JP6980588B2 - Biaxially stretched polypropylene laminated sheet and molded body - Google Patents

Biaxially stretched polypropylene laminated sheet and molded body Download PDF

Info

Publication number
JP6980588B2
JP6980588B2 JP2018062245A JP2018062245A JP6980588B2 JP 6980588 B2 JP6980588 B2 JP 6980588B2 JP 2018062245 A JP2018062245 A JP 2018062245A JP 2018062245 A JP2018062245 A JP 2018062245A JP 6980588 B2 JP6980588 B2 JP 6980588B2
Authority
JP
Japan
Prior art keywords
sheet
thickness
less
propylene
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062245A
Other languages
Japanese (ja)
Other versions
JP2019171668A (en
Inventor
康正 猪原
晋吾 上野
昌展 西江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FP Corp
Original Assignee
FP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FP Corp filed Critical FP Corp
Priority to JP2018062245A priority Critical patent/JP6980588B2/en
Publication of JP2019171668A publication Critical patent/JP2019171668A/en
Application granted granted Critical
Publication of JP6980588B2 publication Critical patent/JP6980588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、プロピレン系樹脂積層体を二軸延伸してなるシート、及び該シートを熱成形してなる成形体に関する。 The present invention relates to a sheet obtained by biaxially stretching a propylene resin laminate and a molded body obtained by thermoforming the sheet.

真空圧空成形等の方法でシートを熱成形した包装用容器は、種々の食品を収容するために用いられている。このシートには、剛性や透明性、熱成形性等の観点から二軸延伸ポリスチレンシートやアモルファスポリエチレンテレフタレートシートが用いられている他、近年では、ポリプロピレンシートの使用も検討されている。 A packaging container in which a sheet is thermoformed by a method such as vacuum compressed air molding is used for accommodating various foods. Biaxially stretched polystyrene sheets and amorphous polyethylene terephthalate sheets are used for this sheet from the viewpoints of rigidity, transparency, thermoformability and the like, and in recent years, the use of polypropylene sheets has also been studied.

一般的にポリプロピレンは、ポリスチレンやポリエチレンテレフタレートに比して透明性や剛性に劣る。しかしながら、延伸加工によって透明性と剛性が向上するため、熱成形用のシートに二軸延伸ポリプロピレンシートを用いることは有効な手段である。 Generally, polypropylene is inferior in transparency and rigidity to polystyrene and polyethylene terephthalate. However, since the transparency and rigidity are improved by the stretching process, it is an effective means to use a biaxially stretched polypropylene sheet as a sheet for thermoforming.

延伸、未延伸によらず、結晶性のポリプロピレンシートは、非晶性の二軸延伸ポリスチレンシートやアモルファスポリエチレンテレフタレートシートに比して、熱成形可能な加工温度範囲が狭い。結晶性のポリプロピレンシートの熱成形可能温度は、ポリプロピレンの融点近傍の限られた狭い範囲にあるので、少しの加熱不足で型再現不足が生じたり、少しでも加熱過剰になると急激な伸長粘度の低下による破れやシート表面の焦げが発生する。特に真空圧空成形等の大量生産向けの生産方法においては、シートをムラなく均一に加熱することにはある程度限界があるため、ポリプロピレンシート自体の熱成形可能温度範囲を広げることは、安定的な生産性を確保するためには解決すべき課題である。 Regardless of whether it is stretched or unstretched, the crystalline polypropylene sheet has a narrower thermoforming processing temperature range than the amorphous biaxially stretched polystyrene sheet and the amorphous polyethylene terephthalate sheet. Since the thermoformable temperature of a crystalline polypropylene sheet is in a limited and narrow range near the melting point of polypropylene, a slight underheating causes insufficient mold reproduction, or even a slight overheating causes a sharp decrease in extensional viscosity. The tearing and charring of the sheet surface occur. Especially in the production method for mass production such as vacuum pressure forming, there is a certain limit to uniformly and uniformly heat the sheet, so expanding the thermoforming temperature range of the polypropylene sheet itself is stable production. It is a problem to be solved in order to secure the sex.

下記特許文献1には、メタロセン触媒により製造されたプロピレン系樹脂からなる熱成形用の二軸延伸ポリプロピレンシートが記載されている。低融点のプロピレン系樹脂を適宜配合することで、透明性が向上すると同時に、シートの熱成形可能温度範囲が広がることが記載されている。しかしながら、エチレン等のα−オレフィンを共重合させたり立体規則性を低下させたりすることで低融点にしたプロピレン系樹脂をシート全体に配合すると、シート及びそのシートから熱成形した熱成形品の剛性が著しく低下する。 The following Patent Document 1 describes a biaxially stretched polypropylene sheet for thermoforming made of a propylene-based resin produced by a metallocene catalyst. It is described that the transparency can be improved and the thermoforming temperature range of the sheet can be widened by appropriately blending a propylene resin having a low melting point. However, when a propylene-based resin having a low melting point by copolymerizing an α-olefin such as ethylene or reducing the stereoregularity is blended in the entire sheet, the rigidity of the sheet and the thermoformed product thermoformed from the sheet are obtained. Is significantly reduced.

特開2006−328300号公報Japanese Unexamined Patent Publication No. 2006-328300

本発明は、剛性と透明性に優れ、熱成形可能温度範囲が広い、二軸延伸ポリプロピレン積層シートと、該シートを熱成形した成形体を提供することを課題とする。 An object of the present invention is to provide a biaxially stretched polypropylene laminated sheet having excellent rigidity and transparency and a wide thermoforming temperature range, and a molded body obtained by thermoforming the sheet.

本発明に係る二軸延伸ポリプロピレン積層シートは、主層と、該主層の両側にそれぞれ位置する表層とを備え、表層の融点は165℃以上であり、主層の融点は表層の融点よりも低く、表層と主層との融点差は3℃以上9℃以下であり、シート全厚は100μm以上500μm以下であり、シート全厚に対する表層の片側厚みの比率は3%以上18%以下であり、シート全厚に対する表層の合計厚みの比率は6%以上28%以下であり、ヘーズは2.5%以下である。 The biaxially stretched polypropylene laminated sheet according to the present invention includes a main layer and surface layers located on both sides of the main layer, and the melting point of the surface layer is 165 ° C. or higher, and the melting point of the main layer is higher than the melting point of the surface layer. It is low, the melting point difference between the surface layer and the main layer is 3 ° C. or more and 9 ° C. or less, the total thickness of the sheet is 100 μm or more and 500 μm or less, and the ratio of the thickness of one side of the surface layer to the total thickness of the sheet is 3% or more and 18% or less. The ratio of the total thickness of the surface layer to the total thickness of the sheet is 6% or more and 28% or less, and the haze is 2.5% or less.

