JP6976884B2 - Exposure equipment and manufacturing method of goods - Google Patents

Exposure equipment and manufacturing method of goods Download PDF

Info

Publication number
JP6976884B2
JP6976884B2 JP2018035312A JP2018035312A JP6976884B2 JP 6976884 B2 JP6976884 B2 JP 6976884B2 JP 2018035312 A JP2018035312 A JP 2018035312A JP 2018035312 A JP2018035312 A JP 2018035312A JP 6976884 B2 JP6976884 B2 JP 6976884B2
Authority
JP
Japan
Prior art keywords
gas
oxygen concentration
flow path
exposure apparatus
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018035312A
Other languages
Japanese (ja)
Other versions
JP2019148781A (en
Inventor
健士 鈴木
健太郎 牛久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018035312A priority Critical patent/JP6976884B2/en
Priority to TW108101973A priority patent/TWI706850B/en
Priority to KR1020190019016A priority patent/KR102457979B1/en
Publication of JP2019148781A publication Critical patent/JP2019148781A/en
Application granted granted Critical
Publication of JP6976884B2 publication Critical patent/JP6976884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、露光装置、および物品の製造方法に関する。 The present invention relates to an exposure apparatus and a method for manufacturing an article.

カラーフィルタや半導体デバイス等の製造では、レチクルやマスクなどの原版のパターンを投影光学系を介して基板上(ガラスプレートやウェハなど)に投影する露光装置を用いて、基板上のレジストにパターン(潜像)を形成する処理が行われる。このような処理で用いられるレジストは、露光環境中に存在する酸素に起因して、露光光の照射による化学反応が遅くなることが知られている。そのため、レジストへのパターン形成に対する要求に応じて、露光環境中の酸素濃度を制御することが好ましい。例えば、微細なパターンを高精度にレジストに形成する場合には露光環境中の酸素濃度を高くしてレジストの化学反応を遅くするとよく、また、スループットを向上させる場合には露光環境中の酸素濃度を低くしてレジストの化学反応を速くするとよい。 In the manufacture of color filters, semiconductor devices, etc., a pattern (a pattern on a resist on a substrate) is used to project a pattern of an original plate such as a reticle or mask onto a substrate (glass plate, wafer, etc.) via a projection optical system. A process of forming a latent image) is performed. It is known that the resist used in such a treatment slows down the chemical reaction due to the irradiation of the exposure light due to the oxygen present in the exposure environment. Therefore, it is preferable to control the oxygen concentration in the exposure environment according to the demand for pattern formation on the resist. For example, when forming a fine pattern on a resist with high accuracy, it is preferable to increase the oxygen concentration in the exposure environment to slow down the chemical reaction of the resist, and when improving the throughput, the oxygen concentration in the exposure environment may be increased. It is advisable to lower the temperature to accelerate the chemical reaction of the resist.

特許文献1には、露光装置内に酸素ガスを供給する酸素ガス供給系と、露光装置内に窒素ガスを供給する窒素ガス供給系とを有し、酸素濃度計の測定値により所定の酸素濃度にするために酸素ガスと窒素ガスの供給量を調整して混合することが開示されている。 Patent Document 1 includes an oxygen gas supply system that supplies oxygen gas into the exposure apparatus and a nitrogen gas supply system that supplies nitrogen gas into the exposure apparatus, and has a predetermined oxygen concentration according to a measurement value of an oxygen densitometer. It is disclosed that the supply amounts of oxygen gas and nitrogen gas are adjusted and mixed in order to obtain the above.

特開2007−94066号公報Japanese Unexamined Patent Publication No. 2007-94066

特許文献1では、露光装置のチャンバ内に酸素濃度計が配置され、チャンバ内の酸素濃度を計測することにより、酸素ガス供給系と窒素ガス供給系をフィードバック制御して所望の濃度に調整することが開示されている。チャンバ内の酸素濃度を計測して目標酸素濃度に制御する露光装置において、混合前の酸素ガス供給系の酸素濃度が所望の値から変化していると、チャンバ内の酸素濃度が目標酸素濃度に対して大きくずれてしまう恐れがある。 In Patent Document 1, an oxygen concentration meter is arranged in the chamber of the exposure apparatus, and the oxygen gas supply system and the nitrogen gas supply system are feedback-controlled to adjust to a desired concentration by measuring the oxygen concentration in the chamber. Is disclosed. In an exposure device that measures the oxygen concentration in the chamber and controls it to the target oxygen concentration, if the oxygen concentration in the oxygen gas supply system before mixing changes from the desired value, the oxygen concentration in the chamber becomes the target oxygen concentration. On the other hand, there is a risk of a large deviation.

そこで、本発明は、露光装置内に供給される気体の酸素濃度の変化を低減する点で有利な露光装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an exposure apparatus which is advantageous in reducing a change in oxygen concentration of a gas supplied into the exposure apparatus.

本発明の露光装置は、光学系を介して基板を露光する露光装置であって、酸素を含む第1気体が供給される第1流路と、前記第1気体と酸素濃度が異なる第2気体が供給される第2流路と、前記第1流路の酸素濃度を計測する計測部と、前記計測部の計測結果に基づいて、前記第1気体と前記第2気体とを用いて混合気体を生成する混合部と、該混合部から前記光学系と前記基板との間の空間に前記混合気体を供給する供給流路とを有する供給部と、を備えることを特徴とする。 The exposure device of the present invention is an exposure device that exposes a substrate via an optical system, and is a first flow path to which a first gas containing oxygen is supplied and a second gas having an oxygen concentration different from that of the first gas. A mixed gas using the first gas and the second gas based on the measurement results of the second flow path to which the gas is supplied, the measurement unit that measures the oxygen concentration of the first flow path, and the measurement unit. It is characterized by including a mixing unit for generating the mixed gas, and a supply unit having a supply flow path for supplying the mixed gas to the space between the optical system and the substrate from the mixing unit.

本発明によれば、露光装置内に供給される気体の酸素濃度の変化を低減する点で有利な露光装置を提供することができる。 According to the present invention, it is possible to provide an exposure apparatus which is advantageous in reducing a change in oxygen concentration of a gas supplied into the exposure apparatus.

第1実施形態の露光装置の構成を示す図である。It is a figure which shows the structure of the exposure apparatus of 1st Embodiment. 供給部の構成を示す図である。It is a figure which shows the structure of the supply part. 第2実施形態の露光装置の構成を示す図である。It is a figure which shows the structure of the exposure apparatus of 2nd Embodiment.

以下、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in each figure, the same reference number is given to the same member, and duplicate description is omitted.

(第1実施形態)
本発明に係る第1実施形態の露光装置100について、図1を参照しながら説明する。図1は、第1実施形態の露光装置100の構成を示す概略図である。露光装置100は、ステップ・アンド・スキャン方式で基板6を露光し、マスク1(レチクル)のパターンを基板6(基板上のレジスト5)に転写する処理(露光処理)を行うリソグラフィ装置である。但し、露光装置100は、ステップ・アンド・リピート方式やその他の露光方式を適用することもできる。
(First Embodiment)
The exposure apparatus 100 of the first embodiment according to the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing the configuration of the exposure apparatus 100 of the first embodiment. The exposure apparatus 100 is a lithography apparatus that exposes the substrate 6 by a step-and-scan method and transfers the pattern of the mask 1 (reticle) to the substrate 6 (resist 5 on the substrate) (exposure processing). However, the exposure apparatus 100 can also apply a step-and-repeat method or another exposure method.

