JP6974034B2 - Inorganic fiber molded body - Google Patents

Inorganic fiber molded body Download PDF

Info

Publication number
JP6974034B2
JP6974034B2 JP2017105361A JP2017105361A JP6974034B2 JP 6974034 B2 JP6974034 B2 JP 6974034B2 JP 2017105361 A JP2017105361 A JP 2017105361A JP 2017105361 A JP2017105361 A JP 2017105361A JP 6974034 B2 JP6974034 B2 JP 6974034B2
Authority
JP
Japan
Prior art keywords
fiber
mass
inorganic
alumina
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017105361A
Other languages
Japanese (ja)
Other versions
JP2018199879A (en
Inventor
俊之 柏木
朋来 岩永
利幸 倉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2017105361A priority Critical patent/JP6974034B2/en
Publication of JP2018199879A publication Critical patent/JP2018199879A/en
Application granted granted Critical
Publication of JP6974034B2 publication Critical patent/JP6974034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Paper (AREA)

Description

本発明は、各種炉の炉壁材などに使用される断熱性能を有する無機繊維質成形体に関するものである。 The present invention relates to an inorganic fibrous molded product having heat insulating properties used for a furnace wall material of various furnaces.

各種炉の炉壁は、炉内側の面が耐火煉瓦等から構成されており、この耐火煉瓦等の外側には、断熱性能を有する無機繊維質成形体が設置されている。この無機繊維質成形体として、リフラクトリーセラミックファイバー(Al含量40〜60質量%、SiO含量40〜60質量%の非晶質ファイバー)や生体溶解性繊維より構成される成形体が使用されている。例えば、特許文献1には、セラミック繊維と無機バインダーとからなる耐火断熱材であって、セラミック繊維の平均繊維径が1.5〜5μmであり、セラミック繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、600℃における熱伝導率が0.060〜0.090W/(m・K)、乾燥後のかさ密度が250〜400kg/m、600℃における曲げ強さが0.6MPa以上であることを特徴とする耐火断熱材(請求項1);セラミック繊維と無機バインダーと有機高分子凝集剤とからなる耐火断熱材であって、セラミック繊維の平均繊維径が1.5〜5μmであり、セラミック繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、600℃における熱伝導率が0.060〜0.090W/(m・K)、乾燥後のかさ密度が150〜300kg/m、乾燥後の曲げ強度が0.8MPa以上であることを特徴とする耐火断熱材(請求項3);前記セラミック繊維が、シリカアルミナ繊維、シリカアルミナジルコニア繊維若しくは生体溶解性繊維である前記耐火断熱材(請求項5)が開示されている。 The inner surface of the furnace walls of various furnaces is made of refractory bricks and the like, and an inorganic fibrous molded body having heat insulating performance is installed on the outside of the refractory bricks and the like. As this inorganic fiber molded body, a molded body composed of a refractory ceramic fiber (amorphous fiber having an Al 2 O 3 content of 40 to 60% by mass and a SiO 2 content of 40 to 60% by mass) and a biosoluble fiber can be used. in use. For example, Patent Document 1 describes a fireproof heat insulating material composed of a ceramic fiber and an inorganic binder, in which the average fiber diameter of the ceramic fiber is 1.5 to 5 μm, and the total amount of non-fibrous particles contained in the ceramic fiber. Is 20% by weight or less of the whole fiber, the thermal conductivity at 600 ° C. is 0.060 to 0.090 W / (m · K), and the bulk density after drying is 250 to 400 kg / m 3 , bending at 600 ° C. A fire-resistant heat insulating material having a strength of 0.6 MPa or more (claim 1); a fire-resistant heat insulating material composed of a ceramic fiber, an inorganic binder, and an organic polymer flocculant, and has an average fiber diameter of the ceramic fiber. Is 1.5 to 5 μm, the total amount of non-fibrous particles contained in the ceramic fiber is 20% by weight or less of the whole fiber, and the thermal conductivity at 600 ° C. is 0.060 to 0.090 W / (m). -K), a fire-resistant heat insulating material having a bulk density of 150 to 300 kg / m 3 after drying and a bending strength of 0.8 MPa or more after drying (claim 3); the ceramic fiber is silica alumina. The fireproof heat insulating material (claim 5), which is a fiber, a silica alumina zirconia fiber or a biosoluble fiber, is disclosed.

また、特許文献2には、無機繊維、無機粒子、粘土鉱物、カチオン性凝集剤及びアニオン性凝集剤を含むことを特徴とする断熱材(請求項1);前記無機繊維は、生体溶解性ファイバ、ロックウール、アルミナファイバ、シリカ−アルミナファイバ又はシリカアルミナジルコニアファイバである前記断熱材(請求項3);前記生体溶解性ファイバは、アルカリ金属化合物又はアルカリ土類金属化合物を含む前記断熱材(請求項4);前記粘土鉱物は、カオリン、雲母、スメクタイト、ベントナイトからなる群から選ばれる少なくとも1種である前記断熱材(請求項5);前記無機粒子は、酸化チタン粉末、シリカ粉末、アルミナ粉末及びムライト粉末からなる群から選ばれる少なくとも1種である前記断熱材(請求項7)が開示されている。 Further, Patent Document 2 includes a heat insulating material (claim 1) containing an inorganic fiber, an inorganic particle, a clay mineral, a cationic flocculant and an anionic flocculant; the inorganic fiber is a biosoluble fiber. , Rock wool, alumina fiber, silica-alumina fiber or silica-alumina zirconia fiber (claim 3); the biosoluble fiber is the heat insulating material containing an alkali metal compound or an alkaline earth metal compound (claim). Item 4); The heat insulating material (claim 5); the clay mineral is at least one selected from the group consisting of kaolin, mullite, smectite, and bentonite; the inorganic particles are titanium oxide powder, silica powder, and alumina powder. And at least one selected from the group consisting of mullite powder, said heat insulating material (claim 7) is disclosed.

