JP6980102B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP6980102B2
JP6980102B2 JP2020515355A JP2020515355A JP6980102B2 JP 6980102 B2 JP6980102 B2 JP 6980102B2 JP 2020515355 A JP2020515355 A JP 2020515355A JP 2020515355 A JP2020515355 A JP 2020515355A JP 6980102 B2 JP6980102 B2 JP 6980102B2
Authority
JP
Japan
Prior art keywords
reactor
current
reactor current
value
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020515355A
Other languages
Japanese (ja)
Other versions
JPWO2019207663A1 (en
Inventor
優矢 田中
麻衣 中田
晋吾 加藤
又彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019207663A1 publication Critical patent/JPWO2019207663A1/en
Application granted granted Critical
Publication of JP6980102B2 publication Critical patent/JP6980102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Description

本願は、直流電圧を所定の電圧に変換する電力変換装置に関するもので、特に複数のチョッパ回路を並列に接続した電力変換装置に関するものである。 The present application relates to a power conversion device that converts a DC voltage into a predetermined voltage, and particularly to a power conversion device in which a plurality of chopper circuits are connected in parallel.

電力変換装置は、小型軽量化の要求に対応するため、複数のチョッパ回路を並列に接続して動作させることが行われており、この場合の複数のチョッパ回路間の電流バランスをとることが必要であった。 In order to meet the demand for miniaturization and weight reduction, the power conversion device is operated by connecting a plurality of chopper circuits in parallel, and in this case, it is necessary to balance the current between the plurality of chopper circuits. Met.

この電流バランスをとることのできる制御方法として、特許文献1では、入力された直流電圧を所定の直流電圧に変換するチョッパ回路を複数台並列接続していて、それぞれのチョッパ回路の所定位置からそれぞれの電流をチョッパ電流として取り出して、それぞれのチョッパ電流の平均値と前記チョッパ回路のチョッパ電流との電流偏差を検出し、これらの偏差量を補正量としてチョッパ回路の制御系に割り込ませて、チョッパ回路の出力電圧を制御することが行われている。この特許文献1に示された技術によって、並列接続された複数のチョッパ回路の出力する電流値の差が小さくなるように(できるだけ同じ電流値になるように)制御することによって、チョッパ回路を構成するスイッチング素子の最大損失が小さくなり、より小型低コストの電力変換装置を提供できていた。以下、複数のチョッパ回路の電流が等しくなるように制御する制御方法を分流制御と記述し、複数のチョッパ回路の出力電流値の平均値に対して、それぞれのチョッパ回路の想定される出力電流値の差の最大値が小さいことを、分流制御の精度が高いとして説明する。 As a control method capable of achieving this current balance, in Patent Document 1, a plurality of chopper circuits for converting an input DC voltage into a predetermined DC voltage are connected in parallel, and each chopper circuit is connected from a predetermined position at a predetermined position. Is taken out as a chopper current, the current deviation between the average value of each chopper current and the chopper current of the chopper circuit is detected, and these deviations are used as a correction amount to interrupt the control system of the chopper circuit to chopper. Controlling the output voltage of the circuit is performed. The chopper circuit is configured by controlling the difference between the output current values of a plurality of chopper circuits connected in parallel so as to be small (so as to have the same current value as much as possible) by the technique shown in Patent Document 1. The maximum loss of the switching element is reduced, and a smaller and lower cost power conversion device can be provided. Hereinafter, a control method for controlling the currents of a plurality of chopper circuits so as to be equal is described as flow split control, and the assumed output current value of each chopper circuit is compared with the average value of the output current values of the plurality of chopper circuits. It is explained that the maximum value of the difference between the two is small as the accuracy of the diversion control is high.

特開昭61―142961号公報Japanese Unexamined Patent Publication No. 61-142961

しかし、特許文献1の構成では、複数のチョッパ回路に個別に分流制御の補正量を出力することによってそれぞれのチョッパ回路のチョッパ電流の平均値が変化することになる。特に、昇圧しない動作領域あるいは最大昇圧の動作領域においては、出力電圧制御と分流制御が干渉して、分流制御を行うことによって、出力電圧制御が円滑に行われないという問題があった。
本願は、上記のような課題を解決するための技術を開示するものであり、分流制御が出力電圧制御に影響を及ぼすことの無い電力変換装置を提供することを目的とする。
However, in the configuration of Patent Document 1, the average value of the chopper currents of the chopper circuits is changed by individually outputting the correction amount of the divergence control to the plurality of chopper circuits. In particular, in the operating region where the voltage is not boosted or the operating region where the voltage is boosted to the maximum, there is a problem that the output voltage control and the diversion control interfere with each other and the diversion control is performed, so that the output voltage control is not smoothly performed.
The present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a power conversion device in which the diversion control does not affect the output voltage control.

本願の電力変換装置は、並列に接続された複数台のチョッパ回路、それぞれのチョッパ回路のリアクトル電流を検出するリアクトル電流検出器、出力電圧を検出する出力電圧検出器、および検出されたリアクトル電流に基づいて分流制御を行う分流制御器と検出された出力電圧に基づいて電圧制御を行う電圧制御器を有し、複数の前記チョッパ回路のリアクトル電流が等しくなるように前記チョッパ回路の出力電圧を制御する制御装置を備え、前記リアクトル電流検出器の後段に時定数が異なる複数のローパスフィルタを備え、前記ローパスフィルタの出力を前記制御装置に入力するようにし、前記制御装置がリアクトル電流のリップル電流を除去できる時定数のローパスフィルタの出力を使用する積分器とリアクトル電流のリップル電流を除去できない時定数のローパスフィルタの出力を使用する比例器を合わせ持つものである。
The power converter of the present application includes multiple chopper circuits connected in parallel, a reactor current detector that detects the reactor current of each chopper circuit, an output voltage detector that detects the output voltage, and a detected reactor current. It has a diversion controller that performs diversion control based on the current and a voltage controller that performs voltage control based on the detected output voltage, and controls the output voltage of the chopper circuit so that the reactor currents of the plurality of chopper circuits are equal. A plurality of low-pass filters having different time constants are provided after the reactor current detector so that the output of the low-pass filter is input to the control device, and the control device transfers the ripple current of the reactor current. It has both an integrator that uses the output of a low-pass filter with a time constant that can be removed and a proportional device that uses the output of a low-pass filter with a time constant that cannot remove the ripple current of the reactor current .

本願によれば、出力電圧制御と分流制御が干渉しないように分流制御を行うことによって、小型の電力変換装置を提供できる。 According to the present application, it is possible to provide a small power conversion device by performing the diversion control so that the output voltage control and the diversion control do not interfere with each other.

本願の実施の形態1に係る電力変換装置の構成を示した構成図である。It is a block diagram which showed the structure of the power conversion apparatus which concerns on Embodiment 1 of this application. 本願の実施の形態1、2に係る電力変換装置における動作波形を示す図である。It is a figure which shows the operation waveform in the power conversion apparatus which concerns on Embodiments 1 and 2 of this application. 本願の実施の形態2に係る電力変換装置の構成を示した構成図である。It is a block diagram which showed the structure of the power conversion apparatus which concerns on Embodiment 2 of this application. 本願の実施の形態1、3、4に係る電力変換装置における動作波形を示す図である。It is a figure which shows the operation waveform in the power conversion apparatus which concerns on Embodiment 1, 3, 4 of this application. 本願の実施の形態3、4に係る電力変換装置における動作波形を示す図である。It is a figure which shows the operation waveform in the power conversion apparatus which concerns on Embodiments 3 and 4 of this application. 本願の実施の形態1から4に係る電力変換装置の別の構成を示した構成図である。It is a block diagram which showed another structure of the power conversion apparatus which concerns on Embodiment 1 to 4 of this application. 本願の実施の形態1から4に係る電力変換装置の別の構成を示した構成図である。It is a block diagram which showed another structure of the power conversion apparatus which concerns on Embodiment 1 to 4 of this application. 本願の実施の形態1から4に係る電力変換装置の別の構成を示した構成図である。It is a block diagram which showed another structure of the power conversion apparatus which concerns on Embodiment 1 to 4 of this application. 本願の制御装置のハードウエアの構成例を示す構成図である。It is a block diagram which shows the configuration example of the hardware of the control device of this application.

