JP2016105359A - Positive electrode active material and lithium ion secondary battery arranged by use thereof - Google Patents

Positive electrode active material and lithium ion secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2016105359A
JP2016105359A JP2014243062A JP2014243062A JP2016105359A JP 2016105359 A JP2016105359 A JP 2016105359A JP 2014243062 A JP2014243062 A JP 2014243062A JP 2014243062 A JP2014243062 A JP 2014243062A JP 2016105359 A JP2016105359 A JP 2016105359A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
coating layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014243062A
Other languages
Japanese (ja)
Inventor
繁田 徳彦
Norihiko Shigeta
徳彦 繁田
友彦 加藤
Tomohiko Kato
友彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014243062A priority Critical patent/JP2016105359A/en
Publication of JP2016105359A publication Critical patent/JP2016105359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a positive electrode active material for a lithium ion secondary battery, which exhibits high cycle characteristics when raising a charging voltage to increase a charge depth for the purpose of materializing a lithium ion secondary battery with a higher performance; and a lithium ion secondary battery arranged by use of such a positive electrode active material.SOLUTION: A positive electrode active material of the present invention comprises: a positive electrode active material base material including a lithium complex oxide; and a coating layer covering a part of the positive electrode active material base material. The positive electrode active material base material shows paramagnetism. The coating layer is of a ferromagnetic oxide.SELECTED DRAWING: Figure 1

Description

本発明は、正極活物質及びそれを用いたリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material and a lithium ion secondary battery using the same.

リチウムイオン二次電池は、体積や重量あたりの容量が大きいことから携帯機器等に広く使われており、電気自動車などさらに大容量用途に向けた研究開発が盛んに進められている。   Lithium ion secondary batteries are widely used in portable devices and the like because of their large capacity per unit volume and weight, and research and development for higher capacity applications such as electric vehicles are being actively promoted.

リチウムイオン二次電池は、主として、正極と、負極と、正極と負極との間に配置される液状の電解質とから構成されている。正極及び負極それぞれの電極活物質はリチウムイオンの挿入・脱離が可能な材料で、リチウムイオン二次電池の大容量化のため、より大きなエネルギー密度を持つ材料探索が盛んに進められている。   A lithium ion secondary battery mainly includes a positive electrode, a negative electrode, and a liquid electrolyte disposed between the positive electrode and the negative electrode. Electrode active materials for the positive electrode and the negative electrode are materials capable of inserting and removing lithium ions, and in order to increase the capacity of lithium ion secondary batteries, the search for materials having a larger energy density has been actively pursued.

リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られ、高エネルギー密度を有する電池として実用化が進んでいる。 A lithium ion secondary battery using a lithium metal composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4V and has a high energy density. As practical use is progressing.

しかし、リチウムコバルト複合酸化物は、原料に高価で資源に制約があるコバルト化合物を用いているため、電池のコストアップの原因となる。このため、リチウムコバルト複合酸化物以外の正極活物質材料の探索も進められている。   However, since the lithium cobalt composite oxide uses a cobalt compound that is expensive and has limited resources as a raw material, it causes an increase in the cost of the battery. For this reason, search of positive electrode active material materials other than lithium cobalt complex oxide is also advanced.

リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。 Newly proposed materials as positive electrode active materials for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide using nickel. (LiNiO 2 ).

リチウムマンガン複合酸化物は、原料が安価であり、充電時にリチウムが脱離したときの結晶構造が安定であるために熱安定性に優れるが、理論容量がリチウムコバルト複合酸化物の半分程度しかないため、リチウムイオン二次電池の大容量化の要求に応えるのが難しいという欠点を有している。また、45℃以上では自己放電が激しく、サイクル特性も低下してしまうという問題もある。   Lithium-manganese composite oxide is excellent in thermal stability because the raw material is inexpensive and the crystal structure is stable when lithium is desorbed during charging, but the theoretical capacity is only about half that of lithium-cobalt composite oxide. For this reason, it has a drawback that it is difficult to meet the demand for a large capacity lithium ion secondary battery. Further, when the temperature is 45 ° C. or higher, there is a problem that the self-discharge is intense and the cycle characteristics are deteriorated.

一方、リチウムニッケル複合酸化物(LiNiO)は、リチウムコバルト複合酸化物より高い理論容量を持ち、安価なために有望な正極活物質材料の一つであるが、充電状態のリチウムが引き抜かれた状態の安定性が低いことから熱安定性に劣るという欠点がある。 On the other hand, lithium nickel composite oxide (LiNiO 2 ) has a higher theoretical capacity than lithium cobalt composite oxide and is one of the promising positive electrode active material materials because it is inexpensive. However, lithium in a charged state was extracted. There is a drawback that the thermal stability is inferior because the state stability is low.

リチウムニッケル複合酸化物の熱安定性と高い充放電容量を両立させるために、LiNi1/3Co1/3Mn1/3やLiNi0.5Mn0.5など、Niの一部をCo、Al、Mn、Cuなどの元素で置換する試みがなされおり、一定の効果が報告されている。 In order to achieve both the thermal stability and the high charge / discharge capacity of the lithium nickel composite oxide, it is possible to use a Ni material such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 or LiNi 0.5 Mn 0.5 O 2. Attempts have been made to replace parts with elements such as Co, Al, Mn, and Cu, and certain effects have been reported.

さらに、安定性を改善するため、正極活物質の周りを異種化合物で被覆し、正極活物質と電解液との直接的な接触を防ぐ方法が提案されている。例えば、特許文献1では、マンガン酸リチウム酸化物の表面にMg、Zn、Fe、Co、Ni、Snの酸化物又は水酸化物をコーティングすることを提案している。係るマンガン酸リチウム酸化物を正極活物質として用いた二次電池では、マンガン酸リチウム酸化物からのマンガンの溶出が抑えられ、高温保存後の容量維持率の改善が見られている。   Furthermore, in order to improve stability, a method has been proposed in which the positive electrode active material is covered with a different compound to prevent direct contact between the positive electrode active material and the electrolytic solution. For example, Patent Document 1 proposes coating the surface of lithium manganate oxide with an oxide or hydroxide of Mg, Zn, Fe, Co, Ni, Sn. In secondary batteries using such a lithium manganate oxide as a positive electrode active material, elution of manganese from the lithium manganate oxide is suppressed, and an improvement in capacity retention rate after high-temperature storage is seen.

また、特許文献2には、リチウム含有複合酸化物の粒子間に、酸化チタン、アルミナ、酸化亜鉛、酸化クロム、酸化リチウム、酸化ニッケル、酸化銅及び酸化鉄からなる群から選択される少なくとも1種の金属酸化物が分散されていることを特徴とする非水電解液二次電池用の正極が開示され、50サイクル後のサイクル特性が改善されている。   Patent Document 2 discloses at least one selected from the group consisting of titanium oxide, alumina, zinc oxide, chromium oxide, lithium oxide, nickel oxide, copper oxide, and iron oxide between the particles of the lithium-containing composite oxide. A positive electrode for a non-aqueous electrolyte secondary battery is disclosed in which the metal oxide is dispersed, and the cycle characteristics after 50 cycles are improved.

いずれの先行技術においても異種金属化合物が正極活物質の周囲を覆うことによりレート特性は低下する傾向にあり、特に充放電容量を高めるために充電電圧を高めて充電深度を高めた際のサイクル特性は十分ではない。これは充電電圧が高まるほど電解液の分解が発生しやすく、活物質の電解液への溶出によるインピーダンスの増加が原因と考えられる。   In any of the prior arts, the rate characteristics tend to be reduced by covering the periphery of the positive electrode active material with a different metal compound, and in particular, the cycle characteristics when the charge voltage is increased to increase the charge depth in order to increase the charge / discharge capacity. Is not enough. This is considered to be caused by the increase in impedance due to the elution of the active material into the electrolyte as the charge voltage increases.

特開2000−040512号公報JP 2000-040512 A 特開2004−6301号公報Japanese Patent Laid-Open No. 2004-6301

本発明は、充電電圧を高めて充電深度を高めた際、高いサイクル特性を示す正極活物質およびこれを用いたリチウムイオン二次電池を得ることを目的とする。   An object of this invention is to obtain the positive electrode active material which shows a high cycle characteristic, and a lithium ion secondary battery using the same, when charging voltage is raised and charging depth is raised.

上記目的を達成するために、本発明に係る正極活物質は、リチウム複合酸化物を含む正極活物質母材と、前記正極活物質母材の一部を被覆する被覆層とを有し、前記正極活物質母材は常磁性を示し、前記被覆層は強磁性酸化物であることを特徴とする。   In order to achieve the above object, a positive electrode active material according to the present invention has a positive electrode active material base material containing a lithium composite oxide, and a coating layer covering a part of the positive electrode active material base material, The positive electrode active material base material is paramagnetic, and the coating layer is a ferromagnetic oxide.

