JP6973519B2 - 投影光学系及びプロジェクター - Google Patents

投影光学系及びプロジェクター Download PDF

Info

Publication number
JP6973519B2
JP6973519B2 JP2020016357A JP2020016357A JP6973519B2 JP 6973519 B2 JP6973519 B2 JP 6973519B2 JP 2020016357 A JP2020016357 A JP 2020016357A JP 2020016357 A JP2020016357 A JP 2020016357A JP 6973519 B2 JP6973519 B2 JP 6973519B2
Authority
JP
Japan
Prior art keywords
optical system
lens
lens group
projection optical
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020016357A
Other languages
English (en)
Other versions
JP2020077008A (ja
Inventor
淳雄 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015234638A external-priority patent/JP6657863B2/ja
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2020016357A priority Critical patent/JP6973519B2/ja
Publication of JP2020077008A publication Critical patent/JP2020077008A/ja
Application granted granted Critical
Publication of JP6973519B2 publication Critical patent/JP6973519B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は投影光学系及びプロジェクターに関するものであり、例えば、デジタル・マイクロミラー・デバイス(digital micromirror device)やLCD(liquid crystal display)等の画像表示素子の表示画像を広い画角でスクリーンに拡大投影するのに適した投影光学系と、それを備えたプロジェクターに関するものである。
近年、狭い場所でも大画面投影を可能にする広画角の投影光学系が求められるようになってきている。広い画角と優れた収差性能とを両立させるためには、リレーレンズを用いることが有効であり、その広画角投影のためにリレーレンズを用いた投影光学系が特許文献1,2で提案されている。
特開2015−060062号公報 特開2005−128286号公報
リレーレンズを用いた場合でも、軸外収差、特に歪曲収差を補正することは困難である。そのため、レンズ径の大きい拡大側部分に非球面レンズを用いる必要があるが、それがコスト高の原因となる。例えば、特許文献1記載のズームレンズは、軸外収差が良好に補正されてはいるが、径の大きい拡大側部分において拡大側から2つ目のレンズに非球面を使用しているため、コスト高となっている。特許文献2記載のズームレンズは、拡大側部分に非球面を使用していないが、軸外収差、特に歪曲収差が大きく、投影光学系としての使用に耐えられるものではない。
本発明はこのような状況に鑑みてなされたものであって、その目的は、広画角でありながら軸外収差が良好に補正された高性能で小型・低コストな投影光学系と、それを備えたプロジェクターを提供することにある。
上記目的を達成するために、第1の発明の投影光学系は、画像表示面に表示される画像を半画角40°以上で拡大投影することが可能な投影光学系であって、
拡大側から順に第1光学系と第2光学系を含み、前記第2光学系が前記画像の拡大された中間像を形成し、前記第1光学系が前記中間像を拡大投影し、
前記第1光学系の最拡大側から3枚のレンズに非球面を含まず、
前記第1,第2光学系のうちの少なくとも一方の一部からなるレンズ群を光軸に沿って移動させて軸上での各群間隔を変化させることにより変倍を行い、
前記変倍のために移動するレンズ群が前記第2光学系にのみあり、
前記変倍において前記画像表示面に対する前記中間像及び前記第1光学系の相対的な位置が固定であり、
前記第2光学系が、前記変倍のために移動するレンズ群として、拡大側から順に第2レンズ群,第3レンズ群及び第4レンズ群を少なくとも有し、
広角端から望遠端への変倍において、前記第2レンズ群が拡大側凸の軌跡で移動し、
前記第3レンズ群と前記第4レンズ群がそれぞれ拡大側へ単調に移動することを特徴とする。
第2の発明の投影光学系は、上記第1の発明において、以下の条件式(1)及び(2)を満足することを特徴とする。
1.3<Ff/|Fw|<2 …(1)
0.4<Lf/Lw<0.6 …(2)
ただし、
Ff:第1光学系の焦点距離、
Fw:全系の焦点距離(投影光学系がズームレンズの場合、最大画角での全系の焦点距離)、
Lf:第1光学系の最拡大側面頂点から中間像までの光軸上の距離、
Lw:レンズ全長(投影光学系がズームレンズの場合、最大画角でのレンズ全長)、
である。
また、後述する実施の形態等には以下の特徴的な構成(#1),(#2)等も含まれている。
(#1):画像表示面に表示される画像を半画角40°以上で拡大投影することが可能な投影光学系であって、
拡大側から順に第1光学系と第2光学系を含み、前記第2光学系が前記画像の中間像を形成し、前記第1光学系が前記中間像を拡大投影し、
以下の条件式(A1)及び(A2)を満足することを特徴とする投影光学系;
1<Ff/|Fw|<2 …(A1)
0.4<Lf/Lw<0.6 …(A2)
ただし、
Ff:第1光学系の焦点距離、
Fw:全系の焦点距離(投影光学系がズームレンズの場合、最大画角での全系の焦点距離)、
Lf:第1光学系の最拡大側面頂点から中間像までの光軸上の距離、
Lw:レンズ全長(投影光学系がズームレンズの場合、最大画角でのレンズ全長)、
である。
(#2):前記第1光学系の最拡大側から3枚のレンズに非球面を含まないことを特徴とする(#1)記載の投影光学系
第3の発明の投影光学系は、上記第1又は第2の発明において、前記第1光学系に非球面を含まないことを特徴とする。
第4の発明の投影光学系は、上記第1〜第3のいずれか1つの発明において、非球面を含まないことを特徴とする。
第5の発明の投影光学系は、上記第1〜第4のいずれか1つの発明において、以下の条件式(3)を満足することを特徴とする。
0.8<(Y’/Y)×β2<1 …(3)
ただし、
Y’:最大画角での最軸外光線の中間像位置における光軸からの主光線高さ、
Y:画像表示面での最大像高、
β2:最大画角での第2光学系の近軸倍率(ここで、近軸倍率を[画像表示面での画像サイズ]/[中間像サイズ]とする。)、
である。
第6の発明の投影光学系は、上記第1〜第5のいずれか1つの発明において、前記第1光学系の最拡大側レンズが負レンズであることを特徴とする。
第7の発明の投影光学系は、上記第1〜第6のいずれか1つの発明において、前記第1光学系の最拡大側からレンズ3枚以内に少なくとも1つの正レンズを有することを特徴とする。
第8の発明の投影光学系は、上記第1〜第7のいずれか1つの発明において、前記第1光学系が、拡大側から順に、負レンズ,負レンズ,正レンズ及び負レンズを有することを特徴とする。
第9の発明の投影光学系は、上記第1〜第8のいずれか1つの発明において、前記第2光学系が前記第4レンズ群の縮小側に第5レンズ群を有し、前記第1光学系を第1レンズ群とすることにより、正正正正正の5群ズーム構成を有する投影光学系であって、前記第1レンズ群と前記第5レンズ群のズーム位置が固定になっていることを特徴とする。
10の発明のプロジェクターは、前記画像表示面を有する画像表示素子と、前記画像表示面に表示される画像をスクリーン面に拡大投影する上記第1〜第のいずれか1つの発明に係る投影光学系と、を備えたことを特徴とする。