実施の形態1.
図1に実施の形態1の電力変換装置の構成図を示す。図2および図4に実施の形態1の電力変換装置における動作波形を示す。
実施の形態1の電力変換装置は、直流電源1と、負荷4との間に設けられ、直流電源1と並列に接続された入力平滑コンデンサ2と、入力平滑コンデンサ2の正極側にリアクトル101が接続された第1チョッパ回路100と、第1チョッパ回路100と並列に接続された第2チョッパ回路200と、第1チョッパ回路100のダイオード103のカソード端子と第2チョッパ回路のダイオード203のカソード端子と正極側が接続された出力平滑コンデンサ3と、入力平滑コンデンサ2の入力電圧Vinを検出する入力電圧検出器5と、出力平滑コンデンサ3の出力電圧Voutを検出する出力電圧検出器6と、入力電圧検出器5より検出された入力電圧値Vin_senseと出力電圧検出器6より検出された出力電圧値Vout_senseと、第1チョッパ回路100内のリアクトル電流検出器104およびリアクトル電流検出器用ローパスフィルタ105より検出された電流値IL1_senseと後述の第2チョッパ回路200内のリアクトル電流検出器204およびリアクトル電流検出器用ローパスフィルタ205より検出された電流値IL2_senseを用いて第1チョッパ回路100内の半導体スイッチング素子102のゲート信号Vgs_Q102と半導体スイッチング素子202のゲート信号Vgs_Q202を出力する制御装置1000を備えている。
Embodiment 1.
FIG. 1 shows a configuration diagram of the power conversion device of the first embodiment. 2 and 4 show operation waveforms in the power conversion device of the first embodiment.
The power conversion device of the first embodiment has an input smoothing capacitor 2 provided between the DC power supply 1 and the load 4 and connected in parallel with the DC power supply 1, and a reactor 101 on the positive side of the input smoothing capacitor 2. The connected first chopper circuit 100, the second chopper circuit 200 connected in parallel with the first chopper circuit 100, the cathode terminal of the diode 103 of the first chopper circuit 100, and the cathode terminal of the diode 203 of the second chopper circuit. The output smoothing capacitor 3 to which the positive side is connected, the input voltage detector 5 that detects the input voltage Vin of the input smoothing capacitor 2, the output voltage detector 6 that detects the output voltage Vout of the output smoothing capacitor 3, and the input voltage. The input voltage value Vin_sense detected by the detector 5, the output voltage value Vout_sense detected by the output voltage detector 6, and the reactor current detector 104 and the low pass filter 105 for the reactor current detector in the first chopper circuit 100 are detected. The gate of the semiconductor switching element 102 in the first chopper circuit 100 using the current value IL1_sense and the current value IL2_sense detected by the reactor current detector 204 in the second chopper circuit 200 and the low pass filter 205 for the reactor current detector described later. A control device 1000 for outputting the signal Vgs_Q102 and the gate signal Vgs_Q202 of the semiconductor switching element 202 is provided.

第1チョッパ回路100は、リアクトル101と、半導体スイッチング素子102と、ダイオード103と、リアクトル電流IL1を検出するリアクトル電流検出器104と、リアクトル電流検出器104の出力を平滑しリアクトル電流IL1のリップル電流を除去して制御装置1000に入力するリアクトル電流検出器用ローパスフィルタ105とを備えており、半導体スイッチング素子102のドレイン端子は、リアクトル101の入力平滑コンデンサ2が接続された端子とは異なる端子側に接続され、同様に、ダイオード103のアノード端子が、リアクトル101の入力平滑コンデンサ2が接続された端子とは異なる端子側に接続されている。 The first chopper circuit 100 smoothes the outputs of the reactor 101, the semiconductor switching element 102, the diode 103, the reactor current detector 104 for detecting the reactor current IL1, and the reactor current detector 104, and the ripple current of the reactor current IL1. Is provided with a low-pass filter 105 for a reactor current detector that removes the current and inputs it to the control device 1000, and the drain terminal of the semiconductor switching element 102 is on the terminal side different from the terminal to which the input smoothing capacitor 2 of the reactor 101 is connected. Similarly, the anode terminal of the diode 103 is connected to a terminal side different from the terminal to which the input smoothing capacitor 2 of the reactor 101 is connected.

第2チョッパ回路200は、第1チョッパ回路100と同じ構成で、リアクトル201と、半導体スイッチング素子202と、ダイオード203と、リアクトル電流IL2を検出するリアクトル電流検出器204と、リアクトル電流検出器204の出力を平滑しリアクトル電流IL2のリップル電流を除去して制御装置1000に入力するリアクトル電流検出器用ローパスフィルタ205とを備えている。 The second chopper circuit 200 has the same configuration as the first chopper circuit 100, and includes a reactor 201, a semiconductor switching element 202, a diode 203, a reactor current detector 204 for detecting the reactor current IL2, and a reactor current detector 204. It is provided with a low-pass filter 205 for a reactor current detector that smoothes the output, removes the ripple current of the reactor current IL2, and inputs it to the control device 1000.

制御装置1000において、出力電圧値Voutの出力電圧目標値Vout*と出力電圧値Vout_senseの差をとり偏差電圧値Vout_errorを出力し、出力電圧制御器1001に入力し出力電圧制御の演算によるオンデューティDxを出力する。
出力電圧制御の演算によるオンデューティDxは、出力電圧制御デューティリミッタ1003に入力されリミッタによって決められた範囲内の値に補正され出力電圧制御の演算によるオンデューティDyが出力される。
In the control device 1000, the difference between the output voltage target value Vout * of the output voltage value Vout and the output voltage value Vout_sense is taken, the deviation voltage value Vout_error is output, input to the output voltage controller 1001, and the on-duty Dx by the calculation of the output voltage control. Is output.
The on-duty Dx calculated by the output voltage control is input to the output voltage control duty limiter 1003, corrected to a value within the range determined by the limiter, and the on-duty Dy calculated by the output voltage control is output.

第1チョッパ回路100のリアクトル電流検出器用ローパスフィルタ105を通じて得られる電流値IL2_senseと、第2チョッパ回路200のリアクトル電流検出器用ローパスフィルタ205を通じて得られる電流値IL1_senseとの差をとり、偏差電流値IL_errorを出力し、偏差電流値IL_errorを分流制御器1002に入力し、分流制御の演算によるオンデューティD’が出力される。
分流制御の演算によるオンデューティD’は、分流制御デューティリミッタ1004に入力され、分流制御デューティリミッタ1004によって決められた範囲内の値に補正され、分流制御の演算による半導体スイッチング素子102のオンデューティの補正量D1’が出力される。
The difference between the current value IL2_sense obtained through the reactor current detector low-pass filter 105 of the first chopper circuit 100 and the current value IL1_sense obtained through the reactor current detector low-pass filter 205 of the second chopper circuit 200 is taken, and the deviation current value IL_error is taken. Is output, the deviation current value IL_error is input to the shunt current control controller 1002, and the on-duty D'by the calculation of the shunt current control is output.
The on-duty D'by the calculation of the shunt control is input to the shunt control duty limiter 1004, corrected to a value within the range determined by the shunt control duty limiter 1004, and the on-duty of the semiconductor switching element 102 by the calculation of the shunt control. The correction amount D1'is output.

