JP6976762B2 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP6976762B2
JP6976762B2 JP2017141621A JP2017141621A JP6976762B2 JP 6976762 B2 JP6976762 B2 JP 6976762B2 JP 2017141621 A JP2017141621 A JP 2017141621A JP 2017141621 A JP2017141621 A JP 2017141621A JP 6976762 B2 JP6976762 B2 JP 6976762B2
Authority
JP
Japan
Prior art keywords
temperature
battery
heat storage
latent heat
storage member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017141621A
Other languages
Japanese (ja)
Other versions
JP2019021589A (en
Inventor
拓也 加藤
隆博 荘田
圭 松本
努 篭橋
多江子 柴山
崇 桃井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2017141621A priority Critical patent/JP6976762B2/en
Publication of JP2019021589A publication Critical patent/JP2019021589A/en
Application granted granted Critical
Publication of JP6976762B2 publication Critical patent/JP6976762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電池パックに関する。 The present invention relates to a battery pack.

電気車両(EV)、ハイブリッド車両(HEV)、プラグインハイブリッド車両(PHEV)等の車両は、駆動源であるモータの駆動に必要な電力を供給する電源として、例えば電池パックが搭載されている。電池パックは、例えば、複数個の電池(二次電池)が収容されており、各電池が直列および/または並列に接続されている。電池パックに収容される電池には、例えば、リチウムイオン電池が利用される。リチウムイオン電池は、低温時の入出力特性が低下する。そのため、低温時の車両の始動に支障をきたさないように、大容量のリチウムイオン電池を搭載することで、容量当たりの入出力負荷を軽減している。例えば、特許文献1では、電池の温度上昇を防ぐことができるが、低温時の電池の入出力特性を確保するまでには至っていない。 Vehicles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs) are equipped with, for example, a battery pack as a power source for supplying power necessary for driving a motor as a drive source. The battery pack contains, for example, a plurality of batteries (secondary batteries), and each battery is connected in series and / or in parallel. As the battery housed in the battery pack, for example, a lithium ion battery is used. Lithium-ion batteries have reduced input / output characteristics at low temperatures. Therefore, by installing a large-capacity lithium-ion battery so as not to interfere with the start of the vehicle at low temperatures, the input / output load per capacity is reduced. For example, in Patent Document 1, it is possible to prevent the temperature of the battery from rising, but it has not yet ensured the input / output characteristics of the battery at low temperatures.

特願2016−163572号Japanese Patent Application No. 2016-163572

低温時の電池の入出力特性を確保する方法として、例えば、電池自体をヒータで加熱する方法がある。ヒータをすべての電池に接触するように配索すると、電池間に隙間を設ける必要があり、電池パックの容積に対するエネルギー密度が低下することから、改善の余地がある。 As a method of ensuring the input / output characteristics of the battery at low temperature, for example, there is a method of heating the battery itself with a heater. If the heater is arranged so as to be in contact with all the batteries, it is necessary to provide a gap between the batteries, and the energy density with respect to the volume of the battery pack decreases, so there is room for improvement.

本発明は、低温時の電池出力の低下を抑制することができる電池パックを提供することを目的とする。 An object of the present invention is to provide a battery pack capable of suppressing a decrease in battery output at low temperatures.

上記目的を達成するため、本発明に係る電池パックは、熱伝導性を有する筐体と、前記筐体の内部空間に配列され、かつ前記筐体に保持される複数個の電池と、前記筐体に収容されるとともに、各前記電池の少なくとも一部に直接接触し、かつ凝固点以下で過冷却状態に移行する潜熱蓄熱部材と、前記潜熱蓄熱部材の前記過冷却状態を解除する過冷却解除手段と、を備え、前記潜熱蓄熱部材は、前記電池の使用温度範囲の上限温度に対応する温度より低い温度で固相から液相に相変化する融点を有し、前記凝固点以下で前記過冷却状態に移行し、かつ前記過冷却状態が自然に解除される温度まで前記過冷却状態を維持し、前記潜熱蓄熱部材は、複数個の前記電池と鉛直方向に対向する前記筐体の内部底面に貯留し、前記潜熱蓄熱部材は、液相時に、前記筐体の内部空間を残して収容され、かつ各前記電池を少なくとも部分的に覆うように貯留され、前記過冷却解除手段は、前記電池パックにより駆動する車両の始動を検出する始動検出手段を備え、前記始動検出手段により前記車両の始動が検出されたときに、前記潜熱蓄熱部材に任意のエネルギーを与えて前記過冷却状態を解除し、前記車両が停止した後の始動時に、前記電池の温度が前記潜熱蓄熱部材の凝固点に対応する温度以下で、かつ外気温が前記電池への加温が必要となる第1閾値温度以下の場合に、前記過冷却状態を解除する、ことを特徴とする。 In order to achieve the above object, the battery pack according to the present invention includes a housing having thermal conductivity, a plurality of batteries arranged in the internal space of the housing and held in the housing, and the housing. A latent heat storage member that is housed in the body and that directly contacts at least a part of each of the batteries and shifts to a supercooled state below the freezing point, and a supercooling releasing means for releasing the supercooled state of the latent heat storage member. The latent heat storage member has a melting point that changes from a solid phase to a liquid phase at a temperature lower than the temperature corresponding to the upper limit temperature of the operating temperature range of the battery, and is in the supercooled state below the freezing point. And the supercooled state is maintained until the temperature at which the supercooled state is naturally released, and the latent heat storage member is stored in the inner bottom surface of the housing vertically facing the plurality of batteries. However, the latent heat storage member is housed in the liquid phase, leaving the internal space of the housing, and is stored so as to cover at least a part of each of the batteries, and the supercooling releasing means is the battery pack. A start detecting means for detecting the start of the vehicle driven by the above means is provided, and when the start of the vehicle is detected by the start detection means, arbitrary energy is applied to the latent heat storage member to release the supercooled state. When the temperature of the battery is equal to or lower than the temperature corresponding to the freezing point of the latent heat storage member and the outside temperature is equal to or lower than the first threshold temperature at which the battery needs to be heated at the time of starting after the vehicle has stopped. , The supercooled state is released .

また、上記電池パックにおいて、前記過冷却解除手段は、前記車両が停止した後、前記電池の温度が前記潜熱蓄熱部材の凝固点に対応する電池温度以下であって、前記外気温が前記第1閾値温度より越えて、かつ前記電池の温度が前記外気温に第2閾値温度を加えた温度以下の場合に、前記過冷却状態を解除することが好ましい。 Further, in the battery pack, in the overcooling release means, after the vehicle is stopped, the temperature of the battery is equal to or lower than the battery temperature corresponding to the freezing point of the latent heat storage member, and the outside air temperature is the first threshold value. It is preferable to release the overcooling state when the temperature exceeds the temperature and the temperature of the battery is equal to or lower than the temperature obtained by adding the second threshold temperature to the outside air temperature.

本発明に係る電池パックによれば、低温時の電池出力の低下を抑制することができるという効果を奏する。 According to the battery pack according to the present invention, there is an effect that a decrease in battery output at low temperature can be suppressed.

図1は、実施形態に係る電池パックの概略構成を示す部分平面図である。FIG. 1 is a partial plan view showing a schematic configuration of a battery pack according to an embodiment. 図2は、図1中のA−A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、実施形態に係る潜熱蓄熱部材のDSC曲線の一例を示す図である。FIG. 3 is a diagram showing an example of the DSC curve of the latent heat storage member according to the embodiment. 図4は、実施形態に係るBMUの過冷却状態解除動作を示すフローチャート図である。FIG. 4 is a flowchart showing the operation of releasing the supercooled state of the BMU according to the embodiment. 図5は、実施形態に係る電池の温度降下時間、電池温度と外気温との温度差の割合を示すグラフである。FIG. 5 is a graph showing the temperature drop time of the battery and the ratio of the temperature difference between the battery temperature and the outside air temperature according to the embodiment. 図6は、実施形態の変形例に係る電池パックの概略構成を示す部分平面図である。FIG. 6 is a partial plan view showing a schematic configuration of a battery pack according to a modified example of the embodiment. 図7は、図6中のB−B断面図である。FIG. 7 is a cross-sectional view taken along the line BB in FIG.