本発明によれば、第2光学系の変倍構成で中間像適正に設定された構成になっているため、広画角であっても非球面を使用することなく歪曲収差を初めとする軸外収差を良好に補正することができる。したがって、広画角でありながら軸外収差が良好に補正された高性能で小型・低コストな投影光学系と、それを備えたプロジェクターを実現することが可能である。
第1の実施の形態(実施例1)の光学構成図。 第2の実施の形態(実施例2)の光学構成図。 第3の実施の形態(実施例3)の光学構成図。 第4の実施の形態(実施例4)の光学構成図。 第5の実施の形態(実施例5)の光学構成図。 実施例1の収差図。 実施例2の収差図。 実施例3の収差図。 実施例4の収差図。 実施例5の収差図。 プロジェクターの一実施の形態を示す模式図。
以下、本発明の実施の形態に係る投影光学系,プロジェクター等を説明する。本発明の実施の形態に係る投影光学系は、画像表示面に表示される画像を半画角40°以上で拡大投影することが可能な投影光学系であって、拡大側から順に第1光学系と第2光学系を含み、前記第2光学系が前記画像の中間像を形成し、前記第1光学系が前記中間像を拡大投影し、以下の条件式(1)及び(2)を満足する構成になっている。
1.3<Ff/|Fw|<2 …(1)
0.4<Lf/Lw<0.6 …(2)
ただし、
Ff:第1光学系の焦点距離、
Fw:全系の焦点距離(投影光学系がズームレンズの場合、最大画角での全系の焦点距離)、
Lf:第1光学系の最拡大側面頂点から中間像までの光軸上の距離、
Lw:レンズ全長(投影光学系がズームレンズの場合、最大画角でのレンズ全長)、
である。
上記投影光学系を構成するレンズ系としては、単焦点レンズのほかに、ズームレンズ等の焦点距離可変のレンズ系が挙げられる。なお、「拡大側」は光学像を拡大してスクリーン面等に投影する方向であり、その逆方向は「縮小側」、つまり元の光学像(すなわち縮小側像面)を表示する画像表示素子(例えば、デジタル・マイクロミラー・デバイス)が配置される方向である。
条件式(1)は、リレーレンズである第2光学系を有する広角投影光学系において、中間像を拡大投影する第1光学系の屈折力を規定している。条件式(1)の上限を上回ると、第1光学系の焦点距離が長くなりすぎるため、広画角を達成するためには中間像を大きくする必要があり、中間像付近のレンズ径が大きくなる。また、第1光学系の焦点距離を長くした状態で広画角化するには、第2光学系の焦点距離を短くする必要があり、そのためには第2光学系の中間像側の負の屈折力を大きくする必要がある。その場合、第2光学系でマイナスの歪曲が発生するため、拡大投影する第1光学系で発生するマイナス側の歪曲が増幅されて全系での歪曲収差を抑えることが難しくなる。条件式(1)の下限を下回ると、第1光学系で発生する軸外収差、特に歪曲を補正することが困難になる。したがって、この条件式(1)を満たすことにより、レンズ径の小型化を達成しつつ歪曲等の軸外収差を効果的に抑えることが可能になる。
条件式(2)は、リレーレンズである第2光学系を有する広角投影光学系において、中間像を拡大投影する第1光学系の全長を規定している。条件式(2)の上限を上回ると、第1光学系の全長が長くなりすぎて、拡大投影のために径が大きくなりやすい第1光学系のレンズが増え、コスト高になる。また、第1光学系に対して第2光学系の全長が小さくなるため、第2光学系のレンズ枚数が不足し、中間像での収差、特に像面湾曲が大きくなり、全系で良好な収差性能を得ることが困難になる。条件式(2)の下限を下回ると、広画角を達成するためのレンズ枚数が不足し、レンズ個々の屈折力が大きくなるため軸外収差を補正することが困難となる。したがって、この条件式(2)を満たすことにより、全長の小型化を達成しつつ像面湾曲等の軸外収差を効果的に抑えることが可能になる。
一般に、径の大きい非球面ガラスレンズは、製造が技術的に難しいためコスト高を招く原因になり、径の大きい非球面プラスチックレンズは、温度による形状変化が大きいため性能劣化を招く原因になる。したがって非球面は、径が大きく温度が高くなるプロジェクター用レンズに不向きであり、投影光学系には非球面を含まないことが好ましいと言える。そして、非球面を使用しなくても投影光学系の高性能化・広画角化を可能とするのが、上述した条件式(1)及び(2)で規定される条件設定である。
上記特徴的構成を有する投影光学系では、第2光学系で中間像が形成されるとともに、第1光学系の焦点距離や中間像位置が適正に設定された構成になっているため、広画角であっても非球面を使用することなく歪曲収差を初めとする軸外収差を良好に補正することができる。したがって、広画角でありながら軸外収差が良好に補正された高性能で小型・低コストな投影光学系を実現することが可能である。そして、その投影光学系をプロジェクターに用いれば、プロジェクターの高性能化,高機能化,コンパクト化等に寄与することができる。こういった効果をバランス良く得るとともに、更に高い光学性能,小型化等を達成するための条件等を以下に説明する。
以下の条件式(1a)を満足することが更に望ましい。
1.3<Ff/|Fw|<1.7 …(1a)
この条件式(1a)は、前記条件式(1)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(1a)を満たすことにより、上記効果をより一層大きくすることができる。
以下の条件式(2a)を満足することが更に望ましい。
0.4<Lf/Lw<0.5 …(2a)
この条件式(2a)は、前記条件式(2)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(2a)を満たすことにより、上記効果をより一層大きくすることができる。
投影光学系は前記第1光学系の最拡大側から3枚のレンズに非球面を含まないことが望ましい。この構成によると、歪曲の補正を目的とする非球面を用いずに同等の歪曲性能を実現しつつ、径の大きくなりやすい第1光学系拡大側レンズの製造コストを下げることができ、さらなるコストダウンが可能となる。
投影光学系は前記第1光学系に非球面を含まないことが望ましい。この構成によると、像面湾曲や球面収差の補正を目的とする非球面を用いずに同等の収差性能を実現しつつ、径が大きくなりがちな第1光学系全体の製造コストを下げることができ、さらなるコストダウンが可能となる。
投影光学系は非球面を含まないことが望ましい。この構成によると、中間像での収差補正を目的とする非球面を用いずに同等の収差性能を実現しつつ、投影光学系全体の製造コストを下げることができ、さらなるコストダウンが可能となる。
以下の条件式(3)を満足することが望ましい。
0.8<(Y’/Y)×β2<1 …(3)
ただし、
Y’:最大画角での最軸外光線の中間像位置における光軸からの主光線高さ、
Y:画像表示面での最大像高、
β2:最大画角での第2光学系の近軸倍率(ここで、近軸倍率を[画像表示面での画像サイズ]/[中間像サイズ]とする。)、
である。
条件式(3)は、中間像の最大実像高(Y’)と最大近軸像高(Y/β2)との比、すなわち第2光学系の持つ歪曲量を規定している。条件式(3)の下限を下回ると、第2光学系で発生するプラス側の歪曲が大きすぎるために、実中間像が小さくなりすぎてしまう。それを拡大投影するために第1光学系の屈折力が大きくなるので、第1光学系で発生する軸外収差を抑えることが困難になる。条件式(3)の上限を上回ると、第2光学系でマイナス側の歪曲が発生するため、拡大投影する第1光学系で発生するマイナス側の歪曲が増幅され、歪曲を抑えることが困難となる。したがって、この条件式(3)を満たすことにより、歪曲収差等の軸外収差をバランス良く抑えることが可能になる。
以下の条件式(3a)を満足することが更に望ましい。
0.9<(Y’/Y)×β2<1 …(3a)
この条件式(3a)は、前記条件式(3)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(3a)を満たすことにより、上記効果をより一層大きくすることができる。
前記第1光学系の最拡大側レンズが負レンズであることが望ましい。この構成によると、最も径の大きくなる最拡大側レンズの径を小さくすることができ、さらなるコストダウンが可能となる。
前記第1光学系の最拡大側からレンズ3枚以内に少なくとも1つの正レンズを有することが望ましい。この構成によると、第1光学系で発生するマイナス側の歪曲を、歪曲補正に効果的な拡大側に近いレンズを正レンズとすることでキャンセルさせることができるため、さらに良好な軸外性能を得ることが可能となる。
