aqueous solution corresponding to 1% by mass in terms of ZrO 2 with respect to 1 aluminum phosphinate was used. And 30% sodium hydroxide were added simultaneously over 60 minutes and aged over 30 minutes. This slurry was washed and solid-liquid separated. The obtained solid was heated and calcined at 900 ° C. for 1 hour to obtain aluminum phosphinate (A21) having a zirconium oxide surface treatment layer.

<ICP発光分光分析法によるシリカ表面処理の定量>
表面処理難燃剤0.25gを精秤し、硝酸7mlを加え、マイクロウェーブ型湿式分解装置を用い、150℃で2分、180℃で2分、210℃で10分と段階的に続けて加熱し、硝酸で分解処理した後、蒸留水で50ml定溶とし室温にてICP測定(装置名:ICP発光分光分析装置 SPECTRO ARCOS アメテック社製)を行った。
<Quantification of silica surface treatment by ICP emission spectroscopic analysis>
Weigh 0.25 g of surface-treated flame retardant, add 7 ml of nitric acid, and heat continuously at 150 ° C for 2 minutes, 180 ° C for 2 minutes, and 210 ° C for 10 minutes using a microwave-type wet decomposition apparatus. Then, after decomposition treatment with nitric acid, 50 ml of distilled water was used to make a constant solution, and ICP measurement (device name: ICP emission spectroscopic analyzer SPECTRO ARCOS manufactured by AMETEK, Inc.) was performed at room temperature.

<D95粒子径の測定方法>
D95は難燃剤の粒度分布において体積積算値95%が含まれる時の粒径を示す。難燃剤の粒子径は、マイクロトラックMT3000EX(日機装株式会社製)を用いて測定した。1%のドデシルベンゼンスルホン酸ナトリウム水溶液を撹拌しながら、0.5gの難燃剤を分散させ測定試料を作製した。測定は、水の屈折率、および難燃剤の屈折率を入力し、計測時間20秒、Signal Levelが緑色範囲内になるように試料濃度を調整して行った。
<Measurement method of D95 particle size>
D95 indicates the particle size when the volume integrated value of 95% is included in the particle size distribution of the flame retardant. The particle size of the flame retardant was measured using Microtrac MT3000EX (manufactured by Nikkiso Co., Ltd.). A measurement sample was prepared by dispersing 0.5 g of a flame retardant while stirring a 1% aqueous solution of sodium dodecylbenzenesulfonate. The measurement was carried out by inputting the refractive index of water and the refractive index of the flame retardant, and adjusting the sample concentration so that the measurement time was 20 seconds and the Signal Level was within the green range.

(調整例)未処理難燃剤の分散体の調整
表面処理難燃剤(A1)の代わりに、D95が5μmのホスフィン酸アルミ1、D95が10μmのホスフィン酸アルミ2、D95が20μmのホスフィン酸アルミ3、D95が0.3μmの水酸化アルミニウム、D95が5μmの赤リン、D95が1μmのシリカを用い、合成例1の場合と同様にして未処理難燃剤の分散体を得た。
(Adjustment example) Adjustment of dispersion of untreated flame retardant Instead of surface-treated flame retardant (A1), aluminum phosphinate 1 with D95 of 5 μm, aluminum phosphinate 2 with D95 of 10 μm, and aluminum phosphinate 3 with D95 of 20 μm Using aluminum hydroxide having a D95 of 0.3 μm, red phosphorus having a D95 of 5 μm, and silica having a D95 of 1 μm, a dispersion of an untreated flame retardant was obtained in the same manner as in the case of Synthesis Example 1.