以下に、本発明の実施形態に係る電池パックを図面を参照しながら詳細に説明する。なお、以下に示す実施形態により本発明が限定されるものではない。また、以下に示す実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。 Hereinafter, the battery pack according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments shown below. In addition, the components in the embodiments shown below include those that can be easily replaced by those skilled in the art, or those that are substantially the same. Furthermore, the configurations described below can be combined as appropriate.

[実施形態]
本実施形態に係る電池パックについて説明する。図1は、実施形態に係る電池パックの概略構成を示す部分平面図である。図2は、図1中のA−A断面図である。図3は、実施形態に係る潜熱蓄熱部材のDSC曲線の一例を示す図である。図4は、実施形態に係るBMUの過冷却状態解除動作を示すフローチャート図である。図5は、実施形態に係る電池の温度降下時間、電池温度と外気温との温度差の割合を示すグラフである。なお、図1(図6も同様)は、筐体の蓋(不図示)を取り外して、内部空間を外部に露出させた状態を示す図である。ここで、図1(図2、図6、図7も同様)のX方向は、以下に示す実施形態における電池パックの幅方向である。Y方向は、以下に示す実施形態における電池パックの奥行き方向であり、幅方向と直交する方向である。Z方向は、以下に示す実施形態における電池パックの上下方向であり、幅方向および奥行き方向と直交する方向である。
[Embodiment]
The battery pack according to this embodiment will be described. FIG. 1 is a partial plan view showing a schematic configuration of a battery pack according to an embodiment. FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a diagram showing an example of the DSC curve of the latent heat storage member according to the embodiment. FIG. 4 is a flowchart showing the operation of releasing the supercooled state of the BMU according to the embodiment. FIG. 5 is a graph showing the temperature drop time of the battery and the ratio of the temperature difference between the battery temperature and the outside air temperature according to the embodiment. Note that FIG. 1 (also in FIG. 6) is a diagram showing a state in which the lid (not shown) of the housing is removed to expose the internal space to the outside. Here, the X direction of FIG. 1 (the same applies to FIGS. 2, 6, and 7) is the width direction of the battery pack in the embodiment shown below. The Y direction is the depth direction of the battery pack in the embodiment shown below, and is a direction orthogonal to the width direction. The Z direction is the vertical direction of the battery pack in the embodiment shown below, and is a direction orthogonal to the width direction and the depth direction.

本実施形態に係る電池パック1Aは、駆動源としてモータを用いる車両、例えば電気車両(EV)、ハイブリッド車両(HEV)、プラグインハイブリッド車両(PHEV)等に搭載され、モータに電力を供給する高電圧電源である。電池パック1Aは、図1および図2に示すように、筐体2と、複数個の電池3と、潜熱蓄熱部材4と、過冷却解除部6とを含んで構成される。 The battery pack 1A according to the present embodiment is mounted on a vehicle that uses a motor as a drive source, for example, an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), or the like, and supplies power to the motor. It is a voltage power supply. As shown in FIGS. 1 and 2, the battery pack 1A includes a housing 2, a plurality of batteries 3, a latent heat storage member 4, and a supercooling release unit 6.

筐体2は、複数個の電池3、潜熱蓄熱部材4、および保持部材(不図示)を収容するものである。筐体2は、例えば、外表面が車両外から取り込まれた外気等と接触可能な場所に設けられている。本実施形態における筐体2は、内部空間2aを有する箱状に形成されている。筐体2は、熱伝導性を有するものであり、例えば、鉄(Fe)、銅(Cu)、アルミニウム(Al)等により構成されている。なお、筐体2は、蓋により、内部空間2aを閉塞する。電池パック1Aに防水性が要求される場合は、筐体2と蓋との間に防水構造を形成し、内部空間2aを密閉する。 The housing 2 accommodates a plurality of batteries 3, a latent heat storage member 4, and a holding member (not shown). The housing 2 is provided, for example, in a place where the outer surface can come into contact with the outside air taken in from the outside of the vehicle. The housing 2 in the present embodiment is formed in a box shape having an internal space 2a. The housing 2 has thermal conductivity, and is made of, for example, iron (Fe), copper (Cu), aluminum (Al), or the like. The housing 2 closes the internal space 2a with a lid. When the battery pack 1A is required to be waterproof, a waterproof structure is formed between the housing 2 and the lid to seal the internal space 2a.

複数個の電池3は、それぞれが充放電可能な二次電池である。本実施形態の電池3は、例えば、鉛直方向に延びる円筒型のリチウムイオン電池で構成される。複数個の電池3は、筐体2の内部空間2aに配列され、かつ筐体2に保持部材により保持される。本実施形態における複数個の電池3は、筐体2の内部空間2aにおいて上下方向と直交する方向(幅方向または奥行き方向)に互いに間隔をあけて千鳥格子状または正方格子状に配列される。なお、複数個の電池3を筐体2に保持する保持部材については、どのような構造、構成であってもよい。 Each of the plurality of batteries 3 is a secondary battery that can be charged and discharged. The battery 3 of the present embodiment is composed of, for example, a cylindrical lithium ion battery extending in the vertical direction. The plurality of batteries 3 are arranged in the internal space 2a of the housing 2 and are held in the housing 2 by a holding member. The plurality of batteries 3 in the present embodiment are arranged in a staggered or square grid pattern in the internal space 2a of the housing 2 at intervals in the direction orthogonal to the vertical direction (width direction or depth direction). .. The holding member for holding the plurality of batteries 3 in the housing 2 may have any structure and configuration.

潜熱蓄熱部材4は、熱伝導性および蓄熱性を有し、筐体2よりも蓄熱量が大きく、顕熱と潜熱の両方の特性を有する潜熱蓄熱材で構成される。潜熱蓄熱材は、典型的には、融点で固相から液相に相変化(融解)するときに熱を蓄え(蓄熱)、凝固点で液相から固相に相変化(凝固)するときに熱を放出(放熱)する特性を有する。本実施形態における潜熱蓄熱材は、凝固点以下で過冷却状態に移行する。過冷却状態は、潜熱蓄熱材が凝固点を過ぎて冷却されても液相から固相に相変化せずに液相を維持している状態をいう。このような特性を有する潜熱蓄熱材は、いわゆる過冷却型潜熱蓄熱材とも呼ばれる、過冷却型潜熱蓄熱材は、例えば、酢酸ナトリウム三水和物(CH3COONa・3H2O)、硝酸ニッケル(II)六水和物(Ni(NO3)2・6H2O)、チオ硫酸ナトリウム五水和物(Na2S2O3・5H2O)、臭化カルシウム・六水塩(CaBr2・6H2O)等が挙げられるが、上記特性を有するものであれば、これらに限定されるものではない。 The latent heat storage member 4 has heat conductivity and heat storage property, has a larger heat storage amount than the housing 2, and is composed of a latent heat storage material having both sensible heat and latent heat characteristics. The latent heat storage material typically stores heat when the phase changes (melts) from the solid phase to the liquid phase at the melting point (heat storage), and heat when the phase changes (solidifies) from the liquid phase to the solid phase at the freezing point. Has the property of releasing (dissipating heat). The latent heat storage material in the present embodiment shifts to a supercooled state below the freezing point. The supercooled state is a state in which the latent heat storage material maintains the liquid phase without changing from the liquid phase to the solid phase even if it is cooled past the freezing point. The latent heat storage material having such characteristics is also called a so-called supercooled latent heat storage material. The supercooled latent heat storage material is, for example, sodium acetate trihydrate (CH3COONa / 3H2O), nickel nitrate (II) hexahydrate. Japanese products (Ni (NO3) 2.6H2O), sodium thiosulfate pentahydrate (Na2S2O3.5H2O), calcium bromide / supercooled salt (CaBr2.6H2O) and the like can be mentioned, but any of them have the above-mentioned characteristics. However, it is not limited to these.