前記第1光学系が、拡大側から順に、負レンズ,負レンズ,正レンズ及び負レンズを有することが望ましい。この負負正負の屈折力配置によると、最拡大側レンズ径を小さくしつつ、さらに効果的に歪曲収差を抑えることが可能となる。
前記第1,第2光学系のうちの少なくとも一方の一部からなるレンズ群を光軸に沿って移動させることにより変倍を行うことが望ましい。この構成によると、広さや設置場所の制約がある場合でも良好な性能で大画面投影することが可能となる。
前記変倍のために移動するレンズ群が前記第2光学系にのみあることが望ましい。この構成によると、軸外収差の発生しやすい第1光学系を変倍時に固定でき、変倍時の軸外収差の発生をさらに小さくすることができる。
次に、第1〜第5の実施の形態を挙げて、投影光学系LNの具体的な光学構成を説明する。図1〜図4は、第1〜第4の実施の形態を構成する投影光学系LNにそれぞれ対応する光学構成図であり、ズームレンズである投影光学系LNのレンズ断面形状,レンズ配置等を、広角端(W)と望遠端(T)のそれぞれについて光学断面で示している。図5は、第5の実施の形態を構成する投影光学系LNに対応する光学構成図であり、単焦点レンズである投影光学系LNのレンズ断面形状,レンズ配置等を光学断面で示している。なお、投影光学系LNの縮小側には、プリズムPR(例えば、TIR(Total Internal Reflection)プリズム,色分解合成プリズム等)、及び画像表示素子のカバーガラスCGが位置している。
第1〜第5の実施の形態の投影光学系LNは、拡大側から順に、第1光学系LN1(第1面から中間像面IM1の前まで)と、第2光学系LN2(中間像面IM1の後から最終レンズ面まで)とからなり、画像表示素子の画像表示面IM2に表示される画像(縮小側像面)の中間像IM1を第2光学系LN2が形成し、その中間像IM1を第1光学系LN1が拡大投影する構成になっている。そのなかでも第1〜第4の実施の形態の投影光学系LNは、第1光学系LN1を第1レンズ群Gr1とする正正正正正の5群ズーム構成になっており、図1〜図4中の矢印m1,m2,m3,m4,m5は、広角端(W)から望遠端(T)へのズーミングにおける第1レンズ群Gr1,第2レンズ群Gr2,第3レンズ群Gr3,第4レンズ群Gr4,第5レンズ群Gr5の移動又は固定をそれぞれ模式的に示している。このように第1〜第4の実施の形態では、投影光学系LNが移動群を画像表示面IM2に対して相対的に移動させて軸上での各群間隔を変化させることにより広角端(W)から望遠端(T)までの変倍(すなわちズーミング)を行う構成になっている。なお、第1〜第4の実施の形態において、第5レンズ群Gr5の縮小側に位置するプリズムPR及びカバーガラスCGのズーム位置も固定である。
第1〜第3の実施の形態では、第1レンズ群Gr1及び第5レンズ群Gr5が固定群、第2レンズ群Gr2,第3レンズ群Gr3及び第4レンズ群Gr4が移動群となっており、第2レンズ群Gr2,第3レンズ群Gr3及び第4レンズ群Gr4を光軸AXに沿って移動させることによりズーミングを行う構成になっている。第4の実施の形態では、第1レンズ群Gr1,第2レンズ群Gr2及び第5レンズ群Gr5が固定群、第3レンズ群Gr3及び第4レンズ群Gr4が移動群となっており、第3レンズ群Gr3及び第4レンズ群Gr4を光軸AXに沿って移動させることによりズーミングを行う構成(実質的には4群ズーム構成)になっている。いずれも、第1レンズ群Gr1及び第5レンズ群Gr5のズーム位置が固定になっているので、変倍による光学系全長の変化を抑制することができ、また、移動部品が減少するため変倍機構を簡素化することができる。以下に、各実施の形態の投影光学系LNを更に詳しく説明する。
第1の実施の形態(図1)は、全体で30枚のレンズ成分で構成されており、拡大側17枚が中間像IM1の拡大投影を行う第1光学系LN1であり、縮小側13枚が中間像IM1を形成する第2光学系LN2である。第1光学系LN1は全体として正の第1レンズ群Gr1からなり、第2光学系LN2は拡大側から順に正正正正の第2レンズ群Gr2〜第5レンズ群Gr5からなり、第2光学系LN2のみで変倍が行われる。変倍時には第1レンズ群Gr1と第5レンズ群Grが固定であり、広角端(W)から望遠端(T)への変倍において、第2レンズ群Grが拡大側凸の軌跡で移動し、第3レンズ群Gr3と第4レンズ群Grがそれぞれ拡大側へ単調に移動する。なお、第4レンズ群Gr4は最も拡大側に開口絞りSTを有している。
第2光学系LN2が形成する中間像IM1は、画像表示面IM2を拡大した像となる。このことにより、第1光学系LN1の屈折力を小さくすることを可能とし、非球面抜きで高い光学性能を実現している。第1光学系LN1では、拡大側から順に、拡大側凸の負のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、拡大側凸の正のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、が配置されており、これにより非球面抜きでも効果的に歪曲収差を抑えることを可能としている。したがって、低コストで高性能な広角投影ズームレンズを実現することができる。
第2の実施の形態(図2)は、全体で29枚のレンズ成分で構成されており、拡大側16枚が中間像IM1の拡大投影を行う第1光学系LN1であり、縮小側13枚が中間像IM1を形成する第2光学系LN2である。第1光学系LN1は全体として正の第1レンズ群Gr1からなり、第2光学系LN2は拡大側から順に正正正正の第2レンズ群Gr2〜第5レンズ群Gr5からなり、第2光学系LN2のみで変倍が行われる。変倍時には第1レンズ群Gr1と第5レンズ群Grが固定であり、広角端(W)から望遠端(T)への変倍において、第2レンズ群Grが拡大側凸の軌跡で移動し、第3レンズ群Gr3と第4レンズ群Grがそれぞれ拡大側へ単調に移動する。なお、第4レンズ群Gr4は最も拡大側に開口絞りSTを有している。
第2光学系LN2が形成する中間像IM1は、画像表示面IM2を拡大した像となる。このことにより、第1光学系LN1の屈折力を小さくすることを可能とし、非球面抜きで高い光学性能を実現している。第1光学系LN1は、拡大側から順に、拡大側凸の負のメニスカスレンズと、拡大側凸の正のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、が配置されており、これにより非球面抜きでも効果的に歪曲収差を抑えることを可能としている。したがって、低コストで高性能な広角投影ズームレンズを実現することができる。
第3の実施の形態(図3)は、全体で30枚のレンズ成分で構成されており、拡大側17枚が中間像IM1の拡大投影を行う第1光学系LN1であり、縮小側13枚が中間像IM1を形成する第2光学系LN2である。第1光学系LN1は全体として正の第1レンズ群Gr1からなり、第2光学系LN2は拡大側から順に正正正正の第2レンズ群Gr2〜第5レンズ群Gr5からなり、第2光学系LN2のみで変倍が行われる。変倍時には第1レンズ群Gr1と第5レンズ群Grが固定であり、広角端(W)から望遠端(T)への変倍において、第2レンズ群Grが拡大側凸の軌跡で移動し、第3レンズ群Gr3と第4レンズ群Grがそれぞれ拡大側へ単調に移動する。なお、第4レンズ群Gr4は最も拡大側に開口絞りSTを有している。
第2光学系LN2が形成する中間像IM1は、画像表示面IM2を拡大した像となる。このことにより、第1光学系LN1の屈折力を小さくすることを可能とし、非球面抜きで高い光学性能を実現している。第1光学系LN1では、拡大側から順に、拡大側凸の負のメニスカスレンズと、拡大側凸の正のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、が配置されており、これにより非球面抜きでも効果的に歪曲収差を抑えることを可能としている。したがって、低コストで高性能な広角投影ズームレンズを実現することができる。
第4の実施の形態(図4)は、全体で30枚のレンズ成分で構成されており、拡大側17枚が中間像IM1の拡大投影を行う第1光学系LN1であり、縮小側13枚が中間像IM1を形成する第2光学系LN2である。第1光学系LN1は全体として正の第1レンズ群Gr1からなり、第2光学系LN2は拡大側から順に正正正正の第2レンズ群Gr2〜第5レンズ群Gr5からなり、第2光学系LN2のみで変倍が行われる。変倍時には第1レンズ群Gr1と第2レンズ群Grと第5レンズ群Grが固定であり、広角端(W)から望遠端(T)への変倍において、第3レンズ群Gr3と第4レンズ群Grがそれぞれ拡大側へ単調に移動する。したがって、第4の実施の形態は本発明の参考のための一形態にすぎず、本発明には属さないものである。なお、第4レンズ群Gr4は最も拡大側に開口絞りSTを有している。