正極活物質母材と電解液との直接の接触を防ぐことで、高充電電位での電解液の分解が抑制されるほか、正極活物質母材の電解液への溶出を防ぎ、インピーダンスの増加を抑制する。その結果電池容量の劣化を抑えることができる。   By preventing direct contact between the positive electrode active material matrix and the electrolyte, decomposition of the electrolyte at high charging potential is suppressed, and elution of the positive electrode active material matrix into the electrolyte is prevented, increasing impedance. Suppress. As a result, deterioration of the battery capacity can be suppressed.

本発明では特に、高充電電位としたときのサイクル特性が優れるという効果を示す。正極活物質母材が常磁性、被覆層材料が強磁性を示すために密着が強固であり、劣化抑制効果が長期にわたって続く。そのため、高充電電位での高いサイクル特性向上効果を示すものと考えられる。   Especially in this invention, the effect that the cycling characteristics when it is set as high charge potential is excellent is shown. Since the positive electrode active material base material is paramagnetic and the coating layer material is ferromagnetic, the adhesion is strong and the effect of suppressing deterioration continues for a long time. Therefore, it is considered that a high cycle characteristic improvement effect at a high charge potential is exhibited.

さらに本発明に係る正極活物質は、正極活物質母材に対する被覆層の被覆量が、0.15〜10.0質量%であることが好ましい。このようにすることで、電池重量あたりの放電容量を高く保ちながら、高充電電位としたときのサイクル特性が優れる。   Furthermore, in the positive electrode active material according to the present invention, the coating amount of the coating layer with respect to the positive electrode active material base material is preferably 0.15 to 10.0% by mass. By doing in this way, the cycle characteristic when it is set as high charge potential is excellent, keeping the discharge capacity per battery weight high.

さらに本発明に係る正極活物質は、正極活物質母材に対する被覆層の被覆量が、0.25〜5.0質量%であることが好ましい。このようにすることで、電池重量あたりの放電容量をさらに高く保ちながら、高充電電位としたときのサイクル特性が優れる。   Furthermore, it is preferable that the coating amount of the coating layer with respect to a positive electrode active material base material is 0.25-5.0 mass% about the positive electrode active material which concerns on this invention. By doing in this way, the cycle characteristic when it is set as high charge potential is excellent, keeping the discharge capacity per battery weight still higher.

また、本発明に係る正極活物質は、正極活物質母材が二次粒子を構成しており、被覆層はその二次粒子を被覆していることが好ましい。このようにすることで、電池重量あたりの放電容量をさらに高く保ちながら、高充電電位としたときのサイクル特性が優れる。   In the positive electrode active material according to the present invention, it is preferable that the positive electrode active material base material constitutes secondary particles, and the coating layer covers the secondary particles. By doing in this way, the cycle characteristic when it is set as high charge potential is excellent, keeping the discharge capacity per battery weight still higher.

また、本発明に係る正極活物質は、被覆層が強磁性酸化物を含む粒子からなり、その粒子は、前記母材の平均粒子径(D50)の1/10以下であることが好ましい。このようにすることで、活物質粒子の表面を均一に被覆することが可能となり、高充電電位としたときのサイクル特性が優れる。   In the positive electrode active material according to the present invention, the coating layer is preferably composed of particles containing a ferromagnetic oxide, and the particles are preferably 1/10 or less of the average particle diameter (D50) of the base material. By doing in this way, it becomes possible to coat | cover the surface of an active material particle uniformly, and the cycling characteristics when it is set as a high charge potential are excellent.

さらに本発明に係るリチウムイオン二次電池は、被覆層の飽和磁化が10emu/g以上であることが好ましい。このようにすることで、高充電電位としたときの高いサイクル特性が得られ、その効果が長期に渡って継続する。   Furthermore, in the lithium ion secondary battery according to the present invention, the saturation magnetization of the coating layer is preferably 10 emu / g or more. By doing in this way, the high cycle characteristic when it is set as a high charge potential is acquired, and the effect continues over a long term.

さらに本発明に係るリチウムイオン二次電池は、正極活物質母材がマンガンリチウム酸化物、ニッケルリチウム酸化物またはLiMPO(MはFe,Mn,Niのうち少なくとも1種以上の元素を示す。)のいずれかを含むことが好ましい。マンガンリチウム酸化物は、LiMn、LiMnO、LiMnO、LiMnOとLiMO(M=Mn、Ni、Co)とのLiを過剰にした固溶体を含む。ニッケルリチウム酸化物はLiNiOの他、LiNi1/3Co1/3Mn1/3やLiNi0.5Mn0.5など、Niの一部をCo、Al、Mn、Cuなどの元素で置換したものを含む。 Furthermore, in the lithium ion secondary battery according to the present invention, the positive electrode active material base material is manganese lithium oxide, nickel lithium oxide, or LiMPO 4 (M represents at least one element selected from Fe, Mn, and Ni). It is preferable to contain any of these. Manganese lithium oxide includes a solid solution of LiMn 2 O 4 , LiMnO 2 , Li 2 MnO 3 , Li 2 MnO 3 and LiMO 2 (M = Mn, Ni, Co) in excess of Li. Nickel lithium oxides include LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.5 O 2, etc., a part of Ni such as Co, Al, Mn, Cu, etc. Including those substituted with these elements.

さらに本発明に係るリチウムイオン二次電池は、被覆層がFe、γ−Fe、LiFe、フェライト(MnFe、NiFe、CoFeなど)の少なくとも一つを含むことが好ましい。このようにすることで、電池重量あたりの放電容量をさらに高く保ちながら、高充電電位としたときのサイクル特性が優れる。 Further, in the lithium ion secondary battery according to the present invention, the coating layer has Fe 3 O 4 , γ-Fe 2 O 3 , LiFe 5 O 8 , ferrite (MnFe 2 O 4 , NiFe 2 O 4 , CoFe 2 O 4, etc.). It is preferable that at least one of these is included. By doing in this way, the cycle characteristic when it is set as high charge potential is excellent, keeping the discharge capacity per battery weight still higher.

さらに本発明に係るリチウムイオン二次電池は、上記の正極活物質を含有することが好ましい。   Furthermore, it is preferable that the lithium ion secondary battery which concerns on this invention contains said positive electrode active material.

本発明によれば、充電電圧を高めて充電深度を高めた際、高いサイクル特性を示すリチウムイオン二次電池用正極活物質およびこれを用いたリチウムイオン二次電池を得ることができる。   According to the present invention, when the charging voltage is increased to increase the charging depth, a positive electrode active material for a lithium ion secondary battery exhibiting high cycle characteristics and a lithium ion secondary battery using the same can be obtained.

本実施形態の、被覆層で覆われた正極活物質母材の模式断面図である。It is a schematic cross section of the positive electrode active material preform | base_material covered with the coating layer of this embodiment. 本実施形態の正極活物質を備えるリチウムイオン二次電池の模式断面図である。It is a schematic cross section of a lithium ion secondary battery provided with the positive electrode active material of this embodiment.

以下、本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

本実施形態の正極活物質は、図1に示すように常磁性を示すリチウム複合酸化物を含む正極活物質母材1の表面の少なくとも1部を、強磁性酸化物である被覆層2で被覆したものである。   As shown in FIG. 1, the positive electrode active material of this embodiment covers at least a part of the surface of a positive electrode active material base material 1 containing a lithium composite oxide exhibiting paramagnetism with a coating layer 2 that is a ferromagnetic oxide. It is a thing.

上記被覆層2を有することで、正極活物質母材1と電解液との直接の接触を防ぎ、高充電電位での電解液の分解が抑制されるほか、正極活物質母材1の電解液への溶出を防ぎ、インピーダンスの増加を抑制する。その結果、本発明では特に、高充電電位としたときのサイクル特性が優れるという効果を示す。正極活物質母材1が常磁性、被覆層2の材料が強磁性を示すために密着が強固であり、劣化抑制効果が長期にわたって続く。そのため、高充電電位での高いサイクル特性向上効果を示すものと考えられる。   By having the coating layer 2, direct contact between the positive electrode active material base material 1 and the electrolytic solution is prevented, decomposition of the electrolytic solution at a high charging potential is suppressed, and the electrolytic solution of the positive electrode active material base material 1. Prevents elution into and suppresses increase in impedance. As a result, the present invention exhibits an effect that the cycle characteristics are particularly excellent when the charge potential is high. Since the positive electrode active material base material 1 is paramagnetic and the material of the coating layer 2 is ferromagnetic, adhesion is strong, and the effect of suppressing deterioration continues for a long time. Therefore, it is considered that a high cycle characteristic improvement effect at a high charge potential is exhibited.

さらに、驚くべきことに本発明の効果として高充電電位でのレート特性も向上することを本発明者らは見出した。   Furthermore, the present inventors have surprisingly found that the rate characteristic at a high charging potential is also improved as an effect of the present invention.