潜熱蓄熱部材4は、筐体2に収容されるとともに、少なくとも各電池3および筐体2と直接熱的に接続される。ここで、潜熱蓄熱部材4が各電池3および筐体2と直接熱的に接続されるとは、各電池3および筐体2と接触することで、潜熱蓄熱部材4と、各電池3および筐体2との間で直接的に熱の授受が可能な場合をいう。本実施形態における潜熱蓄熱部材4は、液相時に流動性を有し、複数個の電池3と鉛直方向に対向する筐体2の内部底面2bに貯留する。潜熱蓄熱部材4は、液相時に、筐体2の内部空間2aを残して収容され、かつ各電池3を少なくとも部分的に覆うように貯留される。潜熱蓄熱部材4は、液相時に、車両が傾斜していない状態で複数個の電池3のすべてを全体的に覆うように筐体2内に充填されていてもよいし、車両が最大安定傾斜角まで傾斜しても複数個の電池3のすべてを少なくとも部分的に覆うように貯留されていてもよい。 The latent heat storage member 4 is housed in the housing 2 and is directly thermally connected to at least each battery 3 and the housing 2. Here, the fact that the latent heat storage member 4 is directly thermally connected to each battery 3 and the housing 2 means that the latent heat storage member 4 and each battery 3 and the housing 2 come into contact with each battery 3 and the housing 2. It refers to the case where heat can be directly exchanged with the body 2. The latent heat storage member 4 in the present embodiment has fluidity during the liquid phase and is stored in the inner bottom surface 2b of the housing 2 which faces the plurality of batteries 3 in the vertical direction. The latent heat storage member 4 is housed in the liquid phase, leaving the internal space 2a of the housing 2, and is stored so as to cover at least a part of each battery 3. The latent heat storage member 4 may be filled in the housing 2 so as to completely cover all of the plurality of batteries 3 in a state where the vehicle is not tilted during the liquid phase, or the vehicle may be tilted to the maximum stability. Even if it is tilted to a corner, it may be stored so as to cover all of the plurality of batteries 3 at least partially.

過冷却解除部6は、過冷却解除手段であり、潜熱蓄熱部材4の過冷却状態を解除するものである。過冷却解除部6は、ドライバ11と、BMU12と、電磁リレー(電磁継電器)13とを含んで構成される。 The supercooling release unit 6 is a supercooling release means, and releases the supercooled state of the latent heat storage member 4. The supercooling release unit 6 includes a driver 11, a BMU 12, and an electromagnetic relay (electromagnetic relay) 13.

ドライバ11は、BMU12からの制御信号16に基づいて電磁リレー13に電圧15を印加して電磁リレー13を駆動するものである。ドライバ11は、電源7からの電力供給を受けて駆動する。電源7は、例えば、車両に搭載され、電池パック1Aとは異なる電圧を有する補機バッテリである。補機バッテリは、典型的には、車両内の各種補機に電力を供給するための12Vの二次電池である。電源7は、例えばDC/DCコンバータ(不図示)を介して電池パック1Aに接続され、電池パック1Aの出力電圧がDC/DCコンバータによって降圧され供給されることで適宜充電される。 The driver 11 drives the electromagnetic relay 13 by applying a voltage 15 to the electromagnetic relay 13 based on the control signal 16 from the BMU 12. The driver 11 receives power from the power source 7 and drives the driver 11. The power source 7 is, for example, an auxiliary battery mounted on a vehicle and having a voltage different from that of the battery pack 1A. Auxiliary batteries are typically 12V secondary batteries for supplying power to various accessories in the vehicle. The power supply 7 is connected to the battery pack 1A via, for example, a DC / DC converter (not shown), and the output voltage of the battery pack 1A is stepped down and supplied by the DC / DC converter to be appropriately charged.

BMU(Battery Management Unit)12は、典型的には、温度センサ、電圧センサ、電流センサ等により、電池3の温度、充電電圧、充電電流等を検出し、電池3が過充電や過放電とならないように電池3の状態を監視するものである。BMU12は、例えばマイクロコンピュータであり、電源7からの電力供給を受けて駆動する。本実施形態におけるBMU12は、電池管理手段としての機能と、車両の始動検出手段としての機能を有する。 The BMU (Battery Management Unit) 12 typically detects the temperature, charging voltage, charging current, etc. of the battery 3 by a temperature sensor, a voltage sensor, a current sensor, etc., and the battery 3 does not become overcharged or overdischarged. As described above, the state of the battery 3 is monitored. The BMU 12 is, for example, a microcomputer, which is driven by receiving power supplied from the power source 7. The BMU 12 in the present embodiment has a function as a battery management means and a function as a vehicle start detection means.

BMU12は、電池管理手段として、温度センサ(不図示)から入力された温度センサ信号14に基づいて電池3の温度(以下、「電池温度」とも呼ぶ)を検出すると共に、外気温センサ(不図示)から入力された外部信号17に基づいて外気温を検出する。温度センサおよび外気温センサは、例えば、サーミスタ等で構成される。温度センサは、電池3の内部または近傍に設置されている。外気温センサは、車両外から取り込まれた外気と接触可能な場所に設置されている。 As a battery management means, the BMU 12 detects the temperature of the battery 3 (hereinafter, also referred to as “battery temperature”) based on the temperature sensor signal 14 input from the temperature sensor (not shown), and also has an outside air temperature sensor (not shown). ), The outside air temperature is detected based on the external signal 17. The temperature sensor and the outside air temperature sensor are composed of, for example, a thermistor or the like. The temperature sensor is installed inside or near the battery 3. The outside air temperature sensor is installed in a place where it can come into contact with the outside air taken in from outside the vehicle.

BMU12は、始動検出手段として、不図示のMPU(Micro Processing Unit)から入力された外部信号17に基づいて、車両の始動および停止を判定する。MPUは、車両内の各部を制御するものである。外部信号17は、外気温センサから出力される外気温センサ信号、MPUから出力される車両停止信号や車両始動信号等を総称するものである。車両の始動は、例えば、車両に搭載された不図示のSMR(System Main Relay)がONされ、電池パック1Aからモータへの電力供給が可能で、車両がアクセルペダルの操作に応じて走行可能な状態をいう。車両の停止は、例えば、SMRがOFFされ、電池パック1Aからモータへの電力供給が不可能で、車両が直ちに走行できない状態をいう。BMU12は、車両が停止した後、電池温度、外気温、および車両の始動有無に応じて、過冷却状態にある潜熱蓄熱部材4に任意のエネルギーを与えて過冷却状態を解除するように制御する。この任意のエネルギーには、例えば「衝撃」が含まれる。すなわち、BMU12は、ドライバ11に制御信号16を送信し、ドライバ11により電磁リレー13を駆動して潜熱蓄熱部材4に衝撃を与える。 The BMU 12 determines the start and stop of the vehicle based on an external signal 17 input from an MPU (Micro Processing Unit) (not shown) as a start detection means. The MPU controls each part in the vehicle. The external signal 17 is a general term for an outside air temperature sensor signal output from the outside air temperature sensor, a vehicle stop signal, a vehicle start signal, and the like output from the MPU. To start the vehicle, for example, the SMR (System Main Relay) (not shown) mounted on the vehicle is turned on, power can be supplied from the battery pack 1A to the motor, and the vehicle can run according to the operation of the accelerator pedal. Refers to the state. Stopping the vehicle means, for example, a state in which the SMR is turned off, power cannot be supplied from the battery pack 1A to the motor, and the vehicle cannot run immediately. After the vehicle is stopped, the BMU 12 controls the latent heat storage member 4 in the supercooled state to release the supercooled state by applying arbitrary energy according to the battery temperature, the outside air temperature, and whether or not the vehicle is started. .. This arbitrary energy includes, for example, "impact". That is, the BMU 12 transmits a control signal 16 to the driver 11 and drives the electromagnetic relay 13 by the driver 11 to give an impact to the latent heat storage member 4.