第2光学系LN2が形成する中間像IM1は、画像表示面IM2を拡大した像となる。このことにより、第1光学系LN1の屈折力を小さくすることを可能とし、非球面抜きで高い光学性能を実現している。第1光学系LN1では、拡大側から順に、拡大側凸の負のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、拡大側凸の正のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、が配置されており、これにより非球面抜きでも効果的に歪曲収差を抑えることを可能としている。したがって、低コストで高性能な広角投影ズームレンズを実現することができる。
第5の実施の形態(図5)は、全体で30枚のレンズ成分で構成されており、拡大側17枚が中間像IM1の拡大投影を行う第1光学系LN1であり、縮小側13枚が中間像IM1を形成する第2光学系LN2である。第1光学系LN1と第2光学系LN2とで、全体として正の単焦点レンズとなっている。したがって、第5の実施の形態は本発明の参考のための一形態にすぎず、本発明には属さないものである。なお、第2光学系LN2は最も大きい空気間隔の縮小側寄りに開口絞りSTを有している。
第2光学系LN2が形成する中間像IM1は、画像表示面IM2を拡大した像となる。このことにより、第1光学系LN1の屈折力を小さくすることを可能とし、非球面抜きで高い光学性能を実現している。第1光学系LN1では、拡大側から順に、拡大側凸の負のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、拡大側凸の正のメニスカスレンズと、拡大側凸の負のメニスカスレンズと、が配置されており、これにより非球面抜きでも効果的に歪曲収差を抑えることを可能としている。したがって、低コストで高性能な広角投影光学系を実現することができる。
次に、上記投影光学系LNを備えたプロジェクターの一実施の形態を説明する。図11に、プロジェクターPJの概略構成例を示す。このプロジェクターPJは、光源1,照明光学系2,反射ミラー3,プリズムPR,画像表示素子(画像形成素子)4,制御部5,アクチュエーター6,投影光学系LN等を備えている。制御部5は、プロジェクターPJの全体制御を司る部分である。画像表示素子4は、光を変調して画像を生成する画像変調素子(例えば、デジタル・マイクロミラー・デバイス)であり、画像を表示する画像表示面IM2を有しており、その画像表示面IM2上にはカバーガラスCGが設けられている。
光源1(例えば、キセノンランプ等の白色光源,レーザー光源)から出射した光は、照明光学系2,反射ミラー3及びプリズムPRで画像表示素子4に導かれて、画像表示素子4では画像光が形成される。プリズムPRは、例えばTIRプリズム(他に色分離合成プリズム等)からなり、照明光と投影光との分離等を行う。画像表示素子4で形成された画像光は、投影光学系LNでスクリーン面SCに向けて拡大投射される。つまり、画像表示素子4に表示された画像IM2は、第2光学系LN2で中間像IM1となった後、第1光学系LN1でスクリーン面SCに拡大投影される。
プロジェクターPJは、上記のように、画像を表示する画像表示素子4と、光源1と、その光源1からの光を画像表示素子4に導く照明光学系2と、画像表示素子4に表示された画像をスクリーン面SCに拡大投影する投影光学系LNと、を備えているが、投影光学系LNが適用可能なプロジェクターはこれに限らない。例えば、画像表示面IM2自身の発光により画像を表示する画像表示素子を用いれば、照明を不要にすることも可能であり、その場合、光源1や照明光学系2を用いずにプロジェクターを構成することが可能である。
投影光学系LNにおいてズーミングやフォーカシングのために移動するレンズ群には、それぞれ光軸AXに沿って拡大側又は縮小側に移動させるアクチュエーター6が接続されている。そしてアクチュエーター6には、移動群の移動制御を行うための制御部5が接続されている。なお、制御部5及びアクチュエーター6については、これを使わず手動でレンズ群を移動させてもよい。
以下、本発明を実施した投影光学系の構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1〜5(EX1〜5)は、前述した第1〜第5の実施の形態にそれぞれ対応する数値実施例であり、第1〜第5の実施の形態を表す光学構成図(図1〜図5)は、対応する実施例1〜5のレンズ断面形状,レンズ配置等をそれぞれ示している。したがって、第4,第5の実施の形態に対応する実施例4,5は本発明の単なる参考例であり、本発明に属さないものである。
各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号i,曲率半径r(mm),軸上面間隔d(mm),d線(波長587.56nm)に関する屈折率nd,及びd線に関するアッベ数vdを示す。なお、SCはスクリーン面、STは開口絞り、IM1は中間像面、IM2は画像表示面をそれぞれ示している。
実施例1〜4の各種データとして、ズーム比(zoom ratio,変倍比)を示し、さらに各焦点距離状態W(Wide),M(Middle),T(Tele)について、全系の焦点距離(Fl,mm),Fナンバー(Fno.),半画角(ω,°),像高(ymax,mm),レンズ全長(TL,mm),バックフォーカス(BF,mm),及び可変面間隔(di,i:面番号,mm)を示し、ズームレンズ群データとして、各レンズ群の焦点距離(mm)を示す。また、実施例5の各種データとして、全系の焦点距離(Fl,mm),Fナンバー(Fno.),半画角(ω,°),像高(ymax,mm),レンズ全長(TL,mm),バックフォーカス(BF,mm),及び第1,第2光学系LN1,LN2の焦点距離(Ff,Fr;mm)を示す。ただし、バックフォーカスBFは、レンズ最終面から近軸像面までの距離を空気換算長により表記しており、レンズ全長TLは、レンズ最前面からレンズ最終面までの距離にバックフォーカスBFを加えたものである。また、像高ymaxは画像表示面IM2の対角長の半分に相当する。
表1に、条件式対応値とその関連データを各実施例について示す。条件式関連データは、例えば、最大半画角(ωmax,°),第1光学系LN1の焦点距離(Ff,mm),第2光学系LN2の焦点距離(Fr,mm),全系の焦点距離(Fw,mm),第1光学系LN1の最拡大側面頂点から中間像IM1までの光軸AX上の距離(Lf,mm),レンズ全長(Lw,mm),最大画角ωmaxでの最軸外光線の中間像IM1位置における光軸AXからの主光線高さ(Y’,mm),画像表示面IM2での最大像高(Y:ymax,mm),最大画角ωmaxでの第2光学系LN2の近軸倍率(β2)である。
図6〜図9は、実施例1〜実施例4(EX1〜EX4)にそれぞれ対応する収差図(無限遠合焦状態での縦収差図)であり、(A)〜(C)は広角端W、(D)〜(F)は中間焦点距離状態M、(G)〜(I)は望遠端Tにおける諸収差をそれぞれ示している。また、図6〜図9において、(A),(D),(G)は球面収差図、(B),(E),(H)は非点収差図、(C),(F),(I)は歪曲収差図である。図10は、実施例5(EX5)に対応する収差図(無限遠合焦状態での縦収差図)であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図である。
球面収差図は、実線で示すd線(波長587.56nm)に対する球面収差量、一点鎖線で示すC線(波長656.28nm)に対する球面収差量、破線で示すg線(波長435.84nm)に対する球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量(単位:mm)で表しており、縦軸は瞳への入射高さをその最大高さで規格化した値(すなわち相対瞳高さ)を表している。非点収差図において、破線Tはd線に対するタンジェンシャル像面、実線Sはd線に対するサジタル像面を、近軸像面からの光軸AX方向のズレ量(単位:mm)で表しており、縦軸は像高(IMG HT,単位:mm)を表している。歪曲収差図において、横軸はd線に対する歪曲(単位:%)を表しており、縦軸は像高(IMG HT,単位:mm)を表している。
