JP6980743B2 - Manufacturing method of catalyst used for haze reduction work - Google Patents

Manufacturing method of catalyst used for haze reduction work Download PDF

Info

Publication number
JP6980743B2
JP6980743B2 JP2019220406A JP2019220406A JP6980743B2 JP 6980743 B2 JP6980743 B2 JP 6980743B2 JP 2019220406 A JP2019220406 A JP 2019220406A JP 2019220406 A JP2019220406 A JP 2019220406A JP 6980743 B2 JP6980743 B2 JP 6980743B2
Authority
JP
Japan
Prior art keywords
salt
catalyst
ammonium
nitrate
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019220406A
Other languages
Japanese (ja)
Other versions
JP2020183507A (en
Inventor
封超
彭東
徐成華
呉澤
趙少丹
衛冰
Original Assignee
西安向陽航天材料股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安向陽航天材料股▲ふん▼有限公司 filed Critical 西安向陽航天材料股▲ふん▼有限公司
Publication of JP2020183507A publication Critical patent/JP2020183507A/en
Application granted granted Critical
Publication of JP6980743B2 publication Critical patent/JP6980743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D49/00Separating dispersed particles from gases, air or vapours by other methods
    • B01D49/003Separating dispersed particles from gases, air or vapours by other methods by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Glanulating (AREA)
  • Catalysts (AREA)

Description

本発明は、触媒技術分野に関わり、具体的に煙霧削減作業に用いられる触媒の製造方法に関わる。 The present invention relates to the field of catalyst technology, and specifically relates to a method for producing a catalyst used for haze reduction work.

煙霧は、人体健康な及び生態環境に厳重な危害を及ぼす。煙霧の防除面にずっと有効的な措置と解决方法がない。車両通行規制、散水噴射、空気浄化器の取付けと大型連休で工場操業停止等の方式は、局所で大気汚染を軽減できるが、煙霧問題を根本的に解決できず、且つ、大量な水資源の無駄と電気使用負荷の増加を引き起こす。ここ数年来、国家は、政府レベルで相応な煙霧防除面の投入強度を強化して、中国気象局は、『「大気汚染防除行動計画」実施案を貫徹実行する』を印刷・配布した。その中で、人工降雨法は、煙霧問題を解決する見込みがある一番有効な技術であると見なされる。 Smoke causes severe harm to human health and the ecological environment. There is no much more effective measure and solution for the haze control surface. Methods such as vehicle traffic regulation, sprinkling injection, installation of air purifiers and suspension of factory operations due to long holidays can reduce air pollution locally, but cannot fundamentally solve the haze problem and require a large amount of water resources. Causes waste and increased electricity load. Over the last few years, the state has strengthened the input intensity of the appropriate smoke control surface at the government level, and the China Meteorological Bureau has printed and distributed "Implementing the" Air Pollution Control Action Plan "Implementation Plan". Among them, the artificial rainfall method is considered to be the most effective technology that has the potential to solve the haze problem.

現在、通常の状況の下で、人工降雨法に使用される触媒は、三類に分けられている。第一類は、大量な凝縮核又は凝結核を生成できるヨウ化銀等の結晶核形成剤である;第二類は、雲中の水分で大量な氷晶を形成できるドライアイス等の冷媒である;第三類は、雲中の水分を吸着して比較的に大きな水滴を形成する塩粒等の吸湿剤である。煙霧は、曇り又は曇天の暖かい雲の環境の下で多発している。暖かい雲の天気環境の下で殆ど曇りの霧天候であり、太陽輻射の強度が弱く、大気対流活動が低減し、逆温層の発生頻度が高いので、その地区でしょっちゅうに静かで安定な天気があり、その大気層が安定な状態に処することになり、これで、大気汚染物質の拡散に不利になり、煙霧が発生する。人工降雨法は、湿気沈降作用に頼って、PM2.5を削減できるが、風速が小さく、且つ湿度が大きい場合、人工降雨法によるPM2.5濃度に対する影響が著しくない。その上、伝統的な人工降雨法に使用される煙霧削減用冷たい雲触媒(例えば、ヨウ化銀等)は、水蒸気だけに対して凝縮作用を有して、PM2.5等の細かい粒子状物質に対して、明らかな吸着作用を有していない。これで、伝統的な人工降雨法だけに頼ると、煙霧消散に対して理想的な効果を果たせず、且つ、煙霧問題を根本的に解決できない。従って、煙霧汚染物質に対する触媒を開発することによって、重い汚染天気環境の下で、有効的な煙霧減作業を実施し、空気品質を向上することができるようにする。 Currently, under normal circumstances, the catalysts used in the artificial rainfall method are divided into three categories. The first type is a crystal nucleating agent such as silver iodide capable of producing a large amount of condensed nuclei or condensed nuclei; the second type is a refrigerant such as dry ice capable of forming a large amount of ice crystals with the moisture in the cloud. There is; the third kind is a hygroscopic agent such as salt particles that adsorbs water in clouds to form relatively large water droplets. Smoke is frequent in a cloudy or cloudy warm cloud environment. It is almost cloudy foggy weather under warm cloud weather environment, the intensity of solar radiation is weak, atmospheric convection activity is reduced, and the frequency of inversion is high, so the weather is always quiet and stable in the area. This puts the atmospheric layer in a stable state, which is detrimental to the diffusion of air pollutants and produces fumes. The artificial rainfall method can reduce PM2.5 by relying on the moisture settling action, but when the wind speed is low and the humidity is high, the effect of the artificial rainfall method on the PM2.5 concentration is not significant. Moreover, cold cloud catalysts for haze reduction (eg silver iodide, etc.) used in traditional artificial rainfall methods have a condensing effect only on water vapor and are fine particulate matter such as PM2.5. On the other hand, it does not have a clear adsorption action. With this, if only the traditional artificial rainfall method is relied on, the ideal effect on the haze extinction cannot be achieved, and the haze problem cannot be fundamentally solved. Therefore, by developing a catalyst for the fumes contaminants, under heavy pollution weather environment, conduct effective fumes cutting Gensaku industry, to be able to improve the air quality.

