JP6973062B2 - Positive electrode plate of lithium ion secondary battery - Google Patents

Positive electrode plate of lithium ion secondary battery Download PDF

Info

Publication number
JP6973062B2
JP6973062B2 JP2017253076A JP2017253076A JP6973062B2 JP 6973062 B2 JP6973062 B2 JP 6973062B2 JP 2017253076 A JP2017253076 A JP 2017253076A JP 2017253076 A JP2017253076 A JP 2017253076A JP 6973062 B2 JP6973062 B2 JP 6973062B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
particles
battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017253076A
Other languages
Japanese (ja)
Other versions
JP2019121420A (en
Inventor
有梨 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017253076A priority Critical patent/JP6973062B2/en
Publication of JP2019121420A publication Critical patent/JP2019121420A/en
Application granted granted Critical
Publication of JP6973062B2 publication Critical patent/JP6973062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム酸化物からなる正極活物質粒子を含む活物質層が集電箔上に形成された、リチウムイオン二次電池の正極板に関する。 The present invention relates to a positive electrode plate of a lithium ion secondary battery in which an active material layer containing positive electrode active material particles made of lithium oxide is formed on a current collector foil.

リチウムイオン二次電池(以下、単に「電池」ともいう)に用いられる正極板として、リチウム酸化物からなる正極活物質粒子を含む活物質層が集電箔上に形成された正極板が知られている。また、リチウム酸化物からなる正極活物質粒子として、リチウムニッケルコバルトアルミニウム複合酸化物粒子や、リチウムニッケルコバルトマンガン複合酸化物粒子、オリビン型リン酸鉄リチウム粒子、スピネル型リチウムマンガン酸化物粒子などが知られている。例えば特許文献1には、正極活物質粒子として、リチウムニッケルコバルトアルミニウム複合酸化物粒子が開示されている(特許文献1の特許請求の範囲等を参照)。 As a positive electrode plate used for a lithium ion secondary battery (hereinafter, also simply referred to as “battery”), a positive electrode plate in which an active material layer containing positive electrode active material particles made of lithium oxide is formed on a current collecting foil is known. ing. Further, as positive electrode active material particles made of lithium oxide, lithium nickel cobalt aluminum composite oxide particles, lithium nickel cobalt manganese composite oxide particles, olivine type iron phosphate lithium particles, spinel type lithium manganese oxide particles and the like are known. Has been done. For example, Patent Document 1 discloses lithium nickel-cobalt-aluminum composite oxide particles as positive electrode active material particles (see the scope of claims of Patent Document 1).

特開2016−88776号公報Japanese Unexamined Patent Publication No. 2016-88876

しかしながら、リチウム酸化物からなる正極活物質粒子は、大気中の水分に触れると、その粒子表面で水(H2O)と反応して水酸化リチウム(LiOH)を生じる(Li2O+H2O→2LiOH)。更に、この水酸化リチウムは大気中の二酸化炭素(CO2)と反応して炭酸リチウム(Li2CO3)を生じる(2LiOH+CO2→Li2CO3+H2O)。正極活物質粒子の粒子表面で生じた炭酸リチウムは抵抗体である。また、正極活物質粒子が水と反応し正極活物質粒子からリチウムイオンが抜けると、正極活物質粒子の結晶構造が変化し、正極活物質粒子におけるリチウムイオンの挿入離脱がし難くなる。このため、この正極板を用いた電池では、反応抵抗が高くなる。 However, when the positive electrode active material particles made of lithium oxide come into contact with water in the atmosphere, they react with water (H 2 O) on the surface of the particles to generate lithium hydroxide (LiOH) (Li 2 O + H 2 O → 2LiOH). Furthermore, this lithium hydroxide reacts with carbon dioxide (CO 2 ) in the atmosphere to produce lithium carbonate (Li 2 CO 3 ) (2 LiOH + CO 2 → Li 2 CO 3 + H 2 O). Lithium carbonate generated on the particle surface of the positive electrode active material particles is a resistor. Further, when the positive electrode active material particles react with water and lithium ions are removed from the positive electrode active material particles, the crystal structure of the positive electrode active material particles changes, and it becomes difficult for the lithium ions to be inserted and removed from the positive electrode active material particles. Therefore, in a battery using this positive electrode plate, the reaction resistance becomes high.

本発明は、かかる現状に鑑みてなされたものであって、大気中の水分及び二酸化炭素との接触に起因して、電池を形成したときに電池の反応抵抗が高くなるのを抑制できるリチウムイオン二次電池の正極板を提供することを目的とする。 The present invention has been made in view of the present situation, and is a lithium ion capable of suppressing an increase in the reaction resistance of a battery when the battery is formed due to contact with moisture and carbon dioxide in the atmosphere. It is an object of the present invention to provide a positive electrode plate of a secondary battery.

上記課題を解決するための本発明の一態様は、集電箔と、上記集電箔上に形成され、リチウム酸化物からなる第1正極活物質粒子を含む第1活物質層と、上記第1活物質層上に形成され、第2正極活物質粒子を含む第2活物質層と、を備えるリチウムイオン二次電池の正極板であって、上記第1正極活物質粒子は、1gの上記第1正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有し、上記第2正極活物質粒子は、1gの上記第2正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有し、上記第2活物質層は、吸湿剤粒子を含むリチウムイオン二次電池の正極板である。 One aspect of the present invention for solving the above problems is a collector foil, a first active material layer formed on the current collector foil and containing first positive electrode active material particles made of lithium oxide, and the first active material layer. A positive electrode plate of a lithium ion secondary battery formed on one active material layer and comprising a second active material layer containing the second positive positive active material particles, wherein the first positive positive active material particles are 1 g of the above. The second positive electrode active material particle has a characteristic that the pH of the dispersion liquid in which the first positive electrode active material particle is dispersed in 50 g of water is pH = 11.3 or more, and the second positive electrode active material particle is 1 g of the second positive electrode active material particle. The second active material layer has a characteristic that the pH of the dispersion liquid in which 50 g of water is dispersed is pH = 11.0 or less, and the second active material layer is a positive electrode plate of a lithium ion secondary battery containing a depolarizer particle.

第1活物質層に含める第1正極活物質粒子として、上記分散液のpHがpH=11.3以上となる特性の正極活物質粒子を用いたい場合がある。しかし、このような正極活物質粒子は、特に、水及び二酸化炭素と反応して水酸化リチウム及び炭酸リチウムを生じ易いため、前述のように、この正極板を用いた電池で反応抵抗が高くなる。
これに対し、上述の正極板では、第1活物質層の上に第2活物質層を設けたので、正極板の取り扱い時などに、第1活物質層中の第1正極活物質粒子に、大気中の水分及び二酸化炭素が接触し難くなる。このため、水分及び二酸化炭素との接触に起因して、第1活物質層中の第1正極活物質粒子の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。
一方で、第2活物質層に含まれる第2正極活物質粒子は、上記分散液のpHがpH=11.0以下となる特性を有する。即ち、第2正極活物質粒子は、第1正極活物質粒子に比べて水及び二酸化炭素との反応が穏やかである。このため、第1活物質層と第2活物質層とを合わせた活物質層全体で見たとき、活物質層全体が第1活物質層のみからなる場合に比べて、水分及び二酸化炭素との接触に起因して、正極活物質粒子の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。
As the first positive electrode active material particles to be included in the first active material layer, there are cases where it is desired to use positive electrode active material particles having a characteristic that the pH of the dispersion liquid is pH = 11.3 or more. However, since such positive electrode active material particles are particularly likely to react with water and carbon dioxide to generate lithium hydroxide and lithium carbonate, the reaction resistance becomes high in a battery using this positive electrode plate as described above. ..
On the other hand, in the above-mentioned positive electrode plate, since the second active material layer is provided on the first active material layer, the first positive electrode active material particles in the first active material layer are used when handling the positive electrode plate or the like. , Moisture in the atmosphere and carbon dioxide are less likely to come into contact. Therefore, due to the contact with water and carbon dioxide, lithium hydroxide and further lithium carbonate are generated on the particle surface of the first positive electrode active material particles in the first active material layer, and crystals are formed on the particle surface. It is possible to suppress the change of the structure.
On the other hand, the second positive electrode active material particles contained in the second active material layer have a characteristic that the pH of the dispersion liquid is pH = 11.0 or less. That is, the second positive electrode active material particles have a milder reaction with water and carbon dioxide than the first positive electrode active material particles. Therefore, when looking at the entire active material layer including the first active material layer and the second active material layer, the water content and carbon dioxide are higher than when the entire active material layer is composed of only the first active material layer. It is possible to suppress the formation of lithium hydroxide and further lithium carbonate on the particle surface of the positive electrode active material particles due to the contact with the positive particle, and the change in the crystal structure on the particle surface.