(正極活物質母材)
本実施形態の正極活物質母材1は、例えば層状岩塩型、スピネル型、オリビン型の結晶構造を持つリチウム複合酸化物であり、常磁性を示すものである。その中でも、マンガンリチウム酸化物、ニッケルリチウム酸化物またはLiMPO(MはFe,Mn,Niのうち少なくとも1種以上の元素を示す。)のいずれかを含むことが好ましい。マンガンリチウム酸化物は、LiMn、LiMnO、LiMnO、LiMnOとLiMO(M=Mn、Ni、Co)とのLiを過剰にした固溶体を含むものである。ニッケルリチウム酸化物はLiNiOの他、LiNi1/3Co1/3Mn1/3やLiNi0.5Mn0.5など、Niの一部をCo、Al、Mn、Cuなどの元素で置換したものを含む。
(Positive electrode active material base material)
The positive electrode active material base material 1 of this embodiment is a lithium composite oxide having, for example, a layered rock salt type, spinel type, or olivine type crystal structure, and exhibits paramagnetism. Among these, it is preferable to contain any of manganese lithium oxide, nickel lithium oxide, or LiMPO 4 (M represents at least one element selected from Fe, Mn, and Ni). Manganese lithium oxide includes a solid solution of LiMn 2 O 4 , LiMnO 2 , Li 2 MnO 3 , Li 2 MnO 3 and LiMO 2 (M = Mn, Ni, Co) in excess of Li. Nickel lithium oxides include LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.5 O 2, etc., a part of Ni such as Co, Al, Mn, Cu, etc. Including those substituted with these elements.

正極活物質母材1の一次粒子の平均粒子径は0.05μm以上、10μm以下であることが好ましい。このような正極活物質を用いたリチウムイオン二次電池では、高容量のものが得られる。一次粒子の平均粒子径が0.05μmより大きい活物質を用いると、粉体の取扱いが容易になる傾向があり、10μmより小さい活物質を用いると、容量が損なわれない傾向がある。より好ましくは、平均一時粒子径は0.07μm以上、3μm以下である。   The average particle diameter of primary particles of the positive electrode active material base material 1 is preferably 0.05 μm or more and 10 μm or less. A lithium ion secondary battery using such a positive electrode active material has a high capacity. When an active material having an average primary particle size of more than 0.05 μm is used, the powder tends to be easily handled, and when an active material of less than 10 μm is used, the capacity tends not to be impaired. More preferably, the average temporary particle size is 0.07 μm or more and 3 μm or less.

また、正極活物質母材は二次粒子を形成していることが好ましく、その平均二次粒子径は、3μm以上、50μm以下であることが好ましい。平均二次粒子径が3μm以上であると、電極とした際の電極密度が大きくなる傾向にあり、50μm以下では、平坦な電極シートの作製が容易になる傾向にある。   Further, the positive electrode active material base material preferably forms secondary particles, and the average secondary particle diameter is preferably 3 μm or more and 50 μm or less. When the average secondary particle diameter is 3 μm or more, the electrode density tends to increase when it is used as an electrode, and when it is 50 μm or less, a flat electrode sheet tends to be easily produced.

(被覆層)
本実施形態の被覆層2は、強磁性酸化物を含む。このようにすることで、高充電電位での高いサイクル特性が優れるという効果を示す。
(Coating layer)
The coating layer 2 of this embodiment contains a ferromagnetic oxide. By doing in this way, the effect that the high cycle characteristic in a high charge potential is excellent is shown.

被覆層2の飽和磁化は、10emu/g以上であることが好ましい。このようにすることで正極活物質母材1と被覆層2の密着がより強固となり、高充電電位での高いサイクル特性が得られる。   The saturation magnetization of the coating layer 2 is preferably 10 emu / g or more. By doing so, the adhesion between the positive electrode active material base material 1 and the coating layer 2 becomes stronger, and high cycle characteristics at a high charge potential can be obtained.

電極材料の飽和磁化を測定する装置は特に限定されないが、VSM(Vibrating Sample Magnetometer:振動試料型磁力計)が好適に用いられる。VSMは、磁場中の試料を一定の周波数および振幅で振動させ、その磁化を測定する装置である。振動試料型磁力計の測定部位で試料を振動させ、試料に磁場を印加すると、振動に同期した磁力線が発生し、その磁化量を測定する。磁場に対する磁化量をプロットし、磁場=0に外捜した時の磁化量が強磁性体の飽和磁化となる。強磁性体の磁化は磁場=0でも残留磁化(飽和磁化)として残るが、常磁性体や反強磁性体は磁場=0のとき磁化も0となり、強磁性体とは明確に区別される。   An apparatus for measuring the saturation magnetization of the electrode material is not particularly limited, but a VSM (Vibrating Sample Magnetometer) is preferably used. VSM is a device that vibrates a sample in a magnetic field at a constant frequency and amplitude and measures its magnetization. When the sample is vibrated at the measurement site of the vibrating sample magnetometer and a magnetic field is applied to the sample, magnetic lines of force are generated in synchronization with the vibration, and the amount of magnetization is measured. The amount of magnetization with respect to the magnetic field is plotted, and the amount of magnetization when searching for magnetic field = 0 is the saturation magnetization of the ferromagnetic material. Although the magnetization of the ferromagnetic material remains as residual magnetization (saturation magnetization) even when the magnetic field = 0, the magnetization of the paramagnetic material and the antiferromagnetic material becomes 0 when the magnetic field = 0, and is clearly distinguished from the ferromagnetic material.

被覆層2となる具体的な強磁性酸化物材料としては、各種の酸化鉄、酸化鉄を主成分とし各種の置換元素を含むフェライト、二酸化クロムなどが挙げられる。フェライトは結晶構造上、スピネル型、YFe12などのガーネット型、SrFe1219、BaFe1219などのマグネトプランバイト型に分類される。これらの中でも、Fe、γ−Fe、LiFe、MnFe、NiFe、CoFeなどのスピネル型フェライトが本発明で好適に用いられる。 Specific examples of the ferromagnetic oxide material used as the coating layer 2 include various iron oxides, ferrite containing iron oxide as a main component and various substitution elements, and chromium dioxide. Ferrite is classified into spinel type, garnet type such as Y 3 Fe 5 O 12, and magnetoplumbite type such as SrFe 12 O 19 and BaFe 12 O 19 in terms of crystal structure. Among these, spinel type ferrites such as Fe 3 O 4 , γ-Fe 2 O 3 , LiFe 5 O 8 , MnFe 2 O 4 , NiFe 2 O 4 , and CoFe 2 O 4 are preferably used in the present invention.

被覆層2の一部が強磁性酸化物以外の物質を含んでいてもよく、含有量としては10質量%未満であることが好ましい。   A part of the coating layer 2 may contain a substance other than the ferromagnetic oxide, and the content is preferably less than 10% by mass.

被覆層2は、正極活物質母材1に付着しているだけでもよく、部分的に母材表面で反応し新たな界面層を形成してもよい。また、被覆率は、作用効果が発生する限り特に限定されるものではないが、正極活物質母材1の表面を75%以上被覆していることが好ましく、90%以上がより好ましい。   The coating layer 2 may be only attached to the positive electrode active material base material 1, or may partially react on the surface of the base material to form a new interface layer. Further, the coverage is not particularly limited as long as the effect is generated, but the surface of the positive electrode active material base material 1 is preferably 75% or more, and more preferably 90% or more.

正極活物質母材1に対する被覆量は、0.15〜10.0質量%であることが好ましく、0.5〜5.0質量%であることがより好ましい。0.15質量%以上であれば本実施形態の効果が増加する傾向にあり、10.0質量%以下であれば電池重量当たりの容量が損なわれない傾向にある。   The coating amount on the positive electrode active material base material 1 is preferably 0.15 to 10.0% by mass, and more preferably 0.5 to 5.0% by mass. If it is 0.15 mass% or more, the effect of this embodiment tends to increase, and if it is 10.0 mass% or less, the capacity per battery weight tends not to be impaired.

(正極活物質の製造方法)
正極活物質母材1の合成方法は、特に限定するものでなく、固相反応法、溶液からの析出を経てそれを焼成する方法、噴霧燃焼法、溶融塩法等種々の方法によって合成することができる。一例として固相反応法によって製造する場合、リチウム源となるLiOH・HO、LiCO等と、各金属源としての各金属の水酸化物、酸化物等とを、目的とする正極活物質母材の組成に応じた割合でそれぞれ混合し、酸素気流中あるいは空気中において、700〜1000℃程度の温度で、10〜20時間程度の時間焼成することにより合成することができる。
(Method for producing positive electrode active material)
The method of synthesizing the positive electrode active material base material 1 is not particularly limited, and may be synthesized by various methods such as a solid-phase reaction method, a method of firing the material through precipitation from a solution, a spray combustion method, and a molten salt method. Can do. For example, in the case of producing by a solid phase reaction method, LiOH · H 2 O, Li 2 CO 3 and the like serving as a lithium source, and hydroxides and oxides of the respective metals as the respective metal sources are intended positive electrodes They can be synthesized by mixing at a ratio corresponding to the composition of the active material base material and firing in an oxygen stream or in air at a temperature of about 700 to 1000 ° C. for about 10 to 20 hours.