(実施例1)
活性エネルギー線硬化性成分(B)としてカルボキシル基を有するエポキシアクリレート樹脂である、質量平均分子量が13,000の日本化薬(株)製の「KAYARAD ZAR1035」100質量部に対して、光重合開始剤(C)としてLAMBSON製のスピードキュアTPIを1質量部添加した。
さらに表面処理難燃剤(A1)の分散体(固形分35質量%)を143部(表面処理難燃剤(A1)を50部含む)添加し、MEK溶剤で固形分濃度が15%になるよう希釈して、液状の感光性絶縁性樹脂組成物を調整した。
この液状の感光性絶縁性樹脂組成物を剥離処理されたポリエステルフィルム上に、乾燥後の膜厚が25μmとなるように均一に塗工して乾燥し、剥離性フィルムで片面が覆われたシート状の感光性絶縁性樹脂組成物を形成した。
(Example 1)
Photopolymerization started for 100 parts by mass of "KAYARAD ZAR1035" manufactured by Nippon Kayaku Co., Ltd., which is an epoxy acrylate resin having a carboxyl group as an active energy ray-curable component (B) and has a mass average molecular weight of 13,000. As the agent (C), 1 part by mass of Speed Cure TPI manufactured by LAMBSON was added.
Further, 143 parts (including 50 parts of the surface-treated flame retardant (A1)) of a dispersion (solid content 35% by mass) of the surface-treated flame retardant (A1) was added, and diluted with a MEK solvent so that the solid content concentration became 15%. Then, a liquid photosensitive insulating resin composition was prepared.
This liquid photosensitive insulating resin composition is uniformly applied onto a peel-treated polyester film so that the film thickness after drying is 25 μm, dried, and one side is covered with the peelable film. The shape of the photosensitive insulating resin composition was formed.

[実施例2〜7]
表面処理難燃剤(A1)の分散体の代わりに、表面に付着しているシリカの量の異なる表面処理難燃剤(A2)〜(A7)の分散体を用いた以外は実施例1と同様にして、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
[Examples 2 to 7]
The same as in Example 1 except that the dispersions of the surface-treated flame retardants (A2) to (A7) having different amounts of silica adhering to the surface were used instead of the dispersion of the surface-treated flame retardant (A1). A liquid and sheet-like photosensitive insulating resin composition was formed and evaluated in the same manner.

[実施例8〜13]
表面処理難燃剤(A1)の分散体の代わりに、表2に示すように表面にさらにシランカップリング剤を付着させた表面処理難燃剤(A8)〜(A13)の分散体を用いた以外は実施例1と同様にして、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
[Examples 8 to 13]
Instead of the dispersion of the surface-treated flame retardant (A1), as shown in Table 2, the dispersions of the surface-treated flame retardants (A8) to (A13) to which the silane coupling agent was further adhered to the surface were used. Liquid and sheet-like photosensitive insulating resin compositions were formed in the same manner as in Example 1 and evaluated in the same manner.

[実施例14〜23]
活性エネルギー線硬化性成分(B)であるカルボキシル基を有するエポキシアクリレート樹脂である日本化薬(株)製の「KAYARAD ZAR1035」100質量部に対して、表面処理難燃剤(A1)の固形分の量が表3に示す量となるように、表面処理難燃剤(A1)の分散体の量を変更した以外は、実施例1と同様にして、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
[Examples 14 to 23]
The solid content of the surface-treated flame retardant (A1) with respect to 100 parts by mass of "KAYARAD ZAR1035" manufactured by Nippon Kayaku Co., Ltd., which is an epoxy acrylate resin having a carboxyl group which is an active energy ray-curable component (B). Liquid and sheet-like photosensitive insulating resin compositions in the same manner as in Example 1 except that the amount of the dispersion of the surface-treated flame retardant (A1) was changed so that the amount was the amount shown in Table 3. Was formed and evaluated in the same manner.

[実施例25〜26]
活性エネルギー線硬化性成分(B)を、カルボキシル基を有するエポキシアクリレート樹脂である日本化薬(株)製の「KAYARAD ZAR1035」の代わりに、表4に示すようにカルボキシル基を有するアクリレート樹脂である、質量平均分子量が15,000の日本化薬(株)製の「ZFR1401」、カルボキシル基を有しないアクリレート樹脂である質量平均分子量が13,000の日本化薬(株)製の「UX−3204」に変更した以外は、実施例1と同様にして、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
なお、実施例24は実施例3と同じものであるが、分かりやすさのために実施例24として表4に合わせて表記した。
[Examples 25 to 26]
The active energy ray-curable component (B) is an acrylate resin having a carboxyl group instead of "KAYARAD ZAR1035" manufactured by Nippon Kayaku Co., Ltd., which is an epoxy acrylate resin having a carboxyl group. , "ZFR1401" manufactured by Nippon Kayaku Co., Ltd. with a mass average molecular weight of 15,000, and "UX-3204" manufactured by Nippon Kayaku Co., Ltd. with a mass average molecular weight of 13,000, which is an acrylate resin having no carboxyl group. In the same manner as in Example 1, liquid and sheet-like photosensitive insulating resin compositions were formed and evaluated in the same manner.
Although Example 24 is the same as that of Example 3, it is described as Example 24 according to Table 4 for the sake of clarity.