加えて、第2活物質層は吸湿剤粒子を含むため、正極板が大気中の水分に触れても、この水分は第2活物質層中の吸湿剤粒子によって吸湿されるので、水分が第2活物質層中の第2正極活物質粒子と反応することを抑制できる。また、水分が第2活物質層の下の第1活物質層まで届くのをより効果的に抑制できる。
これらにより、この正極板を用いた電池において、第1活物質層上に第2活物質層を有しない正極板を用いた電池に比べて、電池の反応抵抗を抑制した正極板とすることができる。
また、第2活物質層は、正極活物質粒子(第2正極活物質粒子)を含むため、第2活物質層を正極活物質粒子を含まない単なる保護層とする場合に比べて、正極板に含まれる正極活物質粒子の総量を多くして、電池容量を大きくできる。
In addition, since the second active material layer contains the hygroscopic agent particles, even if the positive electrode plate comes into contact with the moisture in the atmosphere, the moisture is absorbed by the hygroscopic agent particles in the second active material layer, so that the moisture is second. It is possible to suppress the reaction with the second positive electrode active material particles in the two active material layers. In addition, it is possible to more effectively suppress the water from reaching the first active material layer below the second active material layer.
As a result, in a battery using this positive electrode plate, a positive electrode plate having suppressed reaction resistance of the battery can be obtained as compared with a battery using a positive electrode plate having no second active material layer on the first active material layer. can.
Further, since the second active material layer contains the positive electrode active material particles (second positive electrode active material particles), the positive electrode plate is compared with the case where the second active material layer is simply a protective layer containing no positive electrode active material particles. The total amount of positive electrode active material particles contained in the above can be increased to increase the battery capacity.

なお、「吸湿剤粒子」としては、例えば、シリカゲル、石膏、モレキュラーシーブ(登録商標)(MS)等のゼオライト、酸化アルミニウム、ベーマイト、酸化カルシウム、塩化カルシウム、五酸化二リンなどの粒子が挙げられる。 Examples of the "moisture absorbent particles" include silica gel, gypsum, zeolites such as Molecular Sieve (registered trademark) (MS), and particles such as aluminum oxide, boehmite, calcium oxide, calcium chloride, and diphosphorus pentoxide. ..

更に、上記のリチウムイオン二次電池の正極板であって、前記吸湿剤粒子は、酸化アルミニウム粒子及びベーマイト粒子の少なくともいずれかであるリチウムイオン二次電池の正極板とするのが好ましい。 Further, it is preferable that the positive electrode plate of the lithium ion secondary battery is the positive electrode plate of the lithium ion secondary battery, which is at least one of aluminum oxide particles and boehmite particles, as the hygroscopic agent particles.

酸化アルミニウム(Al23)粒子及びベーマイト(AlCOOH)粒子は、安価で、取り扱いが容易であるため、吸湿剤粒子として上述の正極板に用いるのが特に好ましい。 Aluminum oxide (Al 2 O 3 ) particles and boehmite (AlCOOH) particles are inexpensive and easy to handle, so that they are particularly preferably used as the absorbent particles in the above-mentioned positive electrode plate.

更に、上記のリチウムイオン二次電池の正極板であって、酸化アルミニウム粒子及びベーマイト粒子の平均粒径は2.0μm以下であるリチウムイオン二次電池の正極板とするのが好ましい。 Further, it is preferable to use the positive electrode plate of the lithium ion secondary battery as described above, wherein the average particle size of the aluminum oxide particles and the boehmite particles is 2.0 μm or less.

酸化アルミニウム粒子及びベーマイト粒子の平均粒径が小さいほど、これらの比表面積が大きくなるため、水分が酸化アルミニウム粒子及びベーマイト粒子に吸着され易くなる(吸湿効果が大きくなる)。特に、酸化アルミニウム粒子及びベーマイト粒子の平均粒径を2.0μm以下とすることにより吸湿効果が大きくなるため、水分が第1正極活物質粒子及び第2正極活物質粒子に接触するのを効果的に抑制できる。
なお、酸化アルミニウム粒子及びベーマイト粒子の平均粒径は、これらの粒子の製造面やコスト面から、0.2μm以上とするのが好ましい。
The smaller the average particle size of the aluminum oxide particles and the boehmite particles, the larger the specific surface area of these particles, so that water is more easily adsorbed by the aluminum oxide particles and the boehmite particles (the moisture absorption effect becomes larger). In particular, since the moisture absorption effect is increased by setting the average particle size of the aluminum oxide particles and the boehmite particles to 2.0 μm or less, it is effective that the moisture comes into contact with the first positive electrode active material particles and the second positive electrode active material particles. Can be suppressed.
The average particle size of the aluminum oxide particles and the boehmite particles is preferably 0.2 μm or more from the viewpoint of manufacturing and cost of these particles.

また、他の態様は、リチウムイオン二次電池であって、上記のいずれかに記載の正極板と、負極板とを含む電極体を備えるリチウムイオン二次電池である。 Further, another aspect is a lithium ion secondary battery, which is a lithium ion secondary battery including an electrode body including the positive electrode plate and the negative electrode plate according to any one of the above.

上述のリチウムイオン二次電池に用いる正極板は、第1活物質層上に第2活物質層を設けている。このため、この電池では、第1活物質層上に第2活物質層を有しない正極板を用いた電池に比べて、前述のように電池の反応抵抗を抑制できている。 The positive electrode plate used in the above-mentioned lithium ion secondary battery has a second active material layer on the first active material layer. Therefore, in this battery, the reaction resistance of the battery can be suppressed as described above, as compared with the battery using the positive electrode plate which does not have the second active material layer on the first active material layer.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の断面図である。It is sectional drawing of the battery which concerns on embodiment. 実施形態に係る正極板の斜視図である。It is a perspective view of the positive electrode plate which concerns on embodiment. 実施形態に係る正極板の断面図である。It is sectional drawing of the positive electrode plate which concerns on embodiment. 実施形態に係る電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the battery which concerns on embodiment. 吸湿剤粒子の添加量と電池の反応抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of a hygroscopic agent particle, and the reaction resistivity ratio of a battery. 第2活物質層の層厚みと電池の反応抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the layer thickness of the 2nd active material layer, and the reaction resistivity ratio of a battery. 吸湿剤粒子の平均粒径と電池の反応抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of a hygroscopic agent particle, and the reaction resistivity ratio of a battery.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1の斜視図及び断面図を示す。また、図3及び図4に、電池1の正極板31の斜視図及び断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。また、正極板31の長手方向EH、幅方向FH及び厚み方向GHを、図3及び図4に示す方向と定めて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a perspective view and a cross-sectional view of a lithium ion secondary battery (hereinafter, also simply referred to as “battery”) 1 according to the present embodiment. Further, FIGS. 3 and 4 show a perspective view and a cross-sectional view of the positive electrode plate 31 of the battery 1. In the following, the battery vertical direction BH, the battery horizontal direction CH, and the battery thickness direction DH of the battery 1 will be described as the directions shown in FIGS. 1 and 2. Further, the longitudinal direction EH, the width direction FH, and the thickness direction GH of the positive electrode plate 31 will be described as the directions shown in FIGS. 3 and 4.