特に、表層は、800ppm以上1900ppm以下の核剤を含み、主層は、核剤を含まない、又は、800ppm以下の核剤を含み、主層のMw/Mnは、7以上14以下であることが好ましい。 In particular, the surface layer contains a nucleating agent of 800 ppm or more and 1900 ppm or less, the main layer contains no nucleating agent or contains a nucleating agent of 800 ppm or less, and the Mw / Mn of the main layer is 7 or more and 14 or less. Is preferable.

更に、厚薄精度は12%以下であり、引張弾性率は1800MPa以上であることが好ましい。 Further, it is preferable that the thickness / thinness accuracy is 12% or less and the tensile elastic modulus is 1800 MPa or more.

また、本発明に係る成形体は、これらのシートを熱成形したものである。 Further, the molded body according to the present invention is a thermoformed sheet of these sheets.

本発明による二軸延伸ポリプロピレン積層シートは、剛性と透明性に優れ、しかも、広い範囲の加工温度で熱成形できる。 The biaxially stretched polypropylene laminated sheet according to the present invention is excellent in rigidity and transparency, and can be thermoformed in a wide range of processing temperatures.

本発明の一実施形態における二軸延伸ポリプロピレン積層シートの部分拡大断面図。FIG. 3 is a partially enlarged cross-sectional view of a biaxially stretched polypropylene laminated sheet according to an embodiment of the present invention.

以下、本発明の一実施形態に係る二軸延伸ポリプロピレン積層シート(以下、単にシートという。)とそれを用いた成形体について説明する。図1に本実施形態におけるシートの要部を断面図で示している。シートは、主層1と、該主層1の表裏表側にそれぞれ位置する第一の表層2a及び第二の表層2bとを備えている。尚、第一及び第二の表層2a,2bを特に区別することなくまとめて表層2a,2bと称する。主層1は、単層であってもよいし、多層であってもよい。 Hereinafter, a biaxially stretched polypropylene laminated sheet (hereinafter, simply referred to as a sheet) according to an embodiment of the present invention and a molded product using the same will be described. FIG. 1 shows a cross-sectional view of a main part of the sheet in the present embodiment. The sheet includes a main layer 1 and a first surface layer 2a and a second surface layer 2b located on the front and back sides of the main layer 1, respectively. The first and second surface layers 2a and 2b are collectively referred to as surface layers 2a and 2b without particular distinction. The main layer 1 may be a single layer or a multilayer.

表層2a,2bは、融点が165℃以上のプロピレン系樹脂から構成されている。主層1は、表層2a,2bよりも融点が3℃〜9℃低いプロピレン系樹脂から構成されている。シートの厚薄精度は、12%以下であることが好ましい。シートの引張弾性率は、1800MPa以上であることが好ましい。シートのヘーズは、2.5%以下であることが好ましい。透過法によるシートの像鮮明度は、60%以上であることが好ましい。シートを熱成形する際の成形可能温度の範囲は、8℃以上であることが好ましい。 The surface layers 2a and 2b are made of a propylene-based resin having a melting point of 165 ° C. or higher. The main layer 1 is made of a propylene-based resin having a melting point of 3 ° C. to 9 ° C. lower than that of the surface layers 2a and 2b. The thickness / thinness accuracy of the sheet is preferably 12% or less. The tensile elastic modulus of the sheet is preferably 1800 MPa or more. The haze of the sheet is preferably 2.5% or less. The image sharpness of the sheet by the transmission method is preferably 60% or more. The range of the moldable temperature at the time of thermoforming the sheet is preferably 8 ° C. or higher.

表層2a,2bを構成するプロピレン系樹脂としては、融点が165℃以上であればよく、プロピレン単独重合体、プロピレンとαオレフィンとのランダム共重合体などが含まれる。ここで、αオレフィンとしては、エチレン、ブテン−1、ペンテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1等を用いることができる。これらのなかで最も好ましくは、プロピレン単独重合体である。表層2a,2bの融点が165℃を下回ると、それに伴い主層1を構成するポリプロピレンの融点が低下すると同時に、シート全体の剛性が低下するため好ましくない。 The propylene-based resin constituting the surface layers 2a and 2b may have a melting point of 165 ° C. or higher, and includes a propylene homopolymer, a random copolymer of propylene and an α-olefin, and the like. Here, as the α-olefin, ethylene, butene-1, penten-1, hexene-1, octene-1, 4-methyl-pentene-1, and the like can be used. Of these, the propylene homopolymer is most preferable. If the melting points of the surface layers 2a and 2b are lower than 165 ° C., the melting point of polypropylene constituting the main layer 1 is lowered, and at the same time, the rigidity of the entire sheet is lowered, which is not preferable.

主層1を構成するプロピレン系樹脂は、表層2a,2bを構成するプロピレン系樹脂よりも融点が3℃〜9℃低いものが好ましく、プロピレン単独重合体や、プロピレン−αオレフィン共重合体などが含まれる。ここでαオレフィンとしては、エチレン、ブテン−1、ペンテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1等を用いることができる。これらのなかで好ましくは、プロピレン−αオレフィン共重合体であり、最も好ましくはエチレンとのランダム共重合体である。 The propylene-based resin constituting the main layer 1 preferably has a melting point lower than that of the propylene-based resins constituting the surface layers 2a and 2b by 3 ° C. to 9 ° C., and a propylene homopolymer, a propylene-α-olefin copolymer, or the like is preferable. included. Here, as the α-olefin, ethylene, butene-1, pentene-1, hexene-1, octene-1, 4-methyl-pentene-1, and the like can be used. Of these, a propylene-α-olefin copolymer is preferable, and a random copolymer with ethylene is most preferable.

