JP6973336B2 - Power element diagnostic device - Google Patents

Power element diagnostic device Download PDF

Info

Publication number
JP6973336B2
JP6973336B2 JP2018169284A JP2018169284A JP6973336B2 JP 6973336 B2 JP6973336 B2 JP 6973336B2 JP 2018169284 A JP2018169284 A JP 2018169284A JP 2018169284 A JP2018169284 A JP 2018169284A JP 6973336 B2 JP6973336 B2 JP 6973336B2
Authority
JP
Japan
Prior art keywords
time
threshold voltage
power element
power
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018169284A
Other languages
Japanese (ja)
Other versions
JP2020043687A (en
Inventor
隼人 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2018169284A priority Critical patent/JP6973336B2/en
Publication of JP2020043687A publication Critical patent/JP2020043687A/en
Application granted granted Critical
Publication of JP6973336B2 publication Critical patent/JP6973336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、電力変換回路に設けられたSiC MOSFETから成るパワー素子のゲート閾値電圧の診断装置に関する。 The present invention relates to a diagnostic device for a gate threshold voltage of a power element composed of a SiC MOSFET provided in a power conversion circuit.

図12は特許文献1における電力変換装置を示す構成図である。特許文献1には、直流電源の短絡事故を抑制する方法が開示されている。具体的には、自己消弧型半導体素子(GTO)がターンオフの実行を開始すると、制御手段がGTOのゲート電極とカソード電極間の電圧が閾値を超えるまでに要する時間を計測し、その時間からGTOの遮断電流を推定する。 FIG. 12 is a configuration diagram showing a power conversion device in Patent Document 1. Patent Document 1 discloses a method of suppressing a short-circuit accident of a DC power supply. Specifically, when the self-extinguishing semiconductor element (GTO) starts executing turn-off, the control means measures the time required for the voltage between the gate electrode and the cathode electrode of the GTO to exceed the threshold value, and from that time. Estimate the breaking current of the GTO.

図13は特許文献2における電力変換装置を示す構成図である。特許文献2には、1つまたは複数の単位変換器を直列接続して構成されたアームを備える電力変換装置が開示されている。系統の擾乱などによって直流コンデンサ電圧が変動すると、ゲート制御不能などの制御装置と単位変換器との通信異常が発生する恐れがある。特許文献2では、閾値電圧(直流コンデンサ電圧)を監視することで、前述した通信異常が発生した場合においても、各単位変換器の保護を実現している。 FIG. 13 is a configuration diagram showing a power conversion device in Patent Document 2. Patent Document 2 discloses a power conversion device including an arm configured by connecting one or a plurality of unit converters in series. If the DC capacitor voltage fluctuates due to system disturbance or the like, there is a risk that communication abnormalities between the control device and the unit converter, such as gate control failure, will occur. In Patent Document 2, by monitoring the threshold voltage (DC capacitor voltage), protection of each unit converter is realized even when the above-mentioned communication abnormality occurs.

特許第3636615号Patent No. 3636615 WO2016/203516A1WO2016 / 203516A1

Aivars J. Lelis ,Ron Green ,Daniel B. Habersat, Mooro El,“Basic Mechanisms of Threshold‐Voltage Instability and Implications for Reliability Testing of SiC MOSFETs” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL62, NO. 2,pp316‐323,FEBRUARY2015.Aivars J. Lelis, Ron Green, Daniel B. Habersat, Mooro El, “Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL62, NO. 2, pp316-323, FEBRUARY2015 .. 中川明夫,川口雄介,“ 電源用パワーデバイスの技術動向,”IEEJJournal,VOL125,No.12,pp758‐761,2005Akio Nakagawa, Yusuke Kawaguchi, "Technological Trends in Power Devices for Power Supply," IEJJournal, VOL125, No. 12, pp758-761,2005

しかし、特許文献1はマルチレベル電力変換装置等の短絡事故抑制方法を開示しているが、パワー素子のゲート閾値電圧の上昇は検知しない。 However, although Patent Document 1 discloses a method for suppressing a short circuit accident such as a multi-level power conversion device, it does not detect an increase in the gate threshold voltage of the power element.

また、特許文献2はマルチレベル電力変換装置等の各単位変換器の保護方法を開示しているが、閾値電圧を直流コンデンサ電圧としている。そのため、パワー素子のゲート閾値電圧の上昇は検知しない。 Further, Patent Document 2 discloses a protection method for each unit converter such as a multi-level power converter, but the threshold voltage is a DC capacitor voltage. Therefore, an increase in the gate threshold voltage of the power element is not detected.

また、特許文献1,2は装置の実現に電力変換回路以外の推定回路やセンサなどが別途必要となり、小型化には向いていない。 Further, Patent Documents 1 and 2 require a separate estimation circuit, sensor, etc. other than the power conversion circuit to realize the device, and are not suitable for miniaturization.