更に、特許文献3には、平均繊維径が1.5〜5.0μmの無機繊維と、微粒子シリカ及び/又は微粒子アルミナと、無機粉末粒子とからなる断熱材であって、無機繊維を25〜40重量%、微粒子シリカ及び/又は微粒子アルミナを5〜40重量%、無機粉末粒子を20〜70重量%含有し、かさ密度が300〜600kg/m3、3点曲げ強度が0.3MPa以上、600℃における熱伝導率が0.060〜0.090W/(m・K)であることを特徴とする断熱材(請求項1);前記無機繊維が、アルミナ繊維、シリカアルミナ繊維、シリカアルミナジルコニア繊維又は生体溶解性繊維である前記断熱材(請求項3);前記無機粉末粒子が、シリカ、アルミナ、二酸化チタン、ケイ酸ジルコニウム、酸化ジルコニウム、炭化ケイ素から選ばれた少なくとも1種である前記断熱材(請求項4)が開示されている。 Further, Patent Document 3 describes a heat insulating material composed of an inorganic fiber having an average fiber diameter of 1.5 to 5.0 μm, fine particle silica and / or fine particle alumina, and inorganic powder particles, wherein the inorganic fiber is 25 to 25. Contains 40% by weight, 5 to 40% by weight of fine particle silica and / or fine particle alumina, 20 to 70% by weight of inorganic powder particles, bulk density of 300 to 600 kg / m3, 3-point bending strength of 0.3 MPa or more, 600. A heat insulating material having a thermal conductivity of 0.060 to 0.090 W / (m · K) at ° C. (claim 1); the inorganic fiber is an alumina fiber, a silica alumina fiber, or a silica alumina zirconia fiber. The heat insulating material (claim 3) which is a biosoluble fiber; the heat insulating material in which the inorganic powder particles are at least one selected from silica, alumina, titanium dioxide, zirconium silicate, zirconium oxide, and silicon carbide. (Claim 4) is disclosed.

特開2014−196878号公報Japanese Unexamined Patent Publication No. 2014-196878 特開2013−79665号公報Japanese Unexamined Patent Publication No. 2013-79665 特開2015−36587号公報JP-A-2015-36587

シリカアルミナ繊維のようなリフラクトリーセラミックファイバー(RCF)は、耐熱性に優れ、また、コストパフォーマンスにも優れるため、従来よりRCFを含有してなる断熱材が、多用されている。しかし、RCFは健康への影響懸念から近年規制対象となっており、他の無機繊維への代替が検討されている。例えば、アルカリアースシリケート(AES)繊維のような生体分解性繊維やアルミナ繊維への代替が行われている。
しかしながら、AES繊維のような生体溶解性繊維は、RCFより耐熱性に劣り、AES繊維の連続使用温度は、1150℃程度であり、また、最高使用温度は、せいぜい1300℃程度の使用環境までしか対応することができなかった。また、アルミナ繊維は、良好な耐熱性を有するため、アルミナ繊維を用いた断熱材は良好な耐熱性を有するものであるが、アルミナ繊維は非常に高価であるため、アルミナ繊維のみから構成される無機繊維質成形体からなる断熱材は、コスト的に非常に不利なものであった。
Since refractory ceramic fiber (RCF) such as silica-alumina fiber has excellent heat resistance and cost performance, a heat insulating material containing RCF has been widely used. However, RCF has been regulated in recent years due to concerns about its impact on health, and alternatives to other inorganic fibers are being considered. For example, biodegradable fibers such as alkaline earth silicate (AES) fibers and alumina fibers have been replaced.
However, biosoluble fibers such as AES fibers are inferior in heat resistance to RCF, the continuous use temperature of AES fibers is about 1150 ° C, and the maximum use temperature is only up to about 1300 ° C. I couldn't handle it. Further, since the alumina fiber has good heat resistance, the heat insulating material using the alumina fiber has good heat resistance, but since the alumina fiber is very expensive, it is composed only of the alumina fiber. The heat insulating material made of the inorganic fibrous molded body is very disadvantageous in terms of cost.

したがって、本発明の目的は、1400℃で良好な耐熱性を示し、コストパフォーマンスに優れたRCFフリーの無機繊維質成形体を提供することにある。 Therefore, an object of the present invention is to provide an RCF-free inorganic fibrous molded article that exhibits good heat resistance at 1400 ° C. and is excellent in cost performance.

本発明者らは、AES繊維とアルミナ繊維を併用した無機繊維質成形体の耐熱性について鋭意検討を重ねた結果、AES繊維とアルミナ繊維の混合比を特定の割合とし、かつ得られる無機繊維質成形体のAl、CaOおよびSiOの三成分の組成比が特定の範囲にあるときに優れた耐熱性を示すことを見出し、本発明を完成するに至った。 As a result of diligent studies on the heat resistance of the inorganic fiber molded product using AES fiber and alumina fiber in combination, the present inventors set the mixing ratio of AES fiber and alumina fiber to a specific ratio, and the obtained inorganic fiber. We have found that when the composition ratio of the three components of Al 2 O 3 , Ca O and SiO 2 in the molded product is within a specific range, they exhibit excellent heat resistance, and have completed the present invention.