[実施例27]
カルボキシル基を有するエポキシアクリレート樹脂である「KAYARAD ZAR1035」と光重合開始剤(C)と表面処理難燃剤(A1)の分散体とを混合する際、前記「KAYARAD ZAR1035」100部に対し、jER1031S(三菱ケミカル社製)が50部となるように配合した以外は実施例1と同様にして液状の感光性絶縁性樹脂組成物を調整した。
この液状の感光性絶縁性樹脂組成物を剥離処理されたポリエステルフィルム上に、乾燥後の膜厚が25μmとなるように均一に塗工して乾燥し、剥離性フィルムで片面が覆われたシート状の感光性絶縁性樹脂組成物を形成した。
[Example 27]
When mixing "KAYARAD ZAR1035", which is an epoxy acrylate resin having a carboxyl group, and a dispersion of a photopolymerization initiator (C) and a surface treatment flame retardant (A1), jER1031S (jER1031S) was added to 100 parts of the "KAYARAD ZAR1035". A liquid photosensitive insulating resin composition was prepared in the same manner as in Example 1 except that the amount was 50 parts (manufactured by Mitsubishi Chemical Co., Ltd.).
This liquid photosensitive insulating resin composition is uniformly applied onto a peel-treated polyester film so that the film thickness after drying is 25 μm, dried, and one side is covered with the peelable film. The shape of the photosensitive insulating resin composition was formed.

[実施例29〜33]
表面処理難燃剤(A)として、表面処理難燃剤(A3)の分散体の代わりに、表面処理難燃剤(A14)〜(A18)の分散体を用いた以外は、実施例3と同様にして、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
なお、実施例28は実施例3と同じものであるが、分かりやすさのために実施例28として表5に合わせて表記した。
[Examples 29 to 33]
As the surface-treated flame retardant (A), the same as in Example 3 except that the dispersions of the surface-treated flame retardants (A14) to (A18) were used instead of the dispersion of the surface-treated flame retardant (A3). , Liquid and sheet-like photosensitive insulating resin compositions were formed and evaluated in the same manner.
Although Example 28 is the same as that of Example 3, it is described as Example 28 according to Table 5 for the sake of clarity.

[実施例34〜39]
実施例3において感光性絶縁性樹脂組成物中に含まれていた表面処理難燃剤(A3)の50質量部のうち、15質量部を未処理難燃剤に置き換えるように調整例20〜25で調整した未処理難燃剤の分散体を用いた以外は実施例3と同様に、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
[Examples 34 to 39]
Adjusted in Adjustment Examples 20 to 25 so as to replace 15 parts by mass of the surface-treated flame retardant (A3) contained in the photosensitive insulating resin composition in Example 3 with the untreated flame retardant. Liquid and sheet-like photosensitive insulating resin compositions were formed and evaluated in the same manner as in Example 3 except that the dispersion of the untreated flame retardant was used.

[実施例41〜43]
表面処理難燃剤(A3)の代わりに、合成例19〜21で合成・調整した表面処理難燃剤(A19)〜(A21)の分散体を用いた以外は実施例3と同様に、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
なお、実施例40は実施例3と同じものであるが、分かりやすさのために実施例40として表7に合わせて表記した。
[Examples 41 to 43]
Liquid and sheet as in Example 3 except that the dispersions of the surface-treated flame retardants (A19) to (A21) synthesized and adjusted in Synthesis Examples 19 to 21 were used instead of the surface-treated flame retardant (A3). A photosensitive insulating resin composition in the form of a state was formed and evaluated in the same manner.
Although Example 40 is the same as that of Example 3, it is described as Example 40 according to Table 7 for the sake of clarity.