露光装置100は、例えば、照明光学系2と、マスク1を保持して移動可能なマスクステージ3(レチクルステージ)と、投影光学系4と、基板6を保持して移動可能な基板ステージ7と、供給部8と、酸素濃度計9(計測部)と、制御部10とを含みうる。制御部10は、例えばCPUやメモリなどを有するコンピュータによって構成され、露光装置100の各部を制御する(露光処理を制御する)。制御部10は、露光装置100内に設けてもよいし、露光装置100とは別の場所に設置し遠隔で制御しても良い。また、露光装置100の各部は、露光室を規定するチャンバ11の内部に配置されている。チャンバ11の内部の雰囲気は、雰囲気維持部12によって温度、湿度が制御された空気雰囲気に維持されている。 The exposure apparatus 100 includes, for example, an illumination optical system 2, a mask stage 3 (reticle stage) that holds and moves the mask 1, a projection optical system 4, and a substrate stage 7 that holds and moves the substrate 6. , The supply unit 8, the oxygen concentration meter 9 (measurement unit), and the control unit 10 may be included. The control unit 10 is configured by, for example, a computer having a CPU, a memory, or the like, and controls each unit of the exposure apparatus 100 (controls the exposure process). The control unit 10 may be provided in the exposure apparatus 100, or may be installed in a place different from the exposure apparatus 100 and controlled remotely. Further, each part of the exposure apparatus 100 is arranged inside the chamber 11 that defines the exposure chamber. The atmosphere inside the chamber 11 is maintained in an air atmosphere in which the temperature and humidity are controlled by the atmosphere maintaining unit 12.

照明光学系2は、水銀ランプ、ArFエキシマレーザ、KrFエキシマレーザなどの光源(不図示)から射出された光を、例えば帯状や円弧状のスリット光に整形し、そのスリット光でマスク1の一部を照明する。マスク1および基板6は、マスクステージ3および基板ステージ7によってそれぞれ保持されており、投影光学系4(光学系)を介して光学的にほぼ共役な位置(投影光学系4の物体面および像面)にそれぞれ配置される。投影光学系4は、所定の投影倍率を有し、スリット光によりマスク1のパターンを、基板6(具体的には、基板上に供給(塗布)されたレジスト5)に投影する。マスクステージ3および基板ステージ7は、互いに同期しながら投影光学系4の投影倍率に応じた速度比で相対的に走査される。これにより、マスク1のパターンを基板上のレジスト5に転写することができる。 The illumination optical system 2 shapes the light emitted from a light source (not shown) such as a mercury lamp, an ArF excimer laser, or a KrF excimer laser into, for example, a band-shaped or arc-shaped slit light, and the slit light is used as one of the mask 1. Illuminate the part. The mask 1 and the substrate 6 are held by the mask stage 3 and the substrate stage 7, respectively, and are optically coupled to each other via the projection optical system 4 (optical system) (object plane and image plane of the projection optical system 4). ) Are placed respectively. The projection optical system 4 has a predetermined projection magnification, and projects the pattern of the mask 1 onto the substrate 6 (specifically, the resist 5 supplied (coated) on the substrate) by the slit light. The mask stage 3 and the substrate stage 7 are relatively scanned at a speed ratio corresponding to the projection magnification of the projection optical system 4 while synchronizing with each other. As a result, the pattern of the mask 1 can be transferred to the resist 5 on the substrate.

このような露光装置100では、露光環境中に存在する酸素に起因して、露光光によるレジスト5の化学反応が遅くなることが知られている。そのため、基板上のレジスト5へのパターン形成に対する要求に応じて、露光環境中の酸素濃度を制御することが好ましい。例えば、微細なパターンを高精度にレジスト5に形成する場合には露光環境中の酸素濃度を高くしてレジスト5の化学反応を遅くするとよく、また、スループットを向上させる場合には露光環境中の酸素濃度を低くしてレジスト5の化学反応を速くするとよい。 In such an exposure apparatus 100, it is known that the chemical reaction of the resist 5 due to the exposure light is delayed due to the oxygen existing in the exposure environment. Therefore, it is preferable to control the oxygen concentration in the exposure environment according to the demand for pattern formation on the resist 5 on the substrate. For example, when forming a fine pattern on the resist 5 with high accuracy, it is preferable to increase the oxygen concentration in the exposure environment to slow down the chemical reaction of the resist 5, and when improving the throughput, it is preferable to increase the oxygen concentration in the exposure environment. It is preferable to lower the oxygen concentration to accelerate the chemical reaction of the resist 5.

このことについて、カラーフィルタの製造方法を例示して説明する。カラーフィルタの製造方法としては、染色法、印刷法、電着・電界法、顔料分散法などの様々な方法がある。これらの方法のうち、現在では、製造上の安定性や簡易性から顔料分散法が主流となっている。代表的な顔料分散法である感光アクリル法では、アクリロイド系感光性樹脂を含み、着色機能と感光機能との両方を有するカラーレジストに対して、フォトリソグラフィによってパターンを形成する。 This will be described by way of exemplifying a method for manufacturing a color filter. As a method for manufacturing a color filter, there are various methods such as a dyeing method, a printing method, an electrodeposition / electric field method, and a pigment dispersion method. Of these methods, the pigment dispersion method is currently the mainstream because of its manufacturing stability and simplicity. In the photosensitive acrylic method, which is a typical pigment dispersion method, a pattern is formed by photolithography on a color resist containing an acryloid-based photosensitive resin and having both a coloring function and a photosensitive function.

カラーレジストは、ネガレジストであるため、露光光を照射すると、反応に寄与するラジカルを発生し、ポリマを光重合させ、現像液に不溶となる。但し、カラーレジストに含まれる顔料の成分は露光光を吸収しやすく、また、発生したラジカルは露光環境中(空気中)に存在する酸素にトラップされてしまうため、光重合反応は妨げられる傾向にある。つまり、露光光によるカラーレジストの化学反応が、空気中に存在する酸素に起因して遅くなり、スループットが低下してしまう。そのため、スループットを向上させるには、露光環境中の酸素濃度を低くするとよい。一方、露光光によるカラーレジストの化学反応が遅くなるということは、レジストへの微細なパターンの形成を高精度に制御可能であることを意味する。そのため、微細なパターンをレジストに高精度に形成する場合には、露光環境中の酸素濃度を高くするとよい。 Since the color resist is a negative resist, when it is irradiated with exposure light, radicals that contribute to the reaction are generated, the polymer is photopolymerized, and it becomes insoluble in the developing solution. However, the pigment component contained in the color resist easily absorbs the exposure light, and the generated radicals are trapped by oxygen existing in the exposure environment (in the air), so that the photopolymerization reaction tends to be hindered. be. That is, the chemical reaction of the color resist due to the exposure light is slowed down due to the oxygen present in the air, and the throughput is lowered. Therefore, in order to improve the throughput, it is preferable to lower the oxygen concentration in the exposure environment. On the other hand, the fact that the chemical reaction of the color resist due to the exposure light is delayed means that the formation of fine patterns on the resist can be controlled with high accuracy. Therefore, when forming a fine pattern on the resist with high accuracy, it is preferable to increase the oxygen concentration in the exposure environment.

そこで、本実施形態の露光装置100は、目標酸素濃度に調整された気体を投影光学系4と基板6との間の空間(以下では、「露光空間」と称する)に供給する供給部8を含み、露光環境中の酸素濃度を制御する。 Therefore, the exposure device 100 of the present embodiment provides a supply unit 8 that supplies a gas adjusted to a target oxygen concentration to the space between the projection optical system 4 and the substrate 6 (hereinafter, referred to as “exposure space”). Including, it controls the oxygen concentration in the exposure environment.