出力電圧制御の演算によるオンデューティDyと分流制御の演算によるオンデューティD’を組み合わせて半導体スイッチング素子102のオンデューティD1と半導体スイッチング素子202のオンデューティD2を算出するが、このとき分流制御の演算による半導体スイッチング素子102のオンデューティの補正量D1’と分流制御の演算による半導体スイッチング素子202のオンデューティの補正量D2’の極性を逆転させて出力電圧制御の演算によるオンデューティDに加算させることによって、分流制御によって出力されるオンデューティの補正量の合計が0となる。 The on-duty D1 of the semiconductor switching element 102 and the on-duty D2 of the semiconductor switching element 202 are calculated by combining the on-duty Dy calculated by the output voltage control and the on-duty D'by the calculation of the diversion control. The polarity of the on-duty correction amount D1'of the semiconductor switching element 102 according to the above and the on-duty correction amount D2' of the semiconductor switching element 202 calculated by the diversion control are reversed and added to the on-duty D calculated by the output voltage control. As a result, the total amount of on-duty corrections output by the diversion control becomes 0.

ここまで出力された半導体スイッチング素子102のオンデューティD1と半導体スイッチング素子202のオンデューティD2は、ゲート信号生成器1010に入力され、図2に示すようにゲート信号生成器1010の内部において生成されるキャリア波CWと比較され、ゲート信号生成器1010は、ゲート信号Vgs_Q102とVgs_Q202を出力する。
なお、制御装置1000は、アナログ回路でも構成することが可能だが、本実施の形態ではマイコンなどのデジタル演算可能な素子を想定している。また、出力電圧制御と分流制御の内容を説明したが、昇圧しない場合には、出力電圧制御と分流制御をしないように設定し、半導体スイッチング素子102と半導体スイッチング素子202をオフにする。
The on-duty D1 of the semiconductor switching element 102 and the on-duty D2 of the semiconductor switching element 202 output up to this point are input to the gate signal generator 1010 and are generated inside the gate signal generator 1010 as shown in FIG. Compared to the carrier wave CW, the gate signal generator 1010 outputs the gate signals Vgs_Q102 and Vgs_Q202.
Although the control device 1000 can be configured with an analog circuit, in the present embodiment, an element capable of digital calculation such as a microcomputer is assumed. Further, although the contents of the output voltage control and the diversion control have been described, when the voltage is not boosted, the output voltage control and the diversion control are set not to be performed, and the semiconductor switching element 102 and the semiconductor switching element 202 are turned off.

リアクトル電流検出器用ローパスフィルタ105とリアクトル電流検出器用ローパスフィルタ205は、リアクトル電流検出器用ローパスフィルタのカットオフ周波数をチョッパ回路のスイッチング周波数1/Tswの1/10以下に設定することにより、ローパスフィルタの次数によらずリアクトル電流のリップル電流を1/10以下に除去する。図4に示すように、リアクトル電流検出器用ローパスフィルタのカットオフ周波数が大きく1スイッチング周期あたり2回以下のサンプリングの場合、サンプリングのタイミングがリアクトル電流の直流値のタイミングとずれるため、リアクトル電流検出器用ローパスフィルタのカットオフ周波数をチョッパ回路のスイッチング周波数1/Tswの1/10以下に設定することで、リップル電流を除去し、リアクトル電流の直流値を検出できるようにする。 The low-pass filter 105 for the reactor current detector and the low-pass filter 205 for the reactor current detector are of the low-pass filter by setting the cutoff frequency of the low-pass filter for the reactor current detector to 1/10 or less of the switching frequency 1 / Tsw of the chopper circuit. The ripple current of the reactor current is removed to 1/10 or less regardless of the order. As shown in FIG. 4, when the cutoff frequency of the low-pass filter for the reactor current detector is large and the sampling is performed twice or less per switching cycle, the sampling timing deviates from the timing of the DC value of the reactor current, so that the reactor current detector is used. By setting the cutoff frequency of the low-pass filter to 1/10 or less of the switching frequency 1 / Tsw of the chopper circuit, the ripple current is removed and the DC value of the reactor current can be detected.

分流制御器1002において、リアクトル電流検出器用ローパスフィルタのカットオフ周波数を1/10以下に設定するとカットオフ周波数を下げた分だけ分流制御器1002のゲインを下げる必要があるが、分流制御器1002にPID(Proportional-Integral-Differential)制御器を用いて微分要素により位相を進めると、カットオフ周波数を下げる前と同等のゲインで分流制御の応答性を保つことが可能となる。
また、分流制御器1002において、電流によりリアクトルの直流重畳特性の影響でリアクトル101とリアクトル201のインダクタンス値が変化することで分流制御全体のゲインが変化することになり、また、入出力電圧によってリアクトルに印加される電圧が変化するため分流制御全体のゲインが変化する。この場合には、分流制御器1002のゲインをインダクタンス値の変化もしくは印加電圧に対応して可変にすることによって、リアクトルの電流値によらず分流制御の応答性を一定に保つことが可能となる。
In the cutoff controller 1002, if the cutoff frequency of the low-pass filter for the reactor current detector is set to 1/10 or less, it is necessary to lower the gain of the cutoff controller 1002 by the amount that the cutoff frequency is lowered. By advancing the phase by a differential element using a PID (Proportional-Integral-Differential) controller, it is possible to maintain the responsiveness of the cutoff control with the same gain as before lowering the cutoff frequency.
Further, in the diversion controller 1002, the gain of the entire diversion control changes due to the change in the inductance values of the reactor 101 and the reactor 201 due to the influence of the DC superimposition characteristic of the reactor due to the current, and the reactor is changed by the input / output voltage. Since the voltage applied to the current changes, the gain of the entire diversion control changes. In this case, by making the gain of the diversion controller 1002 variable according to the change in the inductance value or the applied voltage, it is possible to keep the responsiveness of the diversion control constant regardless of the current value of the reactor. ..

分流制御デューティリミッタ1004では、半導体スイッチング素子102のオンデューティD1と半導体スイッチング素子202のオンデューティD2が、ともに0以上の値となるので分流制御の演算による半導体スイッチング素子102のオンデューティの補正量D1’と分流制御の演算による半導体スイッチング素子202のオンデューティの補正量D2’は、出力電圧制御の演算によるオンデューティDyと出力電圧制御リミッタ1003の上下限値の差より絶対値が小さい値でなければ補正量の合計が0とならないため、分流制御の演算による半導体スイッチング素子102のオンデューティの補正量D1’と分流制御の演算による半導体スイッチング素子202のオンデューティの補正量D2’が出力電圧制御の演算によるオンデューティDyと出力電圧制御リミッタ1003の上限値の差もしくは出力電圧制御の演算によるオンデューティDyと出力電圧制御リミッタ1003の上限値の差より絶対値が等しいか、もしくは小さくなるように上下限を設けて、分流制御の演算によるオンデューティD’と出力電圧制御の演算によるオンデューティDyの値によらず分流制御による補正量の合計が0とすることを可能にしている。 In the diversion control duty limiter 1004, the on-duty D1 of the semiconductor switching element 102 and the on-duty D2 of the semiconductor switching element 202 both have values of 0 or more, so that the on-duty correction amount D1 of the semiconductor switching element 102 by the calculation of the diversion control is performed. 'And the on-duty correction amount D2 of the semiconductor switching element 202 by the calculation of the diversion control must be a value whose absolute value is smaller than the difference between the on-duty Dy by the calculation of the output voltage control and the upper and lower limit values of the output voltage control limiter 1003. For example, since the total correction amount does not become 0, the on-duty correction amount D1'of the semiconductor switching element 102 by the calculation of the distribution control and the on-duty correction amount D2'of the semiconductor switching element 202 by the calculation of the distribution control are the output voltage control. calculation by the on-duty Dy whether the output absolute value than the difference between the upper value of the on-duty Dy and the output voltage control limiter 1003 according to calculation of the difference or output voltage control of the upper limit of the voltage control limiter 1003 is equal to the, or made as small The upper and lower limits are provided so that the total of the correction amount by the diversion control can be set to 0 regardless of the value of the on-duty D'by the calculation of the diversion control and the on-duty Dy by the calculation of the output voltage control.