[比較例1〜7]
比較例1〜6では、表面処理難燃剤(A1)の代わりに、調整例で得た下記の未処理難燃剤の分散体をそれぞれ50部用いた以外は、
また、比較例7では、表面処理難燃剤(A1)の代わりに、ホスフィン酸アルミ1の分散体とシリカの分散体を25質量部ずつ併用した以外は、
実施例1と同様にして、液状およびシート状の感光性絶縁性樹脂組成物を形成し、同様に評価した。
比較例1:D95が5μmのホスフィン酸アルミ1の分散体
比較例2:D95が10μmのホスフィン酸アルミ2の分散体
比較例3:D95が20μmのホスフィン酸アルミの分散体3
比較例4:D95が0.3μmの水酸化アルミニウムの分散体
比較例5:D95が5μmの赤リンの分散体
比較例6:D95が1μmのシリカの分散体
比較例7:D95が5μmのホスフィン酸アルミ1の分散体と、D95が1μmのシリカの分散体
[Comparative Examples 1 to 7]
In Comparative Examples 1 to 6, 50 parts of each of the following dispersions of the untreated flame retardant obtained in the adjusted example were used instead of the surface-treated flame retardant (A1), except that 50 parts of each was used.
Further, in Comparative Example 7, a dispersion of aluminum phosphinate 1 and a dispersion of silica were used in combination of 25 parts by mass instead of the surface-treated flame retardant (A1).
Liquid and sheet-like photosensitive insulating resin compositions were formed in the same manner as in Example 1 and evaluated in the same manner.
Comparative Example 1: Dispersion of aluminum phosphinate 1 having a D95 of 5 μm Comparative Example 2: Dispersion of aluminum phosphinate 2 having a D95 of 10 μm Comparative Example 3: Dispersion of aluminum phosphinate 3 having a D95 of 20 μm
Comparative Example 4: Dispersion of aluminum hydroxide with D95 of 0.3 μm Comparative Example 5: Dispersion of red phosphorus with D95 of 5 μm Comparative Example 6: Dispersion of silica with D95 of 1 μm Comparative Example 7: Hosphin with D95 of 5 μm A dispersion of aluminum acid 1 and a dispersion of silica having a D95 of 1 μm.

実施例、比較例で得られた剥離性フィルムで片面が覆われたシート状の感光性絶縁性樹脂組成物について、難燃性、電気絶縁性を以下の方法で評価した。結果を表1〜7に示す。 The flame-retardant and electrically insulating properties of the sheet-shaped photosensitive insulating resin composition whose one side was covered with the peelable film obtained in Examples and Comparative Examples were evaluated by the following methods. The results are shown in Tables 1-7.

(1)難燃性
(難燃性評価用試料の作製)
耐熱性樹脂フィルムとして厚さが12.5μmのポリイミドフィルム[東レ・デュポン(株)製〔カプトン50EN〕]を用意した。
実施例31以外は、剥離性フィルムで片面が覆われたシート状の感光性絶縁性樹脂組成物の剥離性フィルムで覆われてはいない方の面に,80℃で前記耐熱性樹脂フィルムをラミネートした後、剥離性フィルム越しに、高圧水銀灯(80W/cm、オゾンレス)で2000mJ/cmの紫外線を照射し、シート状の感光性絶縁性樹脂組成物を硬化した。
実施例31は、他の実施例と同様に、剥離性フィルム越しに、同様の条件で紫外線を照射し、シート状の感光性絶縁性樹脂組成物を紫外線で硬化した後、160℃で60分間加熱しさらに熱硬化した。
得られた積層体は、耐熱性樹脂フィルムと感光性絶縁性樹脂組成物の硬化物と剥離性フィルムとがこの順番で積層されている。
(1) Flame retardancy (preparation of sample for flame retardancy evaluation)
A polyimide film [manufactured by Toray DuPont Co., Ltd. [Kapton 50EN]] having a thickness of 12.5 μm was prepared as a heat-resistant resin film.
Except for Example 31, the heat-resistant resin film is laminated at 80 ° C. on the side of the sheet-like photosensitive insulating resin composition whose one side is covered with the releaseable film and which is not covered with the releaseable film. Then, the peelable film was irradiated with ultraviolet rays of 2000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozoneless) to cure the sheet-shaped photosensitive insulating resin composition.
In Example 31, as in the other examples, ultraviolet rays are irradiated through the peelable film under the same conditions, the sheet-shaped photosensitive insulating resin composition is cured by the ultraviolet rays, and then the temperature is 160 ° C. for 60 minutes. It was heated and further thermoset.
In the obtained laminate, a heat-resistant resin film, a cured product of the photosensitive insulating resin composition, and a peelable film are laminated in this order.