供給部8は、空気(酸素)を含む第1気体(基準気体)が供給される第1流路101と、第1気体より酸素濃度が高い第2気体が供給される第2流路102と、第1気体より酸素濃度が低い第3気体が供給される第3流路103とを有する。そして、供給部8は、第1流路101、第2流路102および第3流路103が接続された混合部104の内部で目標酸素濃度の気体(混合気体)を生成し、生成した気体を供給流路105(供給ノズル)を介して露光空間に供給する。供給部8における目標酸素濃度の気体の生成は、図2に示すように第1流路101、第2流路102および第3流路103にそれぞれ設けられた制御弁111〜113(例えばマスフローメータ)を制御部10が制御することによって行われうる。 The supply unit 8 includes a first flow path 101 to which a first gas (reference gas) containing air (oxygen) is supplied, and a second flow path 102 to which a second gas having a higher oxygen concentration than the first gas is supplied. , A third flow path 103 to which a third gas having a lower oxygen concentration than the first gas is supplied. Then, the supply unit 8 generates a gas (mixed gas) having a target oxygen concentration inside the mixing unit 104 to which the first flow path 101, the second flow path 102, and the third flow path 103 are connected, and the generated gas is generated. Is supplied to the exposure space via the supply flow path 105 (supply nozzle). As shown in FIG. 2, the generation of the gas having the target oxygen concentration in the supply unit 8 is performed by controlling valves 111 to 113 (for example, a mass flow meter) provided in the first flow path 101, the second flow path 102, and the third flow path 103, respectively. ) Can be controlled by the control unit 10.

ここで、本実施形態では、第1気体として空気(基準気体となる乾燥エア)、第2気体として酸素ガス、第3気体として窒素ガスが用いられうるが、それに限られるものではない。第1気体は、空気に限られず、空気に窒素または酸素を混合することにより空気に対して酸素濃度が変更された気体であってもよい。即ち、第1気体は、主成分が空気である気体を意味する。第1気体としては、例えば工場設備で生成されたクリーンドライエアなどの気体(酸素濃度、温度および湿度の少なくとも1つが調整された気体)が用いられうる。また、第2気体は、酸素ガスに限られず、上述のように、第1気体を基準として酸素濃度が高ければよい。同様に、第3気体は、窒素ガスに限られず、第1気体を基準として酸素濃度が低ければよい。 Here, in the present embodiment, air (dry air serving as a reference gas) can be used as the first gas, oxygen gas can be used as the second gas, and nitrogen gas can be used as the third gas, but the present invention is not limited thereto. The first gas is not limited to air, and may be a gas whose oxygen concentration is changed with respect to air by mixing nitrogen or oxygen with air. That is, the first gas means a gas whose main component is air. As the first gas, for example, a gas such as clean dry air generated in factory equipment (a gas in which at least one of oxygen concentration, temperature and humidity is adjusted) can be used. Further, the second gas is not limited to the oxygen gas, and as described above, the oxygen concentration may be high with respect to the first gas. Similarly, the third gas is not limited to nitrogen gas, and it is sufficient that the oxygen concentration is low with respect to the first gas.

また、供給部8には、第2気体および第3気体の何れか一方を有していればよい。その場合、第1気体の酸素濃度と異なる酸素濃度の気体を第2気体として備えており、第1気体と第2気体を混合することにより目標酸素濃度の気体を生成してもよい。 Further, the supply unit 8 may have either a second gas or a third gas. In that case, a gas having an oxygen concentration different from the oxygen concentration of the first gas is provided as the second gas, and a gas having a target oxygen concentration may be generated by mixing the first gas and the second gas.

このような供給部8において、混合部104に供給される第1気体の酸素濃度が所定の値から変化すると、混合部で混合された気体の酸素濃度が一時的に変化し、露光空間における気体の目標酸素濃度に対して誤差が生じる恐れがある。これは第1気体として乾燥エアを製造する設備は、通常シリカゲル等の吸着剤を使用した2塔切り換え式の吸着装置が採用されている。この方式は、空気成分のうち窒素成分を選択的に吸着するという特性を有している。このため、再生工程の終了した吸着塔を再度昇圧する過程で昇圧気体のうち、窒素成分が吸着剤に吸収されてしまい、結果的に酸素の濃縮した気体が精製工程に切換える直前の吸着塔を含む系内に残ることになる。従って、精製工程に切換わった直後において、一時的に乾燥空気中の酸素濃度が急上昇してしまうことがあり、混合部104に供給される第1気体の酸素濃度が所定の値から大きく変化する恐れがある。 In such a supply unit 8, when the oxygen concentration of the first gas supplied to the mixing unit 104 changes from a predetermined value, the oxygen concentration of the gas mixed in the mixing unit temporarily changes, and the gas in the exposure space There is a risk of error with respect to the target oxygen concentration of. This is because the equipment for producing dry air as the first gas usually employs a two-tower switching type adsorption device using an adsorbent such as silica gel. This method has the characteristic of selectively adsorbing the nitrogen component among the air components. For this reason, in the process of boosting the pressure of the adsorption tower after the regeneration step is completed, the nitrogen component of the boosted gas is absorbed by the adsorbent, and as a result, the adsorption tower immediately before the oxygen-concentrated gas switches to the purification step. It will remain in the system containing it. Therefore, immediately after switching to the purification step, the oxygen concentration in the dry air may temporarily rise sharply, and the oxygen concentration of the first gas supplied to the mixing unit 104 changes significantly from a predetermined value. There is a fear.

そのため、本実施形態の供給部8には、少なくとも空気を含む第1気体が供給される第1流路101に酸素濃度を計測する計測部として酸素濃度計9が設けられている。供給部8は、酸素濃度計9による第1気体の酸素濃度の計測結果に基づいて、第2気体および第3気体のうち少なくとも一方を第1気体に混合させることにより、目標酸素濃度の気体を生成する。第2気体や第3気体の酸素濃度が所望の値の気体を用いる場合には、第2流路102や第3流路103に酸素濃度を計測する酸素濃度計9が設けられていなくてもよい。 Therefore, the supply unit 8 of the present embodiment is provided with an oxygen concentration meter 9 as a measurement unit for measuring the oxygen concentration in the first flow path 101 to which at least the first gas containing air is supplied. Based on the measurement result of the oxygen concentration of the first gas by the oxygen concentration meter 9, the supply unit 8 mixes at least one of the second gas and the third gas with the first gas to obtain a gas having a target oxygen concentration. Generate. When a gas having a desired oxygen concentration of the second gas or the third gas is used, the oxygen concentration meter 9 for measuring the oxygen concentration is not provided in the second flow path 102 or the third flow path 103. good.

例えば、第1気体の酸素濃度の計測結果より目標酸素濃度が高い場合には、供給部8は、混合部104で第1気体に第2気体を混合させることによって目標酸素濃度の気体を生成し、生成した気体を露光空間に供給流路105を介して供給する。一方、第1気体の酸素濃度の計測結果より目標酸素濃度が低い場合には、供給部8は、混合部104で第1気体に第3気体を混合させることによって目標酸素濃度の気体を生成し、生成した気体を露光空間に供給流路105を介して供給する。 For example, when the target oxygen concentration is higher than the measurement result of the oxygen concentration of the first gas, the supply unit 8 generates a gas having the target oxygen concentration by mixing the second gas with the first gas in the mixing unit 104. , The generated gas is supplied to the exposure space via the supply flow path 105. On the other hand, when the target oxygen concentration is lower than the measurement result of the oxygen concentration of the first gas, the supply unit 8 generates a gas having a target oxygen concentration by mixing the first gas with the third gas in the mixing unit 104. , The generated gas is supplied to the exposure space via the supply flow path 105.