以上説明した実施の形態1の電力変換装置によれば、複数台並列接続されたチョッパ回路において出力電圧制御と分流制御が干渉することなく、リアクトル電流IL1とリアクトル電流IL2が等しくなるように制御することが可能となる。
とくに、制御装置1000をマイコンなどのデジタル演算可能な素子を使用することによってより小型で低コストの電力変換装置を提供できる。
リアクトル電流検出器用ローパスフィルタ105とリアクトル電流検出器用ローパスフィルタ205はリアクトル電流検出器用ローパスフィルタのカットオフ周波数をチョッパ回路のスイッチング周波数1/Tswの1/10以下に設定することにより、分流制御に使用する電流値IL1_senseと電流値IL2_senseがリアクトル電流IL1とリアクトル電流IL2のリップル電流が除去された状態で制御装置1000に入力されることになり、分流制御の精度を高めることができ、より小型低コストの電力変換装置を提供できる。
According to the power conversion device of the first embodiment described above, the reactor current IL1 and the reactor current IL2 are controlled to be equal to each other without interfering with the output voltage control and the diversion control in the chopper circuits connected in parallel. It becomes possible.
In particular, by using a digitally operable element such as a microcomputer for the control device 1000, it is possible to provide a smaller and lower cost power conversion device.
By reactor current detector low pass filter 105 and the reactor current detector low pass filter 205 to set the cutoff frequency of the reactor current detector low pass filter to 1/10 or less of the switching frequency 1 / Tsw of the chopper circuit, used to shunt control The current value IL1_sense and the current value IL2_sense are input to the control device 1000 in a state where the ripple currents of the reactor current IL1 and the reactor current IL2 are removed, so that the accuracy of the diversion control can be improved and the size and cost are smaller. Power converter can be provided.

ここで、本願が設定した新たな課題について詳細に説明する。ここでは、チョッパ回路として2台のチョッパ回路を並列に接続した構成の電力変換装置を取り上げて具体的に説明する。図1の構成の電力変換装置における動作波形は、図2に示すようになる。ここで、半導体スイッチング素子102のオン期間(たとえば図2の期間T4、期間T5、期間T6)のリアクトル電流IL1の傾きは式(1)で求められる。

Figure 0006980102
半導体スイッチング素子102のオフ期間(たとえば図2の期間T7)のリアクトル電流IL1の傾きは式(2)で求められる。
Figure 0006980102
リアクトル電流IL1の全体の傾きは式(3)で求められる。
Figure 0006980102
半導体スイッチング素子202のオン期間(たとえば図2の期間T2、期間T3、期間T4)のリアクトル電流IL2の傾きは式(4)で求められる。
Figure 0006980102
半導体スイッチング素子202のオフ期間(たとえば図2の期間T5)のリアクトル電流IL2の傾きは式(5)で求められる。
Figure 0006980102
リアクトル電流IL2の全体の傾きは式(6)で求められる。
Figure 0006980102
ここで、入力電流が変化しないとすると式(7)が成り立つ。
Figure 0006980102
式(3)、式(6)、式(7)の連立方程式をL_1=L_2とおいて解くと式(8)となる。
Figure 0006980102
式(8)より、半導体スイッチング素子102のオンデューティと半導体スイッチング素子202のオンデューティの平均値が変化すると出力電圧値Voutが変化することがわかる。すなわち、分流制御が個別の補正量を出力し、半導体スイッチング素子102のオンデューティと半導体スイッチング素子202のオンデューティの平均が変化すると分流制御が出力電圧制御に影響を与えるということになる。Here, the new issues set by the present application will be described in detail. Here, a power conversion device having a configuration in which two chopper circuits are connected in parallel as a chopper circuit will be specifically described. The operating waveform of the power conversion device having the configuration of FIG. 1 is as shown in FIG. Here, the slope of the reactor current IL1 during the ON period of the semiconductor switching element 102 (for example, the period T4, the period T5, and the period T6 in FIG. 2) is obtained by the equation (1).
Figure 0006980102
The slope of the reactor current IL1 during the off period of the semiconductor switching element 102 (for example, the period T7 in FIG. 2) is obtained by the equation (2).
Figure 0006980102
The overall slope of the reactor current IL1 is calculated by Eq. (3).
Figure 0006980102
The slope of the reactor current IL2 during the on-period of the semiconductor switching element 202 (for example, the period T2, the period T3, and the period T4 in FIG. 2) is obtained by the equation (4).
Figure 0006980102
The slope of the reactor current IL2 during the off period of the semiconductor switching element 202 (for example, the period T5 in FIG. 2) is obtained by the equation (5).
Figure 0006980102
The overall slope of the reactor current IL2 is calculated by Eq. (6).
Figure 0006980102
Here, assuming that the input current does not change, the equation (7) holds.
Figure 0006980102
When the simultaneous equations of equations (3), (6), and (7) are solved with L_1 = L_2, the equation (8) is obtained.
Figure 0006980102
From the equation (8), it can be seen that the output voltage value Vout changes when the average value of the on-duty of the semiconductor switching element 102 and the on-duty of the semiconductor switching element 202 changes. That is, when the diversion control outputs an individual correction amount and the average of the on-duty of the semiconductor switching element 102 and the on-duty of the semiconductor switching element 202 changes, the diversion control affects the output voltage control.

実施の形態2.
図3に実施の形態2で説明する電力変換装置の構成図を示す。図2に実施の形態2で説明する電力変換装置の動作波形を示す。
実施の形態2における電力変換装置について、実施の形態1における電力変換装置との違いは、リアクトル電流検出器から制御装置1000にリアクトル電流の検出値を取り込むまでの構成(以後、リアクトル電流検出器周りの構成と呼ぶ)と制御装置1000である。
Embodiment 2.
FIG. 3 shows a configuration diagram of the power conversion device described in the second embodiment. FIG. 2 shows the operation waveform of the power conversion device described in the second embodiment.
The difference between the power conversion device according to the second embodiment and the power conversion device according to the first embodiment is the configuration from the reactor current detector to the capture of the detected value of the reactor current into the control device 1000 (hereinafter, around the reactor current detector). (Called the configuration of) and the control device 1000.

実施の形態2における第1チョッパ回路100のリアクトル電流検出器104周りの構成は、リアクトル電流IL1を検出するリアクトル電流検出器104と、リアクトル電流検出器104の出力を平滑しリアクトル電流IL1のリップル電流を除去して制御装置1000に入力するリアクトル電流検出器用ローパスフィルタ105と、リアクトル電流検出器104の出力を平滑しリアクトル電流IL1のリップル電流を除去して制御装置1000に入力するリアクトル電流検出器用ローパスフィルタ105より時定数の大きいリアクトル電流検出器用ローパスフィルタ106とで構成される。 The configuration around the reactor current detector 104 of the first chopper circuit 100 in the second embodiment is such that the reactor current detector 104 for detecting the reactor current IL1 and the output of the reactor current detector 104 are smoothed and the ripple current of the reactor current IL1 is smoothed. Low-pass filter 105 for reactor current detector that removes and inputs to the control device 1000, and low-pass for reactor current detector that smoothes the output of the reactor current detector 104 and removes the ripple current of the reactor current IL1 and inputs it to the control device 1000. It is composed of a low-pass filter 106 for a reactor current detector having a larger time constant than the filter 105.

第2チョッパ回路200のリアクトル電流検出器204周りの構成は、リアクトル電流IL2を検出するリアクトル電流検出器204と、リアクトル電流検出器204の出力を平滑しリアクトル電流IL2のリップル電流を除去して制御装置1000に入力するリアクトル電流検出器用ローパスフィルタ205と、リアクトル電流検出器204の出力を平滑しリアクトル電流IL2のリップル電流を除去して制御装置1000に入力するリアクトル電流検出器用ローパスフィルタ205より時定数の大きいリアクトル電流検出器用ローパスフィルタ206とで構成される。 The configuration around the reactor current detector 204 of the second chopper circuit 200 is controlled by smoothing the outputs of the reactor current detector 204 that detects the reactor current IL2 and the reactor current detector 204 and removing the ripple current of the reactor current IL2. Time constant from the reactor current detector low-pass filter 205 input to the device 1000 and the reactor current detector low-pass filter 205 that smoothes the output of the reactor current detector 204 and removes the ripple current of the reactor current IL2 and inputs it to the control device 1000. It is composed of a low-pass filter 206 for a reactor current detector having a large size.

