JP6969780B2 - Large aperture ratio lens - Google Patents

Large aperture ratio lens Download PDF

Info

Publication number
JP6969780B2
JP6969780B2 JP2017142519A JP2017142519A JP6969780B2 JP 6969780 B2 JP6969780 B2 JP 6969780B2 JP 2017142519 A JP2017142519 A JP 2017142519A JP 2017142519 A JP2017142519 A JP 2017142519A JP 6969780 B2 JP6969780 B2 JP 6969780B2
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
object side
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017142519A
Other languages
Japanese (ja)
Other versions
JP2019023693A (en
Inventor
正和 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2017142519A priority Critical patent/JP6969780B2/en
Publication of JP2019023693A publication Critical patent/JP2019023693A/en
Application granted granted Critical
Publication of JP6969780B2 publication Critical patent/JP6969780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、スチルカメラ、ビデオカメラ等の撮像装置に用いる撮影レンズに好適な光学系に関し、オートフォーカスカメラに適したインナーフォーカス方式を採用し、またフォーカスレンズ群を光軸に沿った方向への微少な振動(ウオブリング)させた際の像高変化率が小さく、F値が1.2と明るく、35mm判換算焦点距離で90mm相当の画角を有する大口径比レンズに関するものである。 The present invention relates to an optical system suitable for a photographing lens used in an imaging device such as a still camera or a video camera, adopts an inner focus method suitable for an auto-focus camera, and moves a focus lens group in a direction along an optical axis. The present invention relates to a large-diameter ratio lens having a small image height change rate when slightly vibrated (wobbling), a bright F value of 1.2, and an image angle equivalent to 90 mm at a focal length equivalent to 35 mm format.

近年、デジタルスチルカメラを使用しての動画撮影は一般的になっている。動画撮影におけるオートフォーカス方式に、フォーカスレンズ群を光軸に沿う方向へ微少振動(ウオブリング)させ続けることで、常にフォーカス駆動方向を判断し続ける方法が採用されることが多い。その際、ウオブリング時の像高変化率が大きいと、鑑賞者が画面に映る被写体の倍率変動を認識し、目障りに感じてしまうため、フォーカス変化に対し像高変化率が小さいフォーカス方式を必要としている。 In recent years, video recording using a digital still camera has become common. As the autofocus method in movie shooting, a method is often adopted in which the focus drive direction is constantly determined by continuously vibrating the focus lens group in the direction along the optical axis (wobbling). At that time, if the image height change rate during wobbling is large, the viewer recognizes the change in the magnification of the subject displayed on the screen and feels annoyed. There is.

さらに近年、デジタルスチルカメラの動画撮影においては、静粛且つ高速なフォーカス機構が求められている。フォーカス駆動を行うアクチュエータは、フォーカスレンズ群が大きく重い場合では、その出力に余裕が無い状況で駆動せざるを得ず、結果、騒音が大きくなることがわかっている。そのため、フォーカスレンズ群の軽量化が求められる性能となる。 Further, in recent years, a quiet and high-speed focus mechanism has been required for moving images of a digital still camera. It has been found that when the focus lens group is large and heavy, the actuator that performs focus drive must be driven in a situation where the output is not sufficient, and as a result, noise increases. Therefore, the performance is required to reduce the weight of the focus lens group.

35mm判換算焦点距離で90mm相当の画角を有する大口径比レンズで、軽量なレンズ群でフォーカス可能なインナーフォーカスの大口径比レンズとしては例えば以下の特許文献が挙げられる。 The following patent documents are mentioned as examples of a large-diameter ratio lens having an inner focus that can be focused by a lightweight lens group, which is a large-diameter ratio lens having an angle of view equivalent to 90 mm in a 35 mm format equivalent focal length.

特許文献1に記載された結像光学系は、フォーカスレンズ群を凹レンズ一枚で構成し、軽量化をはかることで静音化と合焦速度の確保の向上がしやすくなっている。 In the imaging optical system described in Patent Document 1, the focus lens group is composed of a single concave lens, and by reducing the weight, it is easy to improve the noise reduction and the securing of the focusing speed.

また特許文献2に記載された結像光学系は、フォーカスレンズ群を凹レンズ一枚か二枚で構成し、軽量化をはかることで静音化と合焦速度の確保の向上がしやすくなっている。 Further, in the imaging optical system described in Patent Document 2, the focus lens group is composed of one or two concave lenses, and by reducing the weight, it is easy to improve the noise reduction and the securing of the focusing speed. ..

特開2012−220654号公報Japanese Unexamined Patent Publication No. 2012-20654

特開2014−197233号公報Japanese Unexamined Patent Publication No. 2014-197233

しかしながら、特許文献1に開示されたレンズ系では、F値が1.4程度の実施例しか開示されておらず、この構成からF1.2程度を達成することは困難である。 However, in the lens system disclosed in Patent Document 1, only an example having an F value of about 1.4 is disclosed, and it is difficult to achieve about F1.2 from this configuration.

また、特許文献2に開示されたレンズ系では、F値が1.8程度の実施例しか開示されておらず、この構成からF1.2程度を達成することは困難である。 Further, in the lens system disclosed in Patent Document 2, only an example having an F value of about 1.8 is disclosed, and it is difficult to achieve about F1.2 from this configuration.

本発明はこのような状況に鑑みてなされたものであり、軽量なレンズ群でフォーカシング群を構成し、フォーカシングを行いながら、フォーカスシング群を光軸に沿う方向へ微少振動(ウオブリング)させた際の像高変化率が小さく、F値が1.2と明るく、35mm判換算焦点距離で90mm相当の画角を有する大口径比レンズを提供することを目的とする。 The present invention has been made in view of such a situation, and when a focusing group is formed by a lightweight lens group and the focusing group is slightly vibrated (wobbling) in a direction along the optical axis while focusing. It is an object of the present invention to provide a large-diameter ratio lens having a small image height change rate, a bright F value of 1.2, and an angle of view equivalent to 90 mm at a focal length in the 35 mm format.