ここで、供給部8では、例えば工場設備の故障などの影響により第1流路101から第1気体が供給されないことがありうる。この場合、制御部10は、第1気体を用いずに、第2気体と第3気体とを混合させることによって目標酸素濃度の気体を生成するように供給部8(各流路の制御弁111〜113)を制御してもよい。また、露光空間の温度や湿度(温度および湿度の少なくとも一方)を計測した結果に基づいて、目標酸素濃度の気体の温度や湿度を混合部104の内部で調整してもよい。この場合、露光装置100には、露光空間の温度を計測する温度計や湿度を計測する湿度計、混合部104内の気体の温度や湿度を調整する調整部(ヒータ等)が設けられうる。また、混合部104内の気体の酸素濃度を計測する酸素濃度計を備えてもよい。 Here, in the supply unit 8, the first gas may not be supplied from the first flow path 101 due to the influence of, for example, a failure of the factory equipment. In this case, the control unit 10 does not use the first gas, but mixes the second gas and the third gas to generate a gas having a target oxygen concentration so that the supply unit 8 (control valve 111 of each flow path) is generated. ~ 113) may be controlled. Further, the temperature and humidity of the gas having the target oxygen concentration may be adjusted inside the mixing unit 104 based on the result of measuring the temperature and humidity (at least one of the temperature and humidity) of the exposure space. In this case, the exposure apparatus 100 may be provided with a thermometer for measuring the temperature of the exposure space, a hygrometer for measuring the humidity, and an adjusting unit (heater or the like) for adjusting the temperature and humidity of the gas in the mixing unit 104. Further, an oxygen concentration meter for measuring the oxygen concentration of the gas in the mixing unit 104 may be provided.

さらに、露光装置100のチャンバ11内に、露光空間の酸素濃度を計測する酸素濃度計9が設けられてもよい。酸素濃度計9は、投影光学系4と基板6との間の局所空間(露光空間)の近傍に配置され、該局所空間の酸素濃度を計測する。チャンバ11内の酸素濃度計9は、投影光学系4と基板6との間の酸素濃度を代替計測可能な位置に配置することもできる。例えば、供給部8の供給流路105の端部と投影光学系4(の最終面の近傍)との間などに酸素濃度計9を配置することで代替計測することができる。このように酸素濃度計9を設けることにより、制御部10は、酸素濃度計9の計測結果に基づいて、第1流路101、第2流路102および第3流路103にそれぞれ設けられた制御弁111〜113を制御し、目標酸素濃度の気体を生成することができる。 Further, an oxygen concentration meter 9 for measuring the oxygen concentration in the exposure space may be provided in the chamber 11 of the exposure apparatus 100. The oxygen concentration meter 9 is arranged in the vicinity of a local space (exposure space) between the projection optical system 4 and the substrate 6, and measures the oxygen concentration in the local space. The oxygen concentration meter 9 in the chamber 11 can also be arranged at a position where the oxygen concentration between the projection optical system 4 and the substrate 6 can be measured in an alternative manner. For example, alternative measurement can be performed by arranging an oxygen concentration meter 9 between the end of the supply flow path 105 of the supply unit 8 and the projection optical system 4 (near the final surface of the projection optical system 4). By providing the oxygen concentration meter 9 in this way, the control unit 10 is provided in the first flow path 101, the second flow path 102, and the third flow path 103, respectively, based on the measurement results of the oxygen concentration meter 9. The control valves 111 to 113 can be controlled to generate a gas having a target oxygen concentration.

図2を用いて、第1実施形態の露光装置100における供給部8によって目標酸素濃度の気体を生成して露光空間に供給する実施例について説明する。 An embodiment in which a gas having a target oxygen concentration is generated by the supply unit 8 in the exposure apparatus 100 of the first embodiment and supplied to the exposure space will be described with reference to FIG.

制御部10は、露光処理に用いられる露光レシピを記憶部13から取得し、取得した露光レシピに設定された露光空間の目標酸素濃度を読み込む。そして、制御部10は、目標酸素濃度の気体を生成して露光空間に供給するように供給部8を制御する。このとき、制御部10は、酸素濃度計9により計測された第1気体(乾燥エア)の第1流路101の酸素濃度に基づいて、露光処理に必要となる目標酸素濃度になるように供給部8を制御する。ここで、第1実施形態の露光装置100は、記憶部13と制御部10とを別々に構成しているが、記憶部13を制御部10の一部として構成してもよい。記憶部13には露光処理の種類に応じた目標酸素濃度が記憶されている。 The control unit 10 acquires an exposure recipe used for the exposure process from the storage unit 13, and reads the target oxygen concentration in the exposure space set in the acquired exposure recipe. Then, the control unit 10 controls the supply unit 8 so as to generate a gas having a target oxygen concentration and supply it to the exposure space. At this time, the control unit 10 supplies the target oxygen concentration required for the exposure process based on the oxygen concentration of the first flow path 101 of the first gas (dry air) measured by the oxygen concentration meter 9. The unit 8 is controlled. Here, in the exposure apparatus 100 of the first embodiment, the storage unit 13 and the control unit 10 are separately configured, but the storage unit 13 may be configured as a part of the control unit 10. The storage unit 13 stores the target oxygen concentration according to the type of exposure processing.

次に、制御部10は、第1流路101の酸素濃度計9で計測した値と記憶部13に記憶してある酸素(第2気体)と不活性ガス(第3気体)の酸素濃度を基に、読み込んだ酸素濃度となるよう各ガスの流量比算出を行い、その数値に基づき供給部8を制御する。具体的には、制御部10は、混合部104につながっている第1流路101の制御弁111、第2流路102の制御弁112、及び、第3流路103の制御弁113を制御することによって各流路から供給される気体の流量を調整する。 Next, the control unit 10 determines the value measured by the oxygen concentration meter 9 of the first flow path 101 and the oxygen concentrations of the oxygen (second gas) and the inert gas (third gas) stored in the storage unit 13. Based on this, the flow ratio of each gas is calculated so as to have the read oxygen concentration, and the supply unit 8 is controlled based on the numerical value. Specifically, the control unit 10 controls the control valve 111 of the first flow path 101 connected to the mixing unit 104, the control valve 112 of the second flow path 102, and the control valve 113 of the third flow path 103. By doing so, the flow rate of the gas supplied from each flow path is adjusted.

ここで、第1流路101(乾燥エア供給系)の酸素濃度を21%、第2流路102(酸素供給系)の酸素濃度を99%、第3流路103(不活性ガス供給系)の酸素濃度を1%とする。記憶部13に記憶されたレシピの目標酸素濃度が第1流路101の酸素濃度よりも高い場合は、第1流路101と第2流路102から第1気体と第2気体を供給する。記憶部13に記憶されたレシピの酸素濃度が第1流路101の酸素濃度よりも低い場合は、第1流路101と第3流路103から第1気体と第2気体を供給する。 Here, the oxygen concentration of the first flow path 101 (dry air supply system) is 21%, the oxygen concentration of the second flow path 102 (oxygen supply system) is 99%, and the oxygen concentration of the third flow path 103 (inert gas supply system). The oxygen concentration of is 1%. When the target oxygen concentration of the recipe stored in the storage unit 13 is higher than the oxygen concentration of the first flow path 101, the first gas and the second gas are supplied from the first flow path 101 and the second flow path 102. When the oxygen concentration of the recipe stored in the storage unit 13 is lower than the oxygen concentration of the first flow path 101, the first gas and the second gas are supplied from the first flow path 101 and the third flow path 103.