なお、各実施例を投影光学系LNとしてプロジェクター(例えば液晶プロジェクター)PJに用いる場合(図11)、本来はスクリーン面(被投影面)SCが像面であり画像表示面IM2(例えば液晶パネル面)が物体面であるが、各実施例では光学設計上それぞれ縮小系とし、スクリーン面SCを物体面(object)とみなして像面(image)に相当する画像表示面(縮小側像面)IM2で光学性能を評価している。そして、得られた光学性能から分かるように、各実施例の投影光学系LNはプロジェクター用の投影レンズとしてだけでなく、撮像装置(例えばビデオカメラ,デジタルカメラ)用の撮像レンズとしても好適に使用可能である。
実施例1
単位:mm
面データ
i r d nd vd
object(SC) infinity infinity
1 90.156 7.600 1.69680 55.46
2 68.942 8.958
3 77.372 6.300 1.80518 25.46
4 57.955 10.706
5 75.518 15.482 1.83400 37.34
6 189.215 0.300
7 46.826 3.600 1.95375 32.32
8 28.471 8.916
9 45.662 2.200 1.91082 35.25
10 22.315 13.086
11 -47.332 1.700 1.80610 33.27
12 96.443 18.541
13 -185.734 6.284 1.72916 54.67
14 -50.205 23.295
15 72.913 5.079 1.80518 25.46
16 -121.426 25.611
17 -36.074 2.000 1.90366 31.31
18 96.763 2.021
19 116.400 10.344 1.43700 95.10
20 -33.431 0.300
21 56.049 10.256 1.43700 95.10
22 -65.165 0.300
23 130.344 2.100 1.90366 31.31
24 40.534 1.933
25 38.243 12.730 1.43700 95.10
26 -91.524 0.300
27 55.866 8.143 1.49700 81.61
28 -194.707 5.800
29 -42.901 2.300 1.62004 36.30
30 49.126 20.624
31 153.059 9.514 1.80518 25.46
32 -110.889 28.879
33 45.900 10.135 1.80518 25.46
34 84.076 8.021
35(IM1) infinity variable
36 -56.931 6.217 1.80518 25.46
37 -38.496 3.351
38 -29.989 2.600 1.59282 68.62
39 -4276.234 16.378
40 -156.933 10.482 1.48749 70.44
41 -38.163 variable
42 19560.343 5.284 1.90366 31.31
43 -88.500 5.676
44 -46.639 2.400 1.80518 25.46
45 -104.689 1.552
46 -245.541 6.925 1.51680 64.20
47 -48.173 variable
48(ST) infinity 6.255
49 -35.312 1.800 1.72916 54.67
50 137.215 19.192
51 -114.804 7.477 1.43700 95.10
52 -43.162 0.300
53 68.354 11.660 1.43700 95.10
54 -66.136 0.300
55 174.756 8.314 1.49700 81.61
56 -77.968 4.243
57 -55.771 2.400 1.69680 55.46
58 65.246 2.619
59 80.585 11.044 1.49700 81.61
60 -73.270 variable
61 89.211 6.565 1.49700 81.61
62 31066.445 14.310
63 infinity 85.000 1.51680 64.20
64 infinity 5.000
65 infinity 3.000 1.48749 70.44
66 infinity 1.000
67 infinity 0.500
image(IM2) infinity
各種データ
zoom ratio 1.26
Wide(W) Middle(M) Tele(T)
Fl -13.842 -15.544 -17.460
Fno. 2.422 2.500 2.597
ω 50.484 47.091 43.850
ymax 16.700 16.700 16.700
TL 610.095 610.097 610.098
BF 78.905 78.907 78.908
d35 34.762 33.700 34.093
d41 29.825 17.159 2.000
d47 28.215 32.565 35.606
d60 2.000 11.378 23.102
ズームレンズ群データ
群 (面) 焦点距離
1 ( 1- 35) 22.265
2 ( 36- 41) 832.800
3 ( 42- 47) 105.175
4 ( 48- 60) 132.289
5 ( 61- 67) 180.003
実施例2
単位:mm
面データ
i r d nd vd
object(SC) infinity infinity
1 98.016 7.600 1.69680 55.46
2 66.278 20.460
3 76.743 15.564 1.83400 37.34
4 165.373 0.300
5 49.189 3.600 1.95375 32.32
6 29.322 9.275
7 47.719 2.268 1.91082 35.25
8 22.358 13.331
9 -47.366 2.200 1.80610 33.27
10 80.640 18.545
11 -221.994 6.493 1.72916 54.67
12 -49.285 25.321
13 71.059 5.148 1.80518 25.46
14 -130.354 24.545
15 -38.565 2.000 1.90366 31.31
16 81.078 1.995
17 95.441 10.410 1.43700 95.10
18 -35.162 0.300
19 54.081 10.200 1.43700 95.10
20 -66.043 0.300
21 141.071 2.100 1.90366 31.31
22 40.441 1.887
23 37.999 12.742 1.43700 95.10
24 -86.935 0.300
25 60.957 7.966 1.49700 81.61
26 -146.956 5.531
27 -41.372 2.300 1.62004 36.30
28 47.827 20.088
29 146.201 10.309 1.80518 25.46
30 -104.508 30.673
31 45.250 10.075 1.80518 25.46
32 79.709 8.299
33(IM1) infinity variable
34 -57.432 6.167 1.80518 25.46
35 -38.735 3.444
36 -29.772 2.441 1.59282 68.62
37 -8921.060 16.534
38 -156.608 10.454 1.48749 70.44
39 -37.932 variable
40 -859.442 5.266 1.90366 31.31
41 -81.849 5.289
42 -46.231 2.400 1.80518 25.46
43 -101.611 3.254
44 -364.986 7.097 1.51680 64.20
45 -49.543 variable
46(ST) infinity 6.721
47 -35.421 1.300 1.72916 54.67
48 141.441 19.326
49 -120.382 7.443 1.43700 95.10
50 -43.995 0.300
51 69.854 11.444 1.43700 95.10