すなわち、本発明の無機繊維質成形体は、アルカリアースシリケート繊維40〜60質量%及びアルミナ繊維40〜60質量%より構成される無機繊維質成形体であって、無機繊維質成形体の組成がAl35〜55質量%、CaO10〜20質量%、SiO30〜45質量%、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上からなるその他の成分0〜5質量%の範囲内にあることを特徴とする。 That is, the inorganic fibrous molded body of the present invention is an inorganic fibrous molded body composed of 40 to 60% by mass of alkaline earth silicate fibers and 40 to 60% by mass of alumina fibers, and the composition of the inorganic fibrous molded body is Al 2 O 3 35 to 55% by mass, CaO 10 to 20% by mass, SiO 2 30 to 45% by mass, Na 2 O, K 2 O, MgO, TiO 2 and Fe 2 O 3 selected from the group. Alternatively, it is characterized in that it is in the range of 0 to 5% by mass of other components composed of two or more kinds.

また、本発明の無機繊維質成形体は、アルカリアースシリケート繊維40〜60質量%及びアルミナ繊維40〜60質量%よりなる無機繊維100質量%に対し無機充填材を外割で5〜60質量%含有してなる無機繊維質成形体であって、無機繊維質成形体の組成がAl35〜65質量%、CaO5〜20質量%、SiO25〜45質量%、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上からなるその他の成分0〜5質量%の範囲内にあることを特徴とする。 Further, in the inorganic fibrous molded product of the present invention, the inorganic filler is divided by 5 to 60% by mass with respect to 100% by mass of the inorganic fiber composed of 40 to 60% by mass of the alkaline earth silicate fiber and 40 to 60% by mass of the alumina fiber. an inorganic fibrous molded body comprising the composition of the inorganic fibrous molded body Al 2 O 3 35 to 65 wt%, CaO5~20 wt%, SiO 2 25 to 45 wt%, Na 2 O, K It is characterized in that it is in the range of 0 to 5% by mass of one or more other components selected from the group consisting of 2 O, MgO, TiO 2 and Fe 2 O 3.

本発明によれば、高価なアルミナ繊維の配合比率を抑えながらも、最高使用温度1400℃を満足する無機繊維質成形体を得ることが可能となるため、コストパフォーマンスに優れたRCFフリーの断熱材として各種炉の炉壁材などに好適に使用することができる。 According to the present invention, it is possible to obtain an inorganic fibrous molded product satisfying a maximum operating temperature of 1400 ° C. while suppressing the blending ratio of expensive alumina fibers, so that an RCF-free heat insulating material having excellent cost performance can be obtained. It can be suitably used as a furnace wall material of various furnaces.

本発明の無機繊維質成形体は、規制対象外の無機繊維であるAES繊維と、アルミナ繊維を併用するところに特徴がある。上述のように、AES繊維単味よりなる無機繊維質成形体では、1400℃程度の使用温度に耐えることができず、また、アルミナ繊維単味よりなる無機繊維質成形体は、十分な耐熱性が得られるものの、無機繊維質成形体の使用部位との関係からコスト的に見合わないものであるが、本発明によれば、これらを併用することにより、両者の短所を補完し合える。 The inorganic fibrous molded product of the present invention is characterized in that AES fiber, which is an inorganic fiber not subject to regulation, and alumina fiber are used in combination. As described above, the inorganic fiber molded body made of AES fiber alone cannot withstand the operating temperature of about 1400 ° C., and the inorganic fiber molded body made of alumina fiber simple has sufficient heat resistance. However, it is not worth the cost due to the relationship with the site where the inorganic fiber molded body is used, but according to the present invention, by using these in combination, the disadvantages of both can be complemented.

ここで、AES繊維は、RCFの代替繊維とされる規制対象外の耐熱無機繊維であり、SiO、CaO、MgOを主体とした人造鉱物繊維である。AES繊維は、SiOを50〜82質量%、CaO+MgOを18〜43質量%含み、他にAl、TiO等の酸化物を含む組成を有し、その耐熱温度は最高1300℃程度とされている。本発明で用いるAES繊維は、繊維径が2〜8μm、好ましくは3〜5μmで、繊維長0.1〜数mm程度のものが混在しているバルク状(綿状)のものである。また、本発明で用いるAES繊維は、MgO含量が少ないものが適しており、CaO/MgO質量比が3〜15、好ましくは5〜10のものが好適である。これは、CaO/MgO質量比が大きいASE繊維の方が高温域においてアルミナ繊維との癒着性に富む傾向にあり、耐熱性の高いアルミナ繊維との結合性をもつことで、結果的に熱処理後の線収縮率を小さくしているものと考えられる。 Here, the AES fiber is a heat-resistant inorganic fiber that is not subject to regulation and is a substitute fiber for RCF, and is an artificial mineral fiber mainly composed of SiO 2, CaO, and MgO. AES fibers, the SiO 2 from 50 to 82 wt%, include CaO + MgO 18 to 43 wt%, other has a composition containing Al 2 O 3, oxides such as TiO 2, the heat resistant temperature is about up to 1300 ° C. It is said that. The AES fiber used in the present invention is a bulk-like (cotton-like) fiber having a fiber diameter of 2 to 8 μm, preferably 3 to 5 μm, and a fiber length of about 0.1 to several mm. Further, the AES fiber used in the present invention is preferably one having a low MgO content, and preferably one having a CaO / MgO mass ratio of 3 to 15, preferably 5 to 10. This is because ASE fibers having a large CaO / MgO mass ratio tend to have better adhesion to alumina fibers in a high temperature range, and have a bondability to alumina fibers having high heat resistance, resulting in post-heat treatment. It is considered that the line shrinkage rate of is reduced.