上記課題を解決するための第1の発明は、物体側から順に、第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなり、前記第2レンズ群G2は、物体側から順に負レンズと正レンズの接合からなる負の屈折力を有する第2aレンズ群G2aと正の屈折力を有する第2bレンズ群G2bとからなり、物体側から順に正レンズ、負レンズ、正レンズ、とからなる3枚接合レンズを有し、無限遠物体側から近距離物体側へのフォーカシングをする際、前記第3レンズ群G3が像面側へ移動し、以下の条件式を満足することを特徴とする大口径比レンズ。
(1)−1.07<DFcI/f3<−0.65
(2)−0.80<f2b/f2a<−0.18
(4)−13.0<FcEntp/h<−8.0
(5)10.0<νp−νn<60.0
(6)10.0<νp´−νn<55.0
DFcI:前記第4レンズ群G4と撮像素子との間に、d線屈折率=1.51680、厚さ=4.0000のフィルターを入れた場合の、無限遠合焦時の前記第3レンズ群G3の像面側の面から像面までの実距離
f3:前記第3レンズ群G3の焦点距離
f2a:前記第2aレンズ群G2aの焦点距離
f2b:前記第2bレンズ群G2bの焦点距離
FcEntp:無限遠合焦状態での、前記第3レンズ群G3の物体側の面を基準とした前記第2レンズ群G2による開口絞りSの結像位置
h:無限遠合焦状での、前記第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高
νp:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数
νn:前記3枚接合レンズを構成する負レンズのアッベ数
νp´:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数
In the first invention for solving the above problems, the first lens group G1, the aperture aperture S, the second lens group G2 having a positive refractive force, and the second lens group G2 having a negative refractive force are in order from the object side. The second lens group G3 is composed of a third lens group G3 and a fourth lens group G4 having a positive refractive force, and the second lens group G2 has a negative refractive force consisting of a junction of a negative lens and a positive lens in order from the object side. It consists of a lens group G2a and a second b lens group G2b having a positive refractive force, and has a three-lens junction lens consisting of a positive lens, a negative lens, and a positive lens in order from the object side, and is a short distance from the infinity object side. A large-diameter ratio lens characterized in that the third lens group G3 moves to the image plane side when focusing on the object side and satisfies the following conditional expression.
(1) -1.07 <DFcI / f3 <-0.65
(2) -0.80 <f2b / f2a <-0.18
(4) -13.0 <FcEntp / h <-8.0
(5) 10.0 <νp-νn <60.0
(6) 10.0 <νp'-νn <55.0
DFcI: The third lens group at infinity focusing when a filter having a d-line refractive index = 1.51680 and a thickness = 4.00 is inserted between the fourth lens group G4 and the image pickup element. Actual distance from the image plane side of G3 to the image plane f3: Focal length f2a of the third lens group G3: Focal length f2b of the second a lens group G2a: Focal length FcEndp of the second lens group G2b: Infinite Image formation position of the aperture aperture S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side in the far focal length state: The third lens in the infinity focal length state. The height of the main ray of the maximum focal length ray in the plane perpendicular to the optical axis in contact with the surface apex on the object side of the group G3.
νp: Abbe number of the positive lens with the larger Abbe number among the two positive lenses constituting the three-element junction lens.
νn: Abbe number of negative lenses constituting the three-lens junction lens
νp': Abbe number of the positive lens with the smaller Abbe number among the two positive lenses constituting the three-element junction lens.

上記課題を解決するための第2の発明は、物体側から順に、第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなり、前記第2レンズ群G2は、物体側から順に負レンズと正レンズの接合からなる負の屈折力を有する第2aレンズ群G2aと正の屈折力を有する第2bレンズ群G2bとからなり、無限遠物体側から近距離物体側へのフォーカシングをする際、前記第3レンズ群G3が像面側へ移動し、以下の条件式を満足することを特徴とする大口径比レンズ。
(1)−1.07<DFcI/f3<−0.65
(2)−0.80<f2b/f2a<−0.18
(3)0.86≦f12/f<1.05
DFcI:前記第4レンズ群G4と撮像素子との間に、d線屈折率=1.51680、厚さ=4.0000のフィルターを入れた場合の、無限遠合焦時の前記第3レンズ群G3の像面側の面から像面までの実距離
f3:前記第3レンズ群G3の焦点距離
f2a:前記第2aレンズ群G2aの焦点距離
f2b:前記第2bレンズ群G2bの焦点距離
f12:前記第1レンズ群G1と前記第2レンズ群G2の合成系の焦点距離
f:全系の無限遠合焦状態での焦点距離
In the second invention for solving the above problems , the first lens group G1, the aperture aperture S, the second lens group G2 having a positive refractive force, and the second lens group G2 having a negative refractive force are in order from the object side. The second lens group G3 is composed of a third lens group G3 and a fourth lens group G4 having a positive refractive force, and the second lens group G2 has a negative refractive force consisting of a junction of a negative lens and a positive lens in order from the object side. It consists of a lens group G2a and a second b lens group G2b having a positive refractive force, and when focusing from the infinity object side to the short-distance object side, the third lens group G3 moves to the image plane side, and the following A large-diameter ratio lens characterized by satisfying the conditional expression of.
(1) -1.07 <DFcI / f3 <-0.65
(2) -0.80 <f2b / f2a <-0.18
(3) 0.86 ≦ f12 / f <1.05
DFcI: The third lens group at infinity focusing when a filter having a d-line refractive index = 1.51680 and a thickness = 4.00 is inserted between the fourth lens group G4 and the image sensor. The actual distance from the image plane side of G3 to the image plane
f3: Focal length of the third lens group G3
f2a: Focal length of the second a lens group G2a
f2b: Focal length of the second b lens group G2b
f12: Focal length of the composite system of the first lens group G1 and the second lens group G2.
f: Focal length in the infinity in-focus state of the entire system

上記課題を解決するための第3の発明は、第1の発明である大口径比レンズであり、下記の条件式を満足することを特徴とする大口径比レンズ。
(3)0.70<f12/f<1.05
f12:前記第1レンズ群G1と前記第2レンズ群G2の合成系の焦点距離
f:全系の無限遠合焦状態での焦点距離
上記課題を解決するための第4の発明は、第2の発明である大口径比レンズであり、下記の条件式を満足することを特徴とする大口径比レンズ。
(4)−13.0<FcEntp/h<−7.0
FcEntp:無限遠合焦状態での、前記第3レンズ群G3の物体側の面を基準とした前記第2レンズ群G2による開口絞りSの結像位置
h:無限遠合焦状態での、前記第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高
The third invention for solving the above-mentioned problems is the large-diameter ratio lens according to the first invention, which is characterized by satisfying the following conditional expression.
(3) 0.70 <f12 / f <1.05
f12: Focal length of the combined system of the first lens group G1 and the second lens group G2 f: Focal length of the entire system in the infinite focus state
The fourth invention for solving the above-mentioned problems is the large-diameter ratio lens according to the second invention, which is characterized by satisfying the following conditional expression.
(4) -13.0 <FcEntp / h <-7.0
FcEntp: The imaging position of the aperture stop S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side in the infinity focusing state.
h: The height of the main ray of the maximum angle of view ray in the plane perpendicular to the optical axis in contact with the surface apex of the third lens group G3 on the object side in the infinitely focused state.

上記課題を解決するための第5の発明は、第2又は第4の発明である大口径比レンズであり、前記第2レンズ群G2は物体側から順に正レンズ、負レンズ、正レンズ、とからなる3枚接合レンズを有し、下記の条件式を満足することを特徴とする請求項1乃至3に記載の大口径比レンズ。
(5)10.0<νp−νn<60.0
(6)10.0<νp´−νn<55.0
νp:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数
νn:前記3枚接合レンズを構成する負レンズのアッベ数
νp´:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数
The fifth invention for solving the above-mentioned problems is a large-diameter ratio lens according to the second or fourth invention, and the second lens group G2 includes a positive lens, a negative lens, and a positive lens in order from the object side. The large-diameter ratio lens according to any one of claims 1 to 3, further comprising a three-element junction lens comprising the following condition and satisfying the following conditional expression.
(5) 10.0 <νp-νn <60.0
(6) 10.0 <νp'-νn <55.0
νp: Of the two positive lenses constituting the three-element junction lens, the Abbe number of the positive lens having the larger Abbe number νn: The Abbe number of the negative lens constituting the three-element junction lens νp': The three elements Of the two positive lenses that make up the junction lens, the Abbe number of the positive lens with the smaller Abbe number

本発明によれば、軽量なレンズ群でフォーカシング群を構成し、フォーカシングを行いながら、フォーカスシング群を光軸に沿う方向へ微少振動(ウオブリング)させた際の像高変化率が小さく、F値が1.2と明るく、35mm判換算焦点距離で90mm相当の画角を有する大口径比レンズを提供する。 According to the present invention, the focusing group is composed of a lightweight lens group, and the image height change rate is small when the focusing group is slightly vibrated (wobbling) in the direction along the optical axis while focusing, and the F value is small. Provides a large-diameter ratio lens having a bright angle of 1.2 and an angle of view equivalent to 90 mm at a focal length in the 35 mm format.