以上示したようなことから、パワー素子診断装置において、新たな測定器や測定回路を追加せずにパワー素子のゲート閾値電圧の診断を行うことが課題となる。 From the above, it is a problem to diagnose the gate threshold voltage of the power element in the power element diagnostic device without adding a new measuring instrument or a measuring circuit.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、電力変換回路に設けられたSiC MOSFETから成るパワー素子のオン時間の積算値を取得するオン時間取得部と、前記パワー素子のオフ時間の積算値を取得するオフ時間取得部と、オン時間の積算値およびオフ時間の積算値に対応するゲート閾値電圧の変動値を収納する閾値電圧変動テーブルと、前記オン時間取得部で取得した前記オン時間の積算値および前記オフ時間取得部で取得したオフ時間の積算値に対応するゲート閾値電圧の変動値と変動閾値とを比較して、前記パワー素子に異常が生じたか否かを診断する異常診断部と、前記異常診断部の診断結果を通知する結果通知部と、を備えたことを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is an on-time acquisition unit for acquiring an integrated value of on-time of a power element composed of a SiC MOSFET provided in a power conversion circuit. An off-time acquisition unit that acquires the integrated value of the off-time of the power element, a threshold voltage fluctuation table that stores the fluctuation value of the gate threshold voltage corresponding to the integrated value of the on-time and the integrated value of the off-time, and the on An abnormality is found in the power element by comparing the fluctuation value and the fluctuation threshold of the gate threshold voltage corresponding to the integrated value of the on-time acquired by the time acquisition unit and the integrated value of the off-time acquired by the off-time acquisition unit. It is characterized by including an abnormality diagnosis unit for diagnosing whether or not it has occurred, and a result notification unit for notifying the diagnosis result of the abnormality diagnosis unit.

また、その一態様として、前記電力変換回路は、3レベル以上のマルチレベル電力変換回路であり、前記異常診断部は、各パワー素子同士のオン時間の積算値の差、および、各パワー素子同士のオフ時間の積算値の差が時間差閾値よりも大きい場合に、前記パワー素子に異常が生じたと判断することを特徴とする。 Further, as one aspect thereof, the power conversion circuit is a multi-level power conversion circuit having three or more levels, and the abnormality diagnosis unit has a difference in the integrated value of the on-time between the power elements and each power element. When the difference between the integrated values of the off-time is larger than the time difference threshold value, it is determined that an abnormality has occurred in the power element.

また、その一態様として、前記ゲート閾値電圧の変動値に0<k<1の係数kを乗算することを特徴とする。 Further, as one aspect thereof, it is characterized in that the fluctuation value of the gate threshold voltage is multiplied by a coefficient k of 0 <k <1.

本発明によれば、パワー素子診断装置において、新たな測定器や測定回路を追加せずにパワー素子のゲート閾値電圧の診断を行うことが可能となる。 According to the present invention, in the power element diagnostic apparatus, it is possible to diagnose the gate threshold voltage of the power element without adding a new measuring instrument or measuring circuit.

SiC MOSFETに正のゲート電圧を印加した場合のゲート閾値電圧変動を示すグラフ。The graph which shows the gate threshold voltage fluctuation when a positive gate voltage is applied to a SiC MOSFET. SiC MOSFETに負のゲート電圧を印加した場合のゲート閾値電圧変動を示すグラフ。The graph which shows the gate threshold voltage fluctuation when a negative gate voltage is applied to a SiC MOSFET. 実施形態1の制御ブロック図。The control block diagram of Embodiment 1. 実施形態1の動作を示すフローチャート。The flowchart which shows the operation of Embodiment 1. 実施形態1における異常診断部の動作を示すフローチャート(オン時間)。The flowchart (on-time) which shows the operation of the abnormality diagnosis part in Embodiment 1. FIG. 実施形態1における異常診断部の動作を示すフローチャート(オフ時間)。The flowchart (off time) which shows the operation of the abnormality diagnosis part in Embodiment 1. FIG. 3レベルインバータの回路例(1相分)を示す図。The figure which shows the circuit example (1 phase part) of a 3 level inverter. 電圧指令値と搬送波を示すグラフ。Graph showing voltage command value and carrier wave. 3レベルインバータのスイッチングパターン例(1相分)を示す図。The figure which shows the switching pattern example (one phase part) of a three-level inverter. 実施形態2における異常診断部の動作を示すフローチャート(オン時間)。The flowchart (on-time) which shows the operation of the abnormality diagnosis part in Embodiment 2. 実施形態2における異常診断部の動作を示すフローチャート(オフ時間)。The flowchart (off time) which shows the operation of the abnormality diagnosis part in Embodiment 2. 特許文献1における電力変換装置を示す概略図。The schematic diagram which shows the power conversion apparatus in Patent Document 1. FIG. 特許文献2における電力変換装置を示す概略図。The schematic diagram which shows the power conversion apparatus in Patent Document 2.

以下、本願発明におけるパワー素子診断装置の実施形態1〜3を図1〜図11に基づいて詳述する。 Hereinafter, embodiments 1 to 3 of the power element diagnostic apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 11.

[実施形態1]
実施形態1は、2レベル以上の電力変換回路に適用することを想定している。
[Embodiment 1]
The first embodiment is supposed to be applied to a power conversion circuit having two or more levels.