(難燃性の評価)
得られた積層体を20cm×20cmの大きさに切り、剥離性フィルムを剥がした後、耐熱性樹脂フィルムが外側を向くように筒状に丸め、評価用試験片とした。
この試験片について、UL94規格に準拠した薄材垂直燃焼試験を行い、燃焼した長さに応じて結果を次の基準で判断した。
A・・・燃焼距離 ≦ 1cm
B・・・1cm < 燃焼距離 ≦ 3cm
C・・・3cm < 燃焼距離 ≦ 5cm
D・・・5cm < 燃焼距離 ≦ 7cm
E・・・7cm < 燃焼距離 ≦ 10cm
F・・・10cm < 燃焼距離
(Evaluation of flame retardancy)
The obtained laminate was cut into a size of 20 cm × 20 cm, the peelable film was peeled off, and then the heat-resistant resin film was rolled into a cylinder so as to face outward to obtain a test piece for evaluation.
A thin vertical combustion test conforming to the UL94 standard was performed on this test piece, and the result was judged according to the length of combustion according to the following criteria.
A ... Combustion distance ≤ 1 cm
B ... 1 cm <combustion distance ≤ 3 cm
C ... 3 cm <combustion distance ≤ 5 cm
D ・ ・ ・ 5cm <Combustion distance ≤ 7cm
E ・ ・ ・ 7cm <Combustion distance ≤ 10cm
F ・ ・ ・ 10cm <Combustion distance

(2)電気絶縁性
(絶縁性評価用試料の作製)
ポリイミドフィルム上に3種類の櫛型の銅回路パターン(導体パターン幅/スペース幅=50μm/50μm、100μm/100μm、200μm/200μm)が形成されたプリント配線板を用意した(図1(1)参照)。
実施例31以外は、剥離性フィルムで片面が覆われたシート状の感光性絶縁性樹脂組成物の剥離性フィルムで覆われてはいない方の面に、80℃で前記プリント配線板の回路面をラミネートした後、剥離性フィルム越しに、高圧水銀灯(80W/cm、オゾンレス)で2000mJ/cmの紫外線を照射し、シート状の感光性絶縁性樹脂組成物を硬化した。
実施例31は、他の実施例と同様に、剥離性フィルム越しに、同様の条件で紫外線を照射し、シート状の感光性絶縁性樹脂組成物を紫外線で硬化した後、160℃で60分間加熱しさらに熱硬化した。
得られた積層体は、プリント配線板の回路面と感光性絶縁性樹脂組成物の硬化物と剥離性フィルムとがこの順番で積層されている。
(2) Electrical insulation (preparation of sample for insulation evaluation)
A printed wiring board having three types of comb-shaped copper circuit patterns (conductor pattern width / space width = 50 μm / 50 μm, 100 μm / 100 μm, 200 μm / 200 μm) formed on a polyimide film was prepared (see FIG. 1 (1)). ).
Except for Example 31, the circuit surface of the printed wiring board at 80 ° C. is on the side not covered with the peelable film of the sheet-like photosensitive insulating resin composition whose one side is covered with the peelable film. After laminating, the sheet-shaped photosensitive insulating resin composition was cured by irradiating the peelable film with ultraviolet rays of 2000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozoneless).
In Example 31, as in the other examples, ultraviolet rays are irradiated through the peelable film under the same conditions, the sheet-shaped photosensitive insulating resin composition is cured by the ultraviolet rays, and then the temperature is 160 ° C. for 60 minutes. It was heated and further thermoset.
In the obtained laminate, the circuit surface of the printed wiring board, the cured product of the photosensitive insulating resin composition, and the peelable film are laminated in this order.