本発明が解決しようとする技術問題は、前記の現有技術の不足点に対して、煙霧削減作業に用いられる触媒の製造方法を提供することである。本発明の触媒成分に、吸湿性が強い無水カルシウム塩、ナトリウム塩、マグネシウム塩及び吸湿性・冷却性能を兼ねるアンモニウム塩が含まれ、且つ、平均粒度が10μm以内であるので、強い吸湿性及び著しい降温効果を有し、且つ、吸着面積が比較的大きく、空気中の煙霧汚染物質顆粒に対して、良い吸着効果と高い吸着速度を有し、吸着顆粒を形成して自然な沈降を経た後、煙霧削減作業を実現した。 The technical problem to be solved by the present invention is to provide a method for producing a catalyst used for haze reduction work, in response to the above-mentioned shortcomings of the existing technology. The catalyst component of the present invention contains anhydrous calcium salt, sodium salt, magnesium salt and ammonium salt having hygroscopicity and cooling performance, which have strong hygroscopicity, and the average particle size is within 10 μm, so that the catalyst component has strong hygroscopicity and remarkable. It has a temperature lowering effect, has a relatively large adsorption area, has a good adsorption effect and a high adsorption rate for smoke pollutant granules in the air, and after forming the adsorption granules and undergoing natural sedimentation, Realized smoke reduction work.

以上の技術問題を解決する為に、本発明は、下記の技術案を採用する。下記の特徴を有する煙霧削減作業に用いられる触媒の製造方法。当該触媒がCa、Na、Mgとアンモニウムの複合塩であり、当該触媒でのCa、Na、Mgとアンモニウムとのモル比が1:(0.2〜0.5):(0.2〜0.5):(0.5〜0.8)である;前記触媒の製作プロセスが次の通り、即ち、Ca塩、Na塩、Mg塩及びアンモニウム塩を有機溶媒に溶解してスラリーを形成してから、噴霧乾燥を行うことによって、平均粒度が10μm以内である触媒を得ること。 In order to solve the above technical problems, the present invention adopts the following technical proposals. A method for manufacturing a catalyst used for haze reduction work having the following characteristics. The catalyst is a complex salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: (0.2 to 0.5) :( 0.2 to 0.5) :( 0.5 to 0.8). ); The production process of the catalyst is as follows, that is, the average particle size is obtained by dissolving Ca salt, Na salt, Mg salt and ammonium salt in an organic solvent to form a slurry, and then spray-drying. To obtain a catalyst in which is within 10 μm.

本発明の製造方法により製造される触媒がCa、Na、Mgとアンモニウムの複合塩であり、その中で無水カルシウム塩、ナトリウム塩とマグネシウム塩成分が強い吸湿性を有し、空気に暴露すると、高速な吸湿機能を実現できる。その中で、アンモニウム塩が吸湿性を有すると同時に、希釈プロセス中に吸熱して冷却効果が効く為、本発明の製造方法により製造される触媒は、強い吸湿性と著しい冷却効果を有し、且つ、平均粒度が10μm以内であり、吸着面積が比較的大きく、吸着速度が速いので、当該触媒は、撒き後、空気中の水蒸気と液滴を速く吸収でき、更に空気中の煙霧汚染物質顆粒を吸着できる。これと同時に、触媒の冷却効果により、液滴表面の相対飽和蒸気圧を増加して、吸湿プロセスに役立つようにすることができる為、空気中の煙霧汚染物質顆粒に対する吸着作用を促進し、吸着顆粒を形成した後、吸着顆粒が大きくなった後、自然な沈降を経た後、煙霧削減の手作業を実現した。更に、本発明の製造方法における触媒による環境影響が小さい為、二次環境汚染を形成することがない。 The catalyst produced by the production method of the present invention is a composite salt of Ca, Na, Mg and ammonium, in which the anhydrous calcium salt, sodium salt and magnesium salt components have strong hygroscopicity, and when exposed to air, A high-speed moisture absorption function can be realized. Among them, the ammonium salt has hygroscopicity and at the same time absorbs heat during the dilution process and has a cooling effect. Therefore, the catalyst produced by the production method of the present invention has strong hygroscopicity and a remarkable cooling effect. Moreover, since the average particle size is within 10 μm, the adsorption area is relatively large, and the adsorption rate is high, the catalyst can quickly absorb water vapor and droplets in the air after sprinkling, and further, smoke pollutant granules in the air. Can be adsorbed. At the same time, the cooling effect of the catalyst can increase the relative saturated vapor pressure on the surface of the droplets to help the moisture absorption process, thus promoting the adsorption action on the fumes pollutant granules in the air and adsorbing them. After forming the granules, the adsorbed granules became large, and then naturally settled, the manual work of reducing smoke was realized. Furthermore, since the environmental impact of the catalyst in the production method of the present invention is small, secondary environmental pollution is not formed.