電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。この電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材70及び負極端子部材80等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。この電解液17は、溶質としてヘキサフルオロリン酸リチウム(LiPF6)を含む。 The battery 1 is a square and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle. The battery 1 is composed of a battery case 10, an electrode body 20 housed therein, a positive electrode terminal member 70 supported by the battery case 10, a negative electrode terminal member 80, and the like. Further, the electrolytic solution 17 is housed in the battery case 10, and a part of the electrolytic solution 17 is impregnated in the electrode body 20. The electrolytic solution 17 contains lithium hexafluorophosphate (LiPF 6 ) as a solute.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材70がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材70は、電池ケース10内で電極体20の正極板31の正極露出部31mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材80がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材80は、電池ケース10内で電極体20の負極板51の負極露出部51mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。 Of these, the battery case 10 has a rectangular parallelepiped shape and is made of metal (aluminum in this embodiment). The battery case 10 is composed of a bottomed square cylindrical case body member 11 having an opening only on the upper side, and a rectangular plate-shaped case lid member 13 welded in a form of closing the opening of the case body member 11. NS. A positive electrode terminal member 70 made of aluminum is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The positive electrode terminal member 70 is connected to and conducts with the positive electrode exposed portion 31 m of the positive electrode plate 31 of the electrode body 20 inside the battery case 10, while penetrating the case lid member 13 and extending to the outside of the battery. Further, a negative electrode terminal member 80 made of copper is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The negative electrode terminal member 80 is connected to and conducts with the negative electrode exposed portion 51m of the negative electrode plate 51 of the electrode body 20 inside the battery case 10, while penetrating the case lid member 13 and extending to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。この電極体20は、帯状の正極板31及び帯状の負極板51を、帯状で樹脂製の多孔質膜からなる一対のセパレータ61,61を介して互いに重ね、軸線周りに扁平状に捲回されてなる。 The electrode body 20 has a flat shape and is housed in the battery case 10 in a state of being laid on its side. A bag-shaped insulating film enclosing body 19 made of an insulating film is arranged between the electrode body 20 and the battery case 10. In the electrode body 20, a band-shaped positive electrode plate 31 and a band-shaped negative electrode plate 51 are superposed on each other via a pair of separators 61 and 61 made of a band-shaped and resin porous film, and are wound flat around an axis. It becomes.

正極板31(図3及び図4も参照)は、帯状のアルミニウム箔からなる正極集電箔32を有する。この正極集電箔32の一方の主面32aのうち、正極板31の幅方向FHの一部でかつ長手方向EHに延びる領域上には、層厚みt1=140μmの第1活物質層33が帯状に形成されている。また、正極集電箔32の他方の主面32bのうち、正極板31の幅方向FHの一部でかつ長手方向EHに延びる領域上にも、同様に層厚みt1=140μmの第1活物質層34が帯状に形成されている。 The positive electrode plate 31 (see also FIGS. 3 and 4) has a positive electrode current collector foil 32 made of strip-shaped aluminum foil. On one main surface 32a of the positive electrode current collector foil 32, a first active material layer 33 having a layer thickness t1 = 140 μm is formed on a region of the positive electrode plate 31 that is a part of the width direction FH and extends in the longitudinal direction EH. It is formed in a band shape. Further, on the other main surface 32b of the positive electrode current collector foil 32, which is a part of the FH in the width direction of the positive electrode plate 31 and extends in the EH in the longitudinal direction, the first active material having a layer thickness t1 = 140 μm is also similarly formed. The layer 34 is formed in a band shape.

これらの第1活物質層33,34は、リチウム酸化物からなる第1正極活物質粒子41、導電材42及び結着剤43を含む。本実施形態では、リチウム酸化物からなる第1正極活物質粒子41として、層状岩塩構造を有するリチウムニッケルコバルトアルミニウム複合酸化物、具体的には、平均粒径が10μmのLiNixCoyAl1-x-y2(NCA)の粒子を用いている。なお、x=0.75〜0.95、y=0.05〜0.25、1−x−y=0.01〜0.1である。この第1正極活物質粒子41は、1gの第1正極活物質粒子41を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有する。
また、本実施形態では、導電材42としてアセチレンブラック(AB)を、結着剤43としてポリフッ化ビニリデン(PVDF)を用いている。第1正極活物質粒子41と導電材42と結着剤43との重量配合比は、93:6:1である。
These first active material layers 33 and 34 include first positive electrode active material particles 41 made of lithium oxide, a conductive material 42, and a binder 43. In the present embodiment, as the first positive electrode active material particles 41 consisting of lithium oxide, lithium-nickel-cobalt-aluminum composite oxide having a layered rock salt structure, specifically, the average particle size is 10μm LiNi x Co y Al 1- Particles of xy O 2 (NCA) are used. In addition, x = 0.75 to 0.95, y = 0.05 to 0.25, 1-xy = 0.01 to 0.1. The first positive electrode active material particles 41 have a characteristic that the pH of a dispersion liquid in which 1 g of the first positive electrode active material particles 41 is dispersed in 50 g of water has a pH of 11.3 or more.
Further, in the present embodiment, acetylene black (AB) is used as the conductive material 42, and polyvinylidene fluoride (PVDF) is used as the binder 43. The weight blending ratio of the first positive electrode active material particles 41, the conductive material 42, and the binder 43 is 93: 6: 1.

また、一方の第1活物質層33の上には、その全面にわたり、第1活物質層33の層厚みt1=140μmよりも薄い層厚みt2=10μm(t2<t1)の第2活物質層35が形成されている。また、他方の第1活物質層34の上にも、その全面にわたり、第1活物質層34の層厚みt1=140μmよりも薄い層厚みt2=10μm(t2<t1)の第2活物質層36が形成されている。これらの第2活物質層35,36は、第2正極活物質粒子49、導電材45、結着剤46及び吸湿剤粒子47を含む。 Further, on one of the first active material layers 33, a second active material layer having a layer thickness t2 = 10 μm (t2 <t1) thinner than the layer thickness t1 = 140 μm of the first active material layer 33 over the entire surface thereof. 35 is formed. Further, on the other first active material layer 34, the second active material layer having a layer thickness t2 = 10 μm (t2 <t1) thinner than the layer thickness t1 = 140 μm of the first active material layer 34 over the entire surface thereof. 36 is formed. These second active material layers 35 and 36 include the second positive electrode active material particles 49, the conductive material 45, the binder 46 and the hygroscopic agent particles 47.

本実施形態では、第2正極活物質粒子49として、層状岩塩構造を有するリチウムニッケルコバルトマンガン複合酸化物、具体的には、平均粒径が10μmのLi1.02(Ni0.33Co0.33Mn0.33)O2 の粒子を用いている。この第2正極活物質粒子49は、1gの第2正極活物質粒子49を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有する。また、吸湿剤粒子47として、平均粒径0.5μmの酸化アルミニウム粒子を用いている。また、導電材45として第1活物質層33,34の導電材42と同じくABを、結着剤46として第1活物質層33,34の結着剤43と同じくPVDFを用いている。第2正極活物質粒子49と導電材45と結着剤46と吸湿剤粒子47との重量配合比は、91:8:1:1.5である。
なお、本実施形態では、第2活物質層35,36における導電材45の割合(7.9wt%)を、第1活物質層33,34における導電材42の割合(6.0wt%)よりも多くしている。このため、第2活物質層35,36が厚くなり正極板31が厚くなっても、正極板31内の導通を高く保つことができる。
In the present embodiment, as the second positive electrode active material particles 49, a lithium nickel cobalt manganese composite oxide having a layered rock salt structure, specifically, Li 1.02 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 having an average particle size of 10 μm. Particles are used. The second positive electrode active material particles 49 have a characteristic that the pH of the dispersion liquid in which 1 g of the second positive electrode active material particles 49 is dispersed in 50 g of water is pH = 11.0 or less. Further, aluminum oxide particles having an average particle size of 0.5 μm are used as the hygroscopic agent particles 47. Further, AB is used as the conductive material 45 like the conductive material 42 of the first active material layers 33 and 34, and PVDF is used as the binder 46 like the binder 43 of the first active material layers 33 and 34. The weight blending ratio of the second positive electrode active material particles 49, the conductive material 45, the binder 46, and the hygroscopic agent particles 47 is 91: 8: 1: 1.5.
In this embodiment, the ratio of the conductive material 45 in the second active material layers 35 and 36 (7.9 wt%) is higher than the ratio of the conductive material 42 in the first active material layers 33 and 34 (6.0 wt%). There are also many. Therefore, even if the second active material layers 35 and 36 become thick and the positive electrode plate 31 becomes thick, the continuity in the positive electrode plate 31 can be kept high.