(絶縁性の評価)
前記積層体から剥離性フィルムを剥がし、絶縁性評価用の試験片とした(図1(2)参照)。なお、図では説明のために感光性絶縁性樹脂組成物の硬化物を透して櫛形の銅回路を見えるように示した。
温度60℃、相対湿度85%、および温度80℃、相対湿度85%の二種類の雰囲気下において、絶縁性評価用の試験片の銅回路にそれぞれ直流電圧50Vを連続的に100時間加え、二つの雰囲気下におけるリークタッチ(ショート)するまでの時間(hr)を測定した。評価基準は以下の通りである。
A・・・いずれの温度、回路パターンにおいても100時間後までリークタッチなし。
B・・・温度85℃、回路パターン50/50の条件では100時間後までにリークタッチが生じたが、上記以外の条件では100時間後までリークタッチが生じなかった。
C・・・温度85℃、回路パターン50/50および100/100の条件では100時間後までにリークタッチが生じたが、上記以外の条件では100時間後までリークタッチが生じなかった。
D・・・温度85℃かつすべての回路パターンの条件では100時間後までにリークタッチが生じたが、温度60℃かつすべての回路パターンの条件では100時間後までリークタッチが生じなかった。
E・・・温度85℃かつすべての回路パターンの条件では100時間後までにリークタッチが生じ、温度60℃の場合、回路パターン50/50の条件では100時間後までにリークタッチが生じたが、温度60℃の場合、回路パターン100/100、200/200のうち少なくとも一方の条件では100時間後までリークタッチが生じなかった。
F・・・すべての条件で100時間後までにリークタッチが生じた。
(Evaluation of insulation)
The peelable film was peeled off from the laminate to prepare a test piece for evaluating the insulating property (see FIG. 1 (2)). In the figure, for the sake of explanation, the comb-shaped copper circuit is shown so as to be visible through the cured product of the photosensitive insulating resin composition.
Under two types of atmospheres, a temperature of 60 ° C. and a relative humidity of 85%, and a temperature of 80 ° C. and a relative humidity of 85%, a DC voltage of 50 V was continuously applied to the copper circuit of the test piece for insulation evaluation for 100 hours, respectively. The time (hr) until the leak touch (short) was measured under one atmosphere. The evaluation criteria are as follows.
A ... No leak touch until 100 hours later at any temperature and circuit pattern.
B ... Leak touch occurred within 100 hours under the conditions of a temperature of 85 ° C. and a circuit pattern of 50/50, but no leak touch occurred until after 100 hours under conditions other than the above.
C ... Leak touch occurred within 100 hours under the conditions of a temperature of 85 ° C. and circuit patterns of 50/50 and 100/100, but no leak touch occurred until after 100 hours under conditions other than the above.
D ... Leak touch occurred within 100 hours under the conditions of temperature 85 ° C. and all circuit patterns, but no leak touch occurred until after 100 hours under the conditions of temperature 60 ° C. and all circuit patterns.
E ... Leak touch occurred by 100 hours under the condition of temperature 85 ° C. and all circuit patterns, and leak touch occurred by 100 hours under the condition of circuit pattern 50/50 at temperature 60 ° C. At a temperature of 60 ° C., no leak touch occurred until after 100 hours under at least one of the circuit patterns 100/100 and 200/200.
F ... Leak touch occurred within 100 hours under all conditions.

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

Figure 0006981126
Figure 0006981126

表1の実施例1〜7に示すように、付着しているシリカの量を増やすと難燃性は低下し、絶縁性は向上する傾向にある。 As shown in Examples 1 to 7 of Table 1, when the amount of adhered silica is increased, the flame retardancy tends to decrease and the insulating property tends to improve.

表2の実施例8〜13に示すように、付着しているシランカップリング剤の量を増やすと絶縁性は向上するものの、添加量が多くなると悪化する傾向にある。 As shown in Examples 8 to 13 of Table 2, the insulating property is improved by increasing the amount of the attached silane coupling agent, but tends to be deteriorated by increasing the amount of the added silane coupling agent.

表3の実施例14〜23に示すように、表面処理された難燃剤を多く添加するほど、難燃性は向上するが、絶縁性は悪化する傾向にある。 As shown in Examples 14 to 23 of Table 3, the more the surface-treated flame retardant is added, the better the flame retardancy, but the worse the insulating property tends to be.