現在流通しているSiC MOSFETはゲート−ソース間に電圧を印加すると、ゲート閾値電圧が変動するという問題がある。図1,図2に示すように、一般に、このゲート閾値電圧の変動ΔVthの変動量は印加する電圧値や印加時間に依存する。また、正のゲート−ソース間電圧を印加するとゲート閾値電圧が増加方向に変動し、負のゲート−ソース間電圧を印加するとゲート閾値電圧が減少方向に変動することが知られている(非特許文献1参照)。 The SiC MOSFET currently on the market has a problem that the gate threshold voltage fluctuates when a voltage is applied between the gate and the source. As shown in FIGS. 1 and 2, in general, the fluctuation amount of the gate threshold voltage fluctuation ΔVth depends on the applied voltage value and the applied time. It is also known that when a positive gate-source voltage is applied, the gate threshold voltage fluctuates in an increasing direction, and when a negative gate-source voltage is applied, the gate threshold voltage fluctuates in a decreasing direction (non-patented). See Document 1).

SiC MOSFETは機器の高パワー密度化を目的に使用されることが考えられる。その場合、新たな測定回路や測定機器を追加することは機器の大型化につながる。 SiC MOSFETs are considered to be used for the purpose of increasing the power density of equipment. In that case, adding a new measuring circuit or measuring device leads to an increase in the size of the device.

図3に本実施形態1におけるパワー素子診断装置を示す。図3に示すように、ゲートドライブ制御部1から出力されたゲート信号が電力変換回路2内のパワー素子(SiC MOSFET)に入力される。電力変換回路2は、パワー素子がスイッチングすることにより直流電力を交流電力に変換し、負荷3に出力する。 FIG. 3 shows the power element diagnostic device according to the first embodiment. As shown in FIG. 3, the gate signal output from the gate drive control unit 1 is input to the power element (SiC MOSFET) in the power conversion circuit 2. The power conversion circuit 2 converts DC power into AC power by switching the power element, and outputs the DC power to the load 3.

パワー素子診断装置4は、オフ時間取得部5と、オン時間取得部6と、閾値電圧変動テーブル7と、異常診断部8と、結果通知部9と、を備える。 The power element diagnostic device 4 includes an off time acquisition unit 5, an on time acquisition unit 6, a threshold voltage fluctuation table 7, an abnormality diagnosis unit 8, and a result notification unit 9.

オフ時間取得部5は、パワー素子のオフ時間を取得し、積算する。オン時間取得部6は、パワー素子のオン時間を取得し、積算する。閾値電圧変動テーブル7には、事前に取得したオン時間の積算値毎およびオフ時間の積算値毎のゲート閾値電圧の変動値αが収納してある。異常診断部8は、オン時間取得部6で取得したオン時間の積算値、オフ時間取得部5で取得したオフ時間の積算値、および、閾値電圧変動テーブル7から得た情報から、パワー素子を診断する。結果通知部9は、診断結果を通知する。 The off time acquisition unit 5 acquires and integrates the off time of the power element. The on-time acquisition unit 6 acquires and integrates the on-time of the power element. The threshold voltage fluctuation table 7 stores the fluctuation value α of the gate threshold voltage for each integrated value of the on-time and each integrated value of the off-time acquired in advance. The abnormality diagnosis unit 8 uses the integrated value of the on time acquired by the on time acquisition unit 6, the integrated value of the off time acquired by the off time acquisition unit 5, and the information obtained from the threshold voltage fluctuation table 7 to obtain the power element. Diagnose. The result notification unit 9 notifies the diagnosis result.

本実施形態1におけるパワー素子診断装置4の動作を示すフローチャートを図4に示す。S1において、電力変換回路2を駆動させる。次に、S2において、S1の電力変換回路2の駆動と同時に、オン時間取得部6、オフ時間取得部5により、オン時間およびオフ時間を任意の周期で取得し、積算する。S3では、オン時間取得部6で取得したオン時間の積算値およびオフ時間取得部5で取得したオフ時間の積算値に基づいて閾値電圧変動テーブル7を参照する。 FIG. 4 shows a flowchart showing the operation of the power element diagnostic device 4 in the first embodiment. In S1, the power conversion circuit 2 is driven. Next, in S2, at the same time as driving the power conversion circuit 2 of S1, the on-time acquisition unit 6 and the off-time acquisition unit 5 acquire the on-time and the off-time at an arbitrary cycle and integrate them. In S3, the threshold voltage fluctuation table 7 is referred to based on the integrated value of the on-time acquired by the on-time acquisition unit 6 and the integrated value of the off-time acquired by the off-time acquisition unit 5.