<融点差>
表層2a,2bと主層1との融点差は、3℃〜9℃であることが好ましい。表層2a,2bと主層1との融点差がこの範囲を上回ると、二軸延伸時のシートの厚薄精度が低下する。厚薄精度が低下すると、熱成形における低温側の加工温度域において、厚みの大きい箇所では部分的な型再現不足が生じ、厚みの薄い箇所では極度の薄肉が生じやすく、結果としてシートの成形可能温度範囲を狭めることになりやすい。逆に、上記した範囲よりも融点差が小さい場合も、主層1の融点が、高融点の表層2a,2bの融点と変わらなくなるため、熱成形における低温側の成形可能温度範囲を狭めることになりやすい。
<Melting point difference>
The melting point difference between the surface layers 2a and 2b and the main layer 1 is preferably 3 ° C to 9 ° C. If the melting point difference between the surface layers 2a and 2b and the main layer 1 exceeds this range, the thickness and thinness accuracy of the sheet during biaxial stretching is lowered. When the thickness / thinness accuracy is lowered, in the processing temperature range on the low temperature side in thermoforming, partial mold reproduction is insufficient in the thick part, and extremely thin wall is likely to occur in the thin part, and as a result, the moldable temperature of the sheet is likely to occur. It tends to narrow the range. On the contrary, even when the melting point difference is smaller than the above range, the melting point of the main layer 1 does not change from the melting points of the high melting points surface layers 2a and 2b, so that the moldable temperature range on the low temperature side in thermoforming is narrowed. Prone.

<MFR>
表層2a,2bに用いるポリプロピレンのMFRは1〜30g/10分であり、2〜20g/10分が好ましく、主層1に用いるポリプロピレンのMFRは1〜15g/10分であり、2〜10g/10分が好ましい。該MFRが上記範囲内であると、延伸前の積層体を押出成形する際の加工性に優れる。
<MFR>
The polypropylene MFR used for the surface layers 2a and 2b is 1 to 30 g / 10 minutes, preferably 2 to 20 g / 10 minutes, and the polypropylene MFR used for the main layer 1 is 1 to 15 g / 10 minutes, 2 to 10 g / min. 10 minutes is preferable. When the MFR is within the above range, the processability when the laminate before stretching is extruded is excellent.

<エチレン含有量>
エチレンを共重合させる場合のエチレン含有量は1.0重量%以下であり、0.1〜0.6重量%以下が好ましい。エチレン含有量がこの範囲にあることで、透明性、剛性のバランスがとれている。
<Ethylene content>
When ethylene is copolymerized, the ethylene content is 1.0% by weight or less, preferably 0.1 to 0.6% by weight or less. When the ethylene content is in this range, transparency and rigidity are well balanced.

<Mw/Mn>
主層1を構成するポリプロピレンのMw/Mnは7以上14以下が好ましい。主層1を構成するポリプロピレンのMw/Mnが7を下回ると二軸延伸時の厚薄精度の低下を引き起こしやく、その結果、シートの熱成形可能温度範囲を狭めることになりやすい。
<Mw / Mn>
The Mw / Mn of polypropylene constituting the main layer 1 is preferably 7 or more and 14 or less. If the Mw / Mn of polypropylene constituting the main layer 1 is less than 7, the thickness / thinness accuracy at the time of biaxial stretching tends to decrease, and as a result, the thermoforming temperature range of the sheet tends to be narrowed.

<核剤>
表層2a,2bには、結晶核剤を含むことが好ましい。表層2a,2bの核剤の含有量は、800ppm〜1900ppmが好ましい。表層2a,2bに含まれる核剤の量が800ppmを下回ると、ヘーズ値が上昇し、シートの像鮮明度が低下する。表層2a,2bに含まれる核剤の量が1900ppmを超えると、表層2a,2bの結晶化スピードが上がり、二軸延伸時の厚薄精度の低下を引き起こしやすい。その結果、シートの熱成形可能温度範囲を狭めることになりやすい。
<Nuclear agent>
The surface layers 2a and 2b preferably contain a crystal nucleating agent. The content of the nucleating agent in the surface layers 2a and 2b is preferably 800 ppm to 1900 ppm. When the amount of the nucleating agent contained in the surface layers 2a and 2b is less than 800 ppm, the haze value increases and the image sharpness of the sheet decreases. When the amount of the nucleating agent contained in the surface layers 2a and 2b exceeds 1900 ppm, the crystallization speed of the surface layers 2a and 2b increases, and the thickness and thinness accuracy at the time of biaxial stretching tends to decrease. As a result, the thermoformed temperature range of the sheet tends to be narrowed.

主層1には核剤を含まないことが好ましい。あるいは、主層1に核剤が含まれているとしても、その含有量は800ppm以下であることが好ましい。主層1に含まれる核剤の量が800ppmを超えると、主層1の結晶化スピードが上がり、二軸延伸時の厚薄精度の低下を引き起こしやすい。その結果、シートの熱成形可能温度範囲を狭めることになりやすい。 It is preferable that the main layer 1 does not contain a nucleating agent. Alternatively, even if the main layer 1 contains a nucleating agent, its content is preferably 800 ppm or less. When the amount of the nucleating agent contained in the main layer 1 exceeds 800 ppm, the crystallization speed of the main layer 1 increases, which tends to cause a decrease in thickness and thinning accuracy during biaxial stretching. As a result, the thermoformed temperature range of the sheet tends to be narrowed.

結晶核剤としては、ノニトール系核剤、ソルビトール系核剤、リン酸エステル系核剤、トリアミノベンゼン誘導体核剤、カルボン酸金属塩核剤、およびキシリトール系核剤から選択されることが好ましい。特に熱成形後の透明性を維持するためには、ノニトール系核剤またはソルビトール系核剤の使用がより好ましい。また、これらの結晶核剤は、単独であるいは2種以上を組み合わせて用いることができる。 The crystal nucleating agent is preferably selected from nonitol-based nucleating agents, sorbitol-based nucleating agents, phosphate ester-based nucleating agents, triaminobenzene derivative nucleating agents, carboxylic acid metal salt nucleating agents, and xylitol-based nucleating agents. In particular, in order to maintain transparency after thermoforming, it is more preferable to use a nonitol-based nucleating agent or a sorbitol-based nucleating agent. In addition, these crystal nucleating agents can be used alone or in combination of two or more.

シートには、結晶核剤以外のその他の添加剤を含有させることができる。その他の添加剤の例としては、酸化防止剤、中和剤、塩素吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、アンチブロッキング剤、帯電防止剤、防曇剤、難燃剤、分散剤、銅害防止剤、可塑剤、架橋剤、過酸化物、油展および他の有機および無機顔料等のポリオレフィンに通常用いられる慣用の添加剤が挙げられる。 The sheet may contain other additives other than the crystal nucleating agent. Examples of other additives include antioxidants, neutralizers, chlorine absorbers, heat stabilizers, light stabilizers, UV absorbers, internal lubricants, external lubricants, antiblocking agents, antistatic agents, antifogging agents. , Flame retardants, dispersants, copper damage inhibitors, plasticizers, crosslinkers, peroxides, oil spreads and other conventional additives commonly used for polyolefins such as organic and inorganic pigments.