52 -66.691 0.300
53 185.279 8.152 1.49700 81.61
54 -78.804 4.189
55 -56.876 2.400 1.69680 55.46
56 66.695 2.642
57 83.143 10.893 1.49700 81.61
58 -73.489 variable
59 89.563 6.606 1.49700 81.61
60 -6373.246 14.300
61 infinity 85.000 1.51680 64.20
62 infinity 5.000
63 infinity 3.000 1.48749 70.44
64 infinity 1.000
65 infinity 0.500
image(IM2) infinity
各種データ
zoom ratio 1.26
Wide(W) Middle(M) Tele(T)
Fl -13.842 -15.441 -17.460
Fno. 2.425 2.500 2.605
ω 50.547 47.342 43.906
ymax 16.700 16.700 16.700
TL 610.098 610.100 610.102
BF 78.898 78.900 78.902
d33 34.784 33.658 34.084
d39 29.580 17.929 2.000
d45 28.649 32.403 35.267
d58 2.000 11.025 23.663
ズームレンズ群データ
群 (面) 焦点距離
1 ( 1- 33) 22.133
2 ( 34- 39) 890.112
3 ( 40- 45) 103.122
4 ( 46- 58) 138.956
5 ( 59- 65) 177.771
実施例3
単位:mm
面データ
i r d nd vd
object(SC) infinity infinity
1 113.972 7.600 1.69680 55.46
2 76.145 12.915
3 96.113 17.344 1.74330 49.22
4 237.926 0.300
5 59.857 4.600 1.80518 25.46
6 42.528 8.660
7 39.328 3.100 1.95375 32.32
8 28.136 8.267
9 41.274 2.200 1.91082 35.25
10 21.795 13.469
11 -43.567 1.902 1.80610 33.27
12 86.822 17.143
13 -221.976 6.680 1.72916 54.67
14 -47.580 22.574
15 73.778 5.069 1.80518 25.46
16 -123.734 26.245
17 -36.482 1.976 1.90366 31.31
18 94.586 2.000
19 112.160 10.045 1.43700 95.10
20 -32.510 0.300
21 53.640 9.904 1.43700 95.10
22 -68.070 0.300
23 120.981 2.100 1.90366 31.31
24 39.714 2.130
25 38.063 12.104 1.43700 95.10
26 -100.000 0.300
27 56.070 7.645 1.49700 81.61
28 -221.973 5.436
29 -44.497 2.067 1.62004 36.30
30 47.674 18.882
31 137.809 9.249 1.80518 25.46
32 -114.764 29.928
33 44.973 9.898 1.80518 25.46
34 77.388 8.418
35(IM1) infinity variable
36 -62.065 6.379 1.80518 25.46
37 -39.732 3.310
38 -31.055 2.600 1.59282 68.62
39 -600.834 18.382
40 -122.509 9.720 1.48749 70.44
41 -38.985 variable
42 3001.226 6.318 1.90366 31.31
43 -94.610 9.768
44 -47.863 2.240 1.80518 25.46
45 -110.745 3.400
46 -333.913 5.982 1.51680 64.20
47 -49.306 variable
48(ST) infinity 8.835
49 -36.446 1.773 1.72916 54.67
50 131.300 19.199
51 -206.992 7.387 1.43700 95.10
52 -45.301 0.300
53 67.914 10.615 1.43700 95.10
54 -69.606 0.521
55 223.533 7.627 1.49700 81.61
56 -80.914 4.105
57 -58.217 2.400 1.69680 55.46
58 66.014 2.682
59 84.544 10.007 1.49700 81.61
60 -76.823 variable
61 88.157 6.451 1.49700 81.61
62 17963.435 14.316
63 infinity 85.000 1.51680 64.20
64 infinity 5.000
65 infinity 3.000 1.48749 70.44
66 infinity 1.000
67 infinity 0.500
image(IM2) infinity
各種データ
zoom ratio 1.26
Wide(W) Middle(M) Tele(T)
Fl -13.841 -15.441 -17.460
Fno. 2.428 2.500 2.620
ω 50.536 47.337 43.899
ymax 16.700 16.700 16.700
TL 610.095 610.098 610.098
BF 78.911 78.914 78.914
d35 35.815 34.835 35.182
d41 31.055 18.980 3.046
d47 21.560 25.799 28.941
d60 2.000 10.816 23.262
ズームレンズ群データ
群 (面) 焦点距離
1 ( 1- 35) 22.292
2 ( 36- 41) 680.261
3 ( 42- 47) 106.844
4 ( 48- 60) 140.878
5 ( 61- 67) 178.232
実施例4
単位:mm
面データ
i r d nd vd
object(SC) infinity infinity
1 87.908 7.600 1.69680 55.46
2 68.136 10.534
3 80.771 6.300 1.80518 25.46
4 54.933 11.090
5 73.593 15.529 1.83400 37.34
6 213.311 0.300
7 45.495 3.600 1.95375 32.32
8 27.465 8.675
9 44.419 2.200 1.91082 35.25
10 22.726 12.642
11 -44.970 1.975 1.80610 33.27
12 103.763 18.567
13 -170.348 6.265 1.72916 54.67
14 -48.847 23.478
15 73.308 5.824 1.80518 25.46
16 -121.902 25.914
17 -35.528 2.000 1.90366 31.31
18 101.325 1.933
19 113.465 10.350 1.43700 95.10
20 -32.642 0.300
21 56.171 10.507 1.43700 95.10
22 -68.241 0.300
23 134.785 2.100 1.90366 31.31
24 40.565 1.799
25 37.844 13.038 1.43700 95.10
26 -96.769 0.300
27 52.827 8.483 1.49700 81.61
28 -198.237 5.860
29 -42.894 2.128 1.62004 36.30
30 48.466 20.933
31 148.819 9.139 1.80518 25.46
32 -121.593 28.222