電磁リレー13は、典型的には、電磁石により可動鉄片を物理的に動かしてスイッチを開閉するものである。本実施形態における電磁リレー13は、潜熱蓄熱部材4に直接または間接的に衝撃を与えて過冷却状態を解除するものである。すなわち、電磁リレー13は、例えば電磁石により可動鉄片を動作させることで振動を発生し、過冷却状態を解除するための衝撃を潜熱蓄熱部材4に与える。電磁リレー13は、図2に示すように、潜熱蓄熱部材4内に埋設され、内部底面2b上に固定される。電磁リレー13は、例えば不図示の電磁石、可動鉄片、固定鉄片、復帰ばね等を含んで構成され、電磁石に通電すると鉄芯に吸引力が発生して可動鉄片と一方の固定鉄片とが衝突する。電磁石の通電が無くなると、復帰ばねの力で可動鉄片がもとの状態に戻って他方の固定鉄片と衝突する。電磁リレー13は、これらの動作が繰り返されることで振動が発生する。 The electromagnetic relay 13 typically opens and closes a switch by physically moving a movable iron piece by an electromagnet. The electromagnetic relay 13 in the present embodiment directly or indirectly gives an impact to the latent heat storage member 4 to release the supercooled state. That is, the electromagnetic relay 13 generates vibration by operating the movable iron piece by, for example, an electromagnet, and gives an impact to release the supercooled state to the latent heat storage member 4. As shown in FIG. 2, the electromagnetic relay 13 is embedded in the latent heat storage member 4 and fixed on the inner bottom surface 2b. The electromagnetic relay 13 includes, for example, an electromagnet (not shown), a movable iron piece, a fixed iron piece, a return spring, and the like. When the electromagnet is energized, an attractive force is generated in the iron core and the movable iron piece collides with one of the fixed iron pieces. .. When the electromagnet is no longer energized, the force of the return spring causes the movable iron piece to return to its original state and collide with the other fixed iron piece. The electromagnetic relay 13 vibrates by repeating these operations.

次に、本実施形態に係る電池パック1Aの熱特性について図3を参照して説明する。なお、図3に示すDSC(Differential scanning calorimetry)曲線は、縦軸に熱流[mW]、横軸に温度[℃]を示す。DSC(示差走査熱量測定)の詳細については省略する。 Next, the thermal characteristics of the battery pack 1A according to the present embodiment will be described with reference to FIG. The DSC (Differential scanning calorimetry) curve shown in FIG. 3 shows the heat flow [mW] on the vertical axis and the temperature [° C.] on the horizontal axis. Details of DSC (Differential Scanning Calorimetry) will be omitted.

車両の走行中は、各電池3で熱が発生して電池温度が上昇する。各電池3で発生した熱は、各電池3の外周面3aを介して、潜熱蓄熱部材4に伝熱され、潜熱蓄熱部材4に一旦蓄熱される。潜熱蓄熱部材4に蓄熱された熱は、一部が潜熱蓄熱部材4に接する筐体2の内部底面2bおよび内部側面2cに伝熱され、筐体2の外表面から外気等に放熱されるので、潜熱蓄熱部材4を介して各電池3が冷却される。さらに、電池温度が上昇した場合、液相に相変化した潜熱蓄熱部材4が自然対流や車両走行時の揺れ等によって流動し、液温の均一化が急速に進むとともに、筐体2の内部底面2bや内部側面2cに繰り返し伝熱され、筐体2の外表面から外気等への放熱が促されるので、電池3を継続的に許容上限温度60℃以下で使用することができ、電池3の劣化の進行を抑制することができる。 While the vehicle is running, heat is generated in each battery 3 and the battery temperature rises. The heat generated in each battery 3 is transferred to the latent heat storage member 4 via the outer peripheral surface 3a of each battery 3, and is temporarily stored in the latent heat storage member 4. The heat stored in the latent heat storage member 4 is partially transferred to the inner bottom surface 2b and the inner side surface 2c of the housing 2 in contact with the latent heat storage member 4, and is radiated from the outer surface of the housing 2 to the outside air or the like. Each battery 3 is cooled via the latent heat storage member 4. Further, when the battery temperature rises, the latent heat storage member 4 whose phase has changed to the liquid phase flows due to natural convection, shaking during vehicle running, etc., and the liquid temperature becomes uniform rapidly, and the inner bottom surface of the housing 2 is formed. Since heat is repeatedly transferred to 2b and the inner side surface 2c to promote heat dissipation from the outer surface of the housing 2 to the outside air and the like, the battery 3 can be continuously used at an allowable upper limit temperature of 60 ° C. or less, and the battery 3 can be used continuously. The progress of deterioration can be suppressed.

車両の走行中に、急加速等で電池3に高負荷がかかり、電池温度が急激に上昇した場合、潜熱蓄熱部材4が融点で固相から液相に相変化(融解)して電池3に生じた熱を吸熱するので、電池温度の上昇を抑制することができる。本実施形態における潜熱蓄熱部材4は、電池3の使用温度範囲の上限温度に対応する温度より低い温度で固相から液相に相変化する融点を有する。電池3がリチウムイオン電池の場合、電池温度が使用温度範囲(例えば−30℃〜60℃)であれば電池出力や電池寿命に対する影響を抑えることが可能であるが、上限温度60℃を超える環境で使用すると劣化が進む。潜熱蓄熱部材4の融点(相変化温度)は、上限温度60℃よりも低い温度、例えば38℃〜50℃の範囲で設定されることが好ましい。さらに、潜熱蓄熱部材4の融点は、例えば電池3の使用温度範囲の上限温度が60℃である場合、38℃〜50℃が好適である。潜熱蓄熱部材4は、融点より高い温度で吸熱ピークを迎えることから(図示の矢印a)、融点が電池3の使用温度範囲の上限温度の手前にあることで、電池温度を使用温度範囲内に抑えることが可能となる。潜熱蓄熱部材4の吸熱ピークは、例えば45℃〜60℃の範囲内にあることが好ましい。さらに、潜熱蓄熱部材4の吸熱ピークは、電池3の使用温度範囲の上限温度が好適である。 When a high load is applied to the battery 3 due to sudden acceleration or the like while the vehicle is running and the battery temperature rises sharply, the latent heat storage member 4 undergoes a phase change (melting) from a solid phase to a liquid phase at the melting point and becomes the battery 3. Since the generated heat is absorbed, it is possible to suppress an increase in the battery temperature. The latent heat storage member 4 in the present embodiment has a melting point that changes from a solid phase to a liquid phase at a temperature lower than the temperature corresponding to the upper limit temperature of the operating temperature range of the battery 3. When the battery 3 is a lithium-ion battery, if the battery temperature is in the operating temperature range (for example, -30 ° C to 60 ° C), it is possible to suppress the influence on the battery output and the battery life, but the environment where the upper limit temperature exceeds 60 ° C. Deterioration progresses when used in. The melting point (phase change temperature) of the latent heat storage member 4 is preferably set to a temperature lower than the upper limit temperature of 60 ° C., for example, in the range of 38 ° C. to 50 ° C. Further, the melting point of the latent heat storage member 4 is preferably 38 ° C. to 50 ° C., for example, when the upper limit temperature of the operating temperature range of the battery 3 is 60 ° C. Since the latent heat storage member 4 reaches the endothermic peak at a temperature higher than the melting point (arrow a in the figure), the melting point is before the upper limit temperature of the operating temperature range of the battery 3, so that the battery temperature is within the operating temperature range. It becomes possible to suppress it. The endothermic peak of the latent heat storage member 4 is preferably in the range of, for example, 45 ° C to 60 ° C. Further, the endothermic peak of the latent heat storage member 4 is preferably the upper limit temperature in the operating temperature range of the battery 3.

車両の停止後しばらく経過した場合、潜熱蓄熱部材4は、温度が低下して凝固点に達しても液相から固相への相変化(凝固)することなく、過冷却状態に移行する。本実施形態における潜熱蓄熱部材4は、例えば凝固点が融点と略同一であり、38℃〜50℃の範囲内にあることが好ましい。潜熱蓄熱部材4は、過冷却状態に移行すると、過冷却状態が自然に解除される温度まで過冷却状態を維持する。本実施形態では、過冷却状態が自然に解除される温度を過冷却自然解除点と呼ぶ。潜熱蓄熱部材4は、過冷却自然解除点を電池3の使用温度範囲の下限温度(例えば−30℃)の付近にすることで、凝固点から過冷却自然解除点までの温度範囲(以下、「過冷却領域」とも呼ぶ)では過冷却状態を維持し、任意のタイミングで過冷却解除部6により過冷却状態が解除される。 When a while has passed after the vehicle is stopped, the latent heat storage member 4 shifts to a supercooled state without phase change (solidification) from the liquid phase to the solid phase even if the temperature drops and reaches the freezing point. The latent heat storage member 4 in the present embodiment preferably has, for example, a freezing point substantially the same as the melting point and is in the range of 38 ° C to 50 ° C. When the latent heat storage member 4 shifts to the supercooled state, the latent heat storage member 4 maintains the supercooled state until the temperature at which the supercooled state is naturally released. In the present embodiment, the temperature at which the supercooled state is naturally released is referred to as a supercooled natural release point. The latent heat storage member 4 sets the supercooling natural release point near the lower limit temperature (for example, −30 ° C.) of the operating temperature range of the battery 3, so that the temperature range from the freezing point to the supercooling natural release point (hereinafter, “excessive”). In the "cooling region"), the supercooled state is maintained, and the supercooled state is released by the supercooling release unit 6 at an arbitrary timing.