S4において、異常診断部8は事前に用意した閾値電圧変動テーブル7からオン時間の積算値に対応するゲート閾値電圧Vthの変動値α、オフ時間の積算値に対応するゲート閾値電圧Vthの変動値αを推測し、パワー素子に異常が生じているか判断する。パワー素子に異常が生じていない場合は、S5に移行し、電力変換回路2の駆動を継続し、S1に戻る。パワー素子に異常が生じている場合は、S6へ移行し、その結果を結果通知部9で表示することで、当該回路の使用者は結果通知部9の表示を確認してパワー素子の異常を確認できる。 In S4, the abnormality diagnosis unit 8 has a fluctuation value α of the gate threshold voltage Vth corresponding to the integrated value of the on time and a fluctuation value of the gate threshold voltage Vth corresponding to the integrated value of the off time from the threshold voltage fluctuation table 7 prepared in advance. Estimate α and determine if an abnormality has occurred in the power element. If no abnormality has occurred in the power element, the process proceeds to S5, the power conversion circuit 2 continues to be driven, and the process returns to S1. If an abnormality has occurred in the power element, the process proceeds to S6 and the result is displayed by the result notification unit 9, so that the user of the circuit confirms the display of the result notification unit 9 and detects the abnormality of the power element. You can check.

オン時間は、例えばゲートドライブ制御部1において、ゲート信号がオフからオンに切り替わったタイミングから、ゲート信号がオンからオフに切り替わったタイミングまでのオン時間を計測することで取得できる。 The on-time can be obtained, for example, by measuring the on-time from the timing when the gate signal is switched from off to on in the gate drive control unit 1 to the timing when the gate signal is switched from on to off.

オフ時間は、例えばゲートドライブ制御部1において、ゲート信号がオンからオフに切り替わったタイミングから、ゲート信号がオフからオンに切り替わったタイミングまでのオフ時間を計測することで取得できる。 The off time can be obtained, for example, by measuring the off time from the timing at which the gate signal is switched from on to off to the timing at which the gate signal is switched from off to on in the gate drive control unit 1.

また、事前に取得する閾値電圧変動テーブルは、例えば以下のような方法で作成する。まず、パワー素子に使用する値のDC正ゲート−ソース電圧を一定時間継続して印加し、時間毎のゲート閾値電圧の変動をプロットしたもの用意する。これらのプロットの外挿から、電力変換回路の設計寿命時間までにDC正ゲート−ソース電圧を継続して印加した場合の閾値電圧変動テーブル(正の閾値電圧変動テーブル)を得ることができる。 Further, the threshold voltage fluctuation table to be acquired in advance is created by, for example, the following method. First, the DC positive gate-source voltage of the value used for the power element is continuously applied for a certain period of time, and a plot of the fluctuation of the gate threshold voltage for each time is prepared. From the extrapolation of these plots, it is possible to obtain a threshold voltage fluctuation table (positive threshold voltage fluctuation table) when the DC positive gate-source voltage is continuously applied until the design lifetime of the power conversion circuit.

同様に、まずパワー素子に使用する値のDC負ゲート−ソース電圧を一定時間継続して印加し、時間毎のゲート閾値電圧の変動をプロットしたもの用意する。これらのプロットの外挿から、電力変換回路の設計寿命時間までにDC負ゲート−ソース電圧を継続して印加した場合の閾値電圧変動テーブル(負の閾値電圧変動テーブル)を得ることができる。このようにして、電力変換回路の設計寿命時間までの閾値電圧変動テーブルを作成できる。 Similarly, first, the DC negative gate-source voltage of the value used for the power element is continuously applied for a certain period of time, and a plot of the fluctuation of the gate threshold voltage for each time is prepared. From the extrapolation of these plots, it is possible to obtain a threshold voltage fluctuation table (negative threshold voltage fluctuation table) when the DC negative gate-source voltage is continuously applied until the design lifetime of the power conversion circuit. In this way, the threshold voltage fluctuation table up to the design life time of the power conversion circuit can be created.

次に、異常診断部8(S4)を図5に基づいて説明する。S11において、取得したオン時間の積算値、オフ時間の積算値を異常診断部8に入力する。S12において、正の閾値電圧変動テーブルからオン時間取得部6で取得したオン時間の積算値に対応する正のゲート閾値電圧の変動値αを取得する。 Next, the abnormality diagnosis unit 8 (S4) will be described with reference to FIG. In S11, the acquired integrated value of the on-time and the integrated value of the off-time are input to the abnormality diagnosis unit 8. In S12, the fluctuation value α of the positive gate threshold voltage corresponding to the integrated value of the on-time acquired by the on-time acquisition unit 6 is acquired from the positive threshold voltage fluctuation table.

S13において、異常診断部8は異常を通知する正側の変動閾値βonと正のゲート閾値電圧の変動値αを比較し、正のゲート閾値電圧の変動値αが正側の変動閾値βonより小さい場合は、S19へ移行し、電力変換回路の駆動を継続する。正のゲート閾値電圧の変動値αが正側の変動閾値βon以上の場合、S14でパワー素子に異常が生じたと判断し、S15で結果通知部9にパワー素子の異常を通知する。異常が通知された場合、電力変換回路の使用者は装置の点検、メンテナンス等を行う。 In S13, the abnormality diagnosis unit 8 compares the fluctuation value α of the positive gate threshold voltage with the fluctuation threshold βon on the positive side for notifying the abnormality, and the fluctuation value α of the positive gate threshold voltage is smaller than the fluctuation threshold βon on the positive side. In that case, the process proceeds to S19 and the driving of the power conversion circuit is continued. When the fluctuation value α of the positive gate threshold voltage is equal to or greater than the fluctuation threshold βon on the positive side, it is determined that an abnormality has occurred in the power element in S14, and the result notification unit 9 is notified of the abnormality in the power element in S15. When an abnormality is notified, the user of the power conversion circuit inspects and maintains the device.