本発明は、下記の特徴を有する煙霧削減作業に用いられる前記触媒の製造方法である。前記触媒でのCa、Na、Mgとアンモニウムとのモル比が1:(0.2〜0.3):(0.3〜0.4):(0.7〜0.8)であることである。前記混合比で構成される触媒は、強い吸湿性と著しい冷却効果を有する。 The present invention is a method for producing the catalyst, which has the following characteristics and is used for a haze reduction operation. The molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: (0.2 to 0.3) :( 0.3 to 0.4) :( 0.7 to 0.8). The catalyst composed of the mixing ratio has strong hygroscopicity and a remarkable cooling effect.

本発明は、前記噴霧乾燥の方法が陰圧噴霧乾燥であることを特徴とする煙霧削減作業に用いられる触媒の製造方法である。好ましくは、陰圧噴霧乾燥法で触媒を製作することであり、これで、スラリーでの水分の蒸発に役立ち、且つ、噴霧乾燥の速度を制御することによって、平均粒度が10μm以内である触媒を得ることができる。 The present invention is a method for producing a catalyst used in a haze reduction operation, wherein the spray drying method is negative pressure spray drying. Preferably, the catalyst is made by a negative pressure spray drying method, which helps to evaporate the water content in the slurry and by controlling the spray drying rate, the catalyst having an average particle size of 10 μm or less. Obtainable.

本発明は、下記の特徴を有する煙霧削減作業に用いられる前記触媒の製造方法である。前記陰圧噴霧乾燥プロセスにおいて、高圧回転式ノズルで、スラリーを、陰圧環境に噴き出して造粒を行うことができる。高圧回転式ノズルを採用することによって、スラリーの分散に役立つ為、触媒の粒度を制御することができる。 The present invention is a method for producing the catalyst, which has the following characteristics and is used for a haze reduction operation. In the negative pressure spray drying process, the slurry can be ejected into a negative pressure environment by a high pressure rotary nozzle to perform granulation. By adopting a high-pressure rotary nozzle, the particle size of the catalyst can be controlled because it helps to disperse the slurry.

本発明は、下記の特徴を有する煙霧削減作業に用いられる前記触媒の製造方法である。前記Ca塩が硝酸カルシウム、塩化カルシウム又は硫酸カルシウムであり、前記Na塩が硝酸ナトリウム、塩化ナトリウム又は硫酸ナトリウムであり、前記Mg塩が硝酸マグネシウム、塩化マグネシウム又は硫酸マグネシウムであり、前記アンモニウム塩が硝酸アンモニウム、塩化アンモニウム又は硫酸マグネシウムであること。本発明の触媒製作原料とするCa塩、Na塩、Mg塩及びアンモニウム塩は、源が広く、且つ、環境影響が小さい為、触媒の製作に便利である。 The present invention is a method for producing the catalyst, which has the following characteristics and is used for a haze reduction operation. The Ca salt is calcium nitrate, calcium chloride or calcium sulfate, the Na salt is sodium nitrate, sodium chloride or sodium sulfate, the Mg salt is magnesium nitrate, magnesium chloride or magnesium sulfate, and the ammonium salt is ammonium nitrate. , Ammonium chloride or magnesium sulfate. The Ca salt, Na salt, Mg salt and ammonium salt used as catalyst production raw materials of the present invention have a wide source and have a small environmental impact, and are therefore convenient for catalyst production.

本発明は、下記の特徴を有する煙霧削減作業に用いられる前記触媒の製造方法である。前記Ca塩が硝酸カルシウムであり、Na塩が塩化ナトリウムであり、Mg塩が硝酸マグネシウムであり、アンモニウム塩が硝酸アンモニウムであること。前記混合比で製作される触媒は、強い吸湿性と著しい冷却効果を有する。 The present invention is a method for producing the catalyst, which has the following characteristics and is used for a haze reduction operation. The Ca salt is calcium nitrate, the Na salt is sodium chloride, the Mg salt is magnesium nitrate, and the ammonium salt is ammonium nitrate. The catalyst produced at the above mixing ratio has strong hygroscopicity and a remarkable cooling effect.

本発明は、下記の特徴を有する煙霧削減作業に用いられる前記触媒の製造方法である。前記有機溶媒がメタノール、エタノールとアセトンから構成される混合溶媒であり、又はメタノールとアセトンから構成される混合溶媒であり、又はエタノールとアセトンから構成される混合溶媒であること。前記から構成される有機溶媒を採用することによって、触媒製作原料の中の各種の塩類溶質を良く溶解できる。 The present invention is a method for producing the catalyst, which has the following characteristics and is used for a haze reduction operation. The organic solvent is a mixed solvent composed of methanol, ethanol and acetone, or a mixed solvent composed of methanol and acetone, or a mixed solvent composed of ethanol and acetone. By adopting the organic solvent composed of the above, various salt solutes in the catalyst manufacturing raw material can be well dissolved.