本実施形態に係る潜熱蓄熱部材4は、電池温度および外気温に応じて過冷却状態が解除される。例えば、車両の始動時に電池温度および外気温がいずれも低い場合、潜熱蓄熱部材4を過冷却状態から解除することで、潜熱蓄熱部材4に生じた凝固熱を電池3に伝熱することができ、電池3の出力特性を確保または維持する。潜熱蓄熱部材4が過冷却状態のまま、電池温度の上昇により暖められて融点に達した場合、相変化による吸熱効果が得られないおそれがあることから、電池温度および外気温に応じて、過冷却状態が解除される。 The latent heat storage member 4 according to the present embodiment is released from the supercooled state according to the battery temperature and the outside air temperature. For example, when both the battery temperature and the outside air temperature are low at the start of the vehicle, the latent heat storage member 4 can be released from the overcooled state, so that the solidification heat generated in the latent heat storage member 4 can be transferred to the battery 3. , Secure or maintain the output characteristics of the battery 3. If the latent heat storage member 4 is kept in a supercooled state and is warmed by an increase in the battery temperature to reach the melting point, the heat absorption effect due to the phase change may not be obtained. The cooling state is released.

次に、電池パック1Aにおける過冷却解除部6の動作について図4を参照して説明する。過冷却解除部6は、例えば、車両の始動(例えば、イグニッションON)とともに起動するものとするが、これに限定されるものではない。例えば、タイマーによる自動起動やリモコンによる起動であってもよい。 Next, the operation of the supercooling release unit 6 in the battery pack 1A will be described with reference to FIG. The supercooling release unit 6 is assumed to be activated, for example, when the vehicle is started (for example, the ignition is turned on), but the supercooling release unit 6 is not limited to this. For example, it may be automatically started by a timer or started by a remote controller.

ステップS11では、BMU12は、MPUから受信する車両停止信号に応じて、車両が停止したか否かを判定する。BMU12は、MPUから車両停止信号を受信した場合、車両が停止したと判定して、ステップS12に進む。一方、MPUから車両停止信号を受信していない場合には、ステップS11を繰り返す。 In step S11, the BMU 12 determines whether or not the vehicle has stopped in response to the vehicle stop signal received from the MPU. When the BMU 12 receives the vehicle stop signal from the MPU, the BMU 12 determines that the vehicle has stopped and proceeds to step S12. On the other hand, if the vehicle stop signal is not received from the MPU, step S11 is repeated.

ステップS12では、BMU12は、現在の電池温度TBが潜熱蓄熱部材4の凝固点に対応する電池温度TL以下か否かを判定する。電池温度TBは、BMU12が温度センサ信号14を受信して取得したものである。電池温度TLは、BMU12が内部のメモリから取得したものであり、潜熱蓄熱部材4が高温から凝固点に達したときの電池温度である。ステップS12の判定の結果、電池温度TBが電池温度TL以下の場合には、ステップS13に進む。一方、電池温度TBが電池温度TLを越える場合には、ステップS16に進む。 In step S12, the BMU 12 determines whether or not the current battery temperature TB is equal to or lower than the battery temperature TL corresponding to the freezing point of the latent heat storage member 4. The battery temperature TB is obtained by the BMU 12 receiving the temperature sensor signal 14. The battery temperature TL is acquired by the BMU 12 from the internal memory, and is the battery temperature when the latent heat storage member 4 reaches the freezing point from a high temperature. As a result of the determination in step S12, if the battery temperature TB is equal to or lower than the battery temperature TL, the process proceeds to step S13. On the other hand, if the battery temperature TB exceeds the battery temperature TL, the process proceeds to step S16.

ステップS13では、BMU12は、外気温が第1閾値温度TS1以下か否かを判定する。外気温は、BMU12が外部信号17を受信して取得したものである。第1閾値温度TS1は、電池3を加温するか否かを判定するために予め設定される温度であり、例えば10℃である。第1閾値温度TS1は、電池3の種類(正極、負極等)に応じて変更される。ステップS13の判定の結果、外気温が第1閾値温度TS1以下である場合には、ステップS14に進む。一方、外気温が第1閾値温度TS1を越える場合には、ステップS18に進む。 In step S13, the BMU 12 determines whether or not the outside air temperature is equal to or less than the first threshold temperature TS1. The outside air temperature is obtained by the BMU 12 receiving the external signal 17. The first threshold temperature TS1 is a preset temperature for determining whether or not to heat the battery 3, and is, for example, 10 ° C. The first threshold temperature TS1 is changed according to the type of the battery 3 (positive electrode, negative electrode, etc.). As a result of the determination in step S13, if the outside air temperature is equal to or lower than the first threshold temperature TS1, the process proceeds to step S14. On the other hand, if the outside air temperature exceeds the first threshold temperature TS1, the process proceeds to step S18.

ステップS14では、BMU12は、MPUから受信する車両始動信号に応じて、車両が始動したか否かを判定する。BMU12は、MPUから車両始動信号を受信した場合、車両が始動したと判定して、ステップS15へ進む。一方、MPUから車両始動信号を受信していない場合には、ステップS12に戻る。 In step S14, the BMU 12 determines whether or not the vehicle has started according to the vehicle start signal received from the MPU. When the BMU 12 receives the vehicle start signal from the MPU, it determines that the vehicle has started and proceeds to step S15. On the other hand, if the vehicle start signal has not been received from the MPU, the process returns to step S12.

ステップS15では、BMU12は、潜熱蓄熱部材4の過冷却状態を解除して、本処理を終了する。BMU12は、電池温度TBが十分に下がり、電池3への伝熱を行う必要があることから、ドライバ11に制御信号16を送信し、ドライバ11により電磁リレー13を駆動して潜熱蓄熱部材4に衝撃を与える。電磁リレー13は、電磁石により可動鉄片を動作させることで振動を発生して潜熱蓄熱部材4に衝撃を与える。 In step S15, the BMU 12 releases the supercooled state of the latent heat storage member 4 and ends this process. Since the battery temperature TB of the BMU 12 is sufficiently lowered and it is necessary to transfer heat to the battery 3, the BMU 12 transmits a control signal 16 to the driver 11 and drives the electromagnetic relay 13 by the driver 11 to the latent heat storage member 4. Give a shock. The electromagnetic relay 13 generates vibration by operating a movable iron piece with an electromagnet to give an impact to the latent heat storage member 4.

ステップS16では、BMU12は、MPUから受信する車両始動信号に応じて、車両が始動したか否かを判定する。MPUから車両始動信号を受信した場合、車両が始動したと判定して、ステップS17へ進む。一方、MPSから車両始動信号を受信していない場合、車両が始動していないと判定して、ステップS12に戻る。 In step S16, the BMU 12 determines whether or not the vehicle has started according to the vehicle start signal received from the MPU. When the vehicle start signal is received from the MPU, it is determined that the vehicle has started, and the process proceeds to step S17. On the other hand, when the vehicle start signal is not received from the MPS, it is determined that the vehicle has not started, and the process returns to step S12.

ステップS17では、BMU12は、潜熱蓄熱部材4の過冷却状態の解除不可と判定して、本処理を終了する。BMU12は、電池温度TBが十分に下がっておらず、電池3への伝熱を行う必要がないことから、潜熱蓄熱部材4の過冷却状態の解除を行うことなく、終了する。 In step S17, the BMU 12 determines that the supercooled state of the latent heat storage member 4 cannot be released, and ends this process. Since the battery temperature TB has not sufficiently dropped and it is not necessary to transfer heat to the battery 3, the BMU 12 ends without releasing the supercooled state of the latent heat storage member 4.