なお、正極板31のうち幅方向FHの片方の端部は、厚み方向GHに第1活物質層33,34及び第2活物質層35,36が存在せず、正極集電箔32が厚み方向GHに露出した正極露出部31mとなっている。この正極露出部31mには、前述の正極端子部材70が溶接されている。 At one end of the positive electrode plate 31 in the width direction FH, the first active material layers 33, 34 and the second active material layers 35, 36 do not exist in the thickness direction GH, and the positive electrode current collector foil 32 has a thickness. The positive electrode exposed portion 31 m exposed in the direction GH. The above-mentioned positive electrode terminal member 70 is welded to the positive electrode exposed portion 31m.

負極板51は、帯状の銅箔からなる負極集電箔52を有する。この負極集電箔52の一方の主面のうち、負極板51の幅方向の一部でかつ長手方向に延びる領域上には、負極活物質層(不図示)が帯状に形成されている。また、負極集電箔52の他方の主面のうち、負極板51の幅方向の一部でかつ長手方向に延びる領域上にも、負極活物質層(不図示)が帯状に形成されている。これらの負極活物質層には、負極活物質粒子、結着剤及び増粘剤からなる。本実施形態では、負極活物質粒子として黒鉛粒子を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。 The negative electrode plate 51 has a negative electrode current collector foil 52 made of a strip-shaped copper foil. A negative electrode active material layer (not shown) is formed in a band shape on a region of one main surface of the negative electrode current collector foil 52, which is a part of the negative electrode plate 51 in the width direction and extends in the longitudinal direction. Further, a negative electrode active material layer (not shown) is formed in a band shape on a region of the other main surface of the negative electrode current collector foil 52, which is a part of the negative electrode plate 51 in the width direction and extends in the longitudinal direction. .. These negative electrode active material layers are composed of negative electrode active material particles, a binder and a thickener. In this embodiment, graphite particles are used as the negative electrode active material particles, styrene-butadiene rubber (SBR) is used as the binder, and carboxymethyl cellulose (CMC) is used as the thickener.

以上で説明したように、第1正極活物質粒子41は、前述の分散液のpHがpH=11.3以上となる特性の正極活物質粒子であり、特に、水及び二酸化炭素と反応して水酸化リチウム及び炭酸リチウムを生じ易い。このため、電池1の反応抵抗が高くなり易い。これに対し、本実施形態の正極板31は、第1活物質層33,34の上に第2活物質層35,36を設けたので、正極板31の取り扱い時などに、第1活物質層33,34中の第1正極活物質粒子41に、大気中の水分及び二酸化炭素が接触し難くなる。このため、水分及び二酸化炭素との接触に起因して、第1活物質層33,34中の第1正極活物質粒子41の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。 As described above, the first positive electrode active material particles 41 are positive electrode active material particles having a characteristic that the pH of the above-mentioned dispersion liquid is pH = 11.3 or more, and in particular, they react with water and carbon dioxide. Prone to generate lithium hydroxide and lithium carbonate. Therefore, the reaction resistance of the battery 1 tends to increase. On the other hand, in the positive electrode plate 31 of the present embodiment, since the second active material layers 35 and 36 are provided on the first active material layers 33 and 34, the first active material is used when the positive electrode plate 31 is handled. Moisture and carbon dioxide in the atmosphere are less likely to come into contact with the first positive electrode active material particles 41 in the layers 33 and 34. Therefore, due to the contact with water and carbon dioxide, lithium hydroxide and further lithium carbonate are generated on the particle surface of the first positive electrode active material particles 41 in the first active material layers 33 and 34, and It is possible to suppress changes in the crystal structure on the particle surface.

一方で、第2活物質層35,36に含まれる第2正極活物質粒子49は、前述の分散液のpHがpH=11.0以下となる特性を有する。即ち、第2正極活物質粒子49は、第1正極活物質粒子41に比べて水及び二酸化炭素との反応が穏やかである。このため、第1活物質層33,34と第2活物質層35,36とを合わせた活物質層全体で見たとき、活物質層全体が第1活物質層33,34のみからなる場合に比べて、水分及び二酸化炭素との接触に起因して、正極活物質粒子(第1正極活物質粒子41及び第2正極活物質粒子49)の粒子表面に水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面で結晶構造が変化することを抑制できる。 On the other hand, the second positive electrode active material particles 49 contained in the second active material layers 35 and 36 have a characteristic that the pH of the above-mentioned dispersion liquid is pH = 11.0 or less. That is, the second positive electrode active material particles 49 have a milder reaction with water and carbon dioxide than the first positive electrode active material particles 41. Therefore, when the entire active material layer including the first active material layers 33 and 34 and the second active material layers 35 and 36 is viewed, the entire active material layer is composed of only the first active material layers 33 and 34. Compared to the above, due to the contact with water and carbon dioxide, lithium hydroxide and further lithium carbonate are applied to the particle surface of the positive electrode active material particles (first positive positive active material particles 41 and second positive positive active material particles 49). It is possible to suppress the occurrence and change of the crystal structure on the particle surface.

加えて、第2活物質層35,36は吸湿剤粒子47を含むため、正極板31が大気中の水分に触れても、この水分は第2活物質層35,36中の吸湿剤粒子47によって吸湿されるので、水分が第2活物質層35,36中の第2正極活物質粒子49と反応することを抑制できる。また、水分が第2活物質層35,36の下の第1活物質層33,34まで届くのをより効果的に抑制できる。
これらにより、この正極板31を用いた電池1において、第1活物質層33,34上に第2活物質層35,36を有しない正極板を用いた電池に比べて、電池1の反応抵抗を抑制した正極板31とすることができる。
In addition, since the second active material layers 35 and 36 contain the hygroscopic agent particles 47, even if the positive electrode plate 31 comes into contact with the moisture in the atmosphere, the moisture remains in the hygroscopic agent particles 47 in the second active material layers 35 and 36. Therefore, it is possible to suppress the reaction of water with the second positive electrode active material particles 49 in the second active material layers 35 and 36. In addition, it is possible to more effectively suppress the water from reaching the first active material layers 33, 34 below the second active material layers 35, 36.
As a result, in the battery 1 using the positive electrode plate 31, the reaction resistance of the battery 1 is compared with the battery using the positive electrode plate having no second active material layers 35, 36 on the first active material layers 33, 34. The positive electrode plate 31 can be obtained.

また、第2活物質層35,36は、正極活物質粒子(第2正極活物質粒子49)を含むため、第2活物質層35,36を正極活物質粒子を含まない単なる保護層とする場合に比べて、正極板31に含まれる正極活物質粒子(第1正極活物質粒子41及び第2正極活物質粒子49)の総量を多くして、電池容量を大きくできる。 Further, since the second active material layers 35 and 36 contain the positive electrode active material particles (second positive electrode active material particles 49), the second active material layers 35 and 36 are merely protective layers that do not contain the positive electrode active material particles. Compared with the case, the total amount of the positive electrode active material particles (first positive electrode active material particles 41 and the second positive electrode active material particles 49) contained in the positive electrode plate 31 can be increased to increase the battery capacity.