AES繊維の配合割合は、40〜60質量%、好ましくは40〜50質量%の範囲内である。ここで、AES繊維の配合割合が40質量%未満であると、それに伴ってアルミナ繊維の配合割合が増加し、コスト的に見合わないために好ましくなく、また、60質量%を超えると、耐熱性が低下して1400℃での使用に耐えられなくなるために好ましくない。 The blending ratio of the AES fiber is in the range of 40 to 60% by mass, preferably 40 to 50% by mass. Here, if the blending ratio of the AES fiber is less than 40% by mass, the blending ratio of the alumina fiber increases accordingly, which is not preferable because it is not worth the cost, and if it exceeds 60% by mass, it is heat resistant. It is not preferable because the property is deteriorated and it cannot withstand use at 1400 ° C.

次に、本発明の無機繊維質成形体に用いられるアルミナ繊維は、Al含量70質量%以上、好ましくは80質量%以上、更に好ましくは95質量%以上、SiO含量30質量%以下(ゼロを含む)、好ましくは20質量%以下(ゼロを含む)、更に好ましくは5質量%以下(ゼロを含む)の繊維であり、この範囲内にあるアルミナ繊維はRCFの範疇には属さず、近年の規制の対象となるものではない。アルミナ繊維の配合割合は、40〜60質量%、好ましくは50〜60質量%の範囲内である。 Next, the alumina fiber used in the inorganic fibrous molded body of the present invention has an Al 2 O 3 content of 70% by mass or more, preferably 80% by mass or more, more preferably 95% by mass or more, and a SiO 2 content of 30% by mass or less. Fibers (including zero), preferably 20% by mass or less (including zero), more preferably 5% by mass or less (including zero), and alumina fibers within this range do not belong to the category of RCF. , Not subject to recent regulations. The blending ratio of the alumina fiber is in the range of 40 to 60% by mass, preferably 50 to 60% by mass.

上述の構成を有する無機繊維質成形体の組成は、Al35〜55質量%、好ましくは45〜55質量%、CaO10〜20質量%、好ましくは10〜15質量%、SiO30〜45質量%、好ましくは30〜40質量%、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上からなるその他の成分0〜5質量%、好ましくは0〜4質量%の範囲内にある。ここで、Alの含有量が35質量%未満であると、耐熱性が低下するため好ましくなく、また、アルミナ繊維の配合量を制限しているため、Alの含有量が60質量%を超えると、コストの増加に繋がり、当初の目的を達成することができない。また、Alの含有量に対し、CaO及びSiOの含有量が前記の適正範囲より多すぎても、少なすぎても耐熱性が低下することになるため好ましくない。また、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上からなるその他の成分は、5質量%を超えると、耐熱性に悪影響を及ぼすため好ましくない。 The composition of the inorganic fibrous molded body having the above configuration, Al 2 O 3 35 to 55 wt%, preferably from 45 to 55 wt%, CaO10~20 wt%, preferably from 10 to 15 wt%, SiO 2. 30 to One or more components 0-5 selected from the group consisting of 45% by weight, preferably 30-40% by weight, Na 2 O, K 2 O, MgO, TiO 2 and Fe 2 O 3. It is in the range of% by mass, preferably 0 to 4% by mass. Here, if the content of Al 2 O 3 is less than 35% by mass, the heat resistance is lowered, which is not preferable, and since the blending amount of the alumina fiber is limited, the content of Al 2 O 3 is high. If it exceeds 60% by mass, it leads to an increase in cost and the original purpose cannot be achieved. Further, if the contents of CaO and SiO 2 are too large or too small with respect to the content of Al 2 O 3, the heat resistance will be lowered, which is not preferable. Further, if one or more of the other components selected from the group consisting of Na 2 O, K 2 O, MgO, TiO 2 and Fe 2 O 3 exceeds 5% by mass, the heat resistance is adversely affected. It is not preferable because it causes

上述のようなAES繊維とアルミナ繊維からなる本発明の無機繊維質成形体の製造方法は特に限定されるものではなく、例えば、所定量のAES繊維とアルミナ繊維及び繊維質の成形助剤を水に添加して攪拌し、AES繊維とアルミナ繊維を分散させた後、繊維質以外の成形助剤を所定量添加して更に攪拌し、得られた原料スラリーを成型用の型枠を用いてプレス脱水成形し、得られた成形体を乾燥することにより得ることができる。 The method for producing the inorganic fibrous molded product of the present invention composed of the AES fiber and the alumina fiber as described above is not particularly limited, and for example, a predetermined amount of the AES fiber, the alumina fiber and the fibrous molding aid are added to water. After adding to and stirring to disperse AES fibers and alumina fibers, a predetermined amount of molding aid other than fiber is added and further stirred, and the obtained raw material slurry is pressed using a molding mold. It can be obtained by dehydration molding and drying the obtained molded body.

ここで、原料スラリーに用いる水の量は、原料の固形分質量に対して3〜15倍、好ましくは5〜12倍の範囲内である。また、成形助剤としては、例えばセルロースパルプ、でんぷん、水ガラス等を用いることができる。セルロースパルプ及びでんぷん等を乾燥品として用いる場合には、予め水に溶かして使用することが好ましく、特に、セルロースパルプの場合には、リファイナーなどで叩解処理しておき、セルロースパルプ繊維を良く解きほぐしてから用いることが好ましい。この場合、セルロースパルプの叩解度の目安は、濾水度としてカナディアン標準フリーネスで200〜600mlの範囲内である。なお、成形助剤の添加量は、AES繊維とアルミナ繊維の合計量100質量%に対して1〜10質量%、好ましくは2〜8質量%の範囲内である。 Here, the amount of water used in the raw material slurry is in the range of 3 to 15 times, preferably 5 to 12 times, the solid content mass of the raw material. Further, as the molding aid, for example, cellulose pulp, starch, water glass and the like can be used. When using cellulose pulp or starch as a dried product, it is preferable to dissolve it in water in advance before use. In particular, in the case of cellulose pulp, beat it with a refiner or the like to thoroughly loosen the cellulose pulp fibers. It is preferable to use from. In this case, the standard of beating degree of cellulose pulp is in the range of 200 to 600 ml in Canadian standard freeness as the degree of drainage. The amount of the molding aid added is in the range of 1 to 10% by mass, preferably 2 to 8% by mass, based on 100% by mass of the total amount of the AES fiber and the alumina fiber.