ステップS18では、BMU12は、電池温度TBが外気温に第2閾値温度TS2を加えた温度以下か否かを判定する。第2閾値温度TS2は、電池温度TBと外気温との差分の許容温度である。すなわち、潜熱蓄熱部材4の過冷却状態の解除は、電池温度TBが外気温と同じ温度まで低下した後に実施することが好ましいが、車両停止後に電池温度TBが外気温と同じ温度まで低下するには相当な時間がかかる。図5は、縦軸の一方が電池温度[℃]、他方が温度差の割合[%]であり、横軸が時間[秒]である。例えば、図5に示すように、車両停止直後の電池温度TBが60℃である場合、外気温25℃と同じ温度まで低下するのに約1800秒(約30分)かかる。そこで、本実施形態では、電池温度TBが(外気温+第2閾値温度TS2)と同じ温度まで低下したときに、潜熱蓄熱部材4の過冷却状態を解除する。第2閾値温度TS2は、例えば車両停止時の電池温度TB(図示例の60℃)と外気温(図示例の25℃)との温度差の割合5%(約1.75℃)とする。第2閾値温度TS2に対応する電池温度と外気温との温度差の割合が5%の場合、電池温度TBが(外気温+第2閾値温度TS2)と同じ温度まで低下する時間が約800秒(約13分)に短縮される。ステップS18の判定の結果、電池温度TBが第2閾値温度TS2を越える場合、ステップS11に戻る。一方、電池温度TBが第2閾値温度TS2以下の場合、ステップS15に進む。 In step S18, the BMU 12 determines whether or not the battery temperature TB is equal to or lower than the temperature obtained by adding the second threshold temperature TS2 to the outside air temperature. The second threshold temperature TS2 is an allowable temperature of the difference between the battery temperature TB and the outside air temperature. That is, it is preferable to release the supercooled state of the latent heat storage member 4 after the battery temperature TB drops to the same temperature as the outside air temperature, but the battery temperature TB drops to the same temperature as the outside air temperature after the vehicle is stopped. Takes a considerable amount of time. In FIG. 5, one of the vertical axes is the battery temperature [° C.], the other is the rate of temperature difference [%], and the horizontal axis is the time [seconds]. For example, as shown in FIG. 5, when the battery temperature TB immediately after the vehicle is stopped is 60 ° C., it takes about 1800 seconds (about 30 minutes) to drop to the same temperature as the outside air temperature of 25 ° C. Therefore, in the present embodiment, when the battery temperature TB drops to the same temperature as (outside air temperature + second threshold temperature TS2), the supercooled state of the latent heat storage member 4 is released. The second threshold temperature TS2 is, for example, a ratio of the temperature difference between the battery temperature TB (60 ° C. in the illustrated example) and the outside air temperature (25 ° C. in the illustrated example) when the vehicle is stopped is 5% (about 1.75 ° C.). When the ratio of the temperature difference between the battery temperature corresponding to the second threshold temperature TS2 and the outside air temperature is 5%, it takes about 800 seconds for the battery temperature TB to drop to the same temperature as (outside air temperature + second threshold temperature TS2). It will be shortened to (about 13 minutes). If the battery temperature TB exceeds the second threshold temperature TS2 as a result of the determination in step S18, the process returns to step S11. On the other hand, when the battery temperature TB is equal to or lower than the second threshold temperature TS2, the process proceeds to step S15.

以上のように、本実施形態に係る電池パック1Aは、熱伝導性を有する筐体2と、筐体2の内部空間2aに配列され、かつ筐体2に保持される複数個の電池3と、筐体2に収容されるとともに、各電池3に直接または熱伝導部材5を介して接続され、かつ凝固点以下で過冷却状態に移行する潜熱蓄熱部材4と、潜熱蓄熱部材4の過冷却状態を解除する過冷却解除部6とを備える。潜熱蓄熱部材4は、電池3の使用温度範囲の上限温度に対応する温度より低い温度で固相から液相に相変化する融点を有し、凝固点以下で過冷却状態に移行し、かつ過冷却状態が自然に解除される温度まで過冷却状態を維持する。 As described above, the battery pack 1A according to the present embodiment includes a housing 2 having thermal conductivity and a plurality of batteries 3 arranged in the internal space 2a of the housing 2 and held in the housing 2. , The latent heat storage member 4 that is housed in the housing 2 and is directly connected to each battery 3 or via the heat conductive member 5 and shifts to the supercooled state below the freezing point, and the supercooled state of the latent heat storage member 4. The supercooling release unit 6 is provided. The latent heat storage member 4 has a melting point that changes from a solid phase to a liquid phase at a temperature lower than the temperature corresponding to the upper limit temperature of the operating temperature range of the battery 3, shifts to a supercooled state below the freezing point, and is supercooled. Maintain the supercooled state until the temperature at which the state is naturally released.

上記構成を有する電池パック1Aによれば、例えば車両の低温時に潜熱蓄熱部材4の過冷却状態を過冷却解除部6により解除することで、低温時の電池出力の低下を抑制することができる。また、潜熱蓄熱部材4の潜熱を電池3に伝熱して電池温度の低下を抑制するので、電池パック1A内のヒータの配置によるエネルギー密度の低下や消費電力の増加による燃費性能の低下を抑制することが可能となる。 According to the battery pack 1A having the above configuration, for example, by releasing the supercooled state of the latent heat storage member 4 by the supercooling release unit 6 when the temperature of the vehicle is low, it is possible to suppress a decrease in the battery output at a low temperature. Further, since the latent heat of the latent heat storage member 4 is transferred to the battery 3 to suppress the decrease in the battery temperature, the decrease in the energy density due to the arrangement of the heaters in the battery pack 1A and the decrease in the fuel efficiency due to the increase in the power consumption are suppressed. It becomes possible.

また、上記構成を有する電池パック1Aは、過冷却解除部6が、車両の始動を検出したときに、潜熱蓄熱部材4に衝撃を与えて過冷却状態を解除する。これにより、車両の始動時に潜熱蓄熱部材4を過冷却状態から解除することで、潜熱蓄熱部材4に生じた凝固熱を電池3に伝熱することができ、始動時の電池出力の低下を抑制することができる。 Further, in the battery pack 1A having the above configuration, when the supercooling release unit 6 detects the start of the vehicle, the latent heat storage member 4 is impacted to release the supercooling state. As a result, by releasing the latent heat storage member 4 from the supercooled state when the vehicle is started, the solidification heat generated in the latent heat storage member 4 can be transferred to the battery 3, and the decrease in the battery output at the time of starting is suppressed. can do.

また、上記構成を有する電池パック1Aは、過冷却解除部6が、車両の停止後の始動時に、電池温度が潜熱蓄熱部材4の凝固点に対応する温度以下で、かつ外気温が電池への加温が必要となる第1閾値温度TS1以下の場合に過冷却状態を解除する。これにより、例えば外気温に応じて潜熱蓄熱部材4の過冷却状態を解除することができる。 Further, in the battery pack 1A having the above configuration, when the supercooling release unit 6 starts after the vehicle is stopped, the battery temperature is equal to or lower than the temperature corresponding to the freezing point of the latent heat storage member 4, and the outside temperature is applied to the battery. The supercooled state is released when the temperature is equal to or less than the first threshold temperature TS1 that requires temperature. Thereby, for example, the supercooled state of the latent heat storage member 4 can be released according to the outside air temperature.

また、上記構成を有する電池パック1Aは、過冷却解除部6が、車両の停止後、電池温度が潜熱蓄熱部材4の凝固点に対応する電池温度以下であって、外気温が第1閾値温度TS1より越えて、かつ外気温に第2閾値温度TS2を加えた温度以下の場合に、過冷却状態を解除する。これにより、例えば外気温に応じて潜熱蓄熱部材4の過冷却状態を解除する場合において、時間を掛けることなく、過冷却状態の解除を判定することができる。 Further, in the battery pack 1A having the above configuration, after the vehicle is stopped, the battery temperature of the battery pack 1A is equal to or lower than the battery temperature corresponding to the freezing point of the latent heat storage member 4, and the outside air temperature is the first threshold temperature TS1. The overcooled state is released when the temperature exceeds the above temperature and is equal to or lower than the temperature obtained by adding the second threshold temperature TS2 to the outside air temperature. Thereby, for example, when the supercooled state of the latent heat storage member 4 is released according to the outside air temperature, it is possible to determine the release of the supercooled state without taking time.