本発明の実施例1の大口径比レンズにおけるレンズ構成図Lens configuration diagram in the large-diameter ratio lens of Example 1 of the present invention 本発明の実施例1の撮影距離無限遠における縦収差図Longitudinal aberration diagram at infinity shooting distance according to the first embodiment of the present invention 本発明の実施例1の撮影倍率40倍における縦収差図Schematic diagram of longitudinal aberration at a shooting magnification of 40 times according to the first embodiment of the present invention. 本発明の実施例1の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to the first embodiment of the present invention. 本発明の実施例1の撮影距離無限遠における横収差図Horizontal aberration diagram at a shooting distance of infinity according to the first embodiment of the present invention. 本発明の実施例1の撮影倍率40倍における横収差図Horizontal aberration diagram at a shooting magnification of 40 times according to the first embodiment of the present invention. 本発明の実施例1の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to the first embodiment of the present invention. 本発明の実施例2の大口径比レンズにおけるレンズ構成図Lens configuration diagram in the large-diameter ratio lens of Example 2 of the present invention 本発明の実施例2の撮影距離無限遠における縦収差図Longitudinal aberration diagram at infinity shooting distance according to Example 2 of the present invention 本発明の実施例2の撮影倍率40倍における縦収差図Schematic diagram of longitudinal aberration at a shooting magnification of 40 times according to the second embodiment of the present invention. 本発明の実施例2の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to Example 2 of the present invention. 本発明の実施例2の撮影距離無限遠における横収差図Horizontal aberration diagram of the second embodiment of the present invention at an infinity shooting distance 本発明の実施例2の撮影倍率40倍における横収差図Horizontal aberration diagram at a shooting magnification of 40 times according to the second embodiment of the present invention. 本発明の実施例2の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to Example 2 of the present invention. 本発明の実施例3の大口径比レンズにおけるレンズ構成図Lens configuration diagram in the large-diameter ratio lens of Example 3 of the present invention 本発明の実施例3の撮影距離無限遠における縦収差図Longitudinal aberration diagram at infinity shooting distance according to Example 3 of the present invention 本発明の実施例3の撮影倍率40倍における縦収差図Schematic diagram of longitudinal aberration at a shooting magnification of 40 times according to the third embodiment of the present invention. 本発明の実施例3の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to Example 3 of the present invention. 本発明の実施例3の撮影距離無限遠における横収差図Horizontal aberration diagram at infinity shooting distance according to Example 3 of the present invention 本発明の実施例3の撮影倍率40倍における横収差図Horizontal aberration diagram at a shooting magnification of 40 times according to the third embodiment of the present invention. 本発明の実施例3の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to Example 3 of the present invention. 本発明の実施例4の大口径比レンズにおけるレンズ構成図Lens configuration diagram in the large-diameter ratio lens of Example 4 of the present invention 本発明の実施例4の撮影距離無限遠における縦収差図Longitudinal aberration diagram at infinity shooting distance according to Example 4 of the present invention 本発明の実施例4の撮影倍率40倍における縦収差図Longitudinal aberration diagram at a shooting magnification of 40 times according to the fourth embodiment of the present invention. 本発明の実施例4の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to Example 4 of the present invention. 本発明の実施例4の撮影距離無限遠における横収差図Horizontal aberration diagram at infinity shooting distance according to Example 4 of the present invention 本発明の実施例4の撮影倍率40倍における横収差図Horizontal aberration diagram at a shooting magnification of 40 times according to the fourth embodiment of the present invention. 本発明の実施例4の撮影距離0.5mにおける縦収差図Longitudinal aberration diagram at a shooting distance of 0.5 m according to Example 4 of the present invention.

本発明の大口径比レンズは、図1、8、15、22に示すレンズ構成図からわかるように、物体側から順に、第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなり、無限遠物体側から近距離物体側へのフォーカシングをする際、第3レンズ群G3が像面側方向へ移動する構成となっている。 As can be seen from the lens configuration diagrams shown in FIGS. 1, 8, 15 and 22, the large-diameter ratio lens of the present invention has a first lens group G1, an aperture aperture S, and a positive refractive power in order from the object side. It consists of a second lens group G2, a third lens group G3 having a negative refractive power, and a fourth lens group G4 having a positive refractive power, and when focusing from the infinity object side to the short-distance object side. , The third lens group G3 is configured to move toward the image plane side.

上記構成が必要な理由は以下の通りである。すなわち、絞り面から射出した軸外主光線を正の屈折力を有する第2レンズ群G2で緩やかにすることによりフォーカスレンズ群である第3レンズ群G3に入射する軸外主光線の角度を小さくすることが可能であり、ウオブリング時の像高変化率の縮小に寄与する。 The reason why the above configuration is necessary is as follows. That is, by relaxing the off-axis main ray emitted from the diaphragm surface with the second lens group G2 having a positive refractive power, the angle of the off-axis main ray incident on the third lens group G3, which is the focus lens group, is reduced. It is possible to reduce the rate of change in image height during wobbling.

また、正の屈折力を有する第4レンズ群G4を配置することにより第1レンズ群G1と第2レンズ群G2の合成系の正の屈折力を大きくしなくてよいので球面収差やコマ収差の発生を抑えることが可能である。 Further, by arranging the fourth lens group G4 having a positive refractive power, it is not necessary to increase the positive refractive power of the combined system of the first lens group G1 and the second lens group G2, so that spherical aberration and coma aberration can be prevented. It is possible to suppress the occurrence.

また、第3レンズ群G3はフォーカシング群であり軽量化のため少ない枚数で構成されることが望ましい。しかし、収差補正が十分でなく収差の発生要因となってしまう。特に、負の屈折力を有する第3レンズ群G3は軸外主光線の高さが大きい位置に配置されるため、正の非点収差および倍率色収差や正の歪曲収差の発生要因となってしまう。そこで、正の屈折力を有する第4レンズ群G4を軸外主光線の高さが大きい位置に配置することにより、効果的にこれらの収差を補正することが可能となる。 Further, the third lens group G3 is a focusing group, and it is desirable that the third lens group G3 is composed of a small number of lenses in order to reduce the weight. However, the aberration correction is not sufficient and it becomes a factor of generating aberration. In particular, since the third lens group G3 having a negative refractive power is arranged at a position where the height of the off-axis main ray is large, it causes positive astigmatism, chromatic aberration of magnification, and positive distortion. .. Therefore, by arranging the fourth lens group G4 having a positive refractive power at a position where the height of the off-axis main ray is large, it is possible to effectively correct these aberrations.