具体的には、図2(A)において、制御部10が各流路の制御弁111、112、113を制御することで、各流路から混合部104に供給される気体の流量を制御する。目標酸素濃度が第1流路101の酸素濃度よりも高い場合、第1流路101と第2流路102から第1気体と第2気体を供給する為、制御弁111、112を開放し、制御弁113を閉鎖することで、混合部104に所望の酸素濃度の混合気体を生成する。目標酸素濃度が第1流路101の酸素濃度よりも低い場合、第1流路101と第3流路103から第1気体と第3気体を供給する為、制御弁111、113を開放し、制御弁112を閉鎖することで、混合部104に所望の酸素濃度の混合気体を生成する。 Specifically, in FIG. 2A, the control unit 10 controls the control valves 111, 112, 113 of each flow path to control the flow rate of the gas supplied from each flow path to the mixing unit 104. .. When the target oxygen concentration is higher than the oxygen concentration of the first flow path 101, the control valves 111 and 112 are opened in order to supply the first gas and the second gas from the first flow path 101 and the second flow path 102. By closing the control valve 113, a mixed gas having a desired oxygen concentration is generated in the mixing unit 104. When the target oxygen concentration is lower than the oxygen concentration of the first flow path 101, the control valves 111 and 113 are opened in order to supply the first gas and the third gas from the first flow path 101 and the third flow path 103. By closing the control valve 112, a mixed gas having a desired oxygen concentration is generated in the mixing unit 104.

このとき、第1流路101から供給される第1気体の酸素濃度が変化する場合には、酸素濃度計9の計測結果に基づいて制御弁112、113を制御して混合部104に供給される気体の流量を調整する。これにより、混合部104内の混合気体の目標酸素濃度に対する変動を小さくすることが可能になり、供給流路105から露光空間に供給される混合気体の酸素濃度の変動を小さくし、混合気体の酸素濃度を所望の値(目標酸素濃度)にすることができる。 At this time, when the oxygen concentration of the first gas supplied from the first flow path 101 changes, the control valves 112 and 113 are controlled based on the measurement result of the oxygen concentration meter 9 and supplied to the mixing unit 104. Adjust the flow rate of the gas. This makes it possible to reduce the fluctuation of the mixed gas in the mixing unit 104 with respect to the target oxygen concentration, reduce the fluctuation of the oxygen concentration of the mixed gas supplied from the supply flow path 105 to the exposure space, and reduce the fluctuation of the mixed gas. The oxygen concentration can be set to a desired value (target oxygen concentration).

なお、制御部10は、第2流路102の第2気体と第3流路103の第3気体を混合することによって、混合部104に所望の酸素濃度の気体を生成してもよい。しかし、上述のように第1気体を基準として目標酸素濃度の気体を生成することにより、酸素濃度差が大きい第2気体と第3気体とを混合させて目標酸素濃度の気体を生成するよりも、混合気体の酸素濃度が安定するまでに要する時間を短縮することができる。また、一般に、空気は、酸素ガスや窒素ガス(不活性ガス)に比べて安価である。そのため、酸素ガスと窒素ガスとを混合させて目標酸素濃度の気体を生成するより、空気を基準として目標酸素濃度の気体を生成する方がコストの点で有利になりうる。 The control unit 10 may generate a gas having a desired oxygen concentration in the mixing unit 104 by mixing the second gas in the second flow path 102 and the third gas in the third flow path 103. However, as described above, by generating a gas having a target oxygen concentration with reference to the first gas, it is better than mixing a second gas and a third gas having a large difference in oxygen concentration to generate a gas having a target oxygen concentration. , The time required for the oxygen concentration of the mixed gas to stabilize can be shortened. In addition, air is generally cheaper than oxygen gas and nitrogen gas (inert gas). Therefore, it may be more cost effective to generate a gas having a target oxygen concentration based on air than to generate a gas having a target oxygen concentration by mixing oxygen gas and nitrogen gas.

従来の露光装置では、酸素濃度計が投影光学系4の最終面と基板6との間に配置されており、投影光学系4の最終面と基板6との間の局所空間に供給した混合気体の酸素濃度を計測した結果に基づき供給部8をフィードバック制御している。そのため、供給する前に乾燥エアの酸素濃度変動を検知できず供給部8の制御が出来ないまま、目標値酸素濃度に対し大きな誤差を持った混合気体が供給する恐れがある。 In the conventional exposure apparatus, the oxygen densitometer is arranged between the final surface of the projection optical system 4 and the substrate 6, and the mixed gas supplied to the local space between the final surface of the projection optical system 4 and the substrate 6 is provided. The supply unit 8 is feedback-controlled based on the result of measuring the oxygen concentration of the above. Therefore, there is a possibility that a mixed gas having a large error with respect to the target value oxygen concentration will be supplied without being able to detect the oxygen concentration fluctuation of the dry air before supplying and controlling the supply unit 8.

これに対して、本実施形態の露光装置100は、投影光学系4の最終面と基板6との間の局所空間に供給する前に第1流路101に酸素濃度計9が配置されている。酸素濃度計9の計測値と予め記憶部13に記憶させた第2流路(第2気体)と第3流路(第3気体)の酸素濃度値を用いて、供給部8の制御を行う。これにより、露光空間に混合気体を供給する前に第1気体(乾燥エア)の酸素濃度変動に追従して供給部8を制御する事が可能となり、混合気体は目標酸素濃度で供給することが可能になる。 On the other hand, in the exposure apparatus 100 of the present embodiment, the oxygen concentration meter 9 is arranged in the first flow path 101 before supplying to the local space between the final surface of the projection optical system 4 and the substrate 6. .. The supply unit 8 is controlled by using the measured value of the oxygen concentration meter 9 and the oxygen concentration values of the second flow path (second gas) and the third flow path (third gas) stored in the storage unit 13 in advance. .. This makes it possible to control the supply unit 8 by following the oxygen concentration fluctuation of the first gas (dry air) before supplying the mixed gas to the exposure space, and the mixed gas can be supplied at the target oxygen concentration. It will be possible.

(第2実施形態)
本発明に係る第2実施形態の露光装置200について、図3を参照しながら説明する。図3は、第2実施形態の露光装置200の構成を示す概略図である。なお、第2実施形態の露光装置において、第1実施形態の露光装置と同一の部材については同一の参照番号を付し、重複する説明は省略する。
(Second Embodiment)
The exposure apparatus 200 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic view showing the configuration of the exposure apparatus 200 of the second embodiment. In the exposure apparatus of the second embodiment, the same reference numbers are assigned to the same members as the exposure apparatus of the first embodiment, and duplicate description will be omitted.

第1実施形態の露光装置100は、第1流路101に酸素濃度計9が配置される実施形態である。制御部10は、酸素濃度計9で計測された第1気体(乾燥エア)の酸素濃度値と予め記憶部13に記憶させた第2気体(酸素)と第3気体(不活性ガス)の酸素濃度値を用いて、各気体の流量比を求め、その流量比に基づき供給部8を制御している。 The exposure apparatus 100 of the first embodiment is an embodiment in which the oxygen concentration meter 9 is arranged in the first flow path 101. The control unit 10 has the oxygen concentration value of the first gas (dry air) measured by the oxygen concentration meter 9, and the oxygen of the second gas (oxygen) and the third gas (inert gas) stored in the storage unit 13 in advance. The flow rate ratio of each gas is obtained using the concentration value, and the supply unit 8 is controlled based on the flow rate ratio.