シート表面に帯電防止剤、防曇剤、滑剤などを塗布することもできる。ここで、防曇剤としては、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、水溶性高分子等が使用され、滑剤としてはシリコーンオイルなどが使用され得る。 An antistatic agent, an anti-fog agent, a lubricant, or the like can be applied to the surface of the sheet. Here, as the anti-fog agent, sucrose fatty acid ester, polyglycerin fatty acid ester, water-soluble polymer and the like can be used, and as the lubricant, silicone oil and the like can be used.

<厚み>
シートの全厚Tは、100〜500μmであることが好ましく、特に130〜350μmが好ましい。成形品の実用的な剛性を考慮すると、シートの全厚Tの下限としては100μmが妥当である。シートの全厚Tが500μmを超えるものを得ようとすると、二軸延伸の際に、シートを挟んで保持しているチャックが外れやすく、二軸延伸不可となりやすい。
<Thickness>
The total thickness T of the sheet is preferably 100 to 500 μm, particularly preferably 130 to 350 μm. Considering the practical rigidity of the molded product, 100 μm is appropriate as the lower limit of the total thickness T of the sheet. If a sheet having a total thickness T of more than 500 μm is to be obtained, the chuck holding the sheet in between is likely to come off during biaxial stretching, and biaxial stretching is likely to be impossible.

シートの全厚Tに対する表層2a,2bの片側厚みの比率は、3%〜18%であることが好ましい。シートの全厚Tに対する表層2a,2bの片側厚みの比率は、シートの全厚Tに対する第一の表層2aの厚みT2aの比率、及び、シートの全厚Tに対する第二の表層2aの厚みT2bの比率である。高融点である表層2a,2bの片側厚みが3%を下回ると、即ち、シートの全厚Tに対する第一の表層2aの厚みT2aの比率とシートの全厚Tに対する第二の表層2aの厚みT2bの比率のうち、一方でも3%を下回ると、熱成形時にシート表面の焦げが発生し易くなり、結果として高温側の成形可能温度範囲を狭めることになる。逆に高融点である表層2a,2bの片側厚みが18%を超えると、低温側の成形可能温度範囲を狭めることになる。 The ratio of the thickness on one side of the surface layers 2a and 2b to the total thickness T of the sheet is preferably 3% to 18%. The ratio of the thickness of one side of the surface layers 2a and 2b to the total thickness T of the sheet is the ratio of the thickness T2a of the first surface layer 2a to the total thickness T of the sheet and the thickness T2b of the second surface layer 2a to the total thickness T of the sheet. Is the ratio of. When the one-sided thickness of the surface layers 2a and 2b having a high melting point is less than 3%, that is, the ratio of the thickness T2a of the first surface layer 2a to the total thickness T of the sheet and the thickness of the second surface layer 2a to the total thickness T of the sheet. If one of the ratios of T2b is less than 3%, the surface of the sheet is likely to be charred during thermoforming, and as a result, the moldable temperature range on the high temperature side is narrowed. On the contrary, if the thickness of one side of the surface layers 2a and 2b having a high melting point exceeds 18%, the moldable temperature range on the low temperature side is narrowed.

シートの全厚Tに対する両表層2a,2bの合計厚み(T2a+T2b)の比率は、6%〜28%であることが好ましい。下限の6%以上は、前述の片側厚み3%以上に依拠する。高融点である表層2a,2bの合計厚みが28%を超えた場合、低温側の熱成形可能温度範囲を狭めることになる。また、高融点のポリプロピレン層の構成比率が上がることにより、二軸延伸時の厚薄精度が低下し好ましくない。 The ratio of the total thickness (T2a + T2b) of both surface layers 2a and 2b to the total thickness T of the sheet is preferably 6% to 28%. The lower limit of 6% or more depends on the above-mentioned one-sided thickness of 3% or more. When the total thickness of the surface layers 2a and 2b having a high melting point exceeds 28%, the thermoforming temperature range on the low temperature side is narrowed. Further, as the composition ratio of the polypropylene layer having a high melting point increases, the thickness / thinness accuracy at the time of biaxial stretching decreases, which is not preferable.

<延伸倍率>
シートの延伸倍率は、縦横共に3〜6倍とすることが好ましい。延伸倍率が3倍を下回ると、延伸加工による剛性向上の効果が十分なものでなくなり、延伸倍率が6倍を超えると、熱成形が困難となる。
<Stretching ratio>
The stretch ratio of the sheet is preferably 3 to 6 times in both vertical and horizontal directions. If the draw ratio is less than 3 times, the effect of improving the rigidity by the stretching process is not sufficient, and if the draw ratio exceeds 6 times, thermoforming becomes difficult.

<評価方法>
<示差走査熱量計(DSC)で測定される融点>
3.0mgの試料を秤量後アルミパンに封入し、示差走査熱量計(型式:DSC−60、島津製作所製)にて、20ml/分で供給される窒素気流中で210℃まで昇温し、この温度で3分間保持し、次いで降温速度10℃/分で30℃まで冷却する。次いで、昇温速度10℃/分で210℃まで昇温する際に得られる吸熱曲線において最大吸熱を示すピーク温度を融点とした。
<Evaluation method>
<Melting point measured by differential scanning calorimeter (DSC)>
After weighing a 3.0 mg sample, it is sealed in an aluminum pan, and the temperature is raised to 210 ° C. in a nitrogen stream supplied at 20 ml / min with a differential scanning calorimeter (model: DSC-60, manufactured by Shimadzu Corporation). It is held at this temperature for 3 minutes and then cooled to 30 ° C. at a cooling rate of 10 ° C./min. Next, the peak temperature showing the maximum endothermic process in the endothermic curve obtained when the temperature was raised to 210 ° C. at a heating rate of 10 ° C./min was defined as the melting point.

<メルトフローレート(MFR)>
原料のプロピレン系樹脂のメルトフローレートは、JIS K7210に従い、温度230℃、荷重21.18Nの条件で測定した。
<Melt flow rate (MFR)>
The melt flow rate of the raw material propylene resin was measured according to JIS K7210 under the conditions of a temperature of 230 ° C. and a load of 21.18 N.