本発明の無機繊維質成形体の他の態様によれば、上記配合割合のAES繊維及びアルミナ繊維よりなる無機繊維100質量%に対し無機充填材を外割で5〜60質量%、好ましくは5〜45質量%の範囲内で含有してなるものである。ここで、無機充填材の配合量が無機繊維100質量%に対して外割で5質量%未満であると、無機充填材の配合効果がないために好ましくなく、また、60質量%を超えると、無機繊維が少なすぎて成形体が脆くなるために好ましくない。なお、無機充填材としては、二次カオリンのような二次粘土、アルミノシリケート、ウォラストナイト、アルミナ、シリカ、ジルコン等を挙げることができる。無機充填材の粒径は特に限定されるものではないが、例えば0.1〜10μm、好ましくは0.5〜5μmの範囲内のものである。なお、無機充填材の粒径は、レーザー回折式粒度分布測定装置により測定したものである。 According to another aspect of the inorganic fibrous molded product of the present invention, the inorganic filler is divided into 5 to 60% by mass, preferably 5 by mass, based on 100% by mass of the inorganic fiber composed of the AES fiber and the alumina fiber in the above-mentioned compounding ratio. It is contained in the range of ~ 45% by mass. Here, if the blending amount of the inorganic filler is less than 5% by mass in terms of the outer percentage with respect to 100% by mass of the inorganic fiber, it is not preferable because there is no blending effect of the inorganic filler, and if it exceeds 60% by mass. , It is not preferable because the amount of inorganic fibers is too small and the molded product becomes brittle. Examples of the inorganic filler include secondary clay such as secondary kaolin, aluminosilicate, wollastonite, alumina, silica, zircon and the like. The particle size of the inorganic filler is not particularly limited, but is, for example, in the range of 0.1 to 10 μm, preferably 0.5 to 5 μm. The particle size of the inorganic filler was measured by a laser diffraction type particle size distribution measuring device.

上述のような無機充填材を含む無機繊維質成形体の組成は、Al35〜65質量%、好ましくは35〜55質量%、CaO5〜20質量%、好ましくは8〜20質量%、SiO25〜45質量%、好ましくは25〜40質量%、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上からなるその他の成分0〜5質量%、好ましくは0〜4質量%の範囲内にある。ここで、Alの含有量が35質量%未満であると、耐熱性が低下するために好ましくなく、また、65質量%を超えると、Alを含む無機充填材を多量に添加する必要があるため好ましくない。また、Alの含有量に対し、CaO及びSiOの含有量が前記の適正範囲より多すぎても、少なすぎても耐熱性が低下することとなるために好ましくない。また、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上からなるその他の成分は、5質量%を超えると、耐熱性に悪影響を及ぼす恐れがあるために好ましくない。 The composition of the inorganic fibrous molded body comprising inorganic fillers such as mentioned above, Al 2 O 3 35 to 65 wt%, preferably from 35 to 55 wt%, CaO5~20 wt%, preferably from 8 to 20% by weight, SiO 2 25 to 45 wt%, preferably from 25 to 40% by weight, Na 2 O, K 2 O, MgO, one or two or more composed other selected from the group consisting of TiO 2 and Fe 2 O 3 The components are in the range of 0 to 5% by mass, preferably 0 to 4% by mass. Here, if the content of Al 2 O 3 is less than 35% by mass, the heat resistance is lowered, which is not preferable, and if it exceeds 65% by mass, a large amount of the inorganic filler containing Al 2 O 3 is used. It is not preferable because it needs to be added. Further, if the contents of CaO and SiO 2 are too large or too small with respect to the content of Al 2 O 3, the heat resistance will be lowered, which is not preferable. Further, if one or more of the other components selected from the group consisting of Na 2 O, K 2 O, MgO, TiO 2 and Fe 2 O 3 exceeds 5% by mass, the heat resistance is adversely affected. It is not preferable because it may cause

上述のようなAES繊維とアルミナ繊維からなる無機繊維と、無機充填材からなる本発明の無機繊維質成形体の製造方法は特に限定されるものではなく、例えば、所定量のAES繊維、アルミナ繊維及び繊維質の成形助剤を水に添加して攪拌し、分散させた後、無機充填材と繊維質以外の成形助剤を所定量添加して更に攪拌し、得られた原料スラリーを成型用の型枠を用いてプレス脱水成形し、得られた成形体を乾燥することにより得ることができる。 The method for producing the inorganic fiber molded product of the present invention made of the inorganic fiber composed of the AES fiber and the alumina fiber as described above and the inorganic filler is not particularly limited, and for example, a predetermined amount of the AES fiber and the alumina fiber And, after adding a fibrous molding aid to water and stirring and dispersing, a predetermined amount of an inorganic filler and a non-fibrous molding aid are added and further stirred, and the obtained raw material slurry is used for molding. It can be obtained by press dehydration molding using the mold of the above and drying the obtained molded body.