本発明は、下記の特徴を有する煙霧削減作業に用いられる前記触媒の製造方法である。前記有機溶媒が、エタノールとアセトンを1:(0.9-1)の質量比で混合された混合溶媒であること。前記から構成される有機溶媒を採用することによって、触媒製作原料の中の各種の塩類が皆良い溶解性能を有することにすること。 The present invention is a method for producing the catalyst, which has the following characteristics and is used for a haze reduction operation. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: (0.9-1). By adopting the organic solvent composed of the above, all the various salts in the catalyst manufacturing raw material have good dissolution performance.

本発明は、現有の技術と比べると、下記の利点を有する。 The present invention has the following advantages over existing techniques.

1.本発明の製造方法における触媒成分に、吸湿性が強い無水カルシウム塩、ナトリウム塩、マグネシウム塩及び吸湿性・冷却性能を兼ねるアンモニウム塩が含まれ、且つ、平均粒度が10μm以内である。本発明の製造方法により製造される触媒は、強い吸湿性と著しい冷却働きかけを有し、且つ、吸着面積が比較的大きく、空気中の煙霧汚染物質顆粒に対して、良い吸着効果と高い吸着速度を有し、吸着顆粒を形成して自然な沈降を経た後、煙霧削減作業を実現する。これと同時に、触媒の冷却効果により、吸着作用を向上し、液滴表面の相対飽和蒸気圧を形成して、吸湿プロセスを促進することによって、触媒による煙霧汚染物質顆粒に対する吸着作用を更に向上させること。 1. 1. The catalyst component in the production method of the present invention contains an anhydrous calcium salt, a sodium salt, a magnesium salt and an ammonium salt having hygroscopicity and cooling performance, and has an average particle size of 10 μm or less. The catalyst produced by the production method of the present invention has strong hygroscopicity and remarkable cooling action, has a relatively large adsorption area, and has a good adsorption effect and a high adsorption rate for fumes pollutant granules in the air. After forming adsorption granules and undergoing natural sedimentation, smoke reduction work is realized. At the same time, the cooling effect of the catalyst improves the adsorption action, forms the relative saturated vapor pressure on the droplet surface, and promotes the moisture absorption process, further improving the adsorption action of the catalyst on the fumes pollutant granules. matter.

2.本発明の製造方法における触媒による環境影響が小さい為、二次環境汚染を形成することがないこと。
2. Since the environmental impact of the catalyst in the production method of the present invention is small, no secondary environmental pollution is formed.

3.本発明の触媒製作プロセスが比較に簡単で、塩類物質の溶解及び噴霧乾燥という二ステップのプロセスがあり、且つ、皆良くある共通プロセス技術であり、実施難度が小さく、工業拡大に便利であること。 3. 3. The catalyst manufacturing process of the present invention is comparatively easy, has a two-step process of dissolving salt substances and spray drying, and is a common process technology that is common to all, has a low degree of difficulty in implementation, and is convenient for industrial expansion. ..

4.本発明で使用される有機溶媒が回収利用に便利であるので、資源の無駄を削減すること。 Four. Since the organic solvent used in the present invention is convenient for recovery and utilization, waste of resources should be reduced.

次に本発明の実施形態を更に説明する。 Next, an embodiment of the present invention will be further described.

実施形態1Embodiment 1

本実施形態1の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.2:0.4:0.8であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム11.7g、無水硝酸マグネシウム59.2gと硝酸アンモニウム64.0gを、有機溶媒3Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、エタノールとアセトンを1:0.9の質量比で混合された混合溶媒である。 The catalyst of the first embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.2: 0.4: 0.8, and the catalyst manufacturing process. Is as follows. 164.0 g of anhydrous calcium nitrate, 11.7 g of sodium chloride, 59.2 g of anhydrous magnesium nitrate and 64.0 g of ammonium nitrate are dissolved in 3 L of organic solvent to form a slurry , and then negative pressure spraying is applied to the slurry with a high-pressure rotary nozzle. Drying was performed to produce a catalyst. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: 0.9.

本実施形態1の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態1の触媒の平均粒度が8.6μmである。 As a result of dispersing the catalyst of the present embodiment 1 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 1 is 8.6 μm.

本実施形態1におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the first embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態2Embodiment 2

本実施形態2の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.3:0.3:0.8であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム17.5g、無水硝酸マグネシウム44.4gと硝酸アンモニウム64.0gを有機溶媒3Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、エタノールとアセトンを1:0.95の質量比で混合された混合溶媒である。 The catalyst of the second embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.3: 0.3: 0.8, and the catalyst manufacturing process. Is as follows. Anhydrous calcium nitrate 164.0 g, sodium chloride 17.5 g, after forming a slurry by dissolving anhydrous magnesium nitrate 44.4g ammonium nitrate 64.0g organic solvent 3L, a high pressure rotary nozzle for slurry, shade atomizer drying Was performed to produce a catalyst. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: 0.95.

本実施形態2の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態2の触媒の平均粒度が7.9μmである。 As a result of dispersing the catalyst of the present embodiment 2 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 2 is 7.9 μm.