正極活物質母材1への被覆方法としては、あらかじめ固相法、ゾルゲル法、共沈法で被覆層物質を作製し、該被覆層物質をボールミル等のメカノケミカル法で活物質に被覆させる乾式法で行うのが好ましい。   As a method of coating the positive electrode active material base material 1, a dry layer method is used in which a coating layer material is prepared in advance by a solid phase method, a sol-gel method, or a coprecipitation method, and the coating layer material is coated on the active material by a mechanochemical method such as a ball mill. Preferably by the method.

また、被覆材料となる原料溶液に活物質母材を混合、撹拌する湿式法を用いることもできる。湿式法として、共沈法、ゾルゲル法を用いることができ、二次粒子表面に付着後熱処理を施すことで目的の被覆層を得ることができる。   Further, a wet method in which an active material base material is mixed and stirred in a raw material solution to be a coating material can also be used. As the wet method, a coprecipitation method or a sol-gel method can be used, and a target coating layer can be obtained by applying a heat treatment after adhering to the secondary particle surface.

本発明の被覆層2は強磁性酸化物を含む粒子からなることが好ましく、その粒子の平均二次粒子径(D50)は、正極活物質母材二次粒子の平均二次粒子径(D50)の1/10以下であることが好ましく、より好ましくは1/100以下である。このようにすることで均一な被覆が可能となり、高充電電位としたときのサイクル特性が優れる。   The coating layer 2 of the present invention is preferably composed of particles containing a ferromagnetic oxide, and the average secondary particle diameter (D50) of the particles is the average secondary particle diameter (D50) of the positive electrode active material base material secondary particles. Is preferably 1/10 or less, more preferably 1/100 or less. By doing in this way, uniform coating becomes possible, and the cycle characteristics when the charge potential is high are excellent.

(リチウムイオン二次電池)
本発明に係る正極活物質を用いた正極およびリチウムイオン二次電池について説明する。
(Lithium ion secondary battery)
A positive electrode and a lithium ion secondary battery using the positive electrode active material according to the present invention will be described.

図2に示す通り、リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備える。   As shown in FIG. 2, the lithium ion secondary battery 100 mainly includes a stacked body 30, a case 50 that accommodates the stacked body 30 in a sealed state, and a pair of leads 60 and 62 connected to the stacked body 30.

積層体30は、正極10および負極20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14および負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12および負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that the positive electrode 10 and the negative electrode 20 are disposed to face each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

ここで、正極10の正極集電体12としては、例えば、アルミニウム箔等を使用できる。正極活物質層14は、上述の活物質粒子、バインダーおよび、必要に応じて添加される導電材を含む層である。必要に応じて添加される導電材としては、例えば、カーボンブラック類、炭素材料、ITO等の導電性酸化物が挙げられる。   Here, as the positive electrode current collector 12 of the positive electrode 10, for example, an aluminum foil or the like can be used. The positive electrode active material layer 14 is a layer containing the above-described active material particles, a binder, and a conductive material added as necessary. Examples of the conductive material added as necessary include carbon blacks, carbon materials, and conductive oxides such as ITO.

また上記バインダーは、上記活物質粒子と導電材とを集電体に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。   The binder is not particularly limited as long as the active material particles and the conductive material can be bound to the current collector, and a known binder can be used. Examples thereof include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer.

このような正極は、公知の方法、例えば、前述の活物質粒子1を含む電極活物質、又は活物質粒子1、バインダーおよび導電材を、それらの種類に応じた溶媒、例えばPVDFの場合はN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の溶媒に添加したスラリーを、正極集電体12の表面に塗布し、乾燥させることにより製造できる。   Such a positive electrode is formed by a known method, for example, an electrode active material including the active material particles 1 described above, or an active material particle 1, a binder, and a conductive material, and a solvent corresponding to their type, for example, N in the case of PVDF. -Slurry added to a solvent such as methyl-2-pyrrolidone or N, N-dimethylformamide is applied to the surface of the positive electrode current collector 12 and dried.

負極集電体22としては、銅箔等を使用できる。また、負極活物質層24としては、負極活物質、導電材および、バインダーを含むものを使用できる。導電材としては特に限定されず、炭素材料、金属粉などが使用できる。負極に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が使用できる。   As the negative electrode current collector 22, a copper foil or the like can be used. Moreover, as the negative electrode active material layer 24, the thing containing a negative electrode active material, a electrically conductive material, and a binder can be used. It does not specifically limit as a electrically conductive material, A carbon material, a metal powder, etc. can be used. As the binder used for the negative electrode, fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) can be used.

負極活物質としては、黒鉛、難黒鉛化炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属や、SiO、SiO等のシリコン酸化物や、その他SnO等の金属酸化物、またそれら酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。 Examples of the negative electrode active material include carbon materials such as graphite and non-graphitizable carbon, metals that can be combined with lithium such as Al, Si, and Sn, silicon oxides such as SiO 2 and SiO, and other SnO 2 Examples thereof include particles containing metal oxides, amorphous compounds mainly composed of these oxides, lithium titanate (Li 4 Ti 5 O 12 ), and the like.

負極20の製造方法は、正極10の製造方法と同様にスラリーを調整して集電体に塗布すればよい。   The manufacturing method of the negative electrode 20 should just adjust slurry and apply | coat to a collector like the manufacturing method of the positive electrode 10. FIG.

電解液としては、特に限定されず、例えば、本実施形態では、有機溶媒にリチウム塩を含む電解液を使用することができる。リチウム塩としては、例えば、LiPF、LiClO、LiBF等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolytic solution is not particularly limited. For example, in the present embodiment, an electrolytic solution containing a lithium salt in an organic solvent can be used. Examples of the lithium salt, LiPF 6, LiClO 4, salts of LiBF 4 or the like can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネートおよび、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Preferred examples of the organic solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and the like. These may be used alone or in combination of two or more at any ratio.

また、セパレータ18は、ポリエチレン、ポリプロピレン又はポリオレフィンからなる多孔質フィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が使用できる。   The separator 18 is at least one selected from the group consisting of a monolayer of a porous film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester and polypropylene. A fiber nonwoven fabric made of a constituent material can be used.

ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されず、例えば、金属ラミネートフィルムを利用できる。   The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, a metal laminate film can be used. .

リード60,62は、アルミニウム、等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

本実施形態の活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(カソードに本発明の複合粒子を含む電極を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。   The active material of this embodiment can also be used as an electrode material for electrochemical devices other than lithium ion secondary batteries. As such an electrochemical element, a secondary battery other than a lithium ion secondary battery, such as a metallic lithium secondary battery (which uses an electrode containing the composite particles of the present invention as a cathode and metallic lithium as an anode). And electrochemical capacitors such as lithium capacitors.

(実施例1)
(正極活物質の作成)
常磁性正極活物質母材としては、LiNi0.8Co0.15Al0.05を用いた。二次粒子を形成しておらず、1次粒子のD50平均粒径は0.85μmである。
被覆層としては、D50平均粒径が0.25μmのMgFe粒子を用いた。VSM(東英工業(株)製、VSM−P7型)を用いて飽和磁化を求めたところ、8.4emu/gであった。
最終的に得られる正極活物質は、正極活物質母材に対し、15質量%のMgFeからなる被覆層となるようにMgFe粒子を加え、直径1μmの安定化ジルコニアビーズとともにポットミル中で回転数200rpm、3時間混合処理を行った。
混合処理を行った正極活物質粉末についてX線回折や、SEM観察を行い、正極活物質母材粒子の表面にMgFe粒子が均一に被覆していることを確認した。
また、ICP発光分析装置にてLi、Ni、Co、Al、MgおよびFeの定量分析を行った。Li、Ni、CoおよびAlの定量値からモル数を算出し、その合計モル数と等モルの酸素を加えることでLiNi0.8Co0.15Al0.05の重量を算出した。また、MgとFeの定量値からモル数を算出し、その合計モル数の4/3倍モルの酸素を加えることでMgFeの重量を算出した。その結果、混合処理を行った正極活物質粉末は、LiNi0.8Co0.15Al0.05に対し15.0質量%のMgFeを被覆層として含んでいることがわかった。
なお、D50平均粒径は走査型電子顕微鏡による画像解析により算出した。以降も特に断りのない限りこの方法を用いている。
Example 1
(Creation of positive electrode active material)
LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the paramagnetic positive electrode active material base material. Secondary particles are not formed, and the D50 average particle size of the primary particles is 0.85 μm.
As the coating layer, MgFe 2 O 4 particles having a D50 average particle diameter of 0.25 μm were used. It was 8.4 emu / g when saturation magnetization was calculated | required using VSM (Toei Kogyo Co., Ltd. make, VSM-P7 type | mold).
The finally obtained positive electrode active material has MgFe 2 O 4 particles added to the positive electrode active material base material so as to form a coating layer of 15% by mass of MgFe 2 O 4, together with stabilized zirconia beads having a diameter of 1 μm. The mixing process was performed in a pot mill at 200 rpm for 3 hours.
The positive electrode active material powder subjected to the mixing treatment was subjected to X-ray diffraction and SEM observation, and it was confirmed that MgFe 2 O 4 particles were uniformly coated on the surface of the positive electrode active material base material particles.
In addition, quantitative analysis of Li, Ni, Co, Al, Mg, and Fe was performed using an ICP emission analyzer. The number of moles was calculated from the quantitative values of Li, Ni, Co, and Al, and the weight of LiNi 0.8 Co 0.15 Al 0.05 O 2 was calculated by adding oxygen in an amount equal to the total number of moles. The number of moles was calculated from the quantitative values of Mg and Fe, and the weight of MgFe 2 O 4 was calculated by adding 4/3 times the total number of moles of oxygen. As a result, it was found that the mixed positive electrode active material powder contained 15.0% by mass of MgFe 2 O 4 as a coating layer with respect to LiNi 0.8 Co 0.15 Al 0.05 O 2. It was.
The D50 average particle diameter was calculated by image analysis using a scanning electron microscope. Thereafter, this method is used unless otherwise specified.