表4の実施例24〜27に示すように、活性エネルギー線硬化後さらに熱硬化すると架橋密度が向上し、難燃性・絶縁性共に向上する。 As shown in Examples 24 to 27 of Table 4, when the active energy ray is cured and then thermally cured, the crosslink density is improved, and both flame retardancy and insulating property are improved.

表5の実施例28〜33に示すように、小粒径の表面処理難燃剤を用いることで、難燃性が向上する。これは表面積の大きい小粒径難燃剤のほうが、難燃機構上有利なためである。 As shown in Examples 28 to 33 of Table 5, flame retardancy is improved by using a surface-treated flame retardant having a small particle size. This is because a small particle size flame retardant having a large surface area is more advantageous in terms of flame retardancy mechanism.

表7の実施例40〜43に示すように、難燃剤の表面に付着させる無機酸化物としては、絶縁性向上の点からシリカが好ましい。 As shown in Examples 40 to 43 of Table 7, silica is preferable as the inorganic oxide to be adhered to the surface of the flame retardant from the viewpoint of improving the insulating property.

表8の比較例1〜6に示すように、表面処理難燃剤を全く添加しない場合には、難燃性が大幅に悪化する。また比較例7に示すように、シリカを難燃剤に予め付着させずに、分散体として単に配合した場合も難燃性が悪化し、絶縁性にもさほど効果がない。 As shown in Comparative Examples 1 to 6 in Table 8, when no surface-treated flame retardant is added, the flame retardancy is significantly deteriorated. Further, as shown in Comparative Example 7, even when silica is simply blended as a dispersion without adhering to the flame retardant in advance, the flame retardancy deteriorates and the insulating property is not so effective.

1:ポリイミドフィルム
2:カソード電極用櫛形信号配線
2’:カソード電極接続点
3:アノード電極用櫛形信号配線
3’:アノード電極接続点
4:感光性絶縁性樹脂組成物の硬化物
1: Polyimide film 2: Cathode electrode connection point 2': Cathode electrode connection point 3: Anode electrode comb signal wiring 3': Anode electrode connection point 4: Cured product of photosensitive insulating resin composition

Claims (7)

25℃で固体の難燃剤であるホスフィン酸塩の表面の少なくとも一部に、噴霧法又はゾルゲル法によって無機酸化物を付着させてなる表面処理難燃剤(A)と、活性エネルギー線硬化性成分(B)と、光重合開始剤(C)とを含有する感光性絶縁性樹脂組成物。 A surface-treated flame retardant (A) obtained by adhering an inorganic oxide to at least a part of the surface of the phosphinate, which is a solid flame retardant at 25 ° C., by a spray method or a sol-gel method, and an active energy ray-curable component ( A photosensitive insulating resin composition containing B) and a photopolymerization initiator (C). 25℃で固体の難燃剤であるホスフィン酸塩100質量部に対し、無機酸化物が0.01〜10質量部付着し
ている請求項1記載の感光性絶縁性樹脂組成物。
The photosensitive insulating resin composition according to claim 1, wherein 0.01 to 10 parts by mass of an inorganic oxide is attached to 100 parts by mass of phosphinate, which is a solid flame retardant at 25 ° C.
表面処理難燃剤(A)の表面にさらにシランカップリング剤が付着している、請求項1または2記載の感光性絶縁性樹脂組成物。 The photosensitive insulating resin composition according to claim 1 or 2, wherein a silane coupling agent is further attached to the surface of the surface treatment flame retardant (A). 活性エネルギー線硬化性成分(B)100質量部に対し、表面処理難燃剤(A)を0.1〜100質量部含有する請求項1〜3いずれか1項に記載の感光性絶縁性樹脂組成物。 The photosensitive insulating resin composition according to any one of claims 1 to 3, which contains 0.1 to 100 parts by mass of the surface-treated flame retardant (A) with respect to 100 parts by mass of the active energy ray-curable component (B). thing. 活性エネルギー線硬化性成分(B)がカルボキシル基を有する成分(B1)を含む、請求項1〜いずれか1項に記載の感光性絶縁性樹脂組成物。 The photosensitive insulating resin composition according to any one of claims 1 to 4 , wherein the active energy ray-curable component (B) contains a component (B1) having a carboxyl group. シート状である、請求項1〜いずれか1項に記載の感光性絶縁性樹脂組成物。 The photosensitive insulating resin composition according to any one of claims 1 to 5 , which is in the form of a sheet. 請求項記載のシート状の感光性絶縁性樹脂組成物の両面が、剥離性フィルムで覆われている、剥離性フィルム付きのシート状感光性絶縁性樹脂組成物。 The sheet-shaped photosensitive insulating resin composition with a peelable film, wherein both sides of the sheet-shaped photosensitive insulating resin composition according to claim 6 are covered with a peelable film.
JP2017178211A 2017-09-15 2017-09-15 Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film Active JP6981126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017178211A JP6981126B2 (en) 2017-09-15 2017-09-15 Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017178211A JP6981126B2 (en) 2017-09-15 2017-09-15 Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film