また、上記構成を有する電池パック1Aは、過冷却解除部6が、車両の停止後の始動時に、電池温度が潜熱蓄熱部材4の凝固点に対応する温度より高い場合には、潜熱蓄熱部材4の過冷却状態を解除しないので、過冷却解除を適切なタイミングで行うことが可能となる。 Further, in the battery pack 1A having the above configuration, when the supercooling release unit 6 is started after the vehicle is stopped and the battery temperature is higher than the temperature corresponding to the freezing point of the latent heat storage member 4, the latent heat storage member 4 has a temperature higher than the temperature corresponding to the freezing point of the latent heat storage member 4. Since the supercooled state is not released, it is possible to release the supercooling at an appropriate timing.

また、上記構成を有する電池パック1Aは、過冷却解除部6が、車両に搭載された電池パック1Aは異なる電源7の電力に基づいて衝撃を発生する電磁リレー13を備える。これにより、高電圧電源である電池パック1Aの電圧を降圧することなく、例えば低電圧の電源7で過冷却解除部6を駆動することが可能となる。 Further, the battery pack 1A having the above configuration includes an electromagnetic relay 13 in which the supercooling release unit 6 generates an impact based on the electric power of a different power source 7 in the battery pack 1A mounted on the vehicle. This makes it possible to drive the supercooling release unit 6 with, for example, a low voltage power supply 7 without stepping down the voltage of the battery pack 1A, which is a high voltage power supply.

また、上記構成を有する電池パック1Aは、電磁リレー13が潜熱蓄熱部材4内に埋設され、内部底面2b上に固定されるので、潜熱蓄熱部材4に直接的に衝撃を与えることができる。 Further, in the battery pack 1A having the above configuration, since the electromagnetic relay 13 is embedded in the latent heat storage member 4 and fixed on the inner bottom surface 2b, the latent heat storage member 4 can be directly impacted.

[変形例]
なお、上記実施形態では、各電池3に潜熱蓄熱部材4が直接的に熱接続されていたがこれに限定されるものではない。図6は、実施形態の変形例に係る電池パック1Bの概略構成を示す部分平面図である。図7は、図6中のB−B断面図である。図6および図7に示すように、電池パック1Bは、潜熱蓄熱部材4が、筐体2に収容されるとともに、各電池3に熱伝導部材5を介して接続されている。熱伝導部材5は、潜熱蓄熱部材4よりも熱伝導性が高い熱伝導材で構成される。熱伝導材としては、例えば、グラファイト、熱伝導性フィラーを含有する樹脂、熱伝導性が高い金属材料である銅、アルミニウム等がある。熱伝導部材5は、例えばシート状のグラファイトで構成される。熱伝導部材5は、少なくとも各電池3および潜熱蓄熱部材4と熱的に接続される。熱伝導部材5は、複数個の電池3の配列方向に沿って配置され、複数個の電池3の各外周面3aに接触する。熱伝導部材5は、図6に示すように、上下方向から見た場合に、幅方向に配列される各電池3の外周面3aに沿って波状に形成され、奥行き方向に電池3が隣り合う場合には、隣り合う電池3に挟まれて形成される。熱伝導部材5は、図7に示すように、電池3の外周面3aと接触する接触部5aと、当該接触部5aから上下方向に向かって延設された延設部5bとを有し、当該延設部5bが潜熱蓄熱部材4に浸かっている。潜熱蓄熱部材4は、熱伝導部材5の延設部5bが部分的に浸かる(または埋没する)ように、筐体2の内部底面2b上に満たされている。
[Modification example]
In the above embodiment, the latent heat storage member 4 is directly thermally connected to each battery 3, but the present invention is not limited to this. FIG. 6 is a partial plan view showing a schematic configuration of the battery pack 1B according to the modified example of the embodiment. FIG. 7 is a cross-sectional view taken along the line BB in FIG. As shown in FIGS. 6 and 7, in the battery pack 1B, the latent heat storage member 4 is housed in the housing 2, and is connected to each battery 3 via the heat conductive member 5. The heat conductive member 5 is made of a heat conductive material having higher heat conductivity than the latent heat storage member 4. Examples of the heat conductive material include graphite, a resin containing a heat conductive filler, copper and aluminum which are metal materials having high heat conductivity. The heat conductive member 5 is made of, for example, sheet-shaped graphite. The heat conductive member 5 is thermally connected to at least each battery 3 and the latent heat storage member 4. The heat conductive member 5 is arranged along the arrangement direction of the plurality of batteries 3 and comes into contact with each outer peripheral surface 3a of the plurality of batteries 3. As shown in FIG. 6, the heat conductive member 5 is formed in a wavy shape along the outer peripheral surface 3a of each battery 3 arranged in the width direction when viewed from the vertical direction, and the batteries 3 are adjacent to each other in the depth direction. In the case, it is formed by being sandwiched between adjacent batteries 3. As shown in FIG. 7, the heat conductive member 5 has a contact portion 5a in contact with the outer peripheral surface 3a of the battery 3 and an extension portion 5b extending in the vertical direction from the contact portion 5a. The extension portion 5b is immersed in the latent heat storage member 4. The latent heat storage member 4 is filled on the inner bottom surface 2b of the housing 2 so that the extending portion 5b of the heat conductive member 5 is partially immersed (or buried).

また、上記実施形態では、電池3は、円筒型のリチウムイオン電池である場合について説明したが、これに限定されるものではない。例えば、四角柱型の電池であってもよいし、リチウムイオン電池以外の電池であってもよい。 Further, in the above embodiment, the case where the battery 3 is a cylindrical lithium ion battery has been described, but the battery 3 is not limited thereto. For example, it may be a prismatic battery or a battery other than a lithium ion battery.

また、上記実施形態では、電磁リレー13は、潜熱蓄熱部材4内に埋設され、内部底面2b上に固定されているが、これに限定されるものではない。例えば、図1、図2、図6、および図7に示すように、筐体2の外部側面2dに接するように配置されていてもよいし、筐体2の内部空間2aに配置されていてもよい。 Further, in the above embodiment, the electromagnetic relay 13 is embedded in the latent heat storage member 4 and fixed on the inner bottom surface 2b, but the present invention is not limited to this. For example, as shown in FIGS. 1, 2, 6, and 7, they may be arranged so as to be in contact with the outer side surface 2d of the housing 2, or may be arranged in the internal space 2a of the housing 2. May be good.

また、上記実施形態では、過冷却解除部6は、電磁リレー13により潜熱蓄熱部材4に衝撃を与えているが、潜熱蓄熱部材4に衝撃を与えることが可能なものであれば、これに限定されるものではない。例えば、電圧を印加することで伸縮するピエゾ素子を可動子に用いた装置により当該可動子で潜熱蓄熱部材4に衝撃を与えてもよいし、電圧を印加してファンが回転する装置により当該ファンで潜熱蓄熱部材4を攪拌して衝撃を与えてもよい。また、超音波振動発生装置を筐体2の外部側面2dに接するように配置して、当該超音波発生装置により潜熱蓄熱部材4に超音波振動を与えてもよい。さらに、高電圧を印加して火花放電を起こす装置により潜熱蓄熱部材4に火花放電をもって衝撃を与えてもよい。 Further, in the above embodiment, the supercooling release unit 6 gives an impact to the latent heat storage member 4 by the electromagnetic relay 13, but the supercooling release unit 6 is limited to this as long as it can give an impact to the latent heat storage member 4. It is not something that is done. For example, a device using a piezo element that expands and contracts by applying a voltage may give an impact to the latent heat storage member 4 with the mover, or the fan may be impacted by the device that rotates the fan by applying a voltage. The latent heat storage member 4 may be agitated to give an impact. Further, the ultrasonic vibration generator may be arranged so as to be in contact with the outer side surface 2d of the housing 2, and the latent heat storage member 4 may be subjected to ultrasonic vibration by the ultrasonic wave generator. Further, a device that applies a high voltage to generate a spark discharge may give an impact to the latent heat storage member 4 with the spark discharge.

また、上記実施形態では、熱伝導部材5は、延設部5bが部分的に潜熱蓄熱部材4に浸かる構成であるが、これに限定されるものではない。例えば、延設部5bが部分的に潜熱蓄熱部材4に浸かると共に、延設部5bの鉛直方向の端部が筐体2の内部底面2bと接触していてもよい。 Further, in the above embodiment, the heat conductive member 5 has a configuration in which the extending portion 5b is partially immersed in the latent heat storage member 4, but the present invention is not limited to this. For example, the extension portion 5b may be partially immersed in the latent heat storage member 4, and the vertical end portion of the extension portion 5b may be in contact with the inner bottom surface 2b of the housing 2.