33 45.232 9.408 1.80518 25.46
34 86.031 8.012
35(IM1) infinity variable
36 -54.576 6.148 1.80518 25.46
37 -38.127 3.315
38 -29.907 2.100 1.59282 68.62
39 -3847.891 16.126
40 -148.818 10.220 1.48749 70.44
41 -37.467 variable
42 722.907 4.913 1.90366 31.31
43 -116.544 6.385
44 -51.529 1.900 1.80518 25.46
45 -107.942 1.037
46 -304.267 5.523 1.51680 64.20
47 -53.293 variable
48(ST) infinity 6.637
49 -38.573 1.327 1.72916 54.67
50 121.786 19.246
51 -109.693 7.364 1.43700 95.10
52 -43.670 0.300
53 67.404 11.494 1.43700 95.10
54 -70.869 0.567
55 145.377 8.862 1.49700 81.61
56 -77.959 4.462
57 -56.429 2.400 1.69680 55.46
58 64.495 2.658
59 80.134 11.186 1.49700 81.61
60 -72.316 variable
61 89.450 6.650 1.49700 81.61
62 2595.869 14.450
63 infinity 85.000 1.51680 64.20
64 infinity 5.000
65 infinity 3.000 1.48749 70.44
66 infinity 1.000
67 infinity 0.500
image(IM2) infinity
各種データ
zoom ratio 1.26
Wide(W) Middle(M) Tele(T)
Fl -13.842 -15.441 -17.460
Fno. 2.429 2.500 2.604
ω 50.416 47.310 43.922
ymax 16.700 16.700 16.700
TL 610.102 610.107 610.104
BF 79.053 79.057 79.055
d35 33.852 33.852 33.852
d41 31.384 17.501 2.000
d47 27.611 32.857 35.730
d60 2.075 10.712 23.339
ズームレンズ群データ
群 (面) 焦点距離
1 ( 1- 35) 22.401
2 ( 36- 41) 1096.173
3 ( 42- 47) 112.213
4 ( 48- 60) 123.064
5 ( 61- 67) 186.239
実施例5
単位:mm
面データ
i r d nd vd
object(SC) infinity infinity
1 63.021 4.600 1.69680 55.46
2 47.017 6.862
3 51.685 3.700 1.80518 25.46
4 38.689 10.500
5 61.270 10.834 1.83400 37.34
6 170.131 0.300
7 43.338 2.200 1.95375 32.32
8 20.155 7.336
9 37.612 1.600 1.91082 35.25
10 21.994 10.864
11 -22.916 1.400 1.80610 33.27
12 -1482.920 3.280
13 -78.679 7.539 1.72916 54.67
14 -26.919 11.399
15 84.901 5.695 1.80518 25.46
16 -64.979 27.030
17 -32.550 2.000 1.90366 31.31
18 106.035 2.406
19 217.315 10.242 1.43700 95.10
20 -28.539 0.300
21 75.797 11.706 1.43700 95.10
22 -48.765 0.300
23 174.439 2.100 1.90366 31.31
24 49.375 1.261
25 41.836 14.472 1.43700 95.10
26 -74.750 0.300
27 83.098 7.532 1.49700 81.61
28 -173.871 6.520
29 -42.107 1.833 1.62004 36.30
30 55.157 4.499
31 121.601 7.763 1.80518 25.46
32 -115.807 22.140
33 58.256 9.051 1.80518 25.46
34 195.627 21.360
35(IM1) infinity 41.801
36 -62.957 7.185 1.80518 25.46
37 -35.672 4.264
38 -27.751 2.600 1.59282 68.62
39 680.906 6.318
40 -78.984 12.938 1.48749 70.44
41 -30.032 0.300
42 -310.077 5.755 1.90366 31.31
43 -74.326 6.279
44 -38.745 2.300 1.80518 25.46
45 -82.914 0.300
46 -659.397 8.588 1.51680 64.20
47 -44.718 46.990
48(ST) infinity 8.073
49 -31.064 1.800 1.72916 54.67
50 102.425 8.112
51 -104.634 6.061 1.43700 95.10
52 -39.561 0.300
53 99.883 11.521 1.43700 95.10
54 -40.950 0.300
55 206.244 8.745 1.49700 81.61
56 -54.900 3.836
57 -44.015 2.400 1.69680 55.46
58 66.735 3.037
59 98.451 8.748 1.49700 81.61
60 -93.796 0.300
61 93.253 11.426 1.49700 81.61
62 -65.716 14.300
63 infinity 85.000 1.51680 64.20
64 infinity 5.000
65 infinity 3.000 1.48749 70.44
66 infinity 1.000
67 infinity 0.500
image(IM2) infinity
各種データ
Fl -13.841
Fno. 2.500
ω 50.464
ymax 16.700
TL 540.092
BF 78.892
Ff 19.535
Fr 96.888
Figure 0006973519
LN 投影光学系
LN1 第1光学系
LN2 第2光学系
Gr1〜Gr5 第1〜第5レンズ群
ST 開口絞り
IM1 中間像(中間像面)
IM2 画像表示面(縮小側像面)
PJ プロジェクター
PR プリズム
SC スクリーン面
1 光源
2 照明光学系
3 反射ミラー
4 画像表示素子
5 制御部
6 アクチュエーター
AX 光軸

Claims (10)

  1. 画像表示面に表示される画像を半画角40°以上で拡大投影することが可能な投影光学系であって、
    拡大側から順に第1光学系と第2光学系を含み、前記第2光学系が前記画像の拡大された中間像を形成し、前記第1光学系が前記中間像を拡大投影し、
    前記第1光学系の最拡大側から3枚のレンズに非球面を含まず、
    前記第1,第2光学系のうちの少なくとも一方の一部からなるレンズ群を光軸に沿って移動させて軸上での各群間隔を変化させることにより変倍を行い、
    前記変倍のために移動するレンズ群が前記第2光学系にのみあり、
    前記変倍において前記画像表示面に対する前記中間像及び前記第1光学系の相対的な位置が固定であり、
    前記第2光学系が、前記変倍のために移動するレンズ群として、拡大側から順に第2レンズ群,第3レンズ群及び第4レンズ群を少なくとも有し、
    広角端から望遠端への変倍において、前記第2レンズ群が拡大側凸の軌跡で移動し、