一方で、図3に示す第2実施形態の露光装置200は、第2流路102および第3流路103のそれぞれにも酸素濃度計31、32が配置されている。第2実施形態の露光装置200の制御部10は、第1流路、第2流路、第3流路のそれぞれに配置された酸素濃度計9、31、32(計測部)からの計測結果を用いて、第1気体、第2気体、第3気体の流量比を求め、求めた流量比に基づき供給部8を制御する。これにより、第2気体として純度の低い酸素や第3気体として純度の低い不活性ガスを用いた場合でも、混合部104で生成される混合気体を目標値通りの酸素濃度に調整することができる。そのため、第2実施形態の露光装置200の供給部8は、投影光学系4の最終面と基板6との間の露光空間に所望の酸素濃度の混合気体を供給することができる。 On the other hand, in the exposure apparatus 200 of the second embodiment shown in FIG. 3, oxygen concentration meters 31 and 32 are arranged in the second flow path 102 and the third flow path 103, respectively. The control unit 10 of the exposure apparatus 200 of the second embodiment is the measurement result from the oxygen concentration meters 9, 31, 32 (measurement unit) arranged in each of the first flow path, the second flow path, and the third flow path. The flow rate ratios of the first gas, the second gas, and the third gas are obtained using the above, and the supply unit 8 is controlled based on the obtained flow rate ratios. As a result, even when low-purity oxygen is used as the second gas or low-purity inert gas is used as the third gas, the mixed gas generated in the mixing unit 104 can be adjusted to the oxygen concentration according to the target value. .. Therefore, the supply unit 8 of the exposure apparatus 200 of the second embodiment can supply a mixed gas having a desired oxygen concentration to the exposure space between the final surface of the projection optical system 4 and the substrate 6.

また、第1流路101、第2流路102、第3流路103に配置された酸素濃度計9、31、32から供給部8の混合部104までの距離は、工場内で設置される露光装置のレイアウトなどにより異なる。また、酸素濃度計9、31、32で計測した酸素濃度変動が供給部8の混合部104に到達する時間は、それぞれの流路における配管長や消費流量および供給圧力によって異なる。そのため、制御部10は、混合部104で混合される各気体の流量を制御する制御弁111、112、113を制御するのに時間差を持たせることで、酸素濃度計の配置に自由度を持たせることが可能となる。 Further, the distance from the oxygen concentration meters 9, 31, 32 arranged in the first flow path 101, the second flow path 102, and the third flow path 103 to the mixing unit 104 of the supply unit 8 is installed in the factory. It depends on the layout of the exposure equipment. Further, the time for the oxygen concentration fluctuation measured by the oxygen concentration meters 9, 31, and 32 to reach the mixing unit 104 of the supply unit 8 differs depending on the pipe length, the consumption flow rate, and the supply pressure in each flow path. Therefore, the control unit 10 has a degree of freedom in arranging the oxygen concentration meter by giving a time difference to control the control valves 111, 112, 113 that control the flow rate of each gas mixed by the mixing unit 104. It is possible to make it.

(第3実施形態)
さら露光装置は、一般に、投影光学系4の光学性能が、投影光学系4(最終面)と基板6との間の局所空間(露光空間)の屈折率の影響を大きく受ける。気体の屈折率は、気体の温度および湿度により変化するため、気体の温度および湿度の変化を小さくすることにより、投影光学系4の光学性能を所望の状態にして露光処理を行うことができる。
(Third Embodiment)
Further, in the exposure apparatus, in general, the optical performance of the projection optical system 4 is greatly affected by the refractive index of the local space (exposure space) between the projection optical system 4 (final surface) and the substrate 6. Since the refractive index of the gas changes depending on the temperature and humidity of the gas, the exposure process can be performed with the optical performance of the projection optical system 4 in a desired state by reducing the change in the temperature and humidity of the gas.

例えば、露光装置100では、基板6の表面位置(Z方向)を投影光学系4の結像位置に合わせた状態で露光処理が行われる。一方で、供給部8によって露光空間に供給される気体の酸素濃度は同じであるが、当該気体の温度および湿度が異なると、投影光学系4の結像位置が変化する恐れがある。混合部104に供給される気体の混合比の変化に伴い、露光空間に供給される混合気体の温度および湿度が変化すると、露光空間の屈折率が変化して投影光学系4の結像位置が変わり、基板6の表面位置が投影光学系4の結像位置からずれうる。 For example, in the exposure apparatus 100, the exposure process is performed in a state where the surface position (Z direction) of the substrate 6 is aligned with the image formation position of the projection optical system 4. On the other hand, although the oxygen concentration of the gas supplied to the exposure space by the supply unit 8 is the same, if the temperature and humidity of the gas are different, the image formation position of the projection optical system 4 may change. When the temperature and humidity of the mixed gas supplied to the exposure space change with the change in the mixing ratio of the gas supplied to the mixing unit 104, the refractive index of the exposure space changes and the imaging position of the projection optical system 4 changes. As a result, the surface position of the substrate 6 may deviate from the image formation position of the projection optical system 4.

そこで、第3実施形態の露光装置では、第1気体、第2気体および第3気体が互いに異なる温度に予め調整されており、混合気体が目標酸素濃度および目標温度に近づくように、それらの気体を混合させる。即ち、第1気体、第2気体および第3気体のうち少なくとも2つの混合により混合気体の温度を調整する。目標温度は、例えば、投影光学系4が配置されている雰囲気の温度(チャンバ11の内部雰囲気の温度)を含みうる。本実施形態では、第1気体、第2気体および第3気体が互いに異なる温度に予め調整されている例を説明するが、それに限られず、それらの気体が互いに異なる湿度に予め調整されていてもよい。この場合、混合気体が目標湿度になるように、それらの気体を混合させる。 Therefore, in the exposure apparatus of the third embodiment, the first gas, the second gas, and the third gas are preliminarily adjusted to different temperatures, and these gases are adjusted so that the mixed gas approaches the target oxygen concentration and the target temperature. To mix. That is, the temperature of the mixed gas is adjusted by mixing at least two of the first gas, the second gas, and the third gas. The target temperature may include, for example, the temperature of the atmosphere in which the projection optical system 4 is arranged (the temperature of the internal atmosphere of the chamber 11). In this embodiment, an example in which the first gas, the second gas, and the third gas are preliminarily adjusted to different temperatures will be described, but the present invention is not limited to this, and even if these gases are preliminarily adjusted to different humidity. good. In this case, the gases are mixed so that the mixed gases have the target humidity.

(第4実施形態)
上述の何れの実施形態の露光装置も、第1気体に対して第2気体と第3気体を混合することによって目標酸素濃度に調整する場合について説明した。しかしながら本発明の露光装置の供給部8は、3種類の気体を用いずに2種類の互いに酸素濃度が異なる気体を用いて目標酸素濃度に調整した混合気体を露光空間に供給してもよい。
(Fourth Embodiment)
The case where the exposure apparatus of any of the above-described embodiments is adjusted to the target oxygen concentration by mixing the second gas and the third gas with the first gas has been described. However, the supply unit 8 of the exposure apparatus of the present invention may supply the mixed gas adjusted to the target oxygen concentration by using two kinds of gases having different oxygen concentrations from each other without using three kinds of gases to the exposure space.