本実施形態2におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the second embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態3Embodiment 3

本実施形態3の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.2:0.4:0.7であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム11.7g、無水硝酸マグネシウム59.2gと硝酸アンモニウム56.0gを有機溶媒3Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、エタノールとアセトンを1:1の質量比で混合された混合溶媒である。 The catalyst of the third embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.2: 0.4: 0.7, and the catalyst manufacturing process. Is as follows. Anhydrous calcium nitrate 164.0 g, sodium chloride 11.7 g, after forming a slurry by dissolving anhydrous magnesium nitrate 59.2g ammonium nitrate 56.0g organic solvent 3L, a high pressure rotary nozzle for slurry, shade atomizer drying Was performed to produce a catalyst. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: 1.

本実施形態3の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態3の触媒の平均粒度が7.3μmである。 As a result of dispersing the catalyst of the present embodiment 3 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 3 is 7.3 μm.

本実施形態3におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the third embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態4Embodiment 4

本実施形態4の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.5:0.4:0.8であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム29.2g、無水硝酸マグネシウム59.2gと硝酸アンモニウム64.0gを有機溶媒4Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、エタノールとアセトンを1:1の質量比で混合された混合溶媒である。 The catalyst of the fourth embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.5: 0.4: 0.8, and the catalyst manufacturing process. Is as follows. Anhydrous calcium nitrate 164.0 g, sodium chloride 29.2 g, after forming a slurry by dissolving anhydrous magnesium nitrate 59.2g ammonium nitrate 64.0g organic solvent 4L, a high pressure rotary nozzle for slurry, shade atomizer drying Was performed to produce a catalyst. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: 1.

本実施形態4の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態4の触媒の平均粒度が5.1μmである。 As a result of dispersing the catalyst of the present embodiment 4 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 4 is 5.1 μm.

本実施形態4におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the fourth embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態5Embodiment 5

本実施形態5の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.26:0.5:0.75であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム15.2g、無水硝酸マグネシウム74.0gと硝酸アンモニウム60.0gを有機溶媒2.5Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、エタノールとアセトンを1:1の質量比で混合された混合溶媒である。 The catalyst of the fifth embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.26: 0.5: 0.75. Is as follows. After dissolving 164.0 g of anhydrous calcium nitrate, 15.2 g of sodium chloride, 74.0 g of anhydrous magnesium nitrate and 60.0 g of ammonium nitrate in 2.5 L of organic solvent to form a slurry , a negative pressure spray is applied to the slurry with a high-pressure rotary nozzle. Drying was performed to produce a catalyst. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: 1.

本実施形態5の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態5の触媒の平均粒度が9.9μmである。 As a result of dispersing the catalyst of the present embodiment 5 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 5 is 9.9 μm.

本実施形態5におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the fifth embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態6Embodiment 6

本実施形態6の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.3:0.34:0.75であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム17.5g、無水硝酸マグネシウム50.3gと硝酸アンモニウム60gを有機溶媒2.5Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、エタノールとアセトンを1:1の質量比で混合された混合溶媒である。 The catalyst of the sixth embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.3: 0.34: 0.75. Is as follows. Anhydrous calcium nitrate 164.0 g, sodium chloride 17.5 g, after forming a slurry by dissolving anhydrous magnesium nitrate 50.3g ammonium nitrate 60g in an organic solvent 2.5L, a high pressure rotary nozzle for slurry, shade atomizer drying Was performed to produce a catalyst. The organic solvent is a mixed solvent in which ethanol and acetone are mixed at a mass ratio of 1: 1.

本実施形態6の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態6の触媒の平均粒度が9.7μmである。 As a result of dispersing the catalyst of the present embodiment 6 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 6 is 9.7 μm.

本実施形態6におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the sixth embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態7Embodiment 7

本実施形態7の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.26:0.34:0.75であり、前記触媒の製作プロセスが次の通りである。無水硝酸カルシウム164.0g、塩化ナトリウム15.2g、無水硝酸マグネシウム50.3gと硝酸アンモニウム60gを有機溶媒3.5Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、メタノールとアセトンを1:1の質量比で混合された混合溶媒である。 The catalyst of the seventh embodiment is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.26: 0.34: 0.75. Is as follows. Anhydrous calcium nitrate 164.0 g, sodium chloride 15.2 g, after forming a slurry by dissolving anhydrous magnesium nitrate 50.3g ammonium nitrate 60g in an organic solvent 3.5 L, a high pressure rotary nozzle for slurry, shade atomizer drying Was performed to produce a catalyst. The organic solvent is a mixed solvent in which methanol and acetone are mixed at a mass ratio of 1: 1.

本実施形態7の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態7の触媒の平均粒度が7.2μmである。 As a result of dispersing the catalyst of the present embodiment 7 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 7 is 7.2 μm.