ここで、原料スラリーに用いる水の量は、原料の固形分質量に対して3〜15倍、好ましくは5〜12倍の範囲内である。また、成形助剤としては、例えばセルロースパルプ、でんぷん、水ガラス等を用いることができる。セルロースパルプ及びでんぷん等を乾燥品として用いる場合には、予め水に溶かして使用することが好ましく、特に、セルロースパルプの場合には、リファイナーなどで叩解処理しておき、セルロースパルプ繊維を良く解きほぐしてから用いることが好ましい。この場合、セルロースパルプの叩解度の目安は、濾水度としてカナディアン標準フリーネスで200〜600mlの範囲内である。なお、成形助剤の添加量は、AES繊維とアルミナ繊維の合計量100質量%に対して1〜10質量%、好ましくは2〜8質量%の範囲内である。 Here, the amount of water used in the raw material slurry is in the range of 3 to 15 times, preferably 5 to 12 times, the solid content mass of the raw material. Further, as the molding aid, for example, cellulose pulp, starch, water glass and the like can be used. When using cellulose pulp or starch as a dried product, it is preferable to dissolve it in water in advance before use. In particular, in the case of cellulose pulp, beat it with a refiner or the like to thoroughly loosen the cellulose pulp fibers. It is preferable to use from. In this case, the standard of beating degree of cellulose pulp is in the range of 200 to 600 ml in Canadian standard freeness as the degree of drainage. The amount of the molding aid added is in the range of 1 to 10% by mass, preferably 2 to 8% by mass, based on 100% by mass of the total amount of the AES fiber and the alumina fiber.

上述のような構成を有する本発明の無機繊維質成形体は、見掛け密度が150〜500kg/m、好ましくは200〜400kg/mの範囲内にあり、また、線収縮率(1400℃−3時間)が3%以下、好ましくは2%以下である。 The inorganic fibrous molded article of the present invention having the above-mentioned structure has an apparent density in the range of 150 to 500 kg / m 3 , preferably 200 to 400 kg / m 3 , and has a linear shrinkage rate (1400 ° C.-). 3 hours) is 3% or less, preferably 2% or less.

実施例1〜2及び比較例1〜3
AES繊維として、SiO含量70〜80質量%、CaO+MgO含量18〜25質量%(CaO/MgO質量比6〜8:EDSによる簡易分析結果)の商品名Superwool HTバルク(新日本サーマルセラミックス株式会社)を用い、アルミナ繊維として、Al含量100質量%の商品名デンカアルセンバルクB100(デンカ株式会社)を用い、成形助剤として予め水に5質量%濃度で解かして叩解処理した針葉樹セルロースパルプ(濾水度:カナディアン標準フリーネス約400ml)と、水に2質量%濃度で解かした工業用澱粉を用い、以下の表1に記載する割合で固形分質量の7.5倍量の水を添加、攪拌した後、最終的に水量が固形分質量の10倍となるように水を追加して濃度調整し、固形分含量約17質量%の原料スラリーとした。得られた原料スラリーを成形後の成形体の見掛け密度が約300kg/mとなるように量り取り、成形用の型枠を用いてプレス脱水成形し、得られた成形体を105℃で24時間乾燥することにより10mm×40mm×160mmの寸法を有する本発明品及び比較品の無機繊維質成形体の供試体を得た。得られた無機繊維質成形体の見掛け密度を表1に併記する。
なお、見掛け密度は、供試体の乾燥質量を、供試体の寸法をノギスで測定して求めた体積で除して求めた値である。
Examples 1-2 and Comparative Examples 1-3
As AES fiber, the trade name of SiO 2 content 70 to 80% by mass and CaO + MgO content 18 to 25% by mass (CaO / MgO mass ratio 6 to 8: simple analysis result by EDS) Superwood HT Bulk (Shin Nihon Thermal Ceramics Co., Ltd.) As the alumina fiber, the trade name Denca Alsen Bulk B100 (Denca Co., Ltd.) having an Al 2 O 3 content of 100% by mass was used, and as a molding aid, the coniferous cellulose pulp was previously dissolved in water at a concentration of 5% by mass and beaten. (Drainage degree: Canadian standard freeness about 400 ml) and industrial starch dissolved in 2% by mass concentration were used, and 7.5 times the solid content mass was added at the ratio shown in Table 1 below. After stirring, water was finally added so that the amount of water was 10 times the mass of the solid content, and the concentration was adjusted to obtain a raw material slurry having a solid content of about 17% by mass. The obtained raw material slurry was weighed so that the apparent density of the molded product after molding was about 300 kg / m 3, and press dehydration molding was performed using a molding mold, and the obtained molded product was pressed and dehydrated at 105 ° C. 24. By drying for an hour, specimens of the inorganic fibrous molded article of the present invention and the comparative product having dimensions of 10 mm × 40 mm × 160 mm were obtained. The apparent densities of the obtained inorganic fibrous molded products are also shown in Table 1.
The apparent density is a value obtained by dividing the dry mass of the specimen by the volume obtained by measuring the dimensions of the specimen with a caliper.