被覆処理済みの活物質と、導電助剤と、バインダーを含む溶媒とを混合して、正極用塗料を調製した。正極用塗料を集電体であるアルミニウム箔(厚み22μm)にドクターブレード法で塗布後、110℃で乾燥し、圧延した。これにより、正極活物質層及び集電体から構成される正極を得た。導電助剤としては、ケッチェンブラック(ライオン(株)製、EC600JD)およびアセチレンブラック(電気化学工業(株)製、FX−35)を用いた。バインダーを含む溶媒としては、PVDFを溶解したN−メチル−2−ピロリドン(呉羽化学工業(株)製、KF7305)を用いた。   A coating material for positive electrode was prepared by mixing a coated active material, a conductive additive, and a solvent containing a binder. The positive electrode coating material was applied to an aluminum foil (thickness 22 μm) as a current collector by a doctor blade method, dried at 110 ° C., and rolled. This obtained the positive electrode comprised from a positive electrode active material layer and a collector. As the conductive assistant, ketjen black (manufactured by Lion Corporation, EC600JD) and acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., FX-35) were used. As a solvent containing a binder, N-methyl-2-pyrrolidone (manufactured by Kureha Chemical Industry Co., Ltd., KF7305) in which PVDF was dissolved was used.

(ハーフセル作成)
作製した正極、セパレータ(ポリオレフィン製の微多孔質膜)を所定の寸法に切断した。負極は、銅箔集電体にリチウム箔を貼付したものを用いた。正極には、外部引き出し端子を溶接するために電極用塗料を塗布しない部分を設けておいた。正極、負極、セパレータをこの順序で積層した。正極、負極には、それぞれ、外部引き出し端子としてアルミニウム箔(幅4mm、長さ40mm、厚み80μm)、ニッケル箔(幅4mm、長さ40mm、厚み80μm)を超音波溶接した。この外部引き出し端子に、無水マレイン酸をグラフト化したポリプロピレン(PP)を巻き付け熱接着させた。正極、負極、セパレータを積層した電池要素を封入する電池外装体として、PET(ポリエチレンテレフタレート)層、Al層およびPP(ポリプロピレン)層から構成されるアルミニウムラミネート材料を用いた。PET層の厚さは12μm、Al層の厚さは40μm、PP層の厚さは50μmである。この外装体の中に電池要素を入れ電解液を適当量添加し、外装体を真空ヒートシールし、実施例1のリチウムイオン二次電池を作製した。なお、電解液としては、エチレンカーボンネート(EC)とジエチルカーボネート(DEC)の混合溶媒にLiPF6を濃度1M(mol/L)で溶解させたものを用いた。混合溶媒におけるECとDMCとの体積比は、EC:DMC=3:7とした。
(Half-cell creation)
The produced positive electrode and separator (polyolefin microporous membrane) were cut into predetermined dimensions. The negative electrode used was a copper foil current collector with a lithium foil attached thereto. The positive electrode was provided with a portion to which no electrode paint was applied in order to weld the external lead terminal. A positive electrode, a negative electrode, and a separator were laminated in this order. The positive electrode and the negative electrode were ultrasonically welded with an aluminum foil (width 4 mm, length 40 mm, thickness 80 μm) and nickel foil (width 4 mm, length 40 mm, thickness 80 μm) as external lead terminals, respectively. Polypropylene (PP) grafted with maleic anhydride was wrapped around this external lead terminal and thermally bonded. An aluminum laminate material composed of a PET (polyethylene terephthalate) layer, an Al layer, and a PP (polypropylene) layer was used as a battery outer package enclosing a battery element in which a positive electrode, a negative electrode, and a separator were laminated. The thickness of the PET layer is 12 μm, the thickness of the Al layer is 40 μm, and the thickness of the PP layer is 50 μm. A battery element was put into the outer package, an appropriate amount of electrolyte was added, and the outer package was vacuum heat sealed to produce a lithium ion secondary battery of Example 1. In addition, as electrolyte solution, what dissolved LiPF6 with the density | concentration of 1M (mol / L) in the mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used. The volume ratio of EC to DMC in the mixed solvent was EC: DMC = 3: 7.

(充放電レート測定)
実施例1のハーフセルを25℃環境にて所定の条件で充電した後、放電することにより、充電容量と放電容量(単位:mAh/g)を測定した。この測定では、正極活物質であるLiNi0.8Co0.15Al0.05の理論容量を200mAh/gとした。充電では、上限充電電圧を4.5V(VS.Li/Li)とし、充電レート0.1Cで、正極の電圧が上限充電電圧に達し、かつ、充電電流が1/20Cまで減衰するまで行った。放電は、下限放電電圧を2.8V(VS.Li/Li)とし、放電レートは0.1Cとし、これを0.1C放電容量とした。0.1Cとは、10時間の定電流放電によって放電終了となるような電流値である。
次に、充電レートを0.5Cに変更して充電を行った後、放電レート2Cで放電を行い、これを2C放電容量とした。レート特性の評価のため、2C放電容量/0.1C放電容量を算出した。
(Charge / discharge rate measurement)
After charging the half cell of Example 1 under a predetermined condition in a 25 ° C. environment, the charge capacity and the discharge capacity (unit: mAh / g) were measured by discharging. In this measurement, the theoretical capacity of LiNi 0.8 Co 0.15 Al 0.05 O 2 as the positive electrode active material was set to 200 mAh / g. The charging is performed until the upper limit charging voltage is 4.5 V (VS. Li / Li + ), the charging rate is 0.1 C, the positive electrode voltage reaches the upper limit charging voltage, and the charging current is attenuated to 1/20 C. It was. For the discharge, the lower limit discharge voltage was 2.8 V (VS. Li / Li + ), the discharge rate was 0.1 C, and this was the 0.1 C discharge capacity. 0.1 C is a current value at which the discharge is terminated by a constant current discharge for 10 hours.
Next, after charging at a charge rate of 0.5 C, discharging was performed at a discharge rate of 2 C, which was defined as a 2 C discharge capacity. For evaluation of the rate characteristics, 2C discharge capacity / 0.1C discharge capacity was calculated.

(サイクル測定)
次に、充電レート・放電レートともに0.5Cの条件でサイクル特性を測定した。上限充電電圧と下限放電電圧は、儒放電レート測定と同様、それぞれ4.5Vおよび2.8Vとした。サイクル特性の評価のため、50サイクル目の放電容量/1サイクル目の放電容量を算出した。
(Cycle measurement)
Next, the cycle characteristics were measured under the condition of 0.5 C for both the charge rate and the discharge rate. The upper limit charging voltage and the lower limit discharging voltage were 4.5 V and 2.8 V, respectively, as in the soot discharge rate measurement. In order to evaluate the cycle characteristics, the discharge capacity at the 50th cycle / the discharge capacity at the first cycle was calculated.