<共重合体中のエチレン含有量>
共重合体中のエチレン含有量は、1,2,4−トリクロロベンゼン/重水素化ベンゼンの混合溶媒に溶解した試料について、日本電子社製JNM LA−400(13C共鳴周波数100MHz)を用い、13C−NMR法で測定した値から算出した。
<Ethylene content in copolymer>
The ethylene content in the copolymer was 13C using JNM LA-400 (13C resonance frequency 100MHz) manufactured by JEOL Ltd. for the sample dissolved in the mixed solvent of 1,2,4-trichlorobenzene / dehydrogenated benzene. -Calculated from the values measured by the NMR method.

<分子量分布(Mw/Mn)>
重合体または共重合体の分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィにより重量平均分子量(Mw)および数平均分子量(Mn)を測定し、Mw/Mnを算出して得られる値である。装置としてポリマーラボラトリーズ社製PL GPC220を使用し、酸化防止剤を含む1,2,4−トリクロロベンゼンを移動相とし、カラムとして昭和電工社製UT−G(1本)、UT−807(1本)、UT−806M(2本)を直列に接続したものを使用し、検出器として示差屈折率計を使用した。また、ポリプロピレン組成物の試料溶液の溶媒としては移動相と同じものを使用し、1mg/mLの試料濃度で、150℃の温度で振とうさせながら2時間溶解して測定試料を調整した。これにより得た試料溶液500μLをカラムに注入し、流速1.0mL/分、温度145℃、データ取り込み間隔1秒で測定した。カラムの較正には、分子量580〜745万のポリスチレン標準試料(Shodex STANDARD、昭和電工株式会社製)を使用し、三次式近似で行った。Mark−Houkinsの係数は、ポリスチレン標準試料に関しては、K=1.21×10−4、α=0.707、プロピレン系重合体に関しては、K=1.37×10−4、α=0.75を使用した。
<Molecular weight distribution (Mw / Mn)>
The molecular weight distribution (Mw / Mn) of the polymer or copolymer is a value obtained by measuring the weight average molecular weight (Mw) and the number average molecular weight (Mn) by gel permeation chromatography and calculating Mw / Mn. .. PL GPC220 manufactured by Polymer Laboratories is used as an apparatus, 1,2,4-trichlorobenzene containing an antioxidant is used as a mobile phase, and Showa Denko UT-G (1) and UT-807 (1) are used as columns. ), UT-806M (2 pieces) connected in series, and a differential refractometer was used as a detector. The same solvent as the mobile phase was used as the solvent for the sample solution of the polypropylene composition, and the sample was dissolved at a sample concentration of 1 mg / mL for 2 hours while shaking at a temperature of 150 ° C. to prepare a measurement sample. 500 μL of the sample solution thus obtained was injected into the column, and measurements were taken at a flow rate of 1.0 mL / min, a temperature of 145 ° C., and a data acquisition interval of 1 second. A polystyrene standard sample (Shodex STANDARD, manufactured by Showa Denko KK) having a molecular weight of 580 to 7.45 million was used for column calibration, and a cubic approximation was used. The coefficients of Mark-Houkins are K = 1.21 × 10-4, α = 0.707 for polystyrene standard samples, and K = 1.37 × 10-4, α = 0. For propylene-based polymers. 75 was used.

<シートの厚みと厚薄精度>
シートの厚みと厚薄精度は、連続厚み計(山文電気社製TOF−4R05)を用いて、シートの幅方向に1mmピッチで200点の測定を行い、これを流れ方向に20mm間隔で10本分測定した際の、平均厚みA(μm)と標準偏差σ(μm)を求め、次式にて求めた値を用いた。
厚薄精度[%]=(2σ/A)×100
厚薄精度の値が小さいほど厚みムラが小さいことを意味し、延伸シートの場合は均一延伸性に優れることを意味する。
<Sheet thickness and thickness accuracy>
For the thickness and thickness / thickness accuracy of the sheet, 200 points were measured at a pitch of 1 mm in the width direction of the sheet using a continuous thickness meter (TOF-4R05 manufactured by Yamabun Electric Co., Ltd.), and 10 sheets were measured at intervals of 20 mm in the flow direction. The average thickness A (μm) and the standard deviation σ (μm) were obtained when the minute measurement was performed, and the values obtained by the following equation were used.
Thickness / thinness accuracy [%] = (2σ / A) × 100
The smaller the thickness / thinness accuracy value, the smaller the thickness unevenness, and in the case of a stretched sheet, it means that the uniform stretchability is excellent.

<引張弾性率>
シートの引張弾性率は、JIS K7161−1に従い、室温23℃の雰囲気中で引張速度1mm/分で測定した。
<Tension modulus>
The tensile elastic modulus of the sheet was measured according to JIS K7161-1 at a tensile speed of 1 mm / min in an atmosphere at room temperature of 23 ° C.

<透過法による像鮮明度>
シートの透過法による、くし幅1.0mmにおける像鮮明度をJIS K 7374に準拠して測定した。像鮮明度の値が大きいほど曇り感が少なく、透明性に優れている。
<Image sharpness by transmission method>
The image sharpness at a comb width of 1.0 mm by the sheet transmission method was measured according to JIS K 7374. The larger the image sharpness value, the less cloudiness and the better the transparency.

<ヘーズ>
シートのヘーズは、JIS K 7136に準拠して、ヘーズメーター(型式:NDH4000、日本電色製)で測定した。熱成形体のヘーズも同様に測定した。
<Haze>
The haze of the sheet was measured with a haze meter (model: NDH4000, manufactured by Nippon Denshoku) in accordance with JIS K 7136. The haze of the thermoformed body was measured in the same manner.

以下、本発明の実施例を詳細に説明するが、本発明は以下の記載例に限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to the following description examples.

<使用原料>
使用した原料の一覧を表1に示す。
<Raw materials used>
Table 1 shows a list of the raw materials used.

Figure 0006980588
Figure 0006980588

<試験用シートの作製>
[実施例1〜7、比較例1〜11]
以下のようにして試験用のシートを作製した。まず、上記したポリプロピレン材料を用い、表2〜表4に示された層構成のシートを、多層シート成形機((株)プラスチック工学研究所製)を使用して次のように作製した。表2に実施例1〜7を示し、表3及び表4に比較例1〜11を示している。
<Preparation of test sheet>
[Examples 1 to 7, Comparative Examples 1 to 11]
A test sheet was prepared as follows. First, using the above-mentioned polypropylene material, the sheets having the layer structure shown in Tables 2 to 4 were produced as follows using a multilayer sheet molding machine (manufactured by Plastic Engineering Laboratory Co., Ltd.). Examples 1 to 7 are shown in Table 2, and Comparative Examples 1 to 11 are shown in Tables 3 and 4.