実施の形態2における制御装置1000は、出力電圧値Voutの出力電圧目標値Vout*と出力電圧値Vout_senseの差をとり偏差出力電圧値Vout_errorを出力し、偏差出力電圧値Vout_errorを出力電圧制御器1001に入力しリアクトル電流目標値IL*を出力するように構成されている。
電流値IL1_senseとIL*の差をとり偏差電流値IL1_errorを出力し、電流値IL1_errorを第1分流制御器1005に入力し、第1分流制御器1005は半導体スイッチング素子102の第1オンデューティD1_1を出力する。電流値IL1_sense_slowとIL*の差をとり偏差電流値IL1_error_slowを出力し、偏差電流値IL1_errorを第2分流制御器1006に入力し、第2分流制御器1006は半導体スイッチング素子102の第2オンデューティD1_2を出力する。半導体スイッチング素子102の第1オンデューティD1_1と半導体スイッチング素子102の第2オンデューティD1_2を加算して、半導体スイッチング素子102のオンデューティD1とする。
The control device 1000 in the second embodiment takes the difference between the output voltage target value Vout * of the output voltage value Vout and the output voltage value Vout_sense, outputs the deviation output voltage value Vout_error, and outputs the deviation output voltage value Vout_error to the output voltage controller 1001. It is configured to input to and output the reactor current target value IL *.
Outputs deviation current value IL1_error taking the difference between the current value IL1_sense and IL *, enter the current value IL1_error the first shunt regulator 1005, a first shunt regulator 1005 the first on-duty D1_1 of the semiconductor switching element 102 Output. Outputs deviation current value IL1_error_slow taking the difference between the current value IL1_sense_slow and IL *, enter the deviation current value IL1_error the second shunt regulator 1006, a second shunt regulator 1006 and the second on-duty of the semiconductor switching element 102 D1_2 Is output. The first on-duty D1_1 of the semiconductor switching element 102 and the second on-duty D1-2 of the semiconductor switching element 102 are added to obtain the on-duty D1 of the semiconductor switching element 102.

電流値IL2_senseとIL*の差をとり偏差電流値IL2_errorを出力し、電流値IL2_errorを第3分流制御器1007に入力し、第4分流制御器1008は半導体スイッチング素子202の第1オンデューティD2_1を出力する。電流値IL2_sense_slowとIL*の差をとり偏差電流値IL2_error_slowを出力し、電流値IL2_errorを第4分流制御器1008に入力し、第4分流制御器1008は、半導体スイッチング素子202の第2オンデューティD2_2を出力する。半導体スイッチング素子202の第1オンデューティD2_1と半導体スイッチング素子202の第2オンデューティD2_2を加算して、半導体スイッチング素子202のオンデューティD2とする。 The difference between the current value IL2_sense and IL * is taken, the deviation current value IL2_error is output, the current value IL2_error is input to the third shunt current control controller 1007, and the fourth shunt current control controller 1008 inputs the first on-duty D2_1 of the semiconductor switching element 202. Output. The difference between the current value IL2_sense_slow and IL * is taken, the deviation current value IL2_error_slow is output, the current value IL2_error is input to the fourth shunt current controller 1008, and the fourth shunt current controller 1008 is the second on-duty D2_2 of the semiconductor switching element 202. Is output. The first on-duty D2_1 of the semiconductor switching element 202 and the second on-duty D2_1 of the semiconductor switching element 202 are added to obtain the on-duty D2 of the semiconductor switching element 202.

第1分流制御器1005と第2分流制御器1006の違いは、制御器の次数であり、第2分流制御器1006に比べて第1分流制御器1005の方が、次数が高い。第1分流制御器1005に入力される電流値IL1_senseと第2分流制御器1006に入力される電流値IL1_sense_slowは、前段のリアクトル電流検出器用ローパスフィルタ105の時定数が異なり、電流値IL1_senseは、時定数が小さいリアクトル電流検出器用ローパスフィルタ105の出力なので、波形の遅れが少なくリアクトル電流IL1のリップル電流による波形のリップルが大きいため、高速応答向きのためである。そして、第2分流制御器1006は、次数を問わないが積分要素を含んでいる。電流値IL1_sense_slowは時定数が大きいリアクトル電流検出器用ローパスフィルタ106の出力なので、波形の遅れが大きくリアクトル電流IL1のリップル電流による波形のリップルが小さいため、高速応答には向かないが分流制御の精度を高めるのには向いているためであり、積分要素は偏差が0になるまで値を加算するため、偏差を0にすることが可能となる。なお、第3分流制御器1007と第4分流制御器1008の違いも同様である。すなわち、制御装置として、リアクトル電流のリップル電流を除去できる時定数のローパスフィルタの出力を使用する積分器とリアクトル電流のリップル電流を除去できない時定数のローパスフィルタの出力を使用する比例器を合わせ持つ構成となる。 The difference between the first shunt controller 1005 and the second shunt controller 1006 is the order of the controllers, and the first shunt controller 1005 has a higher order than the second shunt controller 1006. The current value IL1_sense input to the first shunt current controller 1005 and the current value IL1_sense_slow input to the second shunt current controller 1006 have different time constants of the low pass filter 105 for the reactor current detector in the previous stage, and the current value IL1_sense is time. This is because the output of the low-pass filter 105 for a reactor current detector having a small constant has a small waveform delay and the ripple of the waveform due to the ripple current of the reactor current IL1 is large, so that it is suitable for high-speed response. The second diversion controller 1006 includes an integral element regardless of the order. Since the current value IL1_sense_slow is the output of the low-pass filter 106 for the reactor current detector with a large time constant, the waveform delay is large and the ripple of the waveform due to the ripple current of the reactor current IL1 is small, so it is not suitable for high-speed response, but the accuracy of flow split control is improved. This is because it is suitable for increasing, and since the integrating element adds the values until the deviation becomes 0, the deviation can be made 0. The same applies to the difference between the third diversion controller 1007 and the fourth diversion controller 1008. That is, as a control device, it has both an integrator that uses the output of a time-constant low-pass filter that can remove the ripple current of the reactor current and a proportional device that uses the output of the time-constant low-pass filter that cannot remove the ripple current of the reactor current. It becomes a composition.

ここまで出力された半導体スイッチング素子102のオンデューティD1と半導体スイッチング素子102のオンデューティD2はゲート信号生成器1010に入力され、図2に示すようにゲート信号生成器1010の内部生成されるキャリア波CWと比較され、ゲート信号生成器1010はゲート信号Vgs_Q102とVgs_Q202を出力する。
以上説明した実施の形態2の電力変換装置によれば、複数台並列接続されたチョッパ回路において、リアクトル電流IL1とリアクトル電流IL2が等しくなるように制御することが可能となる。
The on-duty D1 of the semiconductor switching element 102 and the on-duty D2 of the semiconductor switching element 102 output up to this point are input to the gate signal generator 1010, and as shown in FIG. 2, the carrier wave internally generated by the gate signal generator 1010 is generated. Compared to the CW, the gate signal generator 1010 outputs the gate signals Vgs_Q102 and Vgs_Q202.
According to the power conversion device of the second embodiment described above, it is possible to control the reactor current IL1 and the reactor current IL2 to be equal in the chopper circuit in which a plurality of units are connected in parallel.

制御装置1000をマイコンなどのデジタル演算可能な素子を使用することにより、より小型低コストの電力変換装置を提供できる。また、リアクトル電流検出器104の後段に時定数が異なるリアクトル電流検出器用ローパスフィルタ105とリアクトル電流検出器用ローパスフィルタ106を持つことにより、分流制御の応答性を損なうことなく精度を高めることができ、より小型低コストの電力変換装置を提供することができる。 By using a digitally operable element such as a microcomputer for the control device 1000, it is possible to provide a smaller and lower cost power conversion device. Further, by having the low-pass filter 105 for the reactor current detector and the low-pass filter 106 for the reactor current detector having different time constants after the reactor current detector 104, the accuracy can be improved without impairing the responsiveness of the flow separation control. It is possible to provide a smaller and lower cost power conversion device.