例えば、第4実施形態の供給部8は、目標酸素濃度に対して酸素濃度が低い第1気体を第1流路101から混合部104に供給し、目標酸素濃度に対して酸素濃度が高い第2気体を第2流路102から混合部104に供給する。露光装置の制御部10は、第1流路に101に設けられた酸素濃度計9の計測結果と第2流路102に設けられた酸素濃度計31の計測結果に基づいて、制御弁111と制御弁112を制御して混合部104に供給される第1気体と第2気体の流量を制御する。第1気体と第2気体の一方の酸素濃度が所望の値である(大きく変化しない)場合には、酸素濃度計9または酸素濃度計31のいずれか一方が設けられていればよい。また、混合部8に供給する気体は3種類以上の気体であってもよい。 For example, the supply unit 8 of the fourth embodiment supplies a first gas having a low oxygen concentration with respect to the target oxygen concentration from the first flow path 101 to the mixing unit 104, and has a high oxygen concentration with respect to the target oxygen concentration. 2 Gas is supplied to the mixing unit 104 from the second flow path 102. The control unit 10 of the exposure apparatus together with the control valve 111 is based on the measurement results of the oxygen concentration meter 9 provided in the first flow path 101 and the measurement results of the oxygen concentration meter 31 provided in the second flow path 102. The control valve 112 is controlled to control the flow rates of the first gas and the second gas supplied to the mixing unit 104. When the oxygen concentration of one of the first gas and the second gas is a desired value (does not change significantly), either the oxygen concentration meter 9 or the oxygen concentration meter 31 may be provided. Further, the gas supplied to the mixing unit 8 may be three or more types of gas.

上述の何れの実施形態も光学系を介して基板を露光する露光装置について説明したが、露光装置の代わりに、型を用いて基板上にインプリント材のパターンを形成するインプリント装置であってもよい。インプリント装置は、基板上に供給されたインプリント材を型(モールド)と接触させ、インプリント材に硬化用のエネルギーを与えることにより、型の凹凸パターンが転写された硬化物のパターンを形成する装置である。インプリント装置は、物品としての半導体デバイスなどのデバイスの製造に使用される。インプリント装置において型と基板との間の空間に供給部8によって酸素濃度の調整された混合気体を供給することができる。 Although the exposure apparatus that exposes the substrate via the optical system has been described in any of the above embodiments, it is an imprint apparatus that forms a pattern of an imprint material on the substrate by using a mold instead of the exposure apparatus. May be good. The imprint device brings the imprint material supplied on the substrate into contact with the mold (mold) and applies energy for curing to the imprint material to form a pattern of the cured product to which the uneven pattern of the mold is transferred. It is a device to do. Imprint devices are used in the manufacture of devices such as semiconductor devices as articles. In the imprint device, the mixed gas whose oxygen concentration is adjusted by the supply unit 8 can be supplied to the space between the mold and the substrate.

インプリント方法には、光硬化法や熱サイクル法が知られている。光硬化法では、紫外線硬化樹脂を使用し、樹脂を介して基板に型を押し付けた状態で紫外線を照射して樹脂を硬化させた後、硬化した樹脂から型を引き離すことによりパターンが形成される。また、熱サイクル法では、熱可塑性樹脂をガラス転移温度以上の温度に加熱し、樹脂の流動性を高めた状態で樹脂を介して基板に型を押し付け、冷却した後に樹脂から型を引き離すことによりパターンが形成される。上述の供給部8は、いずれの方法のインプリント装置にも適用することができる。 As the imprint method, a photocuring method and a thermal cycle method are known. In the photocuring method, a pattern is formed by using an ultraviolet curable resin, irradiating the resin with ultraviolet rays while pressing the mold against the substrate through the resin to cure the resin, and then pulling the mold away from the cured resin. .. In the thermal cycle method, the thermoplastic resin is heated to a temperature equal to or higher than the glass transition temperature, the mold is pressed against the substrate through the resin in a state where the fluidity of the resin is increased, and the mold is separated from the resin after cooling. A pattern is formed. The above-mentioned supply unit 8 can be applied to the imprint device of any method.

また、供給部8(混合部104)によって調整される気体は酸素濃度に限らない。例えば、インプリント装置において型と基板の間の空間に供給される気体としては、ヘリウムや窒素ガスを含む気体の場合があり、本発明の供給部8はこれらヘリウムや窒素ガスなどの濃度を調整することができるようにしてもよい。この場合、計測部として酸素濃度計9の代わりに調整される気体の種類に応じて、特定の気体の濃度を測定することができる濃度計を配置すればよい。 Further, the gas adjusted by the supply unit 8 (mixing unit 104) is not limited to the oxygen concentration. For example, the gas supplied to the space between the mold and the substrate in the imprint device may be a gas containing helium or nitrogen gas, and the supply unit 8 of the present invention adjusts the concentration of these helium or nitrogen gas. You may be able to do it. In this case, instead of the oxygen densitometer 9, a densitometer capable of measuring the concentration of a specific gas may be arranged as a measuring unit according to the type of gas to be adjusted.

(物品の製造方法の実施形態)
本発明の実施形態にかかる物品の製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品の製造方法は、上記の露光装置を用いて基板(に塗布された感光剤)にパターン(潜像)を形成する工程(基板を露光する工程)と、かかる工程で露光(パターンを形成された)基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含みうる。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
(Embodiment of manufacturing method of goods)
The method for manufacturing an article according to an embodiment of the present invention is suitable for manufacturing an article such as a microdevice such as a semiconductor device or an element having a fine structure. The method for manufacturing an article of the present embodiment includes a step of forming a pattern (latent image) on a substrate (a photosensitive agent applied to) using the above-mentioned exposure apparatus (a step of exposing the substrate) and an exposure (exposure) in such a step. It includes a step of developing a substrate (with a pattern formed). Further, such manufacturing methods may include other well-known steps such as oxidation, film formation, vapor deposition, doping, flattening, etching, resist stripping, dicing, bonding, packaging and the like. The method for manufacturing an article of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。 Although the preferred embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and various modifications and modifications can be made within the scope of the gist thereof.

100 露光装置
8 供給部
9 計測部
10 制御部
101 第1流路
102 第2流路
103 第3流路
104 混合部
105 供給流路
100 Exposure device 8 Supply unit 9 Measurement unit 10 Control unit 101 1st flow path 102 2nd flow path 103 3rd flow path 104 Mixing section 105 Supply flow path

Claims (9)