Figure 0006974034
Figure 0006974034

本発明品及び比較品の無機繊維質成形体の供試体について、1400℃−3時間熱処理後の収縮率を測定した結果と、エネルギー分散型X線分析(EDS)による成分分析結果を表2に示す。EDSの分析条件は以下の通りである:JDE−2300 エネルギー分散型X線分析装置(日本電子株式会社)、加速電圧:20kV、倍率100倍。
なお、1400℃−3時間熱処理後の収縮率は、10mm×40mm×160mmの供試体に予め記した標線間の長さをノギスで測定しておき、1400℃に制御された電気炉内で3時間加熱処理した後、デシケータ内に移し、常温(25℃)まで冷却し、再度同じ標線間の長さを測定して下記の式により求めたものである:
収縮率ΔL(%)=(L−L)/L×100
:熱処理前の標線間の長さ
:熱処理後の標線間の長さ
また、EDSは、供試体の一部を乳鉢で摺って微粉化したものを試料として分析を行ったものである。
Table 2 shows the results of measuring the shrinkage rate after heat treatment at 1400 ° C. for 3 hours and the results of component analysis by energy dispersive X-ray analysis (EDS) for the specimens of the inorganic fibrous molded product of the present invention and the comparative product. show. The analysis conditions for EDS are as follows: JDE-2300 Energy Dispersive X-ray Analyzer (JEOL Ltd.), Acceleration voltage: 20 kV, Magnification 100 times.
For the shrinkage rate after heat treatment at 1400 ° C for 3 hours, the length between the marked lines marked in advance on the specimen of 10 mm × 40 mm × 160 mm was measured with a caliper, and in an electric furnace controlled at 1400 ° C. After heat treatment for 3 hours, it was transferred to a desiccator, cooled to room temperature (25 ° C), and the length between the same marked lines was measured again and calculated by the following formula:
Shrinkage rate ΔL (%) = (L 0 −L 1 ) / L 0 × 100
L 0 : Length between marked lines before heat treatment L 1 : Length between marked lines after heat treatment In addition, EDS is analyzed using a sample obtained by rubbing a part of the specimen with a mortar and pulverizing it. It is a thing.

Figure 0006974034
Figure 0006974034

実施例3〜14及び比較例4〜8
AES繊維として、SiO含量70〜80質量%、CaO+MgO含量18〜25質量%(CaO/MgO質量比6〜8:EDSによる簡易分析結果)の商品名Superwool HTバルク(新日本サーマルセラミックス株式会社)を用い、アルミナ繊維として、Al含量100質量%の商品名デンカアルセンバルクB100(デンカ株式会社)を用い、二次カオリンとして、SiO2含量約50質量%、Al2O3含量約33質量%を主成分とする商品名ハイモッドSR(啓和炉材株式会社)を用い、ウォラストナイト(関西マテック株式会社:ノーマルグレード)を用い、成形助剤として予め水に5質量%濃度で解かして叩解処理した針葉樹セルロースパルプ(濾水度:カナディアン標準フリーネス約400ml)と、水に2質量%濃度で解かした工業用澱粉を用い、以下の表3に記載する割合で固形分質量の7.5倍量の水を添加、攪拌した後、最終的に水量が固形分質量の10倍となるように水を追加して濃度調整し、固形分含量約17質量%の原料スラリーとした。手順としては、まずAES繊維、アルミナ繊維、セルロースパルプを水中で攪拌して分散させ、次に攪拌を続けながらウォラストナイト、二次カオリン、工業用澱粉の順に添加し、濃度を調整して原料スラリーとした。得られた原料スラリーを成形後の成形体の見掛け密度が約300kg/mとなるように量り取り、成形用の型枠を用いてプレス脱水成形し、得られた成形体を105℃で24時間乾燥することにより10mm×40mm×160mmの寸法を有する本発明品及び比較品の無機繊維質成形体の供試体を得た。得られた無機繊維質成形体の見掛け密度を表3に併記する。
Examples 3-14 and Comparative Examples 4-8
As AES fiber, the trade name of SiO 2 content 70 to 80% by mass and CaO + MgO content 18 to 25% by mass (CaO / MgO mass ratio 6 to 8: simple analysis result by EDS) Superwood HT Bulk (Shin Nihon Thermal Ceramics Co., Ltd.) the used, as alumina fiber, using Al 2 O 3 content of 100 wt% of the trade name DENKA al Sen bulk B100 (Denka Corporation), as a secondary kaolin, SiO2 content of about 50 wt%, Al2 O3 content of about 33 wt% primary Using the trade name Himod SR (Keiwa Furnace Co., Ltd.) as an ingredient, and using Wollastonite (Kansai Matek Co., Ltd .: normal grade), it was previously dissolved in water at a concentration of 5% by mass as a molding aid and beaten. Using coniferous cellulose pulp (water drainage: Canadian standard freeness about 400 ml) and industrial starch dissolved in water at a concentration of 2% by mass, the ratio shown in Table 3 below is 7.5 times the solid content mass. After adding and stirring water, water was finally added and the concentration was adjusted so that the amount of water was 10 times the mass of the solid content to prepare a raw material slurry having a solid content of about 17% by mass. As a procedure, first, AES fiber, alumina fiber, and cellulose pulp are stirred and dispersed in water, and then wollastonite, secondary kaolin, and industrial starch are added in this order while continuing stirring, and the concentration is adjusted as a raw material. It was made into a slurry. The obtained raw material slurry was weighed so that the apparent density of the molded product after molding was about 300 kg / m 3, and press dehydration molding was performed using a molding mold, and the obtained molded product was pressed and dehydrated at 105 ° C. 24. By drying for an hour, specimens of the inorganic fibrous molded article of the present invention and the comparative product having dimensions of 10 mm × 40 mm × 160 mm were obtained. The apparent densities of the obtained inorganic fibrous molded products are also shown in Table 3.

Figure 0006974034
Figure 0006974034

本発明品及び比較品の無機繊維質成形体の供試体について、1400℃−3時間熱処理後の収縮率を測定した結果と、エネルギー分散型X線分析(EDS)による成分分析結果を表4に示す。 Table 4 shows the results of measuring the shrinkage rate after heat treatment at 1400 ° C. for 3 hours and the results of component analysis by energy dispersive X-ray analysis (EDS) for the specimens of the inorganic fibrous molded product of the present invention and the comparative product. show.