実施の形態3.
実施の形態3の電力変換装置の構成は、実施の形態1と同じで、図1に示す構成となる。実施の形態3では、制御装置1000にマイコンなどのデジタル演算可能な素子を使用するもので、入力電圧値Vin_sense、出力電圧値Vout_sense、電流値IL1_sense、電流値IL2_senseを連続波形ではなく、離散波形で制御装置1000に入力するものである。実施の形態3で説明する電力変換装置は、スイッチング周期1周期あたり4回以上サンプリングしている。
Embodiment 3.
The configuration of the power conversion device according to the third embodiment is the same as that of the first embodiment, and has the configuration shown in FIG. In the third embodiment, a digitally operable element such as a microcomputer is used for the control device 1000, and the input voltage value Vin_sense, the output voltage value Vout_sense, the current value IL1_sense, and the current value IL2_sense are not continuous waveforms but discrete waveforms. It is input to the control device 1000. In the power conversion device described in the third embodiment, sampling is performed four times or more per switching cycle.

図4および図5ではサンプリングを増やす理由を説明するために離散波形でスイッチング周期1周期あたり2回取り込む場合の波形を示している。図4では、スイッチング周期1周期につき2回サンプリングかつゲート信号Vgs_Q102とVgs_Q202に遅延要素を加えている。図1においてはゲート信号Vgs_Q102とVgs_Q202の遅延要素は図示していないが、制御装置1000と半導体スイッチング素子との間にあるゲート信号生成器回路の伝播遅延よって発生する。ゲート信号の遅延(図中矢印にて示している)により、リアクトル電流などのほかの波形も遅れることになる。以後ゲート信号の遅延による各波形の遅延は、波形の遅延と呼ぶこととする。サンプリングのタイミング(図中黒三角にて示すタイミング)はキャリア波CWの山谷で行っている。 In FIGS. 4 and 5, in order to explain the reason for increasing the sampling, a discrete waveform is shown in the case of capturing twice per switching cycle. In FIG. 4, sampling is performed twice per switching cycle, and a delay element is added to the gate signals Vgs_Q102 and Vgs_Q202. Although the delay elements of the gate signals Vgs_Q102 and Vgs_Q202 are not shown in FIG. 1, they are generated by the propagation delay of the gate signal generator circuit between the control device 1000 and the semiconductor switching element. Due to the delay of the gate signal (indicated by the arrow in the figure), other waveforms such as the reactor current will also be delayed. Hereinafter, the delay of each waveform due to the delay of the gate signal will be referred to as the waveform delay. The sampling timing (timing indicated by the black triangle in the figure) is performed at the mountain valley of the carrier wave CW.

図4に示すように、リアクトル101とリアクトル201のインダクタンス値が等しい場合、ゲート信号の遅延によって、リアクトル電流のサンプリング値は、リアクトル電流の直流値と異なる値となるが、リアクトル電流のサンプリング値IL1_sense(図中黒丸で示している)の平均値とリアクトル電流IL2のサンプリング値IL2_sense(図中白丸で示している)の平均値が等しいため分流制御の精度が下がることはない。
一方、図5で示すように、リアクトル101とリアクトル201のインダクタンス値が異なる場合、リアクトル電流のサンプリング値IL1_senseの平均値とリアクトル電流IL2のサンプリング値IL2_senseの平均値に差が発生するため、分流制御の精度が下がることになる。リアクトル電流のサンプリング値の平均値がリアクトル電流の直流値とずれる原理は、波形の遅延により、波形において直流値より手前をサンプリングすることになるためである。
As shown in FIG. 4, when the inductance values of the reactor 101 and the reactor 201 are equal, the sampling value of the reactor current is different from the DC value of the reactor current due to the delay of the gate signal, but the sampling value of the reactor current IL1_sense. Since the average value (indicated by the black circle in the figure) and the average value of the sampling value IL2_sense (indicated by the white circle in the figure) of the inductance current IL2 are equal, the accuracy of the diversion control does not decrease.
On the other hand, as shown in FIG. 5, when the inductance values of the reactor 101 and the reactor 201 are different, a difference occurs between the average value of the sampling value IL1_sense of the reactor current and the average value of the sampling value IL2_sense of the reactor current IL2. The accuracy of is reduced. The principle that the average value of the sampling values of the reactor current deviates from the DC value of the reactor current is that the waveform is sampled before the DC value due to the delay of the waveform.

ゲートオン時にリアクトル電流が上昇、オフ時に下降するため、ゲート遅延時間が同じ場合、ゲートオン時の傾きの絶対値の方がゲートオフ時の傾きの絶対値より大きい場合はリアクトル電流サンプリング値の平均値がリアクトル電流の直流値より小さめに、ゲートオン時の傾きの絶対値の方がゲートオフ時の傾きの絶対値より小さい場合はリアクトル電流サンプリング値の平均値がリアクトル電流の直流値より大きめになる。
実施の形態1、2のように、リアクトル電流検出器用ローパスフィルタの時定数を一定以上にすれば、遅延によるリアクトル電流のサンプリング値の平均値と直流値のずれはなくなるが、リアクトル電流検出器用ローパスフィルタの時定数を一定以上にできない場合は、サンプリングの回数を増やすことで、特に4回以上に増やすことでリアクトル電流サンプリング値の平均値とリアクトル電流の直流値のずれを抑制できる。
以上説明した実施の形態1の電力変換装置によれば、複数台並列接続されたチョッパ回路において分流制御の精度を高めることができ、より小型低コストの電力変換装置を提供できる。
Since the reactor current rises when the gate is turned on and falls when the gate is turned off, if the gate delay time is the same and the absolute value of the tilt when the gate is turned on is larger than the absolute value of the tilt when the gate is turned off, the average value of the reactor current sampling values is the reactor. If the absolute value of the tilt when the gate is on is smaller than the absolute value of the tilt when the gate is off, the average value of the reactor current sampling values will be larger than the DC value of the reactor current.
If the time constant of the low-pass filter for the reactor current detector is set to a certain value or more as in the first and second embodiments, the deviation between the average value of the sampling values of the reactor current and the DC value due to the delay disappears, but the low-pass filter for the reactor current detector is eliminated. If the time constant of the filter cannot be set above a certain level, the deviation between the average value of the reactor current sampling value and the DC value of the reactor current can be suppressed by increasing the number of samplings, especially by increasing the number of samplings to 4 or more.
According to the power conversion device of the first embodiment described above, the accuracy of the flow separation control can be improved in a chopper circuit in which a plurality of units are connected in parallel, and a smaller and lower cost power conversion device can be provided.

実施の形態4.
図1に実施の形態4で説明する電力変換装置の構成図を示す。図5に実施の形態4で説明する電力変換装置の原理を説明するための波形を示す。
実施の形態4で説明する電力変換装置は、構成は実施の形態1と同じである。リアクトル101とリアクトル201は、直流重畳特性をもち、流れる電流の絶対値が大きいほどインダクタンス値が小さくなるものとする。制御装置1000にマイコンなどのデジタル演算可能な素子を使用すると入力電圧値Vin_sense、出力電圧値Vout_sense、電流値IL1_sense、電流値IL2_senseを連続波形ではなく、離散波形で制御装置1000に入力することになる。実施の形態4では、スイッチング周期1周期あたりのサンプリング回数を2回以下とする。実施の形態3で説明したとおり、サンプリング回数が2回以下でリアクトル101とリアクトル201のインダクタンス値が異なる場合、リアクトル電流の直流値とリアクトル電流の検出値の平均値がずれる現象が発生する。
Embodiment 4.
FIG. 1 shows a configuration diagram of the power conversion device described in the fourth embodiment. FIG. 5 shows a waveform for explaining the principle of the power conversion device described in the fourth embodiment.
The power conversion device described in the fourth embodiment has the same configuration as that of the first embodiment. The reactor 101 and the reactor 201 have a DC superimposition characteristic, and the larger the absolute value of the flowing current, the smaller the inductance value. When a digitally operable element such as a microcomputer is used for the control device 1000, the input voltage value Vin_sense, the output voltage value Vout_sense, the current value IL1_sense, and the current value IL2_sense are input to the control device 1000 as discrete waveforms instead of continuous waveforms. .. In the fourth embodiment, the number of samplings per switching cycle is set to 2 or less. As described in the third embodiment, when the number of samplings is 2 or less and the inductance values of the reactor 101 and the reactor 201 are different, a phenomenon occurs in which the DC value of the reactor current and the average value of the detected values of the reactor current deviate from each other.