また、本実施形態では、吸湿剤粒子47として、酸化アルミニウム粒子を用いている。酸化アルミニウム粒子は、安価で、取り扱いが容易であるため、吸湿剤粒子47として正極板31に用いるのが特に好ましい。
更に、この酸化アルミニウムの平均粒径を2.0μm以下(本実施形態では0.5μm)としている。平均粒径が小さいほど比表面積が大きくなるため、水分が酸化アルミニウム粒子に吸着され易くなる(吸湿効果が大きくなる)。特に、平均粒径を2.0μm以下とすることにより吸湿効果が大きくなるため、水分が第1正極活物質粒子41及び第2正極活物質粒子49に接触するのを効果的に抑制できる。一方、酸化アルミニウム粒子の製造面及びコスト面から、酸化アルミニウム粒子の平均粒径を0.2μm以上(本実施形態では0.5μm)とするのが好ましい。
Further, in the present embodiment, aluminum oxide particles are used as the hygroscopic agent particles 47. Since the aluminum oxide particles are inexpensive and easy to handle, it is particularly preferable to use the aluminum oxide particles as the hygroscopic agent particles 47 in the positive electrode plate 31.
Further, the average particle size of this aluminum oxide is set to 2.0 μm or less (0.5 μm in this embodiment). The smaller the average particle size, the larger the specific surface area, so that water is more easily adsorbed by the aluminum oxide particles (the hygroscopic effect becomes larger). In particular, since the hygroscopic effect is increased by setting the average particle size to 2.0 μm or less, it is possible to effectively suppress the contact of water with the first positive electrode active material particles 41 and the second positive electrode active material particles 49. On the other hand, from the viewpoint of manufacturing and cost of aluminum oxide particles, it is preferable that the average particle size of the aluminum oxide particles is 0.2 μm or more (0.5 μm in this embodiment).

また、本実施形態の電池1に用いる正極板31は、第1活物質層33,34上に第2活物質層35,36を設けている。このため、この電池1では、第1活物質層33,34上に第2活物質層35,36を有しない正極板を用いた電池に比べて、前述のように電池1の反応抵抗を抑制できている。 Further, the positive electrode plate 31 used for the battery 1 of the present embodiment is provided with the second active material layers 35 and 36 on the first active material layers 33 and 34. Therefore, in this battery 1, the reaction resistance of the battery 1 is suppressed as described above, as compared with the battery using the positive electrode plate which does not have the second active material layers 35 and 36 on the first active material layers 33 and 34. is made of.

次いで、正極板31の製造方法を含む電池1の製造方法について説明する(図5参照)。なお、本実施形態では、「正極板製造工程S1」及び「負極板製造工程S2」から「電池組立工程S4」までの各工程を25℃、湿度60%、露点温度16℃DPの環境下で行った。
まず「正極板製造工程S1」を行って、正極板31を製造する。予め第1活物質層33,34の形成に用いる第1ペーストと、第2活物質層35,36の形成に用いる第2ペーストとをそれぞれ用意しておく。
Next, a method of manufacturing the battery 1 including a method of manufacturing the positive electrode plate 31 will be described (see FIG. 5). In this embodiment, each process from the "positive electrode plate manufacturing process S1" and the "negative electrode plate manufacturing process S2" to the "battery assembly process S4" is performed in an environment of 25 ° C., a humidity of 60%, and a dew point temperature of 16 ° C. DP. went.
First, the "positive electrode plate manufacturing step S1" is performed to manufacture the positive electrode plate 31. A first paste used for forming the first active material layers 33 and 34 and a second paste used for forming the second active material layers 35 and 36 are prepared in advance.

具体的には、リチウム酸化物からなる第1正極活物質粒子41(本実施形態ではリチウムニッケルコバルトアルミニウム複合酸化物粒子)、導電材42(本実施形態ではAB)及び結着剤43(本実施形態ではPVDF)を、分散媒(本実施形態ではN−メチル−2−ピロリドン(NMP))と共に混練して、第1ペーストを得る。第1正極活物質粒子41と導電材42と結着剤43との混合比は、重量比で93:6:1とした。また、第1ペーストの固形分率を75wt%(NMPの割合を25wt%)とした。 Specifically, the first positive electrode active material particles 41 made of lithium oxide (lithium nickel cobalt aluminum composite oxide particles in this embodiment), the conductive material 42 (AB in this embodiment), and the binder 43 (this embodiment). In the embodiment, PVDF) is kneaded with a dispersion medium (N-methyl-2-pyrrolidone (NMP) in this embodiment) to obtain a first paste. The mixing ratio of the first positive electrode active material particles 41, the conductive material 42, and the binder 43 was 93: 6: 1 by weight. Further, the solid content ratio of the first paste was set to 75 wt% (the ratio of NMP was 25 wt%).

また、第2正極活物質粒子49(本実施形態ではリチウムニッケルコバルトマンガン複合酸化物)、導電材45(本実施形態ではAB)、結着剤46(本実施形態ではPVDF)及び吸湿剤粒子47(本実施形態では酸化アルミニウム粒子)を、分散媒(本実施形態ではNMP)と共に混練して、第2ペーストを得る。第2正極活物質粒子49と導電材45と結着剤46と吸湿剤粒子47との混合比は、重量比で91:8:1:1.5とした。また、第2ペーストの固形分率を65wt%(NMPの割合を35wt%)とした。 Further, the second positive electrode active material particles 49 (lithium nickel cobalt manganese composite oxide in this embodiment), the conductive material 45 (AB in this embodiment), the binder 46 (PVDF in this embodiment), and the hygroscopic agent particles 47. (Aluminum oxide particles in this embodiment) are kneaded together with a dispersion medium (NMP in this embodiment) to obtain a second paste. The mixing ratio of the second positive electrode active material particles 49, the conductive material 45, the binder 46, and the hygroscopic agent particles 47 was 91: 8: 1: 1.5 by weight. The solid content of the second paste was 65 wt% (NMP ratio was 35 wt%).

そして、ダイ塗工により、第1ペーストを正極集電箔32の一方の主面32a上に塗布して未乾燥第1活物質層(不図示)を形成し、続いて、グラビア塗工により、第2ペーストを塗布して未乾燥第2活物質層(不図示)を形成する。その後、これらを加熱乾燥させて、第1活物質層33及び第2活物質層35を同時に形成する。
同様に、正極集電箔32の他方の主面32a上にも第1ペーストを塗布して未乾燥第1活物質層(不図示)を形成し、続いて、第2ペーストを塗布して未乾燥第2活物質層(不図示)を形成する。その後、これらを加熱乾燥させて、第1活物質層34及び第2活物質層36を形成する。
その後、この正極板をプレスして、第1活物質層33,34及び第2活物質層35,36の密度をそれぞれ高める。かくして、正極板31が製造される。
Then, the first paste is applied on one main surface 32a of the positive electrode current collector foil 32 by die coating to form an undried first active material layer (not shown), and subsequently, by gravure coating. A second paste is applied to form an undried second active material layer (not shown). Then, they are heated and dried to form the first active material layer 33 and the second active material layer 35 at the same time.
Similarly, the first paste is applied to the other main surface 32a of the positive electrode current collector foil 32 to form an undried first active material layer (not shown), and then the second paste is not applied. A dry second active material layer (not shown) is formed. Then, they are heated and dried to form the first active material layer 34 and the second active material layer 36.
After that, the positive electrode plate is pressed to increase the densities of the first active material layers 33 and 34 and the second active material layers 35 and 36, respectively. Thus, the positive electrode plate 31 is manufactured.

また別途、「負極板製造工程S2」を行って、負極板51を製造する。予め負極活物質粒子(本実施形態では黒鉛粒子)、結着剤(本実施形態ではSBR)及び増粘剤(本実施形態ではCMC)を、分散媒(本実施形態では水)と共に混練した負極ペーストを用意しておく。そして、この負極ペーストをダイ塗工により負極集電箔52の一方の主面上に塗布して未乾燥負極活物質層(不図示)を形成し、その後、これを加熱乾燥させて負極活物質層(不図示)を形成する。同様に、負極集電箔52の他方の主面上にも負極ペーストを塗布して未乾燥負極活物質層(不図示)を形成し、その後、これを加熱乾燥させて負極活物質層(不図示)を形成する。その後、この負極板をプレスして、負極活物質層の密度をそれぞれ高める。かくして、負極板51が製造される。 Separately, the "negative electrode plate manufacturing process S2" is performed to manufacture the negative electrode plate 51. Negative electrode of negative electrode active material particles (graphite particles in this embodiment), binder (SBR in this embodiment) and thickener (CMC in this embodiment) kneaded together with a dispersion medium (water in this embodiment) in advance. Have the paste ready. Then, this negative electrode paste is applied on one main surface of the negative electrode current collector foil 52 by die coating to form an undried negative electrode active material layer (not shown), and then this is heated and dried to form a negative electrode active material. Form a layer (not shown). Similarly, a negative electrode paste is applied to the other main surface of the negative electrode current collector foil 52 to form an undried negative electrode active material layer (not shown), and then this is heated and dried to form a negative electrode active material layer (non-dried). (Illustrated) is formed. Then, the negative electrode plate is pressed to increase the density of each of the negative electrode active material layers. Thus, the negative electrode plate 51 is manufactured.