さらに、本実施形態の大口径比レンズは以下の条件式を満足することが好ましい。
(1)−1.07<DFcI/f3<−0.65
(2)−0.8<f2b/f2a<−0.18
DFcI:無限遠合焦時の前記第3レンズ群G3の像面側の面から像面Iまでの距離
f3:前記第3レンズ群G3の焦点距離
f2a:前記第2aレンズ群G2aの焦点距離
f2b:前記第2bレンズ群G2bの焦点距離
Further, it is preferable that the large-diameter ratio lens of the present embodiment satisfies the following conditional expression.
(1) -1.07 <DFcI / f3 <-0.65
(2) -0.8 <f2b / f2a <-0.18
DFcI: Distance from the image plane side surface of the third lens group G3 to the image plane I at the time of focusing at infinity f3: Focal length f2a of the third lens group G3: Focal length f2b of the second lens group G2a : Focal length of the second b lens group G2b

条件式(1)は、大口径比レンズにおいてフォーカシングに必要なスペースを確保しつつフォーカスレンズの重量を抑えるための好ましい条件として、軽量な無限遠合焦時の第3レンズ群G3の像面側の面から像面Iまでの距離と第3レンズ群G3の焦点距離の比について規定するものである。 The conditional equation (1) is a preferable condition for suppressing the weight of the focus lens while securing the space required for focusing in the large-diameter ratio lens, and is the image plane side of the third lens group G3 at the time of lightweight infinity focusing. It defines the ratio of the distance from the plane to the image plane I and the focal length of the third lens group G3.

条件式(1)の上限を超え、無限遠合焦時の第3レンズ群G3の像面側の面から像面Iまでの距離が小さくなる、あるいは第3レンズ群G3の負の屈折力が小さくなると、フォーカシングに必要なスペースが不足してしまう。 The upper limit of the conditional equation (1) is exceeded, the distance from the image plane side surface of the third lens group G3 to the image plane I at the time of infinity focusing becomes smaller, or the negative refractive power of the third lens group G3 becomes smaller. When it gets smaller, there is not enough space for focusing.

条件式(1)の下限を超え、無限遠合焦時の第3レンズ群G3の像面側の面から像面Iまでの距離が大きくなると、フォーカスレンズ群である第3レンズ群G3を通る軸上光束径が大きくなりフォーカスレンズ径を小さくするのが困難になる、あるいは第3レンズ群G3の負の屈折力が大きくなると、フォーカスレンズ群である第3レンズ群G3の重量を小さくするのが困難になる。 When the lower limit of the conditional equation (1) is exceeded and the distance from the image plane side surface of the third lens group G3 to the image plane I at the time of infinity focusing becomes large, the lens passes through the third lens group G3 which is the focus lens group. When the on-axis light beam diameter becomes large and it becomes difficult to reduce the focus lens diameter, or when the negative refractive power of the third lens group G3 becomes large, the weight of the third lens group G3 which is the focus lens group is reduced. Becomes difficult.

尚、条件式(1)について、望ましくはその下限値を−1.05に、また、さらには上限値を−0.70とすることで、前述の効果をより確実にすることができる。 The above-mentioned effect can be further ensured by setting the lower limit value of the conditional expression (1) to −1.05 and further setting the upper limit value to −0.70.

条件式(2)は、大口径比レンズにおいて球面収差の発生を抑えつつ光学全長の増大を抑制するための好ましい条件として、第2bレンズ群G2bの焦点距離と第2aレンズ群G2aの焦点距離の比について規定するものである。 In the conditional equation (2), the focal length of the second b lens group G2b and the focal length of the second a lens group G2a are set as preferable conditions for suppressing the occurrence of spherical aberration and suppressing the increase in the total optical length of the large-diameter ratio lens. It regulates the ratio.

条件式(2)の上限を超え、第2bレンズ群G2bの正の屈折力が大きくなる、あるいは第2aレンズ群G2aの負の屈折力が小さくなると、正の屈折力の第2レンズ群G2で発生する球面収差を補正することが困難になる。 When the upper limit of the conditional equation (2) is exceeded and the positive refractive power of the second b lens group G2b becomes large, or the negative refractive power of the second a lens group G2a becomes small, the second lens group G2 having a positive refractive power becomes present. It becomes difficult to correct the spherical aberration that occurs.

条件式(2)の下限を超え、第2bレンズ群G2bの正の屈折力が小さくなる、あるいは第2aレンズ群G2aの負の屈折力が大きくなると、第2bレンズ群G2bを通る軸上光束径が大きくなり球面収差の発生原因となる。または、負の屈折力を有する第2aレンズ群G2aと正の屈折力を有する第2bレンズ群G2bの間のレトロフォーカスの作用が強くなり、光学全長の短縮が困難になる。 When the lower limit of the conditional equation (2) is exceeded and the positive refractive power of the second b lens group G2b becomes smaller or the negative refractive power of the second a lens group G2a becomes larger, the axial light beam diameter passing through the second b lens group G2b Becomes large and causes spherical aberration. Alternatively, the effect of retrofocusing between the second a lens group G2a having a negative refractive power and the second b lens group G2b having a positive refractive power becomes stronger, and it becomes difficult to shorten the total optical length.

尚、条件式(2)について、望ましくはその下限値を−0.70に、また、さらには上限値を−0.19とすることで、前述の効果をより確実にすることができる。 The above-mentioned effect can be further ensured by setting the lower limit value of the conditional expression (2) to −0.70 and further setting the upper limit value to −0.19.

さらに、本実施形態の大口径比レンズは下記の条件を満足することが好ましい。
(3)0.70<f12/f<1.05
f12:前記第1レンズ群G1と前記第2レンズ群G2の合成系の焦点距離
f:全系の無限遠合焦状態での焦点距離
Further, it is preferable that the large-diameter ratio lens of the present embodiment satisfies the following conditions.
(3) 0.70 <f12 / f <1.05
f12: Focal length of the combined system of the first lens group G1 and the second lens group G2 f: Focal length of the entire system in the infinite focus state

条件式(3)は、大口径比レンズにおいてフォーカシングに必要な移動量および光学全長の増大を抑制しつつ球面収差やコマ収差をおさえるための好ましい条件として、第1レンズ群G1と第2レンズ群G2の合成系の焦点距離と全系の無限遠合焦状態での焦点距離の比について規定するものである。 The conditional equation (3) is a preferred condition for suppressing spherical aberration and coma while suppressing an increase in the amount of movement and optical total length required for focal length in a large-diameter ratio lens, as preferable conditions for the first lens group G1 and the second lens group. It defines the ratio of the focal length of the G2 synthetic system to the focal length of the entire system in the infinity in-focus state.

フォーカス敏感度は第3レンズ群G3のフォーカス移動量に対する像面位置の光軸方向の変化量の比であり、第3レンズ群G3の倍率β3と第4レンズ群G4の倍率β4を用いて(1−β3^2)×β4^2で表される。 The focus sensitivity is the ratio of the amount of change in the image plane position in the optical axis direction to the amount of focus movement of the third lens group G3, using the magnification β3 of the third lens group G3 and the magnification β4 of the fourth lens group G4 ( It is represented by 1-β3 ^ 2) × β4 ^ 2.