パワー素子のオン抵抗はゲート閾値電圧に依存するため、例えば、一つのパワー素子のゲート閾値電圧が増加方向に変動した場合、オン抵抗の増加を招く恐れがある。そのため損失が増加し、当該パワー素子が異常発熱する恐れがある。そのため、正側の変動閾値βonは、パワー素子が異常発熱する値に基づいて設定する。また、正側の変動閾値βonはメーカで設定された値を用いてもよい。 Since the on-resistance of the power element depends on the gate threshold voltage, for example, when the gate threshold voltage of one power element fluctuates in the increasing direction, the on-resistance may increase. Therefore, the loss increases, and the power element may generate abnormal heat. Therefore, the fluctuation threshold value βon on the positive side is set based on the value at which the power element generates abnormal heat. Further, a value set by the manufacturer may be used for the fluctuation threshold value βon on the positive side.

次に、負のゲート閾値電圧の変動値αと負側の変動閾値βoffを比較する方法を図6に基づいて説明する。 Next, a method of comparing the fluctuation value α of the negative gate threshold voltage and the fluctuation threshold βoff on the negative side will be described with reference to FIG.

ゲート閾値電圧変動のバラツキは、例えば一つのパワー素子のゲート閾値電圧が減少方向に変動した場合、当該素子が誤点弧しやすくなり、短絡する恐れがある(非特許文献2)。 As for the variation of the gate threshold voltage fluctuation, for example, when the gate threshold voltage of one power element fluctuates in the decreasing direction, the element tends to erroneously ignite and may be short-circuited (Non-Patent Document 2).

図6は図5と同様の構成で動作し、負のゲート閾値電圧の変動値αの推定(S23)、異常診断部8の動作(S23)のアルゴリズムのみ異なる。 FIG. 6 operates with the same configuration as that of FIG. 5, and differs only in the algorithms of the estimation of the fluctuation value α of the negative gate threshold voltage α (S23) and the operation of the abnormality diagnosis unit 8 (S23).

S22において、負の閾値電圧変動テーブルから、オフ時間取得部5で取得したオフ時間の積算値に対応する負のゲート閾値電圧の変動値αを取得する。 In S22, the fluctuation value α of the negative gate threshold voltage corresponding to the integrated value of the off time acquired by the off time acquisition unit 5 is acquired from the negative threshold voltage fluctuation table.

S23において、異常診断部8は負側の変動閾値βoffと負のゲート閾値電圧の変動値αを比較し、負のゲート閾値電圧の変動値αが負側の変動閾値βoff以上の時、パワー素子に異常が生じたと判断する。 In S23, the abnormality diagnosis unit 8 compares the fluctuation value α of the negative gate threshold voltage with the fluctuation threshold βoff on the negative side, and when the fluctuation value α of the negative gate threshold voltage is equal to or greater than the fluctuation threshold βoff on the negative side, the power element It is judged that an abnormality has occurred in.

なお、負側の変動閾値βoffは、各回路構成に応じて、パワー素子の誤点呼、短絡しない値に設定する。 The fluctuation threshold βoff on the negative side is set to a value that does not cause an erroneous roll call or short circuit of the power element according to each circuit configuration.

本実施形態1の構成によれば、電力変換回路に新たな測定器や測定回路の追加せずに、パワー素子のゲート閾値電圧を診断する装置ならびに当該診断装置を備えた電力変換回路を提供することが可能となる。 According to the configuration of the first embodiment, a device for diagnosing the gate threshold voltage of a power element and a power conversion circuit provided with the diagnostic device are provided without adding a new measuring instrument or measuring circuit to the power conversion circuit. It becomes possible.

また、本実施形態1によれば、パワー素子のオン抵抗が増加し、パワー素子が異常発熱することを抑制すると共に、パワー素子の誤点呼、短絡を抑制することが可能となる。 Further, according to the first embodiment, the on-resistance of the power element is increased, it is possible to suppress abnormal heat generation of the power element, and it is possible to suppress erroneous call and short circuit of the power element.

[実施形態2]
本実施形態2は、3レベル電力変換回路に適用することを想定している。3レベル以上のマルチレベル電力変換回路は、負荷(例えばモータ)の運転状態によって、各パワー素子のスイッチングパターンが異なり、各パワー素子でオン時間、オフ時間が異なる。
[Embodiment 2]
The second embodiment is supposed to be applied to a three-level power conversion circuit. In a multi-level power conversion circuit having three or more levels, the switching pattern of each power element differs depending on the operating state of the load (for example, a motor), and the on time and off time differ for each power element.