次に、「電極体形成工程S3」において、電極体20を形成する。具体的には、帯状の正極板31及び帯状の負極板51を2枚の帯状のセパレータ61,61を介して互いに重ね、巻き芯を用いて軸線周りに捲回する。更に、これを扁平状に圧縮して扁平状捲回型の電極体20を形成する(図2参照)。 Next, in the "electrode body forming step S3", the electrode body 20 is formed. Specifically, the strip-shaped positive electrode plate 31 and the strip-shaped negative electrode plate 51 are overlapped with each other via the two strip-shaped separators 61 and 61, and wound around the axis using a winding core. Further, this is compressed into a flat shape to form a flat winding type electrode body 20 (see FIG. 2).

次に、「電池組立工程S4」において、電池1を組み立てる。即ち、ケース蓋部材13を用意し、これに正極端子部材70及び負極端子部材80を固設する(図1及び図2参照)。その後、正極端子部材70及び負極端子部材80を、電極体20の正極板31の正極露出部31m及び負極板51の負極露出部51mにそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。 Next, in the "battery assembly step S4", the battery 1 is assembled. That is, the case lid member 13 is prepared, and the positive electrode terminal member 70 and the negative electrode terminal member 80 are fixedly attached to the case lid member 13 (see FIGS. 1 and 2). After that, the positive electrode terminal member 70 and the negative electrode terminal member 80 are welded to the positive electrode exposed portion 31 m of the positive electrode plate 31 of the electrode body 20 and the negative electrode exposed portion 51 m of the negative electrode plate 51, respectively. Next, the electrode body 20 is covered with the insulating film enclosing body 19, and these are inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10.

次に、「注液工程S5」において、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止する。なお、この注液工程S5は、前述の正極板製造工程S1〜電池組立工程S4の各工程とは異なり、25℃、露点温度−30℃DP以下のドライ環境下で行う。
次に、「初充電工程S6」において、この電池1を初充電する。この初充電工程S6は、正極板製造工程S1〜電池組立工程S4の各工程と同じく、25℃、湿度60%、露点温度16℃DPの環境下で行う。その後、この電池1について各種の検査を行う。かくして、電池1が完成する。
Next, in the "liquid injection step S5", the electrolytic solution 17 is injected into the battery case 10 from the liquid injection hole 13h and impregnated into the electrode body 20. After that, the liquid injection hole 13h is sealed with the sealing member 15. Note that this liquid injection step S5 is performed in a dry environment at 25 ° C. and a dew point temperature of −30 ° C. DP or less, unlike each step of the positive electrode plate manufacturing step S1 to the battery assembly step S4 described above.
Next, in the "first charging step S6", the battery 1 is first charged. This initial charging step S6 is performed in an environment of 25 ° C., a humidity of 60%, and a dew point temperature of 16 ° C. DP, as in each step of the positive electrode plate manufacturing step S1 to the battery assembly step S4. After that, various inspections are performed on the battery 1. Thus, the battery 1 is completed.

(試験結果)
次いで、本発明の効果を検証するために行った試験の結果について説明する(図6〜図8参照)。まず、第2活物質層35,36に含める吸湿剤粒子47の添加量と、電池の反応抵抗Rとの関係について調査した。表1に示すように、第2活物質層35,36に含める吸湿剤粒子47として、酸化アルミニウム粒子(平均粒径1.0μm)及びベーマイト粒子(平均粒径2.0μm)を用意し、吸湿剤粒子47の添加量を0〜2.5wt%に変更して、それ以外は実施形態と同様に正極板31を製造し、更に電池1を製造した。なお、吸湿剤粒子47の添加量(wt%)は、第2正極活物質粒子49、導電材45及び結着剤46の合計配合量を基準(=100wt%)としたときの添加量である。
(Test results)
Next, the results of the tests conducted to verify the effect of the present invention will be described (see FIGS. 6 to 8). First, the relationship between the amount of the absorbent particles 47 added to the second active material layers 35 and 36 and the reaction resistance R of the battery was investigated. As shown in Table 1, aluminum oxide particles (average particle size 1.0 μm) and boehmite particles (average particle size 2.0 μm) are prepared as the hygroscopic agent particles 47 to be included in the second active material layers 35 and 36, and moisture absorption is performed. The addition amount of the agent particles 47 was changed to 0 to 2.5 wt%, and the positive electrode plate 31 was manufactured in the same manner as in the other embodiments, and the battery 1 was further manufactured. The amount of the hygroscopic agent particles 47 added (wt%) is the amount added based on the total amount of the second positive electrode active material particles 49, the conductive material 45, and the binder 46 (= 100 wt%). ..

Figure 0006973062
Figure 0006973062

そして、各電池について、電池の反応抵抗Rをそれぞれ測定した。具体的には、SOC60%に調整した各電池について、環境温度25℃において、0.3C、1C、3C、5Cでの放電から初期IV抵抗を算出した。更に、吸湿剤粒子47の添加量=0wt%としたときの各電池の反応抵抗Rを基準(=100%)として、その他の電池の反応抵抗比をそれぞれ求めた。その結果を表1及び図6に示す。 Then, for each battery, the reaction resistance R of the battery was measured. Specifically, the initial IV resistance was calculated from the discharges at 0.3C, 1C, 3C, and 5C at an environmental temperature of 25 ° C. for each battery adjusted to SOC 60%. Further, the reaction resistivity ratios of the other batteries were determined with the reaction resistivity R of each battery as a reference (= 100%) when the addition amount of the hygroscopic agent particles 47 was 0 wt%. The results are shown in Table 1 and FIG.

表1及び図6から明らかなように、第2活物質層35,36に吸湿剤粒子47を含めると、吸湿剤粒子47として酸化アルミニウム粒子及びベーマイト粒子のいずれを用いた場合でも、第2活物質層35,36に吸湿剤粒子47を含めない場合(吸湿剤粒子47の添加量=0wt%)に比べて、電池の反応抵抗比が低く(反応抵抗Rが低く)なることが判る。特に、吸湿剤粒子47として酸化アルミニウム粒子を用いた場合には、添加量を1.0〜2.0wt%とすると、電池の反応抵抗比が特に低くなった。また、吸湿剤粒子47としてベーマイト粒子を用いた場合には、添加量を1.5〜2.5wt%とすると、電池の反応抵抗比が特に低くなった。このような結果となった理由は、以下であると考えられる。 As is clear from Table 1 and FIG. 6, when the hygroscopic agent particles 47 are included in the second active material layers 35 and 36, the second active is regardless of whether aluminum oxide particles or boehmite particles are used as the hygroscopic agent particles 47. It can be seen that the reaction resistance ratio of the battery is lower (reaction resistance R is lower) than when the material layers 35 and 36 do not include the hygroscopic agent particles 47 (addition amount of the hygroscopic agent particles 47 = 0 wt%). In particular, when aluminum oxide particles were used as the hygroscopic agent particles 47, the reaction resistivity of the battery was particularly low when the addition amount was 1.0 to 2.0 wt%. Further, when the boehmite particles were used as the hygroscopic agent particles 47, the reaction resistivity of the battery was particularly low when the addition amount was 1.5 to 2.5 wt%. The reason for this result is considered to be as follows.