実施の形態4で説明する電力変換装置は、制御装置1000にリアクトル電流を取り込む場合にリアクトル電流検出器とリアクトル電流検出器用ローパスフィルタによって発生するリアクトル電流検出値のずれによるリアクトル電流の直流値とリアクトル電流の検出値の平均値のずれを、サンプリング回数が2回以下でリアクトル101とリアクトル201のインダクタンス値が異なる場合、リアクトル電流の直流値とリアクトル電流の検出値の平均値がずれる現象を利用して軽減させる。 The power conversion device described in the fourth embodiment is a DC value of the reactor current and a reactor due to a deviation of the reactor current detection value generated by the reactor current detector and the low-pass filter for the reactor current detector when the reactor current is taken into the control device 1000. When the deviation of the average value of the detected current value is 2 or less and the inductance values of the reactor 101 and the reactor 201 are different, the phenomenon that the DC value of the reactor current and the average value of the detected value of the reactor current deviate is used. To reduce.

まず、リアクトル電流検出値である電流値IL1_senseと電流値IL2_senseについて、リアクトル電流検出器とリアクトル電流検出器用ローパスフィルタによって誤差が発生し、リアクトル電流IL1と電流値IL2が等しい場合に電流値IL1_senseが電流値IL2_senseより小さく検出されるとする。そうすると分流制御により、電流値IL1_senseと電流値IL2_senseが等しくなるように制御されるため、電流値IL1の直流値が電流値IL2の直流値より大きくなる。電流値IL1の直流値が電流値IL2の直流値の違いがリアクトル101とリアクトル201の直流重畳特性によるインダクタンスの違いを生む。リアクトル電流の直流値が大きいほうがインダクタンス値が小さくなるため、リアクトル101のインダクタンス値がリアクトル201のインダクタンス値より小さくなる。 First, regarding the current value IL1_sense and the current value IL2_sense, which are the reactor current detection values, an error occurs due to the reactor current detector and the low-pass filter for the reactor current detector, and when the reactor current IL1 and the current value IL2 are equal, the current value IL1_sense is the current. It is assumed that it is detected smaller than the value IL2_sense. Then, since the current value IL1_sense and the current value IL2_sense are controlled to be equal by the current split control, the DC value of the current value IL1 becomes larger than the DC value of the current value IL2. The difference between the DC value of the current value IL1 and the DC value of the current value IL2 causes the difference in inductance due to the DC superimposition characteristics of the reactor 101 and the reactor 201. Since the inductance value becomes smaller when the DC value of the reactor current is larger, the inductance value of the reactor 101 becomes smaller than the inductance value of the reactor 201.

また、実施の形態1から4について、図1や図2に示す昇圧チョッパ回路の他に、図6のような降圧チョッパ方式や、図7のような結合リアクトル方式など半導体スイッチング素子とダイオードとリアクトルを持ち、半導体スイッチング素子のオンデューティで入出力電圧比を制御するチョッパ回路を複数台持つ電力変換装置であれば、何にでも適用できる。 Further, regarding the first to fourth embodiments, in addition to the step-up chopper circuit shown in FIGS. 1 and 2, a semiconductor switching element such as a step-down chopper method as shown in FIG. 6 and a coupled reactor method as shown in FIG. 7, a diode and a reactor are used. It can be applied to any power conversion device having a plurality of chopper circuits that control the input / output voltage ratio by the on-duty of the semiconductor switching element.

また、図8に示すように、直列接続された半導体スイッチング素子とリアクトルを持ち、半導体スイッチング素子のオンデューティで入出力電圧比を制御する双方向チョッパ回路を複数台持つ電力変換装置であれば、何にでも適用できる。図8の双方向チョッパ回路は昇圧チョッパ方式だが、図6のような降圧チョッパ方式や、図7のような結合リアクトル方式などその他の方式の双方向チョッパ回路を複数台持つ電力変換装置にも適用できる。 Further, as shown in FIG. 8, a power conversion device having a semiconductor switching element and a reactor connected in series and having a plurality of bidirectional chopper circuits for controlling the input / output voltage ratio by the on-duty of the semiconductor switching element is used. It can be applied to anything. The bidirectional chopper circuit of FIG. 8 is a step-up chopper system, but it is also applicable to a power conversion device having a plurality of bidirectional chopper circuits of other systems such as a step-down chopper system as shown in FIG. 6 and a coupled reactor system as shown in FIG. can.

なお、制御装置1000は、ハードウエアの一例を図9に示すように、プロセッサ500と記憶装置501から構成される。記憶装置501の詳細は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ500は、記憶装置501から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ500にプログラムが入力される。また、プロセッサ500は、演算結果等のデータを記憶装置501の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。 As shown in FIG. 9, the control device 1000 includes a processor 500 and a storage device 501 as an example of hardware. Although the details of the storage device 501 are not shown, it includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, the auxiliary storage device of the hard disk may be provided instead of the flash memory. The processor 500 executes the program input from the storage device 501. In this case, the program is input from the auxiliary storage device to the processor 500 via the volatile storage device. Further, the processor 500 may output data such as a calculation result to the volatile storage device of the storage device 501, or may store the data in the auxiliary storage device via the volatile storage device.

本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 直流電源、 2 入力平滑コンデンサ、 3 出力平滑コンデンサ、 4 負荷、 5 入力電圧検出器、 6 出力電圧検出器、 100 第1チョッパ回路、 200 第2チョッパ回路、 101,201 リアクトル、 102,202 半導体スイッチング素子、 103,203 ダイオード、 104,204 リアクトル電流検出器、 105,106,205,206 リアクトル電流検出器用ローパスフィルタ、 500 プロセッサ、 501 記憶装置、 1000 制御装置、 1001 出力電圧制御器、 1002 分流制御器、 1003 出力電圧制御デューティリミッタ、 1004 分流制御デューティリミッタ、 1005 第1分流制御器、 1006 第2分流制御器、 1007 第3分流制御器、 1008 第4分流制御
1 DC power supply, 2 Input smoothing capacitor, 3 Output smoothing capacitor, 4 Load, 5 Input voltage detector, 6 Output voltage detector, 100 1st chopper circuit, 200 2nd chopper circuit, 101, 201 reactor, 102, 202 semiconductor Switching element, 103,203 capacitor, 104,204 reactor current detector, 105,106,205,206 low pass filter for reactor current detector, 500 processor, 501 storage device, 1000 controller, 1001 output voltage controller, 1002 diversion control vessel, 1003 output voltage control duty limiter, 1004 diversion control duty limiter, 1005 first shunt controller, 1006 a second shunt controller, 1007 a third shunt regulator, 1008 fourth shunt regulator

Claims (8)