図7は、3レベルインバータの回路例(1相分)を示す概略図である。図7に示すように、第1,第2直流電源DC1,DC2が直列接続される。第1直流電源DC1の正極と第2直流電源DC2の負極との間には、第1,第4パワー素子Q1,Q4が直列接続される。第1,第2直流電源DC1,DC2の接続点と第1,第4パワー素子Q1,Q4の接続点との間に第2,第3パワー素子Q2,Q3が逆直列接続される。第1,第4パワー素子Q1,Q4の接続点が交流端子ACとなる。 FIG. 7 is a schematic diagram showing a circuit example (one phase component) of a three-level inverter. As shown in FIG. 7, the first and second DC power supplies DC1 and DC2 are connected in series. The first and fourth power elements Q1 and Q4 are connected in series between the positive electrode of the first DC power supply DC1 and the negative electrode of the second DC power supply DC2. The second and third power elements Q2 and Q3 are connected in reverse series between the connection points of the first and second DC power supplies DC1 and DC2 and the connection points of the first and fourth power elements Q1 and Q4. The connection points of the first and fourth power elements Q1 and Q4 are AC terminals AC.

図8に示すように、電圧指令値と第1,第2パワー素子Q1,Q2の搬送波および第3,第4パワー素子Q3,Q4の搬送波が比較され、図9に示すように、第1〜第4パワー素子Q1〜Q4のオンオフが決定される。 As shown in FIG. 8, the voltage command value is compared with the carrier waves of the first and second power elements Q1 and Q2 and the carrier waves of the third and fourth power elements Q3 and Q4. The on / off of the fourth power elements Q1 to Q4 is determined.

このように、3レベル以上のマルチレベル電力変換回路は、運転状況によって各パワー素子のオン時間、オフ時間が異なるため、ゲート閾値電圧の変動に大きなバラツキが生じる可能性がある。 As described above, in the multi-level power conversion circuit having three or more levels, the on-time and the off-time of each power element differ depending on the operating conditions, so that the fluctuation of the gate threshold voltage may vary greatly.

そこで、本実施形態2では、正のゲート閾値電圧の変動値αと正側の変動閾値βon,負のゲート閾値電圧の変動値αと負側の変動閾値βoffを比較するのみではなく、各パワー素子同士のオン時間の積算値の差,オフ時間の積算値の差を算出する。各パワー素子のオン時間の積算値の差,オフ時間の積算値の差が大きい場合は、制御が不安定、出力波形が歪む、デッドタイム以上の差となると短絡する恐れがある。そのため、本実施形態2では、各パワー素子のオン時間の積算値の差、オフ時間の積算値の差が時間差閾値以上の場合は異常が生じている可能性があると判断する。 Therefore, in the second embodiment, not only the fluctuation value α of the positive gate threshold voltage and the fluctuation threshold βon on the positive side, and the fluctuation value α of the negative gate threshold voltage and the fluctuation threshold βoff on the negative side are compared, but also each power. Calculate the difference between the integrated values of the on-time and the difference of the integrated value of the off-time between the elements. If the difference between the integrated values of the on-time and the integrated value of the off-time of each power element is large, the control may be unstable, the output waveform may be distorted, or the difference may exceed the dead time, resulting in a short circuit. Therefore, in the second embodiment, if the difference between the integrated values of the on-time and the integrated value of the off-time of each power element is equal to or greater than the time difference threshold value, it is determined that an abnormality may have occurred.

本実施形態2における処理を図10,図11に示す。図10は実施形態1にS16〜S18を追加したものであり、S11〜S15,S19は実施形態1と同様であるため、説明を省略する。 The processing in the second embodiment is shown in FIGS. 10 and 11. FIG. 10 shows the addition of S16 to S18 to the first embodiment, and since S11 to S15 and S19 are the same as those of the first embodiment, the description thereof will be omitted.

正のゲート閾値電圧の変動値αが正側の変動閾値βon以上でない場合、S16において、各パワー素子同士のオン時間の積算値の差(以下、オン時間差と称する)γonを算出する。S17において、正側の時間差閾値δonとオン時間差γonを比較する。オン時間差γonが正側の時間差閾値δon以上の時、S14でパワー素子に異常が生じたと判断し、S15でその結果を結果通知部で表示することで、当該回路の使用者は結果通知部9の表示を確認してパワー素子の異常を確認できる。オン時間差γonが正側の時間差閾値δon以上でない場合、S18において、パワー素子に異常が生じていないと判断し、S19において、電力変換回路2での駆動を継続する。 When the fluctuation value α of the positive gate threshold voltage is not equal to or greater than the fluctuation threshold βon on the positive side, in S16, the difference in the integrated value of the on-time between the power elements (hereinafter referred to as the on-time difference) γon is calculated. In S17, the positive time difference threshold δon and the on-time difference γon are compared. When the on-time difference γon is equal to or greater than the positive time difference threshold value δon, it is determined in S14 that an abnormality has occurred in the power element, and the result is displayed in the result notification unit in S15. You can check the display of the power element to confirm the abnormality. When the on-time difference γon is not equal to or more than the positive time difference threshold value δon, it is determined in S18 that no abnormality has occurred in the power element, and in S19, the driving in the power conversion circuit 2 is continued.