Figure 0006974034
Figure 0006974034

以上のとおり、本発明の無機繊維質成形体は、1400℃の加熱条件における収縮率が小さく良好な耐熱性を有しており、また、アルミナ繊維の配合量を抑えることができることから、コストパフォーマンスに優れ、かつRCFを含まないことから、1400℃程度での使用が見込まれる炉壁の断熱材等の用途においるRCFフリー材料として好適に使用することができる。 As described above, the inorganic fibrous molded product of the present invention has a small shrinkage rate under heating conditions of 1400 ° C. and has good heat resistance, and the blending amount of alumina fibers can be suppressed, so that the cost performance is good. Since it is excellent in quality and does not contain RCF, it can be suitably used as an RCF-free material in applications such as a heat insulating material for a furnace wall, which is expected to be used at about 1400 ° C.

Claims (1)

アルカリアースシリケート繊維40〜60質量%及びアルミナ繊維40〜60質量%よりなる無機繊維100質量%に対し、無機充填材として二次カオリンまたはワラストナイトまたはそれら両者を外割で9.1〜60質量%、ただし、二次カオリンを0〜33.3質量%、ワラストナイトを0〜33.3質量%含有してなる無機繊維質成形体であって、無機繊維質成形体の組成がAl35〜65質量%、CaO5〜25質量%、SiO25〜45質量%、NaO、KO、MgO、TiO及びFeからなる群から選択される1種または2種以上のその他の成分0〜5質量%の範囲内にあることを特徴とする無機繊維質成形体。 For 100% by mass of inorganic fiber consisting of 40 to 60% by mass of alkaline earth silicate fiber and 40 to 60% by mass of alumina fiber, secondary kaolin or wallastnite as an inorganic filler or both of them are divided by an outer ratio of 9.1 to 60. It is an inorganic fibrous molded product containing 0 to 33.3% by mass of secondary kaolin and 0 to 33.3% by mass of wallastnite, and the composition of the inorganic fibrous molded product is Al. 2 O 3 35 to 65 wt%, CaO5~25 wt%, SiO 2 25 to 45 wt%, Na 2 O, K 2 O, MgO, 1 kind selected from the group consisting of TiO 2 and Fe 2 O 3 or An inorganic fibrous molded product characterized by being in the range of 0 to 5% by mass of two or more other components.
JP2017105361A 2017-05-29 2017-05-29 Inorganic fiber molded body Active JP6974034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105361A JP6974034B2 (en) 2017-05-29 2017-05-29 Inorganic fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105361A JP6974034B2 (en) 2017-05-29 2017-05-29 Inorganic fiber molded body

Publications (2)

Publication Number Publication Date
JP2018199879A JP2018199879A (en) 2018-12-20
JP6974034B2 true JP6974034B2 (en) 2021-12-01

Family

ID=64667962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105361A Active JP6974034B2 (en) 2017-05-29 2017-05-29 Inorganic fiber molded body

Country Status (1)

Country Link
JP (1) JP6974034B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083005A (en) * 2020-11-24 2022-06-03 ニチアス株式会社 Inorganic molded body
JP2022085606A (en) * 2020-11-27 2022-06-08 ニチアス株式会社 Shaped body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071848A (en) * 2011-09-26 2013-04-22 Ibiden Co Ltd Heat insulator
JP2013170338A (en) * 2012-02-22 2013-09-02 Ibiden Co Ltd Mat material, method for manufacturing mat material, and exhaust gas purification apparatus
JP5543565B2 (en) * 2012-10-17 2014-07-09 日本碍子株式会社 Honeycomb structure

Also Published As

Publication number Publication date
JP2018199879A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2012132327A1 (en) Inorganic fibrous paper, and method and equipment for manufacturing same
JP6974034B2 (en) Inorganic fiber molded body
WO2014186687A1 (en) Refractory castables with hydrophobic aggregates
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
JP7029299B2 (en) Amorphous refractory
JP5581997B2 (en) Cement-based inorganic board
AU2008333636B2 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof
EP0944559A1 (en) An insulating refractory type material and a method of making such a material
Alireza et al. Improving thermo-mechanical properties of tabular alumina castables via using nano structured colloidal silica
WO2001090030A1 (en) Insulating raw material for high temperature applications
Gao et al. Study on char reinforcing of different inorganic fillers for polyethylene composites
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
EP1137611A1 (en) Insulating raw material for high temperature applications
JP5166598B1 (en) Highly flexible inorganic fiber shaped body
JP2005281079A (en) Indeterminate heat insulating material composition
JP6865407B2 (en) Inorganic colloid-containing liquid, composition liquid for inorganic fiber molded body and inorganic fiber molded body
Amin et al. The effect of nanosized carbon black on the physical and thermomechanical properties of Al2O3–SiC–SiO2–C composite
Kumar et al. Study on preformed and in situ spinel containing alumina castable for steel ladle: Effect of fume silica content
AU2018209207A1 (en) Fire protection boards and structures protected by such boards
JP5193137B2 (en) Furnace
JP7127084B2 (en) Heat-resistant inorganic fiber soluble in physiological saline
KR20000043697A (en) Refractory composition for magnesia-based dam block
KR20010060400A (en) Castable batch composition for blow pipe of blast furnace
Dutsun et al. Suitability of clay from Bida Basin, Niger State for production of porcelain insulators
KR100562991B1 (en) Batch Composition of Blow Pipe Refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6974034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150