加工条件としては、押出機の溶融温度およびダイス温度は230℃にし、40℃にした金属製のキャスティングドラムで押し出されたシートを挟み込み、厚さ3.2mmの積層体を作製した。結晶核剤として、ノニトール系核剤(Millad NX8000、ミリケンジャパン社製)のマスターバッチを、表中に記載された濃度になるように適量添加した。上記作製した未延伸の積層体を120mm×120mmの大きさに切り取り、これを二軸延伸装置(Bruckner社製、KARO IV)にセットし、160℃の雰囲気化で3分間加熱し、延伸速度100%/秒、縦横4.0倍の延伸倍率で縦横同時延伸を行い、200μm厚の二軸延伸ポリプロピレン積層シートを作製した。 As the processing conditions, the melting temperature and the die temperature of the extruder were set to 230 ° C., and the extruded sheet was sandwiched between metal casting drums set to 40 ° C. to prepare a laminate having a thickness of 3.2 mm. As the crystal nucleating agent, a masterbatch of a nonitol-based nucleating agent (Milllad NX8000, manufactured by Milliken Japan Co., Ltd.) was added in an appropriate amount so as to have the concentration shown in the table. The unstretched laminate prepared above was cut into a size of 120 mm × 120 mm, set in a biaxial stretching device (bruckner, KARO IV), heated in an atmosphere of 160 ° C. for 3 minutes, and stretched at a stretching speed of 100. Simultaneous vertical and horizontal stretching was performed at a stretching ratio of% / sec and a stretching ratio of 4.0 times in the vertical and horizontal directions to prepare a biaxially stretched polypropylene laminated sheet having a thickness of 200 μm.

<シートの成形可能温度>
二軸延伸積層ポリプロピレンシートの熱成形可能温度は、真空圧空成形機を使用して半球形状の容器(成形体)を成形することによって評価した。まず、熱成形するシートの表面に熱電対を貼り付け、これをヒーター温度300℃に設定した加熱炉で、10秒からスタートして0.5秒刻みで加熱時間を延ばして成形し、それぞれの加熱時間における成形容器を得た。この時、熱電対で実測されたシート温度をシートの加工温度とし、その加工温度における成形体に破れやシート表面の焦げ、又は型再現不足や薄肉がなかった場合に、その加工温度を熱成形可能温度とした。シートが熱成形可能温度を超えて加熱された際に発生する、破れ又は焦げの有無については目視による観察を行った。
<Sheet moldable temperature>
The thermoformable temperature of the biaxially stretched laminated polypropylene sheet was evaluated by molding a hemispherical container (molded body) using a vacuum compressed air molding machine. First, a thermocouple is attached to the surface of the sheet to be thermoformed, and this is molded in a heating furnace set to a heater temperature of 300 ° C., starting from 10 seconds and extending the heating time in 0.5 second increments. A molded container at the heating time was obtained. At this time, the sheet temperature actually measured by the thermocouple is used as the sheet processing temperature, and if the molded body at that processing temperature is not torn, the sheet surface is scorched, the mold reproduction is insufficient, or the thin wall is not formed, the processing temperature is thermoformed. The possible temperature was set. The presence or absence of tearing or charring that occurred when the sheet was heated above the thermoforming temperature was visually observed.

シートが熱成形可能温度を下回った際に生じる全体的な型再現不足、及びシートの厚薄ムラによって生ずる部分的な型再現不足や薄肉については、次のように判定した。まず、シートが熱成形によって容器に展開された時の二次元的な歪を次のように定義する。この二次元的な歪とは、シート面積の増加量を元のシート面積で除した値であり、以下、「面歪」という。
面歪=(B−A)/A
A:容器の開口面積
B:容器の開口部から外側に延びる平坦部を除いた、容器内面の面積
ところで、成形前後の面積と厚みは次の関係にある。
A×a=B×b
a:成形前のシート厚み
b:成形された容器の厚み
すなわち、「A:B=b:a」の関係が成り立つため、面歪はシートの成形前後の厚みを用いて、次式のように変換することができる。
面歪=(a−b)/b
厚み200μmのシートを用い、計算上の理想面歪が100%となる容器の金型(φ60mmの半球容器。理想面歪100%=(2Πr−Πr)/Πr。理想状態の成形がされれば、容器厚みは100μmとなる。)を使用して熱成形を行った。
The overall lack of mold reproduction caused by the sheet falling below the thermoforming temperature, and the partial lack of mold reproduction and thinning caused by the uneven thickness of the sheet were determined as follows. First, the two-dimensional strain when the sheet is unfolded into a container by thermoforming is defined as follows. This two-dimensional strain is a value obtained by dividing the amount of increase in the seat area by the original seat area, and is hereinafter referred to as "surface strain".
Surface strain = (BA) / A
A: Opening area of the container B: Area of the inner surface of the container excluding the flat portion extending outward from the opening of the container By the way, the area and the thickness before and after molding have the following relationship.
A × a = B × b
a: Sheet thickness before molding
b: Thickness of the molded container That is, since the relationship of "A: B = b: a" is established, the surface strain can be converted by the following equation using the thickness before and after molding of the sheet.
Surface strain = (ab) / b
With a thickness of 200μm sheet, mold vessel ideal surface distortion on calculation is 100% (hemispherical container 60 mm. Ideal plane strain 100% = (2Πr 2 -Πr 2 ) / Πr 2. The ideal state molding If so, the thickness of the container will be 100 μm), and thermoforming was performed.

各加工温度で成形された容器の厚みを5箇所測定し、測定箇所すべての面歪が95%以上105%以下であれば、十分かつ均一な型再現がされているとし、測定箇所のうち面歪95%未満のところや面歪105%を超えるところが一つでもあれば、全体的な型再現不足又は不均一な型再現であると判定した。総じて破れ又は焦げがなく、かつ、測定箇所の面歪が全て95%以上105%以下であった成形品の加工温度を熱成形可能温度とした。 The thickness of the container molded at each processing temperature is measured at 5 points, and if the surface strain of all the measurement points is 95% or more and 105% or less, it is assumed that sufficient and uniform mold reproduction is performed, and the surface of the measurement points is If there is even one place where the strain is less than 95% or the surface strain exceeds 105%, it is judged that the overall mold reproduction is insufficient or the mold reproduction is non-uniform. The processing temperature of the molded product, which was generally not torn or burnt and had all surface strains at the measurement points of 95% or more and 105% or less, was defined as the thermoforming temperature.