また、図11に示すように、負のゲート閾値電圧の変動値αが負側の変動閾値βoff以上でない場合、S26において、各パワー素子同士のオフ時間の積算値の差(以下、オフ時間差と称する)γoffを算出し、S27において、負側の時間差閾値δoffとオフ時間差γoffを比較する。オフ時間差γoffが負側の時間差閾値δoff以上の時、S14において、パワー素子に異常が生じたと判断し、S15において、その結果を結果通知部9で表示することで、当該電力変換回路2の使用者は結果通知部9の表示を確認してパワー素子の異常を確認できる。オフ時間差γoffが負側の時間差閾値δoff以上でない場合、S18でパワー素子に異常が生じていないと判断し、S19で電力変換回路の駆動を継続する。 Further, as shown in FIG. 11, when the fluctuation value α of the negative gate threshold voltage is not equal to or more than the fluctuation threshold βoff on the negative side, the difference in the integrated value of the off time between the power elements in S26 (hereinafter referred to as the off time difference). (Referred to as) γoff is calculated, and in S27, the negative time difference threshold δoff and the off time difference γoff are compared. When the off time difference γoff is equal to or greater than the negative time difference threshold value δoff, it is determined in S14 that an abnormality has occurred in the power element, and in S15, the result is displayed by the result notification unit 9, so that the power conversion circuit 2 is used. The person can confirm the abnormality of the power element by confirming the display of the result notification unit 9. When the off time difference γoff is not equal to or more than the negative time difference threshold value δoff, it is determined in S18 that no abnormality has occurred in the power element, and the power conversion circuit is continued to be driven in S19.

なお、正側の時間差閾値δon、負側の時間差閾値δoffは、ゲート閾値電圧の変動により制御が不安定になる、出力波形が歪む、短絡が生じる等の問題が生じる時間差を回路構成等に応じて予め決定するものとする。 The time difference threshold δon on the positive side and the time difference threshold δoff on the negative side cause problems such as unstable control due to fluctuations in the gate threshold voltage, distortion of the output waveform, and short circuit, depending on the circuit configuration and the like. It shall be decided in advance.

以上示したように、本実施形態2によれば、実施形態1の作用効果に加え、各パワー素子のオン時間の積算値の差、オフ時間の積算値の差により、制御が不安定になる、出力波形が歪む、短絡が生じる等の問題が生じるのを抑制することが可能となる。 As shown above, according to the second embodiment, in addition to the operation and effect of the first embodiment, the control becomes unstable due to the difference in the integrated value of the on time and the difference in the integrated value of the off time of each power element. It is possible to suppress problems such as distortion of the output waveform and short circuit.

[実施形態3]
図1、図2で示したゲート閾値電圧の変動ΔVthは、正の電圧を印加し続けた場合、負の電圧を印加し続けた場合のチャートである。しかし、実際運転する場合は、正の電圧、負の電圧を連続して印加し続けることはなく、正の電圧を印加したり、負の電圧を印加したりしている。
[Embodiment 3]
The fluctuation ΔVth of the gate threshold voltage shown in FIGS. 1 and 2 is a chart when a positive voltage is continuously applied and a negative voltage is continuously applied. However, in actual operation, the positive voltage and the negative voltage are not continuously applied, and the positive voltage is applied or the negative voltage is applied.

そのため、実際のゲート閾値電圧の変動は、図1,図2に示すよりも小さな値となる。すなわち、図1,図2は、最悪の場合を想定したものであり、実際とは異なる。そこで、本実施形態3では、正のゲート閾値電圧の変動値α、負のゲート閾値電圧の変動値αに係数kを乗算する。ここで、係数kは0<k<1とする。 Therefore, the actual fluctuation of the gate threshold voltage is smaller than that shown in FIGS. 1 and 2. That is, FIGS. 1 and 2 assume the worst case and are different from the actual ones. Therefore, in the third embodiment, the coefficient k is multiplied by the fluctuation value α of the positive gate threshold voltage and the fluctuation value α of the negative gate threshold voltage. Here, the coefficient k is 0 <k <1.

これにより、ゲート閾値電圧の変動値αを、より実際に近いものとすることが可能となる。 This makes it possible to make the fluctuation value α of the gate threshold voltage closer to the actual value.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only for the specific examples described in the present invention, it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of the claims.