(実施例2)
正極活物質母材に対するMgFe粒子の量を、0.10質量%としたのを除き、実施例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 2)
A half cell was prepared in the same manner as in Example 1 except that the amount of MgFe 2 O 4 particles with respect to the positive electrode active material base material was 0.10% by mass, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例3)
正極活物質母材に対するMgFe粒子の量を、0.15質量%としたのを除き、実施例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 3)
A half cell was prepared in the same manner as in Example 1 except that the amount of MgFe 2 O 4 particles with respect to the positive electrode active material base material was 0.15 mass%, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例4)
正極活物質母材に対するMgFe粒子の量を、10.0質量%としたのを除き、実施例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
Example 4
A half cell was prepared in the same manner as in Example 1 except that the amount of MgFe 2 O 4 particles relative to the positive electrode active material base material was 10.0% by mass, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例5)
正極活物質母材に対するMgFe粒子の量を、0.25質量%としたのを除き、実施例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 5)
A half cell was prepared in the same manner as in Example 1 except that the amount of MgFe 2 O 4 particles relative to the positive electrode active material base material was 0.25% by mass, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例6)
正極活物質母材に対するMgFe粒子の量を、5.0質量%としたのを除き、実施例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 6)
A half cell was prepared in the same manner as in Example 1 except that the amount of MgFe 2 O 4 particles with respect to the positive electrode active material base material was 5.0 mass%, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例7)
正極活物質母材として、二次粒子を形成しているLiNi0.8Co0.15Al0.05を用いた。1次粒子の粒径は0.8μm前後、二次粒子のD50平均粒径は12.7μmであった。
被覆層として、D50平均粒径が1.75μmのMgFe粒子を用い、正極活物質母材に対するMgFe粒子の量を2.5質量%としたのを除き、実施例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 7)
LiNi 0.8 Co 0.15 Al 0.05 O 2 forming secondary particles was used as the positive electrode active material base material. The particle diameter of the primary particles was around 0.8 μm, and the D50 average particle diameter of the secondary particles was 12.7 μm.
Example 1 except that MgFe 2 O 4 particles having a D50 average particle diameter of 1.75 μm were used as the coating layer and the amount of MgFe 2 O 4 particles was 2.5 mass% with respect to the positive electrode active material base material. Similarly, a half cell was prepared, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例8)
被覆層として、D50平均粒径が1.27μmのMgFe粒子を用いたのを除き、実施例7と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 8)
A half cell was prepared in the same manner as in Example 7 except that MgFe 2 O 4 particles having a D50 average particle diameter of 1.27 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例9)
被覆層として、D50平均粒径が1.10μmのCuFe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
Example 9
A half cell was prepared in the same manner as in Example 8 except that CuFe 2 O 4 particles having a D50 average particle diameter of 1.10 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例10)
被覆層として、D50平均粒径が0.065μmのFe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 10)
A half cell was prepared in the same manner as in Example 8 except that Fe 3 O 4 particles having a D50 average particle diameter of 0.065 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例11)
被覆層として、D50平均粒径が0.080μmのγ−Fe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 11)
A half cell was prepared in the same manner as in Example 8 except that γ-Fe 2 O 3 particles having a D50 average particle size of 0.080 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例12)
被覆層として、D50平均粒径が0.095μmのLiFe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 12)
A half cell was prepared in the same manner as in Example 8 except that LiFe 5 O 8 particles having a D50 average particle size of 0.095 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例13)
被覆層として、D50平均粒径が0.85μmのMnFe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 13)
A half cell was prepared in the same manner as in Example 8 except that MnFe 2 O 4 particles having a D50 average particle diameter of 0.85 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例14)
被覆層として、D50平均粒径が0.77μmのNiFe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 14)
A half cell was prepared in the same manner as in Example 8 except that NiFe 2 O 4 particles having a D50 average particle diameter of 0.77 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例15)
被覆層として、D50平均粒径が0.83μmのCoFe粒子を用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Example 15)
A half cell was prepared as in Example 8 except that CoFe 2 O 4 particles having an average D50 particle diameter of 0.83 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

被覆層として、D50平均粒径が0.065μmのFe粒子と0.095μmのLiFe粒子を質量比1:1で混合したものを用いたのを除き、実施例8と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。 The same as Example 8 except that the coating layer was a mixture of Fe 3 O 4 particles having a D50 average particle size of 0.065 μm and LiFe 5 O 8 particles having a 0.095 μm mass ratio of 1: 1. A half cell was prepared, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(実施例17)
常磁性正極活物質母材として、二次粒子を形成しているLiNi1/3Co1/3Mn1/3を用いた。1次粒子の粒径は0.9μm前後、二次粒子のD50平均粒径は6.1μmであった。被覆層として、D50平均粒径が0.065μmのFe粒子を用い、実施例10と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。この測定では、上限充電電圧を4.5V(VS.Li/Li)、下限放電電圧を2.8V(VS.Li/Li)とし、正極活物質であるLiNi1/3Co1/3Mn1/3の理論容量を185mAh/gとして充放電電流を設定した。
(Example 17)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 forming secondary particles was used as a paramagnetic positive electrode active material base material. The particle diameter of the primary particles was around 0.9 μm, and the D50 average particle diameter of the secondary particles was 6.1 μm. A half cell was prepared as in Example 10 using Fe 3 O 4 particles having a D50 average particle diameter of 0.065 μm as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed. In this measurement, the upper limit charging voltage is 4.5 V (VS. Li / Li + ), the lower limit discharging voltage is 2.8 V (VS. Li / Li + ), and LiNi 1/3 Co 1/3 that is the positive electrode active material. The charge / discharge current was set with the theoretical capacity of Mn 1/3 O 2 being 185 mAh / g.

(実施例18)
常磁性正極活物質母材として、二次粒子を形成しているLiMnを用いた。1次粒子の粒径は0.7μm前後、二次粒子のD50平均粒径は3.6μmであった。被覆層として、D50平均粒径が0.065μmのFe粒子を用い、実施例10と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。この測定では、上限充電電圧を4.5V(VS.Li/Li)、下限放電電圧を3.5V(VS.Li/Li)とし、正極活物質であるLiMnの理論容量を148mAh/gとして充放電電流を設定した。
(Example 18)
As the paramagnetic positive electrode active material base material, LiMn 2 O 4 forming secondary particles was used. The particle diameter of the primary particles was around 0.7 μm, and the D50 average particle diameter of the secondary particles was 3.6 μm. A half cell was prepared as in Example 10 using Fe 3 O 4 particles having a D50 average particle diameter of 0.065 μm as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed. In this measurement, the upper limit charging voltage is 4.5 V (VS. Li / Li + ), the lower limit discharge voltage is 3.5 V (VS. Li / Li + ), and the theoretical capacity of LiMn 2 O 4 that is the positive electrode active material is The charge / discharge current was set as 148 mAh / g.

(実施例19)
常磁性正極活物質母材として、二次粒子を形成しているLiMnO−LiMO系固溶体、20(LiMnO)−80(LiNi1/3Co1/3Mn1/3)を用いた。1次粒子の粒径は0.8μm前後、二次粒子のD50平均粒径は18.5μmであった。被覆層として、D50平均粒径が0.065μmのFe粒子を用い、実施例10と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。この測定では、上限充電電圧を4.7V(VS.Li/Li)、下限放電電圧を2.0V(VS.Li/Li)とし、正極活物質である20(LiMnO)−80(LiNi1/3Co1/3Mn1/3)の理論容量を250mAh/gとして充放電電流を設定した。
(Example 19)
Li 2 MnO 3 —LiMO 2 -based solid solution forming secondary particles as a paramagnetic positive electrode active material base material, 20 (Li 2 MnO 3 ) -80 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) was used. The particle diameter of the primary particles was around 0.8 μm, and the D50 average particle diameter of the secondary particles was 18.5 μm. A half cell was prepared as in Example 10 using Fe 3 O 4 particles having a D50 average particle diameter of 0.065 μm as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed. In this measurement, the upper limit charging voltage is 4.7 V (VS. Li / Li + ), the lower limit discharging voltage is 2.0 V (VS. Li / Li + ), and 20 (Li 2 MnO 3 ) − which is a positive electrode active material. The charge / discharge current was set with a theoretical capacity of 80 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) being 250 mAh / g.

(実施例20)
常磁性正極活物質母材として、二次粒子を形成しているLiFePOを用いた。1次粒子の粒径は0.6μm前後、二次粒子のD50平均粒径は4.2μmであった。被覆層として、D50平均粒径が0.065μmのFe粒子を用い、実施例10と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。この測定では、上限充電電圧を4.2V(VS.Li/Li)、下限放電電圧を2.5V(VS.Li/Li)とし、正極活物質であるLiFePOの理論容量を169mAh/gとして充放電電流を設定した。
(Example 20)
LiFePO 4 forming secondary particles was used as the paramagnetic positive electrode active material base material. The particle size of the primary particles was around 0.6 μm, and the D50 average particle size of the secondary particles was 4.2 μm. A half cell was prepared as in Example 10 using Fe 3 O 4 particles having a D50 average particle diameter of 0.065 μm as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed. In this measurement, the upper limit charging voltage is 4.2 V (VS. Li / Li + ), the lower limit discharging voltage is 2.5 V (VS. Li / Li + ), and the theoretical capacity of LiFePO 4 as the positive electrode active material is 169 mAh / The charge / discharge current was set as g.