即ち、第1正極活物質粒子41及び第2正極活物質粒子49は、大気中の水分に触れると、粒子表面で水と反応して水酸化リチウムを生じる(Li2O+H2O→2LiOH)。更に、この水酸化リチウムは大気中の二酸化炭素(CO2)と反応して炭酸リチウムを生じる(2LiOH+CO2→Li2CO3+H2O)。粒子表面で生じた炭酸リチウムは抵抗体である。また、第1正極活物質粒子41及び第2正極活物質粒子49が水と反応し、第1正極活物質粒子41及び第2正極活物質粒子49からリチウムイオンが抜けると、第1正極活物質粒子41及び第2正極活物質粒子49の結晶構造が変化し、第1正極活物質粒子41及び第2正極活物質粒子49におけるリチウムイオンの挿入離脱がし難くなる。このため、この正極板を用いた電池では、反応抵抗比が高く(反応抵抗Rが高く)なる。 That is, when the first positive electrode active material particles 41 and the second positive electrode active material particles 49 come into contact with water in the atmosphere, they react with water on the particle surface to generate lithium hydroxide (Li 2 O + H 2 O → 2 LiOH). Furthermore, this lithium hydroxide reacts with carbon dioxide (CO 2 ) in the atmosphere to produce lithium carbonate (2LiOH + CO 2 → Li 2 CO 3 + H 2 O). Lithium carbonate produced on the surface of the particles is a resistor. Further, when the first positive electrode active material particles 41 and the second positive electrode active material particles 49 react with water and lithium ions are released from the first positive electrode active material particles 41 and the second positive electrode active material particles 49, the first positive electrode active material The crystal structures of the particles 41 and the second positive electrode active material particles 49 are changed, and it becomes difficult for the lithium ions to be inserted and removed from the first positive electrode active material particles 41 and the second positive electrode active material particles 49. Therefore, in the battery using this positive electrode plate, the reaction resistivity ratio is high (the reaction resistivity R is high).

これに対し、第2活物質層35,36に吸湿剤粒子47を含めると、正極板31が大気中の水分に触れても、この水分は第2活物質層35,36中の吸湿剤粒子47によって吸湿される。このため、水分が第2活物質層35,36中の第2正極活物質粒子49と反応することを抑制できる。また、水分が第2活物質層35,36の下の第1活物質層33,34まで届くのを抑制できる。その結果、第2活物質層35,36に吸湿剤粒子47を含めると、電池の反応抵抗比が低く(反応抵抗Rが低く)なったと考えられる。 On the other hand, when the hygroscopic agent particles 47 are included in the second active material layers 35 and 36, even if the positive electrode plate 31 comes into contact with the moisture in the atmosphere, the moisture is the hygroscopic agent particles in the second active material layers 35 and 36. Moisture is absorbed by 47. Therefore, it is possible to suppress the reaction of water with the second positive electrode active material particles 49 in the second active material layers 35 and 36. In addition, it is possible to prevent water from reaching the first active material layers 33, 34 below the second active material layers 35, 36. As a result, it is considered that when the hygroscopic agent particles 47 were included in the second active material layers 35 and 36, the reaction resistivity ratio of the battery was low (reaction resistivity R was low).

なお、吸湿剤粒子47として酸化アルミニウム粒子を用いて添加量を2.5wt%に増やした場合に、かえって電池の反応抵抗比が高く(92%)なった理由は、以下であると考えられる。酸化アルミニウム粒子などの吸湿剤粒子47は、本来電池反応に不要な材料であるため、吸湿剤粒子47の添加量を増やし過ぎると、第2活物質層35,36内の導電パスを阻害し、電池の反応抵抗Rが高くなると考えられる。 It is considered that the reason why the reaction resistivity ratio of the battery was rather high (92%) when the addition amount was increased to 2.5 wt% by using aluminum oxide particles as the hygroscopic agent particles 47 is as follows. Since the hygroscopic agent particles 47 such as aluminum oxide particles are originally unnecessary materials for the battery reaction, if the addition amount of the hygroscopic agent particles 47 is increased too much, the conductive path in the second active material layers 35 and 36 is obstructed. It is considered that the reaction resistance R of the battery becomes high.

次に、第2活物質層35,36の層厚みt2と、電池の反応抵抗Rとの関係について調査した。表2に示すように、第2活物質層35,36に含める吸湿剤粒子47として、酸化アルミニウム粒子(平均粒径1.0μm)及びベーマイト粒子(平均粒径2.0μm)を用意し、第2活物質層35,36の層厚みt2を5〜30μmに変更して正極板31を製造し、更に電池1を製造した。そして、前述のようにして各電池の反応抵抗Rをそれぞれ測定し、表1における吸湿剤粒子47の添加量=0wt%としたときの各電池の反応抵抗Rを基準(=100%)として、各電池の反応抵抗比をそれぞれ求めた。その結果を表2及び図7に示す。 Next, the relationship between the layer thickness t2 of the second active material layers 35 and 36 and the reaction resistance R of the battery was investigated. As shown in Table 2, aluminum oxide particles (average particle size 1.0 μm) and boehmite particles (average particle size 2.0 μm) were prepared as the absorbent particles 47 to be included in the second active material layers 35 and 36. The positive electrode plate 31 was manufactured by changing the layer thickness t2 of the two active material layers 35 and 36 to 5 to 30 μm, and the battery 1 was further manufactured. Then, the reaction resistivity R of each battery is measured as described above, and the reaction resistivity R of each battery when the addition amount of the hygroscopic agent particles 47 in Table 1 is 0 wt% is used as a reference (= 100%). The reaction resistivity of each battery was determined. The results are shown in Table 2 and FIG.

Figure 0006973062
Figure 0006973062

表2及び図7から明らかなように、吸湿剤粒子47として酸化アルミニウム粒子及びベーマイト粒子のいずれを用いた場合でも、第2活物質層35,36の層厚みt2を厚くすると、電池の反応抵抗比が低く(反応抵抗Rが低く)なる。但し、第2活物質層35,36の層厚みt2を厚くし過ぎると、かえって電池の反応抵抗比が高く(反応抵抗Rが高く)なることが判る。その理由は、以下であると考えられる。 As is clear from Table 2 and FIG. 7, regardless of whether aluminum oxide particles or boehmite particles are used as the hygroscopic agent particles 47, when the layer thickness t2 of the second active material layers 35 and 36 is increased, the reaction resistivity of the battery is increased. The ratio is low (reaction resistivity R is low). However, it can be seen that if the layer thickness t2 of the second active material layers 35 and 36 is made too thick, the reaction resistivity ratio of the battery becomes rather high (reaction resistance R becomes high). The reason is considered to be as follows.

即ち、第2活物質層35,36の層厚みt2が厚いほど、水分が第2活物質層35,36を通過して、その下の第1活物質層33,34まで届くのを抑制できるため、水分が第1活物質層33,34中の第1正極活物質粒子41と反応することを抑制できる。その結果、第2活物質層35,36の層厚みt2を厚くするほど、電池の反応抵抗比が低く(反応抵抗Rが低く)なったと考えられる。 That is, the thicker the layer thickness t2 of the second active material layers 35 and 36, the more it is possible to prevent water from passing through the second active material layers 35 and 36 and reaching the first active material layers 33 and 34 below the second active material layers 35 and 36. Therefore, it is possible to suppress the reaction of water with the first positive electrode active material particles 41 in the first active material layers 33 and 34. As a result, it is considered that the thicker the layer thickness t2 of the second active material layers 35 and 36, the lower the reaction resistivity ratio of the battery (the lower the reaction resistivity R).

しかし、第2活物質層35,36の層厚みt2を厚くし過ぎると、第2活物質層35,36とその下の第1活物質層33,34との間で割れが発生したり、第2活物質層35,36が厚くなり過ぎたことにより、電解液17の浸透性が低下して、第1活物質層33,34で電池反応が効率良く行えなくなったために、電池の反応抵抗比が高く(反応抵抗Rが高く)なったと考えられる。 However, if the layer thickness t2 of the second active material layers 35 and 36 is made too thick, cracks may occur between the second active material layers 35 and 36 and the first active material layers 33 and 34 below the second active material layers 35 and 36. Since the second active material layers 35 and 36 became too thick, the permeability of the electrolytic solution 17 decreased, and the battery reaction could not be efficiently performed in the first active material layers 33 and 34, so that the reaction resistance of the battery was reduced. It is considered that the ratio was high (reaction resistivity R was high).