条件式(3)の上限を超え、第1レンズ群G1と第2レンズ群G2の合成系の正の屈折力が相対的に小さくなると、第3レンズ群G3と第4レンズ群G4の合成系の倍率が小さくなる。つまり、第3レンズ群G3の倍率β3が小さくなるか、または第4レンズ群 G4の倍率β4が小さくなる。本発明においてβ3は1.0より大きいことを踏まえると、フォーカス敏感度は小さくなるためフォーカシングに必要な第3レンズ群G3の移動量が大きくなる。そのため、フォーカシングに必要な空気間隔が不足する。また、第1レンズ群G1と第2レンズ群G2の合成系の正の屈折力が相対的に小さくなり、第3レンズ群G3と第4レンズ群G4の合成系の倍率が小さくなると望遠比が大きくなるため大口径比レンズの光学全長が増大する。 When the upper limit of the conditional expression (3) is exceeded and the positive refractive power of the combined system of the first lens group G1 and the second lens group G2 becomes relatively small, the combined system of the third lens group G3 and the fourth lens group G4 Magnification becomes smaller. That is, the magnification β3 of the third lens group G3 becomes smaller, or the magnification β4 of the fourth lens group G4 becomes smaller. Considering that β3 is larger than 1.0 in the present invention, the focus sensitivity becomes small, so that the amount of movement of the third lens group G3 required for focusing becomes large. Therefore, the air spacing required for focusing is insufficient. Further, when the positive refractive power of the combined system of the first lens group G1 and the second lens group G2 becomes relatively small and the magnification of the combined system of the third lens group G3 and the fourth lens group G4 becomes small, the telephoto ratio becomes large. As the size increases, the total optical length of the large-diameter ratio lens increases.

条件式(3)の下限を超え、第1レンズ群G1と第2レンズ群G2の合成系の正の屈折力が相対的に大きくなると、第1レンズ群G1と第2レンズ群G2の合成系の球面収差やコマ収差を補正するのが困難になりかつ第3レンズ群G3と第4レンズ群G4の合成系の倍率が大きくなり、第1レンズ群G1と第2レンズ群G2の合成系で発生した収差が増倍される。 When the lower limit of the conditional equation (3) is exceeded and the positive refractive power of the combined system of the first lens group G1 and the second lens group G2 becomes relatively large, the combined system of the first lens group G1 and the second lens group G2 It becomes difficult to correct the spherical aberration and coma of the lens, and the magnification of the combined system of the third lens group G3 and the fourth lens group G4 becomes large, and the combined system of the first lens group G1 and the second lens group G2 increases. The generated aberration is multiplied.

尚、条件式(3)について、望ましくはその下限値を0.80に、また、さらには上限値を1.00とすることで、前述の効果をより確実にすることができる。 The above-mentioned effect can be further ensured by setting the lower limit value of the conditional expression (3) to 0.80 and further setting the upper limit value to 1.00.

上記のように本発明のインナーフォーカス光学系は、ウオブリングによるオートフォーカスが可能であることを前提にしている。すなわちウオブリングの際の像高変化率が小さい形式としている。ウオブリングの際の像高変化率が小さくするには、ウオブリングによるフォーカスレンズ群である第3レンズ群G3の主光線高の変動を小さくすればよく、無限遠合焦時の、フォーカスレンズ群である第3レンズ群G3の物体側の面から第2レンズ群G2による開口絞りSの結像位置までの距離を大きくすればよい。 As described above, the inner focus optical system of the present invention is premised on the possibility of autofocus by wobbling. That is, the format is such that the rate of change in image height during wobbling is small. In order to reduce the rate of change in image height during wobbling, it is sufficient to reduce the fluctuation of the main ray height of the third lens group G3, which is the focus lens group due to wobbling. The distance from the surface of the third lens group G3 on the object side to the image formation position of the aperture stop S by the second lens group G2 may be increased.

ウオブリングによる像高変動はウオブリングによる歪曲収差の変動で表すことができる。松居吉哉著、レンズ設計法、共立出版P.88によれば、3次の歪曲収差係数Vは以下の式で表される。
V=J・I V
これを展開すると以下になり、3次の歪曲収差係数Vは近軸主光線高H’の3乗に比例する。
参考式(1)
V=((H’・Q’)^3/(H・Q))・H^2・Δ(1/(n・s))+P・(H’・Q’)/(H・Q)
The fluctuation of the image height due to the wobbling can be expressed by the fluctuation of the distortion aberration due to the wobbling. Yoshiya Matsui, Lens Design Method, Kyoritsu Shuppan P. According to 88, the third-order distortion coefficient V is expressed by the following equation.
V = JIV
When this is expanded, it becomes as follows, and the third-order distortion coefficient V is proportional to the cube of the paraxial main ray height H'.
Reference formula (1)
V = ((H'・ Q') ^ 3 / (H ・ Q)) ・ H ^ 2 ・ Δ (1 / (n ・ s)) + P ・ (H'・ Q') / (H ・ Q)

これよりウオブリングによる歪曲収差の変動を少なくするには、ウオブリングによるフォーカスレンズ群である第3レンズ群G3の主光線高の変動を少なくすればよい。ここで物体距離無限遠時の第3レンズ群G3の物体側の面を基準とした、第2レンズ群G2による絞りの像位置、およびフォーカスレンズ群である第3レンズ群G3の倍率負担、フォーカスレンズ群である第3レンズ群G3より後方のレンズ群である第4レンズ群G4の倍率負担、および物体距離無限遠時のフォーカスレンズ群である第3レンズ群G3における主光線高から、ウオブリングによるフォーカスレンズ群である第3レンズ群G3の主光線高の変動Δhは以下の式で表される。
参考式(2)
Δh=h’−h=h・Δs/(FcEntp×M4^2×(1−M3^2))
ただし、
FcEntp:物体距離無限遠時の前記第3レンズ群G3の物体側の面を基準とした、前記第2レンズ群G2による絞りの像位置
Δs:ウオブリング時の像面移動量
h:物体距離無限遠時のフォーカスレンズ群における主光線高
h’:ウオブリング時のフォーカスレンズ群における主光線高
M3:物体距離無限遠時の前記第3レンズ群G3の倍率負担
M4:物体距離無限遠時の前記第4レンズ群G4の倍率負担
In order to reduce the fluctuation of the distortion due to the wobbling, it is sufficient to reduce the fluctuation of the main ray height of the third lens group G3, which is the focus lens group due to the wobbling. Here, the image position of the aperture by the second lens group G2 with respect to the surface of the third lens group G3 on the object side at an object distance of infinity, and the magnification burden and focus of the third lens group G3 which is the focus lens group. From the magnification burden of the 4th lens group G4, which is the lens group behind the 3rd lens group G3, which is the lens group, and the main ray height in the 3rd lens group G3, which is the focus lens group at an object distance of infinity, due to wobbling. The fluctuation Δh of the principal ray height of the third lens group G3, which is the focus lens group, is expressed by the following equation.
Reference formula (2)
Δh = h'-h = h · Δs / (FcEntp × M4 ^ 2 × (1-M3 ^ 2))
However,
FcEntp: Image position of the aperture by the second lens group G2 with reference to the surface on the object side of the third lens group G3 at infinity object distance Δs: Image plane movement amount during wobbling h: Object distance infinity Main light height h'in the focus lens group at the time: Main light height in the focus lens group at the time of wobbling M3: Magnification burden of the third lens group G3 at the object distance infinity M4: The fourth lens at the object distance infinity Magnification burden of lens group G4

さらに、本実施形態の大口径比レンズは下記の条件を満足することが好ましい。
(4)−13.0<FcEntp/h<−7.0
FcEntp:無限遠合焦状態での、前記第3レンズ群G3の物体側の面を基準とした前記第2レンズ群G2による開口絞りSの結像位置
h:無限遠合焦状態での、前記第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高
Further, it is preferable that the large-diameter ratio lens of the present embodiment satisfies the following conditions.
(4) -13.0 <FcEntp / h <-7.0
FcEntp: Imaging position of aperture diaphragm S by the second lens group G2 with respect to the object-side surface of the third lens group G3 in the infinity in-focus state h: The above-mentioned in the infinity-focused state. The height of the main ray of the maximum angle of view ray in the plane perpendicular to the optical axis in contact with the surface top of the third lens group G3 on the object side.