表2〜表4において、「表層片厚比」とは、シート全厚Tに対する表層2a,2bの片側厚みの比率であり、「表層総厚比」とは、シート全厚Tに対する表層2a,2bの合計厚みの比率である。 In Tables 2 to 4, the "surface layer piece thickness ratio" is the ratio of the one-sided thicknesses of the surface layers 2a and 2b to the total sheet thickness T, and the "surface layer total thickness ratio" is the surface layer 2a, to the total sheet thickness T. The ratio of the total thickness of 2b.

Figure 0006980588
Figure 0006980588

Figure 0006980588
Figure 0006980588

Figure 0006980588
Figure 0006980588

<実施例1〜7>
表2のように、実施例1〜7のシートは、何れも、熱成形可能な温度範囲が8℃あるいは9℃となり、広い温度範囲で熱成形が可能である。例えば、実施例1のシートの場合には、154℃では面歪が93%の測定箇所があり、163℃では焦げが発生したが、155℃〜162℃で熱成形可能であり、8℃という広い熱成形可能温度範囲が得られた。また、実施例1〜7のシートのヘーズは2.5%以下、特には2.0%以下であり、また、シートの像鮮明度は60%以上、特には70%以上であって、透明性に優れている。また、シートのヘーズをシートの全厚Tで割った値(ヘーズ/厚み)は、10%/mm以下であった。また、厚薄精度は12%以下であり、厚みの均一性が優れている。引張弾性率は、1800MPa以上、特には1900Mpa以上であって、高い剛性が得られた。このように、高い剛性と、優れた透明性を有し、均一な厚みで、熱成形可能温度範囲も広いシートが得られた。
<Examples 1 to 7>
As shown in Table 2, all of the sheets of Examples 1 to 7 have a thermoforming temperature range of 8 ° C. or 9 ° C., and can be thermoformed over a wide temperature range. For example, in the case of the sheet of Example 1, there is a measurement point where the surface strain is 93% at 154 ° C., and charring occurs at 163 ° C., but thermoforming is possible at 155 ° C. to 162 ° C., which is 8 ° C. A wide thermoformed temperature range was obtained. Further, the haze of the sheets of Examples 1 to 7 is 2.5% or less, particularly 2.0% or less, and the image sharpness of the sheet is 60% or more, particularly 70% or more, and is transparent. Excellent in sex. The value (haze / thickness) obtained by dividing the haze of the sheet by the total thickness T of the sheet was 10% / mm or less. Further, the thickness / thinness accuracy is 12% or less, and the thickness uniformity is excellent. The tensile elastic modulus was 1800 MPa or more, particularly 1900 MPa or more, and high rigidity was obtained. As described above, a sheet having high rigidity, excellent transparency, a uniform thickness, and a wide thermoforming temperature range was obtained.

<比較例1〜11>
比較例1のシートは、単層シートであり、比較例2〜11のシートは積層シートである。比較例1のシートは、熱成形可能温度範囲が5℃と狭くなった。比較例2のシートは、主層1と表層2a,2bとの融点差が1℃と小さいものであり、熱成形可能温度範囲は5℃と狭かった。比較例3のシートは、主層1と表層2a,2bとの融点差が10℃と大きいものであり、厚薄精度は20%と悪く、熱成形可能温度範囲は5℃と狭く、引張弾性率は1720Mpaとやや剛性不足であった。比較例4のシートは、一方の表層2a,2bにおける表層片厚比が2.5%と小さいものであり、熱成形可能温度範囲は5℃と狭かった。比較例5のシートは、一方の表層2a,2bにおける表層片厚比が20%と大きいものであり、熱成形可能温度範囲は5℃と狭かった。比較例6のシートは、表層総厚比が30%と大きいものであり、熱成形可能温度範囲は4℃と狭かった。比較例7のシートは、表層2a,2bの核剤の含有量が2000ppmと多いものであり、熱成形可能温度範囲は3℃と狭く、厚薄精度も23%と悪い。比較例8のシートは、表層2a,2bの核剤の含有量が500ppmと少ないものであり、ヘーズが2.9%、ヘーズ/厚みが14.5%、像鮮明度が52%と、透明性の点で問題があった。比較例9のシートは、主層1のMw/Mnが5のものであり、厚薄精度が15%とやや悪く、熱成形可能温度範囲は5℃と狭かった。比較例10のシートは、表層2a,2bの融点が162℃と低いものであり、引張弾性率が1620Mpaとなって、やや剛性不足であった。比較例11のシートは、主層1の核剤の含有量が1000ppmと多いものであり、厚薄精度が15%とやや悪く、熱成形可能温度範囲は5℃と狭かった。
<Comparative Examples 1 to 11>
The sheet of Comparative Example 1 is a single-layer sheet, and the sheets of Comparative Examples 2 to 11 are laminated sheets. The sheet of Comparative Example 1 had a narrow thermoformed temperature range of 5 ° C. In the sheet of Comparative Example 2, the melting point difference between the main layer 1 and the surface layers 2a and 2b was as small as 1 ° C., and the thermoforming temperature range was as narrow as 5 ° C. The sheet of Comparative Example 3 has a large melting point difference of 10 ° C. between the main layer 1 and the surface layers 2a and 2b, a poor thickness / thinness accuracy of 20%, a thermoforming temperature range of 5 ° C., and a tensile elastic modulus. Was slightly insufficient in rigidity at 1720 Mpa. In the sheet of Comparative Example 4, the surface layer piece thickness ratio in one of the surface layers 2a and 2b was as small as 2.5%, and the thermoforming temperature range was as narrow as 5 ° C. In the sheet of Comparative Example 5, the surface layer piece thickness ratio in one of the surface layers 2a and 2b was as large as 20%, and the thermoforming temperature range was as narrow as 5 ° C. The sheet of Comparative Example 6 had a large surface layer total thickness ratio of 30%, and the thermoforming temperature range was as narrow as 4 ° C. The sheet of Comparative Example 7 has a high content of nucleating agent in the surface layers 2a and 2b as high as 2000 ppm, a thermoforming temperature range as narrow as 3 ° C., and a poor thickness and thinning accuracy of 23%. The sheet of Comparative Example 8 has a low content of nucleating agent in the surface layers 2a and 2b of 500 ppm, and is transparent with haze of 2.9%, haze / thickness of 14.5%, and image sharpness of 52%. There was a problem in terms of sex. The sheet of Comparative Example 9 had a Mw / Mn of 5 in the main layer 1, had a slightly poor thickness and thinness accuracy of 15%, and had a narrow thermoforming temperature range of 5 ° C. In the sheet of Comparative Example 10, the melting points of the surface layers 2a and 2b were as low as 162 ° C., the tensile elastic modulus was 1620 MPa, and the rigidity was slightly insufficient. The sheet of Comparative Example 11 had a high content of the nucleating agent in the main layer 1 of 1000 ppm, had a slightly poor thickness and thinning accuracy of 15%, and had a narrow thermoforming temperature range of 5 ° C.