次に、吸湿剤粒子47の平均粒径と電池の反応抵抗Rとの関係について調査した。表3及び表4に示すように、第2活物質層35,36に含める吸湿剤粒子47として、平均粒径が異なる酸化アルミニウム粒子及びベーマイト粒子を用意し、これらを用いて正極板31を製造し、更に電池1を製造した。そして、前述のようにして各電池の反応抵抗Rをそれぞれ測定し、表1における吸湿剤粒子47の添加量=0wt%としたときの各電池の反応抵抗Rを基準(=100%)として、各電池の反応抵抗比をそれぞれ求めた。その結果を表3、表4及び図8に示す。 Next, the relationship between the average particle size of the hygroscopic agent particles 47 and the reaction resistance R of the battery was investigated. As shown in Tables 3 and 4, aluminum oxide particles and boehmite particles having different average particle sizes are prepared as the hygroscopic agent particles 47 included in the second active material layers 35 and 36, and the positive electrode plate 31 is manufactured using these particles. Then, the battery 1 was further manufactured. Then, the reaction resistivity R of each battery is measured as described above, and the reaction resistivity R of each battery when the addition amount of the hygroscopic agent particles 47 in Table 1 is 0 wt% is used as a reference (= 100%). The reaction resistivity of each battery was determined. The results are shown in Table 3, Table 4 and FIG.

Figure 0006973062
Figure 0006973062

Figure 0006973062
Figure 0006973062

表3、表4及び図8から明らかなように、吸湿剤粒子47として酸化アルミニウム粒子及びベーマイト粒子のいずれを用いた場合でも、平均粒径を小さくするほど、電池の反応抵抗比が低く(反応抵抗Rが低く)なることが判る。吸湿剤粒子47の平均粒径が小さいほど、比表面積が大きくなるため、水分が吸湿剤粒子47に吸着され易くなる。このため、水分が第1正極活物質粒子41及び第2正極活物質粒子49と反応することを抑制できる。その結果、吸湿剤粒子47の平均粒径を小さくするほど、電池の反応抵抗比が低く(反応抵抗Rが低く)なったと考えられる。 As is clear from Tables 3, 4 and 8, regardless of whether aluminum oxide particles or boehmite particles are used as the hygroscopic agent particles 47, the smaller the average particle size, the lower the reaction resistivity of the battery (reaction). It can be seen that the resistance R is low). The smaller the average particle size of the hygroscopic agent particles 47, the larger the specific surface area, so that moisture is easily adsorbed by the hygroscopic agent particles 47. Therefore, it is possible to suppress the reaction of water with the first positive electrode active material particles 41 and the second positive electrode active material particles 49. As a result, it is considered that the smaller the average particle size of the hygroscopic agent particles 47, the lower the reaction resistivity ratio (reaction resistance R) of the battery.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。 Although the present invention has been described above in accordance with the embodiment, it is needless to say that the present invention is not limited to the above-described embodiment and can be appropriately modified and applied without departing from the gist thereof.

1 リチウムイオン二次電池
17 電解液
20 電極体
31 正極板
32 正極集電箔
33,34 第1活物質層
35,36 第2活物質層
41 第1正極活物質粒子
42 (第1活物質層の)導電材
43 (第1活物質層の)結着剤
45 (第2活物質層の)導電材
46 (第2活物質層の)結着剤
47 (第2活物質層の)吸湿剤粒子
49 第2正極活物質粒子
t1 (第1活物質層の)層厚み
t2 (第2活物質層の)層厚み
1 Lithium-ion secondary battery 17 Electrolyte 20 Electrolyte body 31 Positive plate plate 32 Positive current collector foil 33, 34 First active material layer 35, 36 Second active material layer 41 First positive positive material particle 42 (First active material layer) Conductive material 43 (1st active material layer) Binder 45 (2nd active material layer) Conductive material 46 (2nd active material layer) Binder 47 (2nd active material layer) Moisture absorber Particle 49 Second positive electrode active material particle t1 (of the first active material layer) layer thickness t2 (of the second active material layer) layer thickness

Claims (1)

集電箔と、
上記集電箔上に形成され、リチウム酸化物からなる第1正極活物質粒子を含む第1活物質層と、
上記第1活物質層上に形成され、第2正極活物質粒子を含む第2活物質層と、を備える
リチウムイオン二次電池の正極板であって、
上記第1正極活物質粒子は、1gの上記第1正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有し、
上記第2正極活物質粒子は、1gの上記第2正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.0以下となる特性を有し、
上記第2活物質層は、吸湿剤粒子を含む
リチウムイオン二次電池の正極板。
With the current collector foil,
A first active material layer formed on the current collector foil and containing first positive electrode active material particles made of lithium oxide, and
A positive electrode plate of a lithium ion secondary battery formed on the first active material layer and comprising a second active material layer containing the second positive electrode active material particles.
The first positive electrode active material particles have a characteristic that the pH of a dispersion liquid in which 1 g of the first positive electrode active material particles is dispersed in 50 g of water has a pH of 11.3 or more.
The second positive electrode active material particles have a characteristic that the pH of a dispersion liquid in which 1 g of the second positive electrode active material particles is dispersed in 50 g of water has a pH of 11.0 or less.
The second active material layer is a positive electrode plate of a lithium ion secondary battery containing hygroscopic agent particles.
JP2017253076A 2017-12-28 2017-12-28 Positive electrode plate of lithium ion secondary battery Active JP6973062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253076A JP6973062B2 (en) 2017-12-28 2017-12-28 Positive electrode plate of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253076A JP6973062B2 (en) 2017-12-28 2017-12-28 Positive electrode plate of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019121420A JP2019121420A (en) 2019-07-22
JP6973062B2 true JP6973062B2 (en) 2021-11-24

Family

ID=67307905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253076A Active JP6973062B2 (en) 2017-12-28 2017-12-28 Positive electrode plate of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6973062B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024505B2 (en) 2018-03-02 2022-02-24 トヨタ自動車株式会社 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2020021553A (en) * 2018-07-30 2020-02-06 積水化学工業株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786581B2 (en) * 2007-03-29 2011-10-05 Tdk株式会社 Electrode for lithium ion secondary battery or electrochemical capacitor, and lithium ion secondary battery or electrochemical capacitor provided with the electrode
JP6469450B2 (en) * 2014-02-27 2019-02-13 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2019121420A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
EP2937919B1 (en) Mixed electrode for nonaqueous electrolyte batteries and method for producing same
JP7241701B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20120177974A1 (en) Non-aqueous electrolyte battery
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6323725B2 (en) Positive electrode active material used for lithium ion secondary battery
US10439209B2 (en) Electrode and non-aqueous electrolyte secondary battery
US20200119406A1 (en) Cylindrical nonaqueous electrolyte secondary battery
EP3113247A1 (en) Lithium ion secondary battery
JP5741936B2 (en) Lithium ion secondary battery
JP2013246900A (en) Secondary battery
BR102016000602B1 (en) LITHIUM SECONDARY BATTERY AND METHOD FOR MANUFACTURING LITHIUM SECONDARY BATTERY
JP6973062B2 (en) Positive electrode plate of lithium ion secondary battery
EP3151311B1 (en) Lithium ion secondary battery
US11387448B2 (en) Positive electrode plate of lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode plate of lithium ion secondary battery
JP2017091886A (en) Nonaqueous electrolyte secondary battery
JP6783146B2 (en) Electrodes and lithium-ion secondary batteries using them
JP6394987B2 (en) Non-aqueous electrolyte secondary battery
WO2016152037A1 (en) Secondary battery
JP2019040721A (en) Lithium ion secondary battery
JP7442061B2 (en) secondary battery
JP2012043658A (en) Lithium ion secondary battery and manufacturing method thereof
JP2017069181A (en) Lithium ion secondary battery
JP2013037774A (en) Manufacturing method of positive electrode for lithium ion secondary battery
JP2011049071A (en) Lithium secondary battery and method of manufacturing the same
JP2016105359A (en) Positive electrode active material and lithium ion secondary battery arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6973062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151