条件式(4)は、大口径比レンズのウオブリング時の像高変動を抑制しつつ大口径化時の球面収差とコマ収差を補正し、さらに光学全長の増大を抑制するための好ましい条件として、無限遠合焦状態での、第3レンズ群G3の物体側の面を基準とした第2レンズ群G2による開口絞りSの結像位置と無限遠合焦状態での第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高の比について規定するものである。 The conditional equation (4) is a preferable condition for correcting spherical aberration and coma aberration at the time of increasing the diameter while suppressing the image height fluctuation at the time of wobbling of the large-diameter ratio lens, and further suppressing the increase in the total optical length. The imaging position of the aperture aperture S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side in the infinity focus state and the object of the third lens group G3 in the infinity focus state. It defines the ratio of the main ray height of the maximum angled ray in the plane perpendicular to the optical axis in contact with the side top.

条件式(4)の上限を超え、第3レンズ群G3の物体側の面を基準とした第2レンズ群G2による開口絞りSの結像位置が物体側にあり距離が短くなる、あるいは第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高が大きくなると、ウオブリング時の像高変動を抑制することが困難になる。 The upper limit of the conditional expression (4) is exceeded, and the image formation position of the aperture stop S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side is on the object side and the distance becomes shorter, or the third lens group G3. When the main ray height of the maximum angle of view ray in the plane perpendicular to the optical axis in contact with the surface top of the lens group G3 on the object side becomes large, it becomes difficult to suppress the image height fluctuation during wobbling.

条件式(4)の下限を超え、第3レンズ群G3の物体側の面を基準とした第2レンズ群G2による開口絞りSの結像位置が物体側にあり距離が長くなる、あるいは第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高が小さくなると、第2レンズ群G2の正の屈折力が大きくなるため、大口径化時の球面収差とコマ収差の補正が困難になる。または、開口絞りSが物体側に移動するため、第1レンズ群G1の配置に必要なスペースを確保するのが困難となり全長の短縮が困難となる。 The lower limit of the conditional expression (4) is exceeded, and the image formation position of the aperture aperture S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side is on the object side and the distance becomes longer, or the third lens group G3. When the height of the main ray of the maximum angle of view ray in the plane perpendicular to the optical axis in contact with the surface top of the lens group G3 on the object side becomes small, the positive refractive force of the second lens group G2 becomes large, so that when the diameter is increased. It becomes difficult to correct spherical aberration and coma. Alternatively, since the aperture stop S moves to the object side, it is difficult to secure the space required for arranging the first lens group G1, and it is difficult to shorten the total length.

尚、条件式(4)について、望ましくはその下限値を−12.4に、また、さらには上限値を−8.0とすることで、前述の効果をより確実にすることができる。 The above-mentioned effect can be further ensured by setting the lower limit value of the conditional expression (4) to -12.4 and further setting the upper limit value to −8.0.

さらに、本実施形態の大口径比レンズは、第2レンズ群G2は物体側から順に正レンズ、負レンズ、正レンズ、とからなる3枚接合レンズを有し、下記の条件を満足することが好ましい。
(5)10.0<νp−νn<60.0
(6)10.0<νp´−νn<55.0
νp:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数
νn:前記3枚接合レンズを構成する負レンズのアッベ数
νp´:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数
Further, in the large-diameter ratio lens of the present embodiment, the second lens group G2 has a three-lens junction lens composed of a positive lens, a negative lens, and a positive lens in order from the object side, and can satisfy the following conditions. preferable.
(5) 10.0 <νp-νn <60.0
(6) 10.0 <νp'-νn <55.0
νp: Of the two positive lenses constituting the three-element junction lens, the Abbe number of the positive lens having the larger Abbe number νn: The Abbe number of the negative lens constituting the three-element junction lens νp': The three elements Of the two positive lenses that make up the junction lens, the Abbe number of the positive lens with the smaller Abbe number

上記構成が必要な理由は以下の通りである。すなわち、前述の通り第3レンズ群G3は正の屈折力であることが求められるが、3枚接合中に曲率が大きい接合面を複数有することが可能になり、3枚接合は正の屈折力を持ちながらオーバーの軸上色収差を発生させ、正の屈折力を有する第3レンズ群G3で発生するアンダーの軸上色収差を補正することが可能になる。 The reason why the above configuration is necessary is as follows. That is, as described above, the third lens group G3 is required to have a positive refractive power, but it is possible to have a plurality of bonding surfaces having a large curvature during the three-lens bonding, and the three-lens bonding has a positive refractive power. It is possible to generate an over-axis chromatic aberration while having a positive refractive power, and to correct an under-axis chromatic aberration generated in the third lens group G3 having a positive refractive power.

条件式(5)は、全系の軸上色収差を抑えるための好ましい条件として、前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数と前記3枚接合レンズを構成する負レンズのアッベ数の差について規定するものである。 In the conditional equation (5), as a preferable condition for suppressing the axial chromatic aberration of the whole system, the Abbe number of the positive lens having the larger Abbe number among the two positive lenses constituting the three-element junction lens and the above-mentioned It defines the difference in Abbe number of negative lenses constituting a three-lens junction lens.

条件式(5)の上限を超え、前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数と前記3枚接合レンズを構成する負レンズのアッベ数の差が大きくなると、3枚接合で発生するアンダーの軸上色収差が過剰になり、全系の軸上色収差が補正過剰になる。 The upper limit of the conditional expression (5) is exceeded, and of the two positive lenses constituting the three-element junction lens, the Abbe number of the positive lens having the larger Abbe number and the Abbe number of the negative lens constituting the three-element junction lens. When the difference in numbers becomes large, the under-axis chromatic aberration generated in the three-lens junction becomes excessive, and the axial chromatic aberration of the entire system becomes excessively corrected.

条件式(5)の下限を超え、前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数と前記3枚接合レンズを構成する負レンズのアッベ数の差が小さくなると、3枚接合で発生するアンダーの軸上色収差が少なくなり、全系の軸上色収差が補正不足になる。 Exceeding the lower limit of the conditional expression (5), the Abbe number of the positive lens having the larger Abbe number among the two positive lenses constituting the three-element junction lens and the Abbe number of the negative lens constituting the three-element junction lens. When the difference in numbers becomes small, the under-axis chromatic aberration generated in the three-lens junction is reduced, and the axial chromatic aberration of the entire system is insufficiently corrected.