本実施形態7におけるCa塩が塩化カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the seventh embodiment may be calcium chloride or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態88th embodiment

本実施形態8の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.24:0.38:0.78であり、前記触媒の製作プロセスが次の通りである。塩化カルシウム111.0g、塩化ナトリウム14.0g、無水硝酸マグネシウム56.2gと硝酸アンモニウム62.4を有機溶媒3.7Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、メタノール、メタノールとアセトンを0.5:0.5:1の質量比で混合された混合溶媒である。 The catalyst of the present embodiment 8 is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.24: 0.38: 0.78, and the catalyst manufacturing process. Is as follows. After dissolving 111.0 g of calcium chloride, 14.0 g of sodium chloride, 56.2 g of anhydrous magnesium nitrate and 62.4 g of ammonium nitrate in 3.7 L of organic solvent to form a slurry , use a high-pressure rotary nozzle to spray dry the slurry under negative pressure. I went and made a catalyst. The organic solvent is a mixed solvent in which methanol, methanol and acetone are mixed at a mass ratio of 0.5: 0.5: 1.

本実施形態8の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態8の触媒の平均粒度が7.7μmである。 As a result of dispersing the catalyst of the present embodiment 8 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment 8 is 7.7 μm.

本実施形態8におけるCa塩が硝酸カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the eighth embodiment may be calcium nitrate or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

実施形態9Embodiment 9

本実施形態9の触媒がCa、Na、Mgとアンモニウムの複合塩であり、触媒でのCa、Na、Mgとアンモニウムとのモル比が1:0.24:0.2:0.5であり、前記触媒の製作プロセスが次の通りである。無水塩化カルシウム111.0g、塩化ナトリウム14.0g、無水硝酸マグネシウム29.6gと硝酸アンモニウム40gを有機溶媒3.7Lに溶解してスラリーを形成してから、高圧回転式ノズルで、スラリーに対して、陰圧噴霧乾燥を行って触媒を製作した。前記有機溶媒が、メタノール、メタノールとアセトンを0.5:0.5:1の質量比で混合された混合溶媒である。 The catalyst of the present embodiment 9 is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: 0.24: 0.2: 0.5, and the catalyst manufacturing process. Is as follows. Dissolve 111.0 g of anhydrous calcium chloride, 14.0 g of sodium chloride, 29.6 g of anhydrous magnesium nitrate and 40 g of ammonium nitrate in 3.7 L of organic solvent to form a slurry , and then use a high-pressure rotary nozzle to spray dry the slurry with negative pressure. Was performed to produce a catalyst. The organic solvent is a mixed solvent in which methanol, methanol and acetone are mixed at a mass ratio of 0.5: 0.5: 1.

本実施形態9の触媒を、n-ヘキサンに分散させてレーザ粒度計で検出した結果、本実施形態の触媒の平均粒度が7.5μmである。 As a result of dispersing the catalyst of the present embodiment 9 in n-hexane and detecting it with a laser particle size meter, the average particle size of the catalyst of the present embodiment is 7.5 μm.

本実施形態9におけるCa塩が硝酸カルシウム又は硫酸カルシウムであっても良く、Na塩が硝酸ナトリウム又は硫酸ナトリウムであっても良く、Mg塩が塩化マグネシウム又は硫酸マグネシウムであっても良く、アンモニウム塩が塩化アンモニウム又は硫酸アンモニウムであっても良い。 The Ca salt in the ninth embodiment may be calcium nitrate or calcium sulfate, the Na salt may be sodium nitrate or sodium sulfate, the Mg salt may be magnesium chloride or magnesium sulfate, and the ammonium salt may be. It may be ammonium chloride or ammonium sulfate.

本発明の実施形態1〜実施形態4の触媒による煙霧軽減効果を評価し、模擬人工霧箱システムを利用して、触媒を異なる時間で使用した後、人工霧箱システム内環境温度変化及びPM2.5指数(単位がμg/m3である)で模擬して、PM2.5粒子状物質の脱除効率を計算することによって触媒の効果を判断した結果を、表1〜表4に示す。 After evaluating the smoke reduction effect of the catalyst of the first to fourth embodiments of the present invention and using the catalyst at different times by using the simulated artificial cloud chamber system, the environmental temperature change in the artificial cloud chamber system and PM2. Tables 1 to 4 show the results of determining the effect of the catalyst by calculating the removal efficiency of PM2.5 particulate matter by simulating with 5 indices (unit is μg / m 3).

その中で、脱除効率(%)の計算公式が下記の通りである。
脱除効率(%)=(初期PM2.5指数-触媒使用後PM2.5指数)/初期PM2.5指数×100%
Among them, the calculation formula of elimination efficiency (%) is as follows.
Elimination efficiency (%) = (Initial PM2.5 index-PM2.5 index after catalyst use) / Initial PM2.5 index x 100%