    前記第3レンズ群と前記第4レンズ群がそれぞれ拡大側へ単調に移動することを特徴とする投影光学系。
  2. 以下の条件式(1)及び(2)を満足することを特徴とする請求項1記載の投影光学系;
    1.3<Ff/|Fw|<2 …(1)
    0.4<Lf/Lw<0.6 …(2)
    ただし、
    Ff:第1光学系の焦点距離、
    Fw:全系の焦点距離(投影光学系がズームレンズの場合、最大画角での全系の焦点距離)、
    Lf:第1光学系の最拡大側面頂点から中間像までの光軸上の距離、
    Lw:レンズ全長(投影光学系がズームレンズの場合、最大画角でのレンズ全長)、
    である。
  3. 前記第1光学系に非球面を含まないことを特徴とする請求項1又は2記載の投影光学系。
  4. 非球面を含まないことを特徴とする請求項1〜3のいずれか1項に記載の投影光学系。
  5. 以下の条件式(3)を満足することを特徴とする請求項1〜4のいずれか1項に記載の投影光学系;
    0.8<(Y’/Y)×β2<1 …(3)
    ただし、
    Y’:最大画角での最軸外光線の中間像位置における光軸からの主光線高さ、
    Y:画像表示面での最大像高、
    β2:最大画角での第2光学系の近軸倍率(ここで、近軸倍率を[画像表示面での画像サイズ]/[中間像サイズ]とする。)、
    である。
  6. 前記第1光学系の最拡大側レンズが負レンズであることを特徴とする請求項1〜5のいずれか1項に記載の投影光学系。
  7. 前記第1光学系の最拡大側からレンズ3枚以内に少なくとも1つの正レンズを有することを特徴とする請求項1〜6のいずれか1項に記載の投影光学系。
  8. 前記第1光学系が、拡大側から順に、負レンズ,負レンズ,正レンズ及び負レンズを有することを特徴とする請求項1〜7のいずれか1項に記載の投影光学系。
  9. 前記第2光学系が前記第4レンズ群の縮小側に第5レンズ群を有し、前記第1光学系を第1レンズ群とすることにより、正正正正正の5群ズーム構成を有する投影光学系であって、前記第1レンズ群と前記第5レンズ群のズーム位置が固定になっていることを特徴とする請求項1〜8のいずれか1項に記載の投影光学系。
  10. 前記画像表示面を有する画像表示素子と、前記画像表示面に表示される画像をスクリーン面に拡大投影する請求項1〜9のいずれか1項に記載の投影光学系と、を備えたことを特徴とするプロジェクター。
JP2020016357A 2015-12-01 2020-02-03 投影光学系及びプロジェクター Active JP6973519B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020016357A JP6973519B2 (ja) 2015-12-01 2020-02-03 投影光学系及びプロジェクター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015234638A JP6657863B2 (ja) 2015-12-01 2015-12-01 投影光学系及びプロジェクター
JP2020016357A JP6973519B2 (ja) 2015-12-01 2020-02-03 投影光学系及びプロジェクター

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015234638A Division JP6657863B2 (ja) 2015-12-01 2015-12-01 投影光学系及びプロジェクター

Publications (2)

Publication Number Publication Date
JP2020077008A JP2020077008A (ja) 2020-05-21
JP6973519B2 true JP6973519B2 (ja) 2021-12-01

Family

ID=70724055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020016357A Active JP6973519B2 (ja) 2015-12-01 2020-02-03 投影光学系及びプロジェクター

Country Status (1)

Country Link
JP (1) JP6973519B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009765B2 (en) * 2002-08-16 2006-03-07 Infocus Corporation Wide angle lens system having a distorted intermediate image
US7227682B2 (en) * 2005-04-08 2007-06-05 Panavision International, L.P. Wide-range, wide-angle compound zoom with simplified zooming structure
EP2249193B1 (en) * 2008-02-29 2022-12-28 Konica Minolta Opto, Inc. Magnified-projection optical system, and digital type planetarium device
JP6227539B2 (ja) * 2012-09-20 2017-11-08 株式会社nittoh ズームレンズシステムおよび撮像装置
JP6305098B2 (ja) * 2014-02-19 2018-04-04 キヤノン株式会社 ズーム光学系及びそれを有する画像投射装置
JP6352832B2 (ja) * 2015-02-25 2018-07-04 富士フイルム株式会社 投写用光学系および投写型表示装置
JP6657863B2 (ja) * 2015-12-01 2020-03-04 コニカミノルタ株式会社 投影光学系及びプロジェクター

Also Published As

Publication number Publication date
JP2020077008A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
JP6657863B2 (ja) 投影光学系及びプロジェクター
CN108732725B (zh) 投影光学系统以及投影装置
JP6922900B2 (ja) 投影光学系及びプロジェクター
JP6658185B2 (ja) 投射ズームレンズ及び画像投射装置
US9575297B2 (en) Projection lens and projector with magnifying function
JP2004271668A (ja) 投影レンズ
JP2013148812A (ja) 変倍機能を有する投影レンズ及びプロジェクタ
JP5446817B2 (ja) ズームレンズ
JP5532142B2 (ja) 投影レンズ及びプロジェクタ
US7911705B2 (en) Projection lens and projector
JP2010054693A (ja) 投影レンズおよびこれを用いた投写型表示装置
JP6708104B2 (ja) 投影光学系及びプロジェクター
JP5777191B2 (ja) 投写用ズームレンズおよび投写型表示装置
JP2018084636A (ja) 投射光学系及びプロジェクター
JP6973519B2 (ja) 投影光学系及びプロジェクター
JP6784563B2 (ja) 投射用ズームレンズおよび投射型画像表示装置
WO2020110380A1 (ja) 投影光学系及び投影装置
JP5803840B2 (ja) 変倍機能を有する投影レンズ及びプロジェクター
JP6784564B2 (ja) 投射用ズームレンズおよび投射型画像表示装置
JP6848974B2 (ja) 投影光学系及びプロジェクター
JP2019109488A (ja) 投射用ズームレンズおよび投射型画像表示装置
JP2010054694A (ja) 投影レンズおよびこれを用いた投写型表示装置
JP2019086530A (ja) 投影光学系及び投影装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6973519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150