1…ゲートドライブ制御部
2…電力変換回路
3…負荷
4…パワー素子診断装置
5…オフ時間取得部
6…オン時間取得部
7…閾値電圧変動テーブル
8…異常診断部
9…結果通知部
1 ... Gate drive control unit 2 ... Power conversion circuit 3 ... Load 4 ... Power element diagnostic device 5 ... Off time acquisition unit 6 ... On time acquisition unit 7 ... Threshold voltage fluctuation table 8 ... Abnormality diagnosis unit 9 ... Result notification unit

Claims (3)

電力変換回路に設けられたSiC MOSFETから成るパワー素子のオン時間の積算値を取得するオン時間取得部と、
前記パワー素子のオフ時間の積算値を取得するオフ時間取得部と、
オン時間の積算値およびオフ時間の積算値に対応するゲート閾値電圧の変動値を収納する閾値電圧変動テーブルと、
前記オン時間取得部で取得した前記オン時間の積算値および前記オフ時間取得部で取得したオフ時間の積算値に対応するゲート閾値電圧の変動値と変動閾値とを比較して、前記パワー素子に異常が生じたか否かを診断する異常診断部と、
前記異常診断部の診断結果を通知する結果通知部と、
を備えたことを特徴とするパワー素子診断装置。
An on-time acquisition unit that acquires the integrated value of the on-time of a power element consisting of a SiC MOSFET provided in the power conversion circuit, and an on-time acquisition unit.
An off-time acquisition unit that acquires an integrated value of the off-time of the power element,
A threshold voltage fluctuation table that stores the fluctuation values of the gate threshold voltage corresponding to the integrated value of the on time and the integrated value of the off time, and
The power element is subjected to comparison between the fluctuation value of the gate threshold voltage corresponding to the integrated value of the on-time acquired by the on-time acquisition unit and the integrated value of the off-time acquired by the off-time acquisition unit. An abnormality diagnosis unit that diagnoses whether or not an abnormality has occurred, and
A result notification unit for notifying the diagnosis result of the abnormality diagnosis unit,
A power element diagnostic device characterized by being equipped with.
前記電力変換回路は、3レベル以上のマルチレベル電力変換回路であり、
前記異常診断部は、
各パワー素子同士のオン時間の積算値の差、および、各パワー素子同士のオフ時間の積算値の差が時間差閾値よりも大きい場合に、前記パワー素子に異常が生じたと判断することを特徴とする請求項1記載のパワー素子診断装置。
The power conversion circuit is a multi-level power conversion circuit having three or more levels.
The abnormality diagnosis unit
When the difference in the integrated value of the on-time between the power elements and the difference in the integrated value of the off-time between the power elements are larger than the time difference threshold, it is determined that an abnormality has occurred in the power element. The power element diagnostic apparatus according to claim 1.
前記ゲート閾値電圧の変動値に0<k<1の係数kを乗算することを特徴とする請求項1または2記載のパワー素子診断装置。 The power element diagnostic apparatus according to claim 1 or 2, wherein the fluctuation value of the gate threshold voltage is multiplied by a coefficient k of 0 <k <1.
JP2018169284A 2018-09-11 2018-09-11 Power element diagnostic device Active JP6973336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018169284A JP6973336B2 (en) 2018-09-11 2018-09-11 Power element diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018169284A JP6973336B2 (en) 2018-09-11 2018-09-11 Power element diagnostic device

Publications (2)

Publication Number Publication Date
JP2020043687A JP2020043687A (en) 2020-03-19
JP6973336B2 true JP6973336B2 (en) 2021-11-24

Family

ID=69798967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018169284A Active JP6973336B2 (en) 2018-09-11 2018-09-11 Power element diagnostic device

Country Status (1)

Country Link
JP (1) JP6973336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946447B (en) * 2021-01-13 2022-02-08 北京交通大学 SiC MOSFET short circuit detection circuit based on drain-source conduction voltage integral

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658785B2 (en) * 2013-04-09 2015-01-28 山洋電気株式会社 Motor control device
JP6683510B2 (en) * 2016-03-17 2020-04-22 東京エレクトロンデバイス株式会社 Semiconductor device, maintenance device, and maintenance method

Also Published As

Publication number Publication date
JP2020043687A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US11799285B2 (en) Method for starting photovoltaic rapid shutdown system, application apparatus and system
KR101496627B1 (en) Power conversion circuit
US11245337B2 (en) Power supply device
US10530250B2 (en) Multiphase converter
US10305382B2 (en) Multiphase converter
US11630501B2 (en) Power monitor
JP2016005289A (en) Power conversion device having deterioration diagnosis function
JP6973336B2 (en) Power element diagnostic device
JP6907452B2 (en) Power converter and failure diagnosis method
US10126375B2 (en) Diagnosis circuit and method for a power module
US20240142511A1 (en) Semiconductor device
US20140254049A1 (en) Method for eliminating an arc driven by means of at least one phase voltage source of a converter circuit
JP6994673B2 (en) Power conversion system
JP4872652B2 (en) Power converter
JP6807983B2 (en) Power converter
JP2018098836A (en) Electric circuit and control device therefor
JP2013243871A (en) Power source device, power source system, and electronic apparatus
JP6955951B2 (en) Discharge device
JP6632936B2 (en) Elevator control device
JP5239452B2 (en) Chopper circuit and method for detecting abnormality of smoothing capacitor
JP2020198244A (en) Led driving device and display apparatus, and control apparatus for the led driving device
JP2020198242A (en) Led driving device and display apparatus, and control apparatus for led driving device
JP2020198243A (en) Led driving device and display apparatus, and control apparatus for led driving device
US20230387827A1 (en) Power conversion device
WO2022153520A1 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6973336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150