Figure 0006980743
Figure 0006980743

Figure 0006980743
Figure 0006980743

Figure 0006980743
Figure 0006980743

Figure 0006980743
Figure 0006980743

表1〜表4から見ると、本発明の実施形態1〜実施形態4の触媒を使用することによって、模擬人工霧箱システム内の環境温度とPM2.5粒子状物質含有量を削減し、且つ、時間の増加に伴って、模擬人工霧箱システム内の環境温度とPM2.5粒子状物質含有量が低くなり、且つ、脱除効率が向上する。本発明の実施形態1〜実施形態4の触媒は、環境に対して、良好な冷却、PM2.5粒子状物質脱除及び煙霧軽減効果を有する。時間の増加に伴って、冷却及び煙霧軽減の効果が著しくなる。使用時間が2hに達した後、冷却及び煙霧軽減の効果が段々安定になり、本発明における触媒によるPM2.5粒子状物質の脱除効率が83%以上に達することができる。 As can be seen from Tables 1 to 4, by using the catalysts of the first to fourth embodiments of the present invention, the environmental temperature and the PM2.5 particulate matter content in the simulated artificial cloud chamber system can be reduced, and the PM2.5 particulate matter content can be reduced. As time increases, the environmental temperature and PM2.5 particulate matter content in the simulated artificial cloud chamber system decrease, and the removal efficiency improves. The catalysts of Embodiments 1 to 4 of the present invention have good cooling, PM2.5 particulate matter removal, and haze reduction effects on the environment. With the increase in time, the effects of cooling and haze reduction become remarkable. After the usage time reaches 2 hours, the effects of cooling and reducing smoke gradually become stable, and the removal efficiency of PM2.5 particulate matter by the catalyst in the present invention can reach 83% or more.

以上述べた内容は、本発明の好ましい実施形態だけで、本発明に対する如何なる制限ではない。本発明の技術的本質に基づいて以上の実施形態に対して実施された如何なる簡単な修正、変更及び等価な変更は、皆本発明の保護範囲に属する。 The contents described above are only preferred embodiments of the present invention, and are not any restrictions on the present invention. Any simple modifications, modifications and equivalent modifications made to the above embodiments based on the technical nature of the invention are all within the scope of the invention.

Claims (8)

一種の触媒であり、下記の事項、即ち、当該触媒がCa、Na、Mgとアンモニウムの複合塩であり、当該触媒でのCa、Na、Mgとアンモニウムとのモル比が1:(0.2〜0.5):(0.2〜0.5):(0.5〜0.8)であること;前記触媒の製作プロセスが次の通り、即ち、Ca塩、Na塩、Mg塩及びアンモニウム塩を有機溶媒に溶解してスラリーを形成してから、噴霧乾燥を行うことによって、平均粒度が10μm以内である触媒を得ることを特徴とする煙霧削減作業に用いられる触媒の製造方法It is a kind of catalyst, and the following matters, that is, the catalyst is a composite salt of Ca, Na, Mg and ammonium, and the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: (0.2 to 0.5). ): (0.2 to 0.5): (0.5 to 0.8); The catalyst fabrication process is as follows: Ca salt, Na salt, Mg salt and ammonium salt are dissolved in an organic solvent to form a slurry. A method for producing a catalyst used in a smoke reduction operation, which comprises obtaining a catalyst having an average particle size of 10 μm or less by spray drying. 当該触媒でのCa、Na、Mgとアンモニウムとのモル比が1:(0.2〜0.3):(0.3〜0.4):(0.7〜0.8)であることを特徴とする請求項1に記載の煙霧削減作業に用いられる触媒の製造方法The haze reduction according to claim 1, wherein the molar ratio of Ca, Na, Mg and ammonium in the catalyst is 1: (0.2 to 0.3) :( 0.3 to 0.4) :( 0.7 to 0.8). A method for manufacturing a catalyst used in work. 前記噴霧乾燥の方法が陰圧噴霧乾燥であることを特徴とする請求項1に記載の煙霧削減作業に用いられる触媒の製造方法 The method for producing a catalyst used in the haze reduction work according to claim 1, wherein the spray drying method is negative pressure spray drying. 前記陰圧噴霧乾燥プロセスにおいて、高圧回転式ノズルで、スラリーを、陰圧環境に噴き出して造粒を行うことを特徴とする請求項3に記載の煙霧削減作業に用いられる触媒の製造方法 The method for producing a catalyst used in the smoke reduction work according to claim 3, wherein in the negative pressure spray drying process, the slurry is ejected into a negative pressure environment to perform granulation with a high-pressure rotary nozzle. 前記Ca塩が硝酸カルシウム、塩化カルシウム又は硫酸カルシウムであり、前記Na塩が硝酸ナトリウム、塩化ナトリウム又は硫酸ナトリウムであり、前記Mg塩が硝酸マグネシウム、塩化マグネシウム又は硫酸マグネシウムであり、前記アンモニウム塩が硝酸アンモニウム、塩化アンモニウム又は硫酸マグネシウムであることを特徴とする請求項1に記載の煙霧削減作業に用いられる触媒の製造方法The Ca salt is calcium nitrate, calcium chloride or calcium sulfate, the Na salt is sodium nitrate, sodium chloride or sodium sulfate, the Mg salt is magnesium nitrate, magnesium chloride or magnesium sulfate, and the ammonium salt is ammonium nitrate. , The method for producing a catalyst used for the smoke reduction work according to claim 1, wherein it is ammonium chloride or magnesium sulfate. 前記Ca塩が硝酸カルシウムであり、Na塩が塩化ナトリウムであり、Mg塩が硝酸マグネシウムであり、アンモニウム塩が硝酸アンモニウムであることを特徴とする請求項5に記載の煙霧削減作業に用いられる触媒の製造方法The catalyst used for the smoke reduction work according to claim 5, wherein the Ca salt is calcium nitrate, the Na salt is sodium chloride, the Mg salt is magnesium nitrate, and the ammonium salt is ammonium nitrate . Manufacturing method . 前記有機溶媒がメタノール、エタノールとアセトンから構成される混合溶媒であり、又はメタノールとアセトンから構成される混合溶媒であり、又はエタノールとアセトンから構成される混合溶媒であることを特徴とする請求項1に記載の煙霧削減作業に用いられる触媒の製造方法The claim is characterized in that the organic solvent is a mixed solvent composed of methanol, ethanol and acetone, a mixed solvent composed of methanol and acetone, or a mixed solvent composed of ethanol and acetone. The method for producing a solvent used for the smoke reduction work according to 1. 前記有機溶媒が、エタノールとアセトンを1:(0.9-1)の質量比で混合された混合溶媒であることを特徴とする請求項7に記載の煙霧削減作業に用いられる触媒の製造方法 The method for producing a catalyst used in the haze reduction operation according to claim 7, wherein the organic solvent is a mixed solvent in which ethanol and acetone are mixed in a mass ratio of 1: (0.9-1).
JP2019220406A 2019-05-06 2019-12-05 Manufacturing method of catalyst used for haze reduction work Active JP6980743B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910372801.3 2019-05-06
CN201910372801.3A CN110075881A (en) 2019-05-06 2019-05-06 It is a kind of for manually subtracting the catalyst of haze operation