光学系を介して基板を露光する露光装置であって、
酸素を含む第1気体が供給される第1流路と、
前記第1気体と酸素濃度が異なる第2気体が供給される第2流路と、
前記第1流路の酸素濃度を計測する計測部と、
前記計測部の計測結果に基づいて、前記第1気体と前記第2気体とを用いて混合気体を生成する混合部と、該混合部から前記光学系と前記基板との間の空間に前記混合気体を供給する供給流路とを有する供給部と、
を備えることを特徴とする露光装置。
An exposure device that exposes a substrate via an optical system.
The first flow path to which the first gas containing oxygen is supplied, and
A second flow path to which a second gas having an oxygen concentration different from that of the first gas is supplied,
A measuring unit that measures the oxygen concentration in the first flow path,
Based on the measurement results of the measuring unit, the mixing unit that generates a mixed gas using the first gas and the second gas, and the mixing unit in the space between the optical system and the substrate. A supply unit having a supply flow path for supplying gas,
An exposure apparatus characterized by comprising.
前記第1流路と前記第2流路のそれぞれに酸素濃度を計測する前記計測部を備えることを特徴とする請求項1に記載の露光装置。 The exposure apparatus according to claim 1, wherein each of the first flow path and the second flow path is provided with the measuring unit for measuring the oxygen concentration. 前記第1気体は、前記露光装置の外から供給される空気であって、前記第2気体は、酸素または窒素であることを特徴とする請求項1または2に記載の露光装置。 The exposure apparatus according to claim 1 or 2, wherein the first gas is air supplied from outside the exposure apparatus, and the second gas is oxygen or nitrogen. 前記第1気体と前記第2気体と酸素濃度が異なる第3気体が供給される第3流路を備えることを特徴とする請求項1乃至3の何れか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 3, further comprising a third flow path to which a third gas having a different oxygen concentration from the first gas and the second gas is supplied. 前記計測部は、前記第1流路の酸素濃度を計測し、
前記供給部は、前記計測部の計測結果に基づいて、前記第2気体と前記第3気体とのうち一方を前記第1気体に混合させることによって前記混合気体を生成することを特徴とする請求項4に記載の露光装置。
The measuring unit measures the oxygen concentration in the first flow path and measures the oxygen concentration.
The claim is characterized in that the supply unit produces the mixed gas by mixing one of the second gas and the third gas with the first gas based on the measurement result of the measurement unit. Item 4. The exposure apparatus according to item 4.
前記供給部は、前記第1気体の酸素濃度より目標酸素濃度が高い場合には前記第2気体を前記第1気体に混合させ、前記第1気体の酸素濃度より目標酸素濃度が低い場合には前記第3気体を前記第1気体に混合させることによって前記混合気体を生成することを特徴とする請求項4または5に記載の露光装置。 The supply unit mixes the second gas with the first gas when the target oxygen concentration is higher than the oxygen concentration of the first gas, and when the target oxygen concentration is lower than the oxygen concentration of the first gas, the supply unit mixes the second gas with the first gas. The exposure apparatus according to claim 4 or 5, wherein the mixed gas is produced by mixing the third gas with the first gas. 前記光学系と前記基板との間の空間に供給された前記混合気体の酸素濃度を計測する計測部を備え、該計測部の計測結果に基づいて、前記第1気体と前記第2気体との前記混合気体を生成することを特徴とする請求項1乃至6の何れか1項に記載の露光装置。 A measuring unit for measuring the oxygen concentration of the mixed gas supplied to the space between the optical system and the substrate is provided, and the first gas and the second gas are provided based on the measurement results of the measuring unit. The exposure apparatus according to any one of claims 1 to 6, wherein the mixed gas is generated. 型を用いて基板の上にインプリント材のパターンを形成するインプリント装置であって、
酸素を含む第1気体が供給される第1流路と、
前記第1気体と酸素濃度が異なる第2気体が供給される第2流路と、
前記第1流路の酸素濃度を計測する計測部と、
前記計測部の計測結果に基づいて、前記第1気体と前記第2気体とを用いて混合気体を生成する混合部と、該混合部から前記型と前記基板との間の空間に前記混合気体を供給する供給流路とを有する供給部と、
を備えることを特徴とするインプリント装置。
An imprint device that forms a pattern of imprint material on a substrate using a mold.
The first flow path to which the first gas containing oxygen is supplied, and
A second flow path to which a second gas having an oxygen concentration different from that of the first gas is supplied,
A measuring unit that measures the oxygen concentration in the first flow path,
Based on the measurement result of the measuring unit, the mixing gas that generates a mixed gas using the first gas and the second gas, and the mixed gas in the space between the mixing unit and the mold and the substrate. With a supply unit having a supply flow path for supplying
An imprint device characterized by being equipped with.
請求項1乃至7のうちいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された前記基板を現像する工程と、
を含むことを特徴とする物品の製造方法。
A step of exposing a substrate using the exposure apparatus according to any one of claims 1 to 7.
The step of developing the substrate exposed in the step and
A method of manufacturing an article comprising.
JP2018035312A 2018-02-28 2018-02-28 Exposure equipment and manufacturing method of goods Active JP6976884B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018035312A JP6976884B2 (en) 2018-02-28 2018-02-28 Exposure equipment and manufacturing method of goods
TW108101973A TWI706850B (en) 2018-02-28 2019-01-18 Exposure device, imprinting device and manufacturing method of article
KR1020190019016A KR102457979B1 (en) 2018-02-28 2019-02-19 Exposure apparatus, imprint apparatus, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035312A JP6976884B2 (en) 2018-02-28 2018-02-28 Exposure equipment and manufacturing method of goods

Publications (2)

Publication Number Publication Date
JP2019148781A JP2019148781A (en) 2019-09-05
JP6976884B2 true JP6976884B2 (en) 2021-12-08

Family

ID=67850563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035312A Active JP6976884B2 (en) 2018-02-28 2018-02-28 Exposure equipment and manufacturing method of goods

Country Status (3)

Country Link
JP (1) JP6976884B2 (en)
KR (1) KR102457979B1 (en)
TW (1) TWI706850B (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3378698D1 (en) 1982-04-12 1989-01-19 Hitachi Ltd Oxygen concentration control system
EP1030351A1 (en) * 1997-11-12 2000-08-23 Nikon Corporation Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses
JPH11195583A (en) * 1997-12-26 1999-07-21 Nikon Corp Aligner
JP2001060548A (en) * 1999-08-23 2001-03-06 Nikon Corp Exposure method and aligner
JP2001102290A (en) * 1999-09-30 2001-04-13 Nikon Corp Exposure method and aligner thereof
JP2001118783A (en) * 1999-10-21 2001-04-27 Nikon Corp Exposure method and device, and device manufacturing method
JP2003173964A (en) * 2001-12-07 2003-06-20 Canon Inc Exposure system
JP2007094066A (en) 2005-09-29 2007-04-12 Toppan Printing Co Ltd Proximity exposure apparatus and proximity exposure method
JP5568960B2 (en) 2009-11-17 2014-08-13 大日本印刷株式会社 Pattern formation method by nanoimprint
JP5936328B2 (en) * 2010-10-22 2016-06-22 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP6099969B2 (en) * 2012-12-27 2017-03-22 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP6238580B2 (en) * 2013-06-07 2017-11-29 キヤノン株式会社 Exposure apparatus, exposure method, and device manufacturing method using them

Also Published As

Publication number Publication date
TW201936355A (en) 2019-09-16
KR102457979B1 (en) 2022-10-24
JP2019148781A (en) 2019-09-05
KR20190103954A (en) 2019-09-05
TWI706850B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
KR100885970B1 (en) Lithographic apparatus and device manufacturing method
CN104995563B (en) Air-flow optimization in reticle stage environment
US9250541B2 (en) Exposure apparatus and device fabrication method
JP2014212206A (en) Imprint device and manufacturing method of goods using the same
TWI497230B (en) Lithographic apparatus and method of cooling a component in a lithographic apparatus
JP6099970B2 (en) Exposure apparatus and device manufacturing method
KR102216863B1 (en) Exposure apparatus and method of manufacturing article
US10642166B2 (en) Patterning device cooling apparatus
TW201712436A (en) Patterning device cooling systems in a lithographic apparatus
JP6976884B2 (en) Exposure equipment and manufacturing method of goods
TWI596441B (en) Conditioning system and method for a lithographic apparatus and a lithographic apparatus comprising a conditioning system
JP6603751B2 (en) Exposure apparatus, exposure method, and article manufacturing method
JP6726792B2 (en) Patterning device cooling device
TWI646403B (en) Patterning device cooling system and method for thermally adjusting patterning device
JP2008171974A (en) Light volume controller, exposure device, and device manufacturing method
WO2012060410A1 (en) Liquid supply device, liquid supply method, management device, management method, exposure equipment, exposure method, system for producing devices, method for producing devices, program, and recording medium
TW201606448A (en) Lithographic apparatus and device manufacturing method
JP7152876B2 (en) Exposure apparatus and article manufacturing method
TW201541198A (en) Lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R151 Written notification of patent or utility model registration

Ref document number: 6976884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151