Publications (2)

Publication Number Publication Date
JP2019052262A JP2019052262A (en) 2019-04-04
JP6981126B2 true JP6981126B2 (en) 2021-12-15

Family

ID=66014351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017178211A Active JP6981126B2 (en) 2017-09-15 2017-09-15 Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film

Country Status (1)

Country Link
JP (1) JP6981126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005486A (en) * 2019-04-18 2022-01-13 다이니폰 인사츠 가부시키가이샤 Transparency resin film, manufacturing method of transparency resin film, and cosmetic material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261932A (en) * 2000-03-15 2001-09-26 Nippon Chem Ind Co Ltd Red phosphorus for epoxy resin sealing and epoxy resin composition for semiconductor sealing
JP2002161258A (en) * 2000-11-29 2002-06-04 Sliontec Corp Flame-retardant adhesive tape and method for producing the same
JP2009271445A (en) * 2008-05-09 2009-11-19 Kaneka Corp New photosensitive resin composition and its application

Also Published As

Publication number Publication date
JP2019052262A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6711430B2 (en) Photosensitive resin composition
US10385185B2 (en) Sealing resin composition and sealing sheet
KR101555386B1 (en) metal base circuit board
US20090188701A1 (en) Inorganic powder, resin composition filled with the powder and use thereof
US20160251493A1 (en) Hydrotalcite-containing sealing resin composition and sealing sheet
US20140061530A1 (en) Method of manufacturing water resistant aluminium nitride
JP7141885B2 (en) Surface-treated zirconium nitride powder and its surface treatment method
KR100718854B1 (en) Fire retardant resin composition, method of its production, shaped articles comprising the same, and silica
JP6981126B2 (en) Photosensitive Insulating Resin Composition, Sheet Photosensitive Insulating Resin Composition, and Sheet Photosensitive Insulating Resin Composition with Removable Film
JP2005001902A (en) Inorganic anion exchanger and epoxy resin composition for sealing electronic component using the same
US11015249B2 (en) Silver-coated silicone rubber particles, conductive paste containing same, and a conductive film production method using conductive paste
TWI712560B (en) Silane-treated forsterite fine particles and manufacturing method thereof, and organic solvent dispersion liquid of silane-treated forsterite fine particles and manufacturing method thereof
JP2014189791A (en) Electronic device encapsulation resin sheet and method for manufacturing electronic device package
JP2001115057A (en) Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
JP6977434B2 (en) Thermosetting Insulating Resin Composition, Sheet Thermosetting Insulating Resin Composition, Coverlay, and Sheet Thermosetting Insulating Resin Composition with Removable Film
JP5310471B2 (en) High heat-resistant aluminum hydroxide particles, production method thereof, resin composition containing the particles, and printed wiring board using the resin composition
JP3928136B2 (en) Solder resist paint, cured product thereof and printed wiring board provided with coating
JP6465243B1 (en) Electromagnetic shielding film, printed wiring board and electronic equipment.
JP5772480B2 (en) Ink receiving film, laminated substrate using the same, and conductive member
JP2002249678A (en) Resin coated carbon black and color filter
JP2020019692A (en) Zirconium nitride film and method of manufacturing the same
KR20070026375A (en) Inorganic powder, resin composition filled with the powder and use thereof
KR101263880B1 (en) Coating composition for making conductive pattern and method for making conductive pattern using the same
KR20000064468A (en) Solder Mask Composition
JP2002128864A (en) Flame retardant resin composition and its applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R151 Written notification of patent or utility model registration

Ref document number: 6981126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350