(比較例1)
正極活物質母材として、反磁性体であるLiCoOを用いた。これは二次粒子を形成しており、1次粒子の粒径は1.1μm前後、二次粒子のD50平均粒径は12.5μmであった。被覆層として、D50平均粒径が0.075μmのα−Fe粒子を用いた。この飽和磁化は0であり、常磁性であることを確認した。実施例10と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。この測定では、上限充電電圧を4.4V(VS.Li/Li)、下限放電電圧を2.8V(VS.Li/Li)とし、正極活物質であるLiCoOの理論容量を137mAh/gとして充放電電流を設定した。
(Comparative Example 1)
LiCoO 2 that is a diamagnetic material was used as a positive electrode active material base material. This formed secondary particles, and the particle size of the primary particles was around 1.1 μm, and the D50 average particle size of the secondary particles was 12.5 μm. As the coating layer, α-Fe 2 O 3 particles having a D50 average particle size of 0.075 μm were used. This saturation magnetization was 0, confirming that it was paramagnetic. Half cells were prepared in the same manner as in Example 10, and charge / discharge rate measurement and cycle characteristic evaluation were performed. In this measurement, the upper limit charging voltage is 4.4 V (VS. Li / Li + ), the lower limit discharge voltage is 2.8 V (VS. Li / Li + ), and the theoretical capacity of LiCoO 2 as the positive electrode active material is 137 mAh / The charge / discharge current was set as g.

(比較例2)
被覆層として、D50平均粒径が0.065μmのFe粒子を用い、比較例1と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Comparative Example 2)
As the covering layer, Fe 3 O 4 particles having a D50 average particle diameter of 0.065 μm were used, a half cell was prepared in the same manner as in Comparative Example 1, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(比較例3)
被覆層を設けなかった以外は実施例7と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Comparative Example 3)
A half cell was prepared in the same manner as in Example 7 except that the coating layer was not provided, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(比較例4)
被覆層として、D50平均粒径が0.075μmのα−Fe粒子を用いたのを除き、実施例7と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Comparative Example 4)
A half cell was prepared in the same manner as in Example 7 except that α-Fe 2 O 3 particles having a D50 average particle diameter of 0.075 μm were used as the coating layer, and charge / discharge rate measurement and cycle characteristic evaluation were performed.

(比較例5)
正極活物質母材として、実施例16で用いたLiNi1/3Co1/3Mn1/3を用い、被覆層として、D50平均粒径が0.075μmのα−Fe2O3粒子を用いたのを除き、実施例16と同様にハーフセルを作成し、充放電レート測定およびサイクル特性評価を行った。
(Comparative Example 5)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 used in Example 16 was used as the positive electrode active material base material, and α-Fe 2 O 3 particles having a D50 average particle size of 0.075 μm were used as the coating layer. A half cell was prepared in the same manner as in Example 16 except that the charge / discharge rate measurement and cycle characteristic evaluation were performed.

以上の結果を表1に示す。なお、表中に示した被覆層の飽和磁化は25℃での値である。

Figure 2016105359
The results are shown in Table 1. The saturation magnetization of the coating layer shown in the table is a value at 25 ° C.
Figure 2016105359

正極活物質母材として常磁性のLiNi0.8Co0.15Al0.05、被覆層として強磁性のMgFeを用いた実施例1〜2は、正極活物質母材として反磁性のLiCoO、被覆層として常磁性のα−Feを用いた比較例1と比較し、より高い容量保持率を示しており、上限充電電圧を4.5V(VS.Li/Li)としたときより優れたサイクル特性を持つことがわかる。さらに、より高い2C放電容量/0.1C放電容量を示しており、高充電電位でのレート特性も本発明により改善されることがわかる。また、被覆層として強磁性のFeを用いた比較例2と比較しても、実施例1〜2はより優れたサイクル特性とレート特性を示す。 Examples 1-2 using paramagnetic LiNi 0.8 Co 0.15 Al 0.05 O 2 as the positive electrode active material base material and ferromagnetic MgFe 2 O 4 as the coating layer were used as the positive electrode active material base material. Compared with Comparative Example 1 using diamagnetic LiCoO 2 and paramagnetic α-Fe 2 O 3 as the coating layer, the capacity retention was higher, and the upper limit charging voltage was 4.5 V (VS.Li/ It can be seen that the cycle characteristics are superior to those of Li + ). Furthermore, a higher 2C discharge capacity / 0.1 C discharge capacity is shown, and it can be seen that the rate characteristics at a high charge potential are also improved by the present invention. Further, even when compared with Comparative Example 2 using the Fe 3 O 4 of ferromagnetic as a covering layer, Examples 1-2 show a more excellent cycle characteristics and rate characteristics.

また、正極活物質母材として常磁性のLiNi0.8Co0.15Al0.05を用い、被覆層を設けなかった比較例3と比較しても、実施例1〜2はより優れたサイクル特性とレート特性を示している。 Further, a LiNi 0.8 Co 0.15 Al 0.05 O 2 paramagnetic used as the positive electrode active material matrix, even when compared with Comparative Example 3 not provided with the coating layer, Examples 1-2 and more Excellent cycle and rate characteristics.

また、正極活物質母材として常磁性のLiNi0.8Co0.15Al0.05およびLiNi1/3Co1/3Mn1/3を用い、被覆層として常磁性のα−Feを用いた比較例4〜5と比較しても、実施例1〜2はより優れたサイクル特性とレート特性を示している。これら比較例1〜5と実施例1〜2と比較することにより、常磁性の正極活物質母材と強磁性被覆層を用いた本発明の効果は明らかである。 Paramagnetic LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 are used as the positive electrode active material base material, and paramagnetic α is used as the coating layer. Even when compared with Comparative Examples 4 to 5 using —Fe 2 O 3 , Examples 1 to 2 show more excellent cycle characteristics and rate characteristics. By comparing these Comparative Examples 1 to 5 and Examples 1 and 2, the effect of the present invention using the paramagnetic positive electrode active material base material and the ferromagnetic coating layer is clear.

正極活物質母材に対する被覆層の被覆量を0.15〜10.0質量%とした実施例3〜4は、実施例1〜2と比較しさらに高いサイクル特性とレート特性を示している。また、正極活物質母材に対する被覆層の被覆量を0.25〜5.0質量%とした実施例5〜6は、実施例3〜4と比較しさらに高いサイクル特性とレート特性を示している。   Examples 3 to 4 in which the coating amount of the coating layer with respect to the positive electrode active material base material was 0.15 to 10.0% by mass showed higher cycle characteristics and rate characteristics than Examples 1 and 2. Moreover, Examples 5-6 which made the coating amount of the coating layer with respect to a positive electrode active material base material 0.25-5.0 mass% showed a still higher cycle characteristic and rate characteristic compared with Examples 3-4. Yes.

正極活物質母材が二次粒子を形成している実施例7は、実施例1〜6と比較しさらに高いサイクル特性とレート特性を示している。また、被覆層の平均二次粒子径(D50)が正極活物質母材二次粒子の平均二次粒子径(D50)の1/10以下である実施例8は、実施例7と比較しさらに高いサイクル特性とレート特性を示している。   Example 7 in which the positive electrode active material base material forms secondary particles shows higher cycle characteristics and rate characteristics than Examples 1-6. Further, Example 8 in which the average secondary particle diameter (D50) of the coating layer is 1/10 or less of the average secondary particle diameter (D50) of the positive electrode active material base material secondary particles is compared with Example 7, and It shows high cycle characteristics and rate characteristics.

被覆層として飽和磁化が10emu/g以上を示すCuFeを用いた実施例9は、被覆層として飽和磁化が8.4emu/gのMgFeを用いた実施例8と比較しさらに高いサイクル特性とレート特性を示している。 Example 9 using CuFe 2 O 4 having a saturation magnetization of 10 emu / g or more as the coating layer is more compared to Example 8 using MgFe 2 O 4 having a saturation magnetization of 8.4 emu / g as the coating layer. It shows high cycle characteristics and rate characteristics.

被覆層として強磁性を示すFe、γ−Fe、LiFe、MnFe、NiFe、CoFeを用いた実施例10〜15は、被覆層としてCuFeを用いた実施例9よりさらに優れたサイクル特性とレート特性を示している。また常磁性正極活物質母材としてLiNi1/3Co1/3Mn1/3、LiMn4、20(LiMnO)−80(LiNi1/3Co1/3Mn1/3)、LiFePOを用いた実施例17〜20も、常磁性正極活物質母材としてLiNi0.8Co0.15Al0.05を用いた実施例10と同等のサイクル特性とレート特性を示していることがわかる。 Examples 10 to 15 using Fe 3 O 4 , γ-Fe 2 O 3 , LiFe 5 O 8 , MnFe 2 O 4 , NiFe 2 O 4 , and CoFe 2 O 4 exhibiting ferromagnetism as the coating layer are as follows: As a result, the cycle characteristics and rate characteristics superior to those of Example 9 using CuFe 2 O 4 are shown. Moreover, as a paramagnetic positive electrode active material base material, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4, 20 (Li 2 MnO 3 ) -80 (LiNi 1/3 Co 1/3 Mn 1 / 3 ) In Examples 17 to 20 using LiFePO 4 , cycle characteristics and rates equivalent to those in Example 10 using LiNi 0.8 Co 0.15 Al 0.05 O 2 as the paramagnetic positive electrode active material base material are also used. It turns out that the characteristic is shown.