Publications (2)

Publication Number Publication Date
JP2020183507A JP2020183507A (en) 2020-11-12
JP6980743B2 true JP6980743B2 (en) 2021-12-15

Family

ID=67418807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220406A Active JP6980743B2 (en) 2019-05-06 2019-12-05 Manufacturing method of catalyst used for haze reduction work

Country Status (2)

Country Link
JP (1) JP6980743B2 (en)
CN (1) CN110075881A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918119B (en) * 2019-11-01 2022-07-19 天津科技大学 High-hygroscopicity light porous particle warm cloud and fog catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196888B1 (en) * 2012-10-01 2020-12-30 가부시키가이샤 닛폰 쇼쿠바이 Dust-reducing agent comprising multiple metal compound, water absorbent containing multiple metal compound and method for manufacturing same
CN105289286A (en) * 2015-11-14 2016-02-03 华玉叶 Flue gas purifying process
CN109181643A (en) * 2017-03-03 2019-01-11 侯英翔 Metallic ore, nonmetallic ore and coal mine dig lane, when opencast mining, dust-removing method
CN107754513A (en) * 2017-11-14 2018-03-06 成都新柯力化工科技有限公司 PM2.5 particles removes haze agent and preparation method in a kind of quick elimination air
CN109082265A (en) * 2018-09-10 2018-12-25 浙江大学 A kind of efficient urban road dust suppressant

Also Published As

Publication number Publication date
CN110075881A (en) 2019-08-02
JP2020183507A (en) 2020-11-12

Similar Documents

Publication Publication Date Title
CN102380278B (en) Method for cooperatively promoting agglomeration growth of PM (particulate matter) 2.5 and treating desulfuration wastewater in evaporation manner and device of method
CN104474830B (en) For removing chemical agglomeration promotor and the using method thereof of coal-fired fine particle
Jiang et al. Characteristics and formation mechanisms of sulfate and nitrate in size-segregated atmospheric particles from urban Guangzhou, China
JP6980743B2 (en) Manufacturing method of catalyst used for haze reduction work
CN103550999B (en) Smectite-silica sol modified bentonite PM2.5 collector and application thereof
CN104147890A (en) Method for trapping coal-fired PM2.5 by using agglomeration of attapulgite turbid liquid
CN109942274A (en) A method of using red mud and coal ash for manufacturing for multi-stage porous haydite
CN109706549A (en) A kind of preparation method and application of NEW TYPE OF COMPOSITE boron nitride adsorbent material
CN103878007B (en) A kind ofly absorb the visible light catalytic composite and preparation method thereof decomposing pavement automobile exhaust
Sokan-Adeaga et al. Secondary inorganic aerosols: impacts on the global climate system and human health
CN103586011B (en) Sintering-free forming and coating method of MIL-101 material with ultrahigh specific surface area
CN106824050A (en) A kind of preparation method of dephosphorization adsorbent
CN105771531A (en) Chemical agglomeration promoter
CN108905549A (en) A kind of preparation method of fume desulfurizing agent
CN103923721B (en) Fluoride solidifying agent for treating fluorine pollution caused by burning coal and preparation method and application method thereof
CN107344062A (en) A kind of desulfurizing agent, its preparation method and application
CN106398649A (en) Method for preparation of calcium magnesium hydrochloride snow-melting agent from two-alkali salt sludge
CN107418516B (en) For in air cleaning and dust-proof material and method
CN110918119B (en) High-hygroscopicity light porous particle warm cloud and fog catalyst
CN104759257A (en) Preparation method of environmentally-friendly modified natural zeolite adsorbent for adsorbing LAS in wastewater
CN105903427B (en) A kind of cold clouds for being used to mitigate haze
Qiu et al. Characterization of the key material for elimination of PM2. 5 particles in the atmosphere
EP2133310A1 (en) Gypsum stabilisation method
CN112154839B (en) Artificial rainfall agent and preparation method and application thereof
CN106178867B (en) A method of hydrochloric acid calcium and magnesium deicing salt is prepared using lime-flue gas method salt slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6980743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150