尚、条件式(5)について、望ましくはその下限値を13.0に、また、さらには上限値を56.0とすることで、前述の効果をより確実にすることができる。 The above-mentioned effect can be further ensured by setting the lower limit value of the conditional expression (5) to 13.0 and further setting the upper limit value to 56.0.

条件式(6)は、全系の軸上色収差を抑えるための好ましい条件として、前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数と前記3枚接合レンズを構成する負レンズのアッベ数の差について規定するものである。 In the conditional equation (6), as a preferable condition for suppressing the axial chromatic aberration of the whole system, the Abbe number of the positive lens having the smaller Abbe number among the two positive lenses constituting the three-element junction lens and the above-mentioned It defines the difference in Abbe number of negative lenses constituting a three-lens junction lens.

条件式(6)の上限を超え、前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数と前記3枚接合レンズを構成する負レンズのアッベ数の差が大きくなると、3枚接合で発生するアンダーの軸上色収差が過剰になり、全系の軸上色収差が補正過剰になる。 The Abbe number of the positive lens having the smaller Abbe number among the two positive lenses constituting the three-element junction lens exceeding the upper limit of the conditional expression (6) and the Abbe number of the negative lens constituting the three-element junction lens. When the difference in numbers becomes large, the under-axis chromatic aberration generated in the three-lens junction becomes excessive, and the axial chromatic aberration of the entire system becomes excessively corrected.

条件式(6)の下限を超え、前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数と前記3枚接合レンズを構成する負レンズのアッベ数の差が小さくなると、3枚接合で発生するアンダーの軸上色収差が少なくなり、全系の軸上色収差が補正不足になる。 Exceeding the lower limit of the conditional expression (6), the Abbe number of the positive lens having the smaller Abbe number among the two positive lenses constituting the three-element junction lens and the Abbe number of the negative lens constituting the three-element junction lens. When the difference in numbers becomes small, the under-axis chromatic aberration generated in the three-lens junction is reduced, and the axial chromatic aberration of the entire system is insufficiently corrected.

尚、条件式(6)について、望ましくはその下限値を13.0に、また、さらには上限値を50.0とすることで、前述の効果をより確実にすることができる。 The above-mentioned effect can be further ensured by setting the lower limit value of the conditional expression (6) to 13.0 and further setting the upper limit value to 50.0.

また、本発明の大口径比レンズでは、いずれの実施例も第1レンズ群G1は正の屈折力を有している。しかし、いずれの実施例も第1レンズ群G1の正の屈折力は小さい。従って、第1レンズ群G1が負の屈折力を有する場合であっても、屈折力が小さければ本発明の効果を得ることが可能である。 Further, in the large-diameter ratio lens of the present invention, the first lens group G1 has a positive refractive power in any of the embodiments. However, in each of the examples, the positive refractive power of the first lens group G1 is small. Therefore, even when the first lens group G1 has a negative refractive power, the effect of the present invention can be obtained if the refractive power is small.

本発明の大口径比レンズでは、以下の構成を伴うことがより効果的である。 In the large-diameter ratio lens of the present invention, it is more effective to include the following configurations.

本発明の大口径比レンズでは、フォーカスレンズ群である第3レンズ群G3を単レンズで構成しているが、フォーカス駆動するアクチュエータのトルクに余裕があれば、接合レンズにてフォーカスレンズ群である第3レンズ群G3を色消しにすることで、フォーカス移動による色収差の変動を抑制することも可能である。 In the large-diameter ratio lens of the present invention, the third lens group G3, which is a focus lens group, is composed of a single lens, but if there is a margin in the torque of the actuator that drives the focus, it is a focus lens group with a bonded lens. By achromaticizing the third lens group G3, it is possible to suppress fluctuations in chromatic aberration due to focus movement.

次に、本発明の大口径比レンズに係る実施例のレンズ構成について説明する。尚、以下の説明ではレンズ構成を物体側から像側の順番で記載する。 Next, the lens configuration of the embodiment according to the large-diameter ratio lens of the present invention will be described. In the following description, the lens configuration will be described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数、有効径はレンズ有効径を示す。またBFはバックフォーカスを表す。 In [plane data], the surface number is the number of the lens surface or aperture aperture counted from the object side, r is the radius of curvature of each surface, d is the distance between each surface, and nd is the d line (wavelength λ = 587.56 nm). The refractive index, νd indicates the Abbe number with respect to the d line, and the effective diameter indicates the effective diameter of the lens. BF represents back focus.

面番号を付した(開口絞り)には、平面または開口絞りに対する曲率半径∞(無限大)を記入している。 The radius of curvature ∞ (infinity) with respect to the plane or the aperture stop is entered in the area numbered (opening aperture).

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10次の非球面係数をそれぞれA4、A6、A8、A10と置くとき、非球面の座標が以下の式で表わされるものとする。

Figure 0006969780
In [Aspherical surface data], each coefficient value that gives the aspherical surface shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspherical surface is y for the displacement in the direction orthogonal to the optical axis, z for the displacement (sag amount) in the optical axis direction from the intersection of the aspherical surface and the optical axis, and K, 4, 6, 8 for the cornic coefficient. When the 10th-order aspherical elements are set as A4, A6, A8, and A10, respectively, the coordinates of the aspherical surface shall be expressed by the following equation.
Figure 0006969780

[各種データ]には、焦点距離等の値を示している。 [Various data] shows values such as focal length.

[可変間隔データ]には、各撮影距離状態における可変間隔及びBF(バックフォーカス)の値を示している。 [Variable interval data] shows the values of the variable interval and the BF (back focus) in each shooting distance state.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離を示している。 [Lens group data] shows the surface number on the most object side constituting each lens group and the combined focal length of the entire group.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 In all the following specification values, the focal length f, the radius of curvature r, the lens surface spacing d, and other length units are described in millimeters (mm) unless otherwise specified, but optics. The system is not limited to this because the same optical performance can be obtained in both proportional expansion and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。 Further, in the aberration diagram corresponding to each embodiment, d, g, and C represent the d-line, g-line, and C-line, respectively, and ΔS and ΔM represent the sagittal image plane and the meridional image plane, respectively.

さらに図1、8、15、22に示すレンズ構成図において、Sは開口絞り、Iは像面、Fは光学フィルター、中心を通る一点鎖線は光軸である。また、図1、8、15、22に示すレンズ構成図において、FSはフレアカット絞りである。 Further, in the lens configuration diagram shown in FIGS. 1, 8, 15 and 22, S is an aperture diaphragm, I is an image plane, F is an optical filter, and the alternate long and short dash line passing through the center is an optical axis. Further, in the lens configuration diagram shown in FIGS. 1, 8, 15, and 22, the FS is a flare cut diaphragm.

図1は、本発明の実施例1の大口径比レンズのレンズ構成図である。実施例1の大口径比レンズは、物体側より順に第1レンズ群G1と開口絞りSと第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とからなる。 FIG. 1 is a lens configuration diagram of a large-diameter ratio lens according to a first embodiment of the present invention. The large-diameter ratio lens of Example 1 is composed of a first lens group G1, an aperture diaphragm S, a second lens group G2, a third lens group G3, and a fourth lens group G4 in order from the object side.