被覆層として強磁性を示すFeとLiFeを混合したものを用いた実施例16も実施例10と同等のサイクル特性とレート特性を示しており、複数種類の被覆層材料を用いても本発明の効果が得られることがわかる。 Example 16 using a mixture of Fe 3 O 4 exhibiting ferromagnetism and LiFe 5 O 8 as the coating layer also shows cycle characteristics and rate characteristics equivalent to those of Example 10, and a plurality of types of coating layer materials are used. It can be seen that the effects of the present invention can be obtained even if used.

以上の結果、本発明の実施によれば、充電電圧を高めて充電深度を高めた際に高いサイクル特性を示すリチウムイオン二次電池用正極活物質が得られることがわかった。   As a result of the above, according to the implementation of the present invention, it was found that a positive electrode active material for a lithium ion secondary battery exhibiting high cycle characteristics can be obtained when the charging voltage is increased and the charging depth is increased.

本発明に係る、充電電圧を高めて充電深度を高めた際に高いサイクル特性を示すリチウムイオン二次電池用正極活物質を用いることで、より高性能のリチウムイオン二次電池が得られる。これは、携帯電子機器の電源として好適に用いられ、電気自動車や家庭および産業用蓄電池としても用いられる。   By using the positive electrode active material for a lithium ion secondary battery that exhibits high cycle characteristics when the charging voltage is increased and the charging depth is increased according to the present invention, a higher performance lithium ion secondary battery can be obtained. This is suitably used as a power source for portable electronic devices, and is also used as an electric vehicle, household and industrial storage battery.

1…正極活物質母材、2…被覆層、10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…外装体、62…正極リード、60…負極リード、100…リチウムイオン二次電池 DESCRIPTION OF SYMBOLS 1 ... Positive electrode active material base material, 2 ... Coating layer, 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active Material layer 30 ... Laminated body 50 ... Exterior body 62 ... Positive electrode lead 60 ... Negative electrode lead 100 ... Lithium ion secondary battery

Claims (9)

リチウム複合酸化物を含む正極活物質母材と、
前記正極活物質母材の一部を被覆する被覆層とを有し、
前記正極活物質母材は常磁性を示し、
前記被覆層は強磁性酸化物であることを特徴とする正極活物質。
A positive electrode active material matrix containing a lithium composite oxide;
A coating layer covering a part of the positive electrode active material base material,
The positive electrode active material base material exhibits paramagnetism,
The positive electrode active material, wherein the coating layer is a ferromagnetic oxide.
前記正極活物質母材に対する前記被覆層の被覆量が、0.15〜10.0質量%であることを特徴とする請求項1記載の正極活物質。   The positive electrode active material according to claim 1, wherein a coating amount of the coating layer with respect to the positive electrode active material base material is 0.15 to 10.0 mass%. 前記正極活物質母材に対する前記被覆層の被覆量が、0.25〜5.0質量%であることを特徴とする請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein a coating amount of the coating layer with respect to the positive electrode active material base material is 0.25 to 5.0 mass%. 前記正極活物質母材は二次粒子を構成しており、前記被覆層はその二次粒子を被覆していることを特徴とする請求項1〜3のいずれか1項に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material base material constitutes secondary particles, and the coating layer covers the secondary particles. . 前記被覆層は強磁性酸化物を含む粒子からなり、その粒子は、前記母材の平均粒子径(D50)の1/10以下であることを特徴とする請求項1〜4のいずれか1項に記載の正極活物質。   The said coating layer consists of particle | grains containing a ferromagnetic oxide, The particle | grains are 1/10 or less of the average particle diameter (D50) of the said base material, The any one of Claims 1-4 characterized by the above-mentioned. The positive electrode active material described in 1. 前記被覆層の飽和磁化が10emu/g以上であることを特徴とする
請求項1〜5のいずれか1項に記載の正極活物質。
The positive electrode active material according to claim 1, wherein the covering layer has a saturation magnetization of 10 emu / g or more.
前記正極活物質母材がマンガンリチウム酸化物、ニッケルリチウム酸化物またはLiMPO(MはFe,Mn,Niのうち少なくとも1種以上の元素を示す。)のいずれかを含む
請求項1〜6のいずれか1項に記載の正極活物質。
The positive electrode active material base material includes any one of manganese lithium oxide, nickel lithium oxide, and LiMPO 4 (M represents at least one element selected from Fe, Mn, and Ni). The positive electrode active material of any one of Claims.
前記被覆層がFe、γ−Fe、LiFe、MnFe、NiFe、CoFeの少なくとも一つを含む
請求項1〜7のいずれか1項に記載の正極活物質。
The covering layer is Fe 3 O 4, γ-Fe 2 O 3, LiFe 5 O 8, MnFe 2 O 4, NiFe 2 O 4, any one of the preceding claims comprising at least one CoFe 2 O 4 The positive electrode active material according to Item.
請求項1〜8のいずれか一項に記載の正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと、非水電解質と、を備えてなるリチウムイオン二次電池。   A positive electrode having the positive electrode active material according to any one of claims 1 to 8, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. A lithium ion secondary battery provided.
JP2014243062A 2014-12-01 2014-12-01 Positive electrode active material and lithium ion secondary battery arranged by use thereof Pending JP2016105359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014243062A JP2016105359A (en) 2014-12-01 2014-12-01 Positive electrode active material and lithium ion secondary battery arranged by use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243062A JP2016105359A (en) 2014-12-01 2014-12-01 Positive electrode active material and lithium ion secondary battery arranged by use thereof

Publications (1)

Publication Number Publication Date
JP2016105359A true JP2016105359A (en) 2016-06-09

Family

ID=56102230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243062A Pending JP2016105359A (en) 2014-12-01 2014-12-01 Positive electrode active material and lithium ion secondary battery arranged by use thereof

Country Status (1)

Country Link
JP (1) JP2016105359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052223A (en) * 2017-11-08 2019-05-16 주식회사 엘지화학 Cathode for lithium-sulfur battery comprising maghemite, and lithium-sulfur battery comprising thereof
CN112054193A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Positive electrode material for secondary battery and secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052223A (en) * 2017-11-08 2019-05-16 주식회사 엘지화학 Cathode for lithium-sulfur battery comprising maghemite, and lithium-sulfur battery comprising thereof
KR102328254B1 (en) * 2017-11-08 2021-11-18 주식회사 엘지에너지솔루션 Cathode for lithium-sulfur battery comprising maghemite, and lithium-sulfur battery comprising thereof
US11302907B2 (en) 2017-11-08 2022-04-12 Lg Energy Solution, Ltd. Positive electrode for lithium-sulfur battery comprising maghemite and lithium-sulfur battery comprising the same
CN112054193A (en) * 2019-06-06 2020-12-08 丰田自动车株式会社 Positive electrode material for secondary battery and secondary battery using the same

Similar Documents

Publication Publication Date Title
WO2012001840A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US10008718B2 (en) Positive electrode active material for use in lithium ion secondary cell
JP6251042B2 (en) Electrode and non-aqueous electrolyte battery
JP2007335307A (en) Nonaqueous electrolyte battery
JP5761098B2 (en) Active material and lithium ion secondary battery using the same
JP2013182712A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5574196B2 (en) Non-aqueous electrolyte secondary battery
US11677065B2 (en) Cathode active material of lithium secondary battery
CN112313817A (en) Positive electrode material and secondary battery
KR20170025874A (en) Lithium secondary battery and operating method thereof
JP6493757B2 (en) Lithium ion secondary battery
WO2020202745A1 (en) Non-aqueous electrolyte secondary battery
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014072025A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN112242509B (en) Nonaqueous electrolyte secondary battery
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
CN112751020A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016105359A (en) Positive electrode active material and lithium ion secondary battery arranged by use thereof
JP2016105358A (en) Positive electrode active material and lithium ion secondary battery arranged by use thereof
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
CN114206780A (en) Nonaqueous electrolyte secondary battery
WO2022163531A1 (en) Active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2022163455A1 (en) Active material for nonaqueous electrolyte secondary batteries, method for producing active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5742765B2 (en) Active material and lithium ion secondary battery
WO2021085112A1 (en) Positive electrode active material for secondary battery, and secondary battery