また、上記実施形態では、BMU12がドライバ11により電磁リレー13を駆動していたが、BMU12がドライバ11を介さず直接電磁リレー13を駆動する構成であってもよい。 Further, in the above embodiment, the BMU 12 drives the electromagnetic relay 13 by the driver 11, but the BMU 12 may directly drive the electromagnetic relay 13 without going through the driver 11.

また、上記実施形態では、電池パック1A,1Bが車両に搭載される電源に適用した場合について説明したが、これに限定されるものではなく、電子機器等に利用される電源であってもよい。 Further, in the above embodiment, the case where the battery packs 1A and 1B are applied to the power source mounted on the vehicle has been described, but the present invention is not limited to this, and the power source may be used for electronic devices and the like. ..

1A,1B 電池パック
2 筐体
2a 内部空間
2b 内部底面
2c 内部側面
2d 外部側面
3 電池
3a 外周面
4 潜熱蓄熱部材
5 熱伝導部材
5a 接触部
6 過冷却解除部
7 電源
11 ドライバ
12 BMU
13 電磁リレー
14 温度センサ信号
15 電圧
16 制御信号
17 外部信号
TS1 第1閾値温度
TS2 第2閾値温度
1A, 1B Battery pack 2 Housing 2a Internal space 2b Internal bottom surface 2c Internal side surface 2d External side surface 3 Battery 3a Outer surface surface 4 Latent heat storage member 5 Heat conduction member 5a Contact part 6 Supercooling release part 7 Power supply 11 Driver 12 BMU
13 Electromagnetic relay 14 Temperature sensor signal 15 Voltage 16 Control signal 17 External signal TS1 First threshold temperature TS2 Second threshold temperature

Claims (2)

熱伝導性を有する筐体と、
前記筐体の内部空間に配列され、かつ前記筐体に保持される複数個の電池と、
前記筐体に収容されるとともに、各前記電池の少なくとも一部に直接接触し、かつ凝固点以下で過冷却状態に移行する潜熱蓄熱部材と、
前記潜熱蓄熱部材の前記過冷却状態を解除する過冷却解除手段と、
を備え、
前記潜熱蓄熱部材は、
前記電池の使用温度範囲の上限温度に対応する温度より低い温度で固相から液相に相変化する融点を有し、
前記凝固点以下で前記過冷却状態に移行し、かつ前記過冷却状態が自然に解除される温度まで前記過冷却状態を維持し、
前記潜熱蓄熱部材は、複数個の前記電池と鉛直方向に対向する前記筐体の内部底面に貯留し、
前記潜熱蓄熱部材は、液相時に、前記筐体の内部空間を残して収容され、かつ各前記電池を少なくとも部分的に覆うように貯留され、
前記過冷却解除手段は、
前記電池パックにより駆動する車両の始動を検出する始動検出手段を備え、
前記始動検出手段により前記車両の始動が検出されたときに、前記潜熱蓄熱部材に任意のエネルギーを与えて前記過冷却状態を解除し、
前記車両が停止した後の始動時に、前記電池の温度が前記潜熱蓄熱部材の凝固点に対応する温度以下で、かつ外気温が前記電池への加温が必要となる第1閾値温度以下の場合に、前記過冷却状態を解除する、
ことを特徴とする電池パック。
A housing with thermal conductivity and
A plurality of batteries arranged in the internal space of the housing and held in the housing,
A latent heat storage member that is housed in the housing and that directly contacts at least a part of each battery and shifts to a supercooled state below the freezing point.
A supercooling release means for releasing the supercooled state of the latent heat storage member,
Equipped with
The latent heat storage member is
It has a melting point that changes phase from solid phase to liquid phase at a temperature lower than the temperature corresponding to the upper limit temperature of the operating temperature range of the battery.
The supercooled state is maintained below the freezing point until the temperature shifts to the supercooled state and the supercooled state is naturally released.
The latent heat storage member is stored in the inner bottom surface of the housing that faces the plurality of batteries in the vertical direction.
The latent heat storage member is housed in the liquid phase, leaving the internal space of the housing, and is stored so as to cover at least a part of each battery .
The supercooling release means is
A start detection means for detecting the start of a vehicle driven by the battery pack is provided.
When the start of the vehicle is detected by the start detection means, arbitrary energy is applied to the latent heat storage member to release the supercooled state.
When the temperature of the battery is equal to or lower than the temperature corresponding to the freezing point of the latent heat storage member and the outside air temperature is equal to or lower than the first threshold temperature at which the battery needs to be heated at the time of starting after the vehicle has stopped. , Release the supercooled state,
A battery pack that features that.
前記過冷却解除手段は、
前記車両が停止した後、前記電池の温度が前記潜熱蓄熱部材の凝固点に対応する電池温度以下であって、前記外気温が前記第1閾値温度より越えて、かつ前記電池の温度が前記外気温に第2閾値温度を加えた温度以下の場合に、前記過冷却状態を解除する、
請求項に記載の電池パック。
The supercooling release means is
After the vehicle has stopped, the temperature of the battery is equal to or lower than the battery temperature corresponding to the freezing point of the latent heat storage member, the outside air temperature exceeds the first threshold temperature, and the temperature of the battery is the outside air temperature. When the temperature is equal to or lower than the temperature obtained by adding the second threshold temperature to the above, the overcooled state is released.
The battery pack according to claim 1.
JP2017141621A 2017-07-21 2017-07-21 Battery pack Active JP6976762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017141621A JP6976762B2 (en) 2017-07-21 2017-07-21 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141621A JP6976762B2 (en) 2017-07-21 2017-07-21 Battery pack

Publications (2)

Publication Number Publication Date
JP2019021589A JP2019021589A (en) 2019-02-07
JP6976762B2 true JP6976762B2 (en) 2021-12-08

Family

ID=65354441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141621A Active JP6976762B2 (en) 2017-07-21 2017-07-21 Battery pack

Country Status (1)

Country Link
JP (1) JP6976762B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141929A (en) * 2003-11-04 2005-06-02 Nissan Motor Co Ltd Starting method of power generation element, and secondary battery
JP2014103005A (en) * 2012-11-20 2014-06-05 Toshiba Corp Battery pack and in-vehicle heating system
JP2015015208A (en) * 2013-07-08 2015-01-22 株式会社東芝 Battery module, power-supply unit including battery module and temperature management method of battery module

Also Published As

Publication number Publication date
JP2019021589A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US7147071B2 (en) Thermal management systems and methods
JP6434005B2 (en) Thermal management device for electric vehicle battery
US20100273041A1 (en) Temperature management system
JP2014503973A (en) Battery temperature control with aggregated state change material
EP3596774B1 (en) Thermal state of charge estimation of phase change material (pcm) in a battery pack with a pcm thermal management system
US5449571A (en) Encapsulations for thermal management system for battery
JP7083792B2 (en) Vehicle battery pack
JP2014103005A (en) Battery pack and in-vehicle heating system
KR20200021654A (en) Battery cooling device for vehicle
JP5244206B2 (en) Energy storage device for automobile
KR20200030966A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP6751320B2 (en) Vehicle battery pack
JP6011800B2 (en) Electric vehicle cooling control device
JP2009016238A (en) Electric storage device and vehicle
US20150010789A1 (en) Battery Module, Power Supply Apparatus Comprising Battery Module, and Method for Managing Temperature of Battery Module
US20120148886A1 (en) Battery system for a motor vehicle having at least one electrochemical cell and at least one latent heat accumulator
CN111463517B (en) Battery pack and floor treatment device having the same
KR20190107839A (en) Battery cooling unit and battery module including the same
JP2019192381A (en) Power storage device for vehicle
JP6946083B2 (en) Vehicle battery pack
CN116018711A (en) Battery pack, electric tool, and electric vehicle
JP6976762B2 (en) Battery pack
JP2019160442A (en) Battery module
JP2018190607A (en) Battery pack
JP5427021B2 (en) Battery temperature control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R150 Certificate of patent or registration of utility model

Ref document number: 6976762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350