1 主層
2a 第一の表層
2b 第二の表層
T2a 第一の表層の厚み
T2b 第二の表層の厚み
T シートの全厚
1 Main layer 2a First surface layer 2b Second surface layer T2a First surface layer thickness T2b Second surface layer thickness T Sheet total thickness

Claims (3)

プロピレン系樹脂から構成された主層と、該主層の両側にそれぞれ位置し、プロピレン系樹脂から構成された表層とを備え、
表層のプロピレン系樹脂の融点は165℃以上であり、
主層のプロピレン系樹脂の融点は表層のプロピレン系樹脂の融点よりも低く、表層のプロピレン系樹脂と主層のプロピレン系樹脂との融点差は3℃以上9℃以下であり、
シート全厚は100μm以上500μm以下であり、
シート全厚に対する表層の片側厚みの比率は3%以上18%以下であり、
シート全厚に対する表層の合計厚みの比率は6%以上28%以下であり、
ヘーズは2.5%以下であり、
表層は、800ppm以上1900ppm以下の核剤を含み、
主層は、核剤を含まない、又は、800ppm以下の核剤を含み、
主層のMw/Mnは、7以上14以下である、二軸延伸ポリプロピレン積層シート。
It is provided with a main layer made of a propylene-based resin and a surface layer made of a propylene-based resin located on both sides of the main layer.
The melting point of the propylene-based resin on the surface layer is 165 ° C or higher, and the temperature is 165 ° C or higher.
The melting point of propylene-based resin of the main layer is lower than the melting point of the surface layer of the propylene-based resin, the melting point difference between the surface layer of the propylene resin and the main layer of propylene-based resin is at 3 ° C. or higher 9 ° C. or less,
The total thickness of the sheet is 100 μm or more and 500 μm or less.
The ratio of the thickness of one side of the surface layer to the total thickness of the sheet is 3% or more and 18% or less.
The ratio of the total thickness of the surface layer to the total thickness of the sheet is 6% or more and 28% or less.
Haze Ri der 2.5% or less,
The surface layer contains a nucleating agent of 800 ppm or more and 1900 ppm or less.
The main layer contains no nucleating agent or contains 800 ppm or less of nucleating agent.
A biaxially stretched polypropylene laminated sheet having a main layer of Mw / Mn of 7 or more and 14 or less.
厚薄精度は12%以下であり、
引張弾性率は1800MPa以上である、請求項記載の二軸延伸ポリプロピレン積層シート。
Thickness accuracy is 12% or less,
Tensile modulus is at least 1800 MPa, biaxially oriented polypropylene laminated sheet according to claim 1, wherein.
請求項1又は2記載のシートを熱成形してなる成形体。 A molded product obtained by thermoforming the sheet according to claim 1 or 2.
JP2018062245A 2018-03-28 2018-03-28 Biaxially stretched polypropylene laminated sheet and molded body Active JP6980588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062245A JP6980588B2 (en) 2018-03-28 2018-03-28 Biaxially stretched polypropylene laminated sheet and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062245A JP6980588B2 (en) 2018-03-28 2018-03-28 Biaxially stretched polypropylene laminated sheet and molded body

Publications (2)

Publication Number Publication Date
JP2019171668A JP2019171668A (en) 2019-10-10
JP6980588B2 true JP6980588B2 (en) 2021-12-15

Family

ID=68166293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062245A Active JP6980588B2 (en) 2018-03-28 2018-03-28 Biaxially stretched polypropylene laminated sheet and molded body

Country Status (1)

Country Link
JP (1) JP6980588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3198133A1 (en) * 2020-11-13 2022-05-19 Fp Corporation Polypropylene multilayer sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677928B2 (en) * 1997-03-26 2005-08-03 三菱化学株式会社 Propylene resin thermoforming sheet manufacturing method
JPWO2009063819A1 (en) * 2007-11-13 2011-03-31 株式会社プライムポリマー Propylene-based resin composition for stretched sheet, stretched sheet and thermoformed body containing the composition

Also Published As

Publication number Publication date
JP2019171668A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
TWI711539B (en) Biaxially stretched laminated polypropylene film
TWI597309B (en) Oreinted polypropylene film
JP7409459B2 (en) Polypropylene laminated film
JP7388367B2 (en) Biaxially oriented polypropylene film
JP7363816B2 (en) Biaxially oriented polypropylene film
JP6237557B2 (en) Biaxially stretched polypropylene film
US20210213720A1 (en) Polypropylene-based laminated film
US20130041124A1 (en) Polymer article and method for producing polymer article
JP6323285B2 (en) Biaxially stretched polypropylene film
US20220073690A1 (en) Biaxially oriented polypropylene film
TW202204494A (en) Biaxially-oriented polypropylene film
JP6980588B2 (en) Biaxially stretched polypropylene laminated sheet and molded body
JP6500699B2 (en) Stretched film
TW202204495A (en) Biaxially-oriented polypropylene film
JP6561857B2 (en) Stretched film
JP7064355B2 (en) Method for manufacturing polyolefin multilayer sheet or film
JP2016074760A (en) Stretched film, production method of the same, and packaging material using the same
TWI607022B (en) Polypropylene film used for in-mold labels
JP2016074091A (en) Production method of stretched film, and packaging material composed of the stretched film obtained by the production method
JP6942530B2 (en) Multi-layer biaxially stretched film and transfer film
US20220081521A1 (en) Biaxially oriented polypropylene film
JP6208445B2 (en) Polypropylene film for thermoforming sheet lamination
JP3335115B2 (en) Laminated sheet
JP7405099B2 (en) Method for manufacturing biaxially oriented polypropylene film
JP2010144007A (en) Inflation film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6980588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250