並列に接続された複数台のチョッパ回路、それぞれのチョッパ回路のリアクトル電流を検出するリアクトル電流検出器、出力電圧を検出する出力電圧検出器、および検出されたリアクトル電流に基づいて分流制御を行う分流制御器と検出された出力電圧に基づいて電圧制御を行う電圧制御器を有し、複数の前記チョッパ回路のリアクトル電流が等しくなるように前記チョッパ回路の出力電圧を制御する制御装置を備え
前記リアクトル電流検出器の後段に時定数が異なる複数のローパスフィルタを備え、前記ローパスフィルタの出力を前記制御装置に入力するようにし、
前記制御装置がリアクトル電流のリップル電流を除去できる時定数のローパスフィルタの出力を使用する積分器とリアクトル電流のリップル電流を除去できない時定数のローパスフィルタの出力を使用する比例器を合わせ持つ電力変換装置。
Multiple chopper circuits connected in parallel, a reactor current detector that detects the reactor current of each chopper circuit, an output voltage detector that detects the output voltage, and a diversion control that controls the current split based on the detected reactor current. It has a controller and a voltage controller that controls the voltage based on the detected output voltage, and is equipped with a control device that controls the output voltage of the chopper circuit so that the reactor currents of the plurality of the chopper circuits are equal .
A plurality of low-pass filters having different time constants are provided after the reactor current detector so that the output of the low-pass filter is input to the control device.
Power conversion with both an integrator that uses the output of a time-constant low-pass filter that can remove the ripple current of the reactor current and a proportional device that uses the output of the low-pass filter that uses the output of the time-constant low-pass filter that cannot remove the ripple current of the reactor current. Device.
前記チョッパ回路のゲート信号のデューティは、検出した出力電圧を目標値に追従させるためにリアクトル電流の目標値出力し、前記チョッパ回路のリアクトル電流リアクトル電流の目標値の偏差を基に算出されている請求項1に記載の電力変換装置。 The duty of the gate signal of the chopper circuit is calculated based on the deviation between the reactor current and the target value of the reactor current of the chopper circuit by outputting the target value of the reactor current in order to make the detected output voltage follow the target value. The power conversion device according to claim 1. 前記チョッパ回路のリアクトルのうちの一部もしくはすべてが他のチョッパ回路のリアクトルと磁気結合している請求項1または2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein a part or all of the reactor of the chopper circuit is magnetically coupled to the reactor of another chopper circuit. 前記制御装置がデジタル演算可能な素子である請求項1からのいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 3 , wherein the control device is an element capable of digital calculation. 前記リアクトル電流検出器がスイッチング周期1回当たり4回以上サンプリングする請求項1からのいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 4 , wherein the reactor current detector samples four or more times per switching cycle. 前記リアクトル電流検出器にチョッパ回路のスイッチング周波数の1/10以下のカットオフ周波数のローパスフィルタを持つ請求項1からのいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 4 , wherein the reactor current detector has a low-pass filter having a cutoff frequency of 1/10 or less of the switching frequency of the chopper circuit. 前記チョッパ回路に動作範囲内でインダクタンス値が変化するリアクトルを使用していて、サンプリングのタイミングがリアクトル電流の直流値となるタイミングからずれているようにした請求項1からのいずれか一項に記載の電力変換装置。 According to any one of claims 1 to 4 , the chopper circuit uses a reactor whose inductance value changes within the operating range, and the sampling timing is deviated from the timing at which the DC value of the reactor current becomes. The power converter described. 前記分流制御器が動作条件によりゲインを変更する請求項1からのいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 7 , wherein the divergence controller changes the gain depending on the operating conditions.
JP2020515355A 2018-04-25 2018-04-25 Power converter Active JP6980102B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016733 WO2019207663A1 (en) 2018-04-25 2018-04-25 Power conversion device

Publications (2)

Publication Number Publication Date
JPWO2019207663A1 JPWO2019207663A1 (en) 2021-02-12
JP6980102B2 true JP6980102B2 (en) 2021-12-15

Family

ID=68294737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020515355A Active JP6980102B2 (en) 2018-04-25 2018-04-25 Power converter

Country Status (5)

Country Link
US (1) US11476757B2 (en)
JP (1) JP6980102B2 (en)
CN (1) CN112005479B (en)
DE (1) DE112018007516T5 (en)
WO (1) WO2019207663A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735995B2 (en) * 2018-06-18 2023-08-22 Hitachi Astemo, Ltd. Multi-phase power converter with drift current
JP7213833B2 (en) * 2020-01-07 2023-01-27 日立Astemo株式会社 power converter
JP7452447B2 (en) * 2021-01-14 2024-03-19 トヨタ自動車株式会社 Power supply unit
DE112021007967T5 (en) 2021-07-14 2024-04-25 Mitsubishi Electric Corporation POWER CONVERTER
US12015350B2 (en) * 2022-07-25 2024-06-18 P-Duke Technology Co., Ltd. Multi-phase converter including a duty cycle limiter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142961A (en) 1984-12-17 1986-06-30 Toshiba Corp Controlling method of chopper unit
DE3585508D1 (en) 1984-12-17 1992-04-09 Toshiba Kawasaki Kk CONTROL DEVICE FOR CHOPPER DEVICE.
JP3738015B2 (en) 2003-03-31 2006-01-25 Tdk株式会社 Power supply device and control device thereof
US7615979B2 (en) * 2005-11-28 2009-11-10 David J. Caldwell Flexible power converter and simplified process controller
US8441241B2 (en) * 2010-05-03 2013-05-14 Intel Corporation Methods and systems to digitally balance currents of a multi-phase voltage regulator
WO2013157303A1 (en) * 2012-04-20 2013-10-24 三菱電機株式会社 Power conversion device, motor drive control apparatus provided with power conversion device, air blower and compressor provided with motor drive control apparatus, and air conditioner provided with air blower or compressor
JP5717838B2 (en) 2013-12-26 2015-05-13 三菱電機株式会社 Power converter
KR101610469B1 (en) 2014-05-15 2016-04-07 현대자동차주식회사 Multi-phase interleaved converter and conrol method thereof
JP6277247B1 (en) 2016-10-03 2018-02-07 本田技研工業株式会社 CONVERSION DEVICE, DEVICE, AND CONTROL METHOD
JP6277246B1 (en) * 2016-10-03 2018-02-07 本田技研工業株式会社 CONVERSION DEVICE, DEVICE, AND CONTROL METHOD

Also Published As

Publication number Publication date
DE112018007516T5 (en) 2021-01-14
CN112005479A (en) 2020-11-27
CN112005479B (en) 2024-07-26
US11476757B2 (en) 2022-10-18
WO2019207663A1 (en) 2019-10-31
US20210013803A1 (en) 2021-01-14
JPWO2019207663A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6980102B2 (en) Power converter
KR101840412B1 (en) Buck switch-mode power converter large signal transient response optimizer
US6933709B2 (en) Digital control system and method for switched mode power supply
TWI426692B (en) Multi-phase switching regulator and driver circuit and control method thereof
CN107276409B (en) Circuit and method for controlling DC deviation of DC-DC converter
US20090284992A1 (en) Method and systems for conduction mode control
US10326354B2 (en) Method and system for DC-DC voltage converters with diminished PWM jitter
US11283358B2 (en) Controller for a multi-phase converter and fault detection method thereof
US20070035284A1 (en) Switch mode power converter
US10700606B2 (en) Method and system controlling DC-DC voltage converters using tracking signal
US9203305B2 (en) Pulse width modulation power converter and control method employing different sets of PID coefficients
CN105991030A (en) Enhanced peak current-mode pulse-width-modulated (PWM) switching regulators
US12051974B2 (en) Method and apparatus for regulating an output voltage of a power converter during a load transient
JP2009183076A (en) Switching power supply circuit
US9906121B2 (en) Control circuits and methods for transitioning between power converter control modes
US20080205087A1 (en) Power supply feedback control using sensed duty cycle
US9118307B2 (en) Method for generating PWM signals and a pulse width modulation power converter
CN112039338B (en) Power converter
US11303199B2 (en) DC-DC converter with steady state current limitation
TWI581550B (en) Method for Controlling a Converter
CN113746339B (en) DCDC converter control method, device and system
JP6489567B1 (en) Power converter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R151 Written notification of patent or utility model registration

Ref document number: 6980102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350