第1レンズ群G1は全体で正の屈折力を有しており、物体側に凸面を向けた正の屈折力を有する平凸レンズである第1レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第2レンズと、物体側に凸面を向けた負の屈折力を有するメニスカスレンズである第3レンズからなる。 The first lens group G1 has a positive refractive power as a whole, and the first lens, which is a plano-convex lens having a positive refractive power with the convex surface facing the object side, and the positive refraction with the convex surface facing the object side. It is composed of a second lens, which is a meniscus lens having a force, and a third lens, which is a meniscus lens having a negative refractive power with a convex surface facing the object side.

第2レンズ群G2は全体で正の屈折力を有しており、両凹形状の負の屈折力を有する第4レンズと像側の面が非球面である両凸形状の正の屈折力を有する第5レンズを貼り合わせた接合レンズからなる第2aレンズ群G2aと、両凸形状の正の屈折力を有する第6レンズと両凹形状の負の屈折力を有する第7レンズと両凸形状の正の屈折力を有する第8レンズを貼り合わせた接合レンズと、両凸形状の正の屈折力を有する第9レンズからなる第2bレンズ群G2bからなる。 The second lens group G2 has a positive refractive force as a whole, and has a positive refractive force of a biconvex shape in which the surface on the image side is aspherical with the fourth lens having a negative refractive force of both concave shapes. A second a lens group G2a composed of a bonded lens to which a fifth lens having a fifth lens is bonded, a sixth lens having a positive refractive force of a biconvex shape, a seventh lens having a negative refractive power of a biconcave shape, and a biconvex shape. It is composed of a second b lens group G2b composed of a bonded lens to which an eighth lens having a positive refractive power of the above is bonded and a ninth lens having a positive refractive power of a biconvex shape.

第3レンズ群G3は全体で負の屈折力を有しており、物体側に凸面を向けた負の屈折力を有する第10レンズからなる。無限遠物体から近距離物体への合焦の際には、係る第3レンズ群G3が像面側へ移動する。 The third lens group G3 has a negative refractive power as a whole, and is composed of a tenth lens having a negative refractive power with a convex surface facing the object side. When focusing from an infinity object to a short-distance object, the third lens group G3 moves to the image plane side.

第4レンズ群G4は全体で正の屈折力を有しており、両凸形状の正の屈折力を有する第11レンズと、両凸形状の正の屈折力を有する第12レンズと両凹形状の負の屈折力を有する第13レンズを貼り合わせた接合レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第14レンズからなる。 The fourth lens group G4 has a positive refractive power as a whole, and has an eleventh lens having a positive refractive power of a biconvex shape, a twelfth lens having a positive refractive power of a biconvex shape, and a biconcave shape. It is composed of a bonded lens to which a 13th lens having a negative refractive power of No. 1 is bonded, and a 14th lens which is a meniscus lens having a positive refractive power with a convex surface facing the object side.

光学フィルタFは、第4レンズ群G4と像面Iとの間に配置されている。 The optical filter F is arranged between the fourth lens group G4 and the image plane I.

続いて、以下に実施例1に係る大口径比レンズの諸言値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 64.8169 5.7367 1.95375 32.32
2 ∞ 0.5471
3 30.5121 4.3742 1.92286 20.88
4 34.7793 3.5949
5 97.2682 1.0000 1.64769 33.84
6 20.7908 7.1072
7(絞り) ∞ 5.6691
8 -27.7117 1.0000 1.75211 25.05
9 27.7117 7.5177 1.85135 40.10
10* -68.5749 0.1629
11 80.4340 6.5884 1.59282 68.63
12 -41.9887 0.8000 1.85478 24.80
13 41.9887 7.3908 1.87070 40.73
14 -56.2507 0.1500
15 153.3223 4.4981 1.92286 20.88
16 -70.6979 (d16)
17 80.4673 0.7000 1.56732 42.84
18 21.5186 (d18)
19 32.2679 5.2311 1.92286 20.88
20 -123.4875 0.3677
21 1000.0000 3.4186 1.87070 40.73
22 -40.1517 0.8000 1.80809 22.76
23 23.4881 2.2933
24 37.4085 2.5209 1.87070 40.73
25 73.6554 13.5159
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
像面 ∞

[非球面データ]
10面
K 0.00000
A4 8.27980E-06
A6 5.62700E-09
A8 9.98870E-12
A10 -5.98660E-15

[各種データ]
INF 40倍 0.5m
焦点距離 44.10 43.72 42.17
Fナンバー 1.28 1.30 1.34
全画角2ω 27.57 27.48 27.23
像高Y 10.82 10.82 10.82
レンズ全長 101.22 101.22 101.22

[可変間隔データ]
INF 40倍 0.5m
d0 ∞ 1738.8853 398.7806
d16 1.7000 2.9131 6.9499
d18 9.5346 8.3215 4.2847
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 422.98
G2 8 31.97
G3 17 -52.00
G4 19 53.08
G2a 8 -102.97
G2b 11 29.23
Subsequently, various values of the large-diameter ratio lens according to the first embodiment are shown below.
Numerical Example 1
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 64.8169 5.7367 1.95375 32.32
2 ∞ 0.5471
3 30.5121 4.3742 1.92286 20.88
4 34.7793 3.5949
5 97.2682 1.0000 1.64769 33.84
6 20.7908 7.1072
7 (Aperture) ∞ 5.6691
8 -27.7117 1.0000 1.75211 25.05
9 27.7117 7.5177 1.85135 40.10
10 * -68.5749 0.1629
11 80.4340 6.5884 1.59282 68.63
12 -41.9887 0.8000 1.85478 24.80
13 41.9887 7.3908 1.87070 40.73
14 -56.2507 0.1500
15 153.3223 4.4981 1.92286 20.88
16 -70.6979 (d16)
17 80.4673 0.7000 1.56732 42.84
18 21.5186 (d18)
19 32.2679 5.2311 1.92286 20.88
20 -123.4875 0.3677
21 1000.0000 3.4186 1.87070 40.73
22 -40.1517 0.8000 1.80809 22.76
23 23.4881 2.2933
24 37.4085 2.5209 1.87070 40.73
25 73.6554 13.5159
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
Image plane ∞

[Aspherical data]
10 sides
K 0.00000
A4 8.27980E-06
A6 5.62700E-09
A8 9.98870 E-12
A10 -5.98660E-15

[Various data]
INF 40 times 0.5m
Focal length 44.10 43.72 42.17
F number 1.28 1.30 1.34
Full angle of view 2ω 27.57 27.48 27.23
Image height Y 10.82 10.82 10.82
Lens total length 101.22 101.22 101.22

[Variable interval data]
INF 40 times 0.5m
d0 ∞ 1738.8853 398.7806
d16 1.7000 2.9131 6.9499
d18 9.5346 8.3215 4.2847
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length of group origin
G1 1 422.98
G2 8 31.97
G3 17 -52.00
G4 19 53.08
G2a 8 -102.97
G2b 11 29.23

図8は、本発明の実施例2の大口径比レンズのレンズ構成図である。実施例2の大口径比レンズは、物体側より順に第1レンズ群G1と開口絞りSと第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とからなる。 FIG. 8 is a lens configuration diagram of the large-diameter ratio lens according to the second embodiment of the present invention. The large-diameter ratio lens of Example 2 is composed of a first lens group G1, an aperture diaphragm S, a second lens group G2, a third lens group G3, and a fourth lens group G4 in order from the object side.

第1レンズ群G1は全体で正の屈折力を有しており、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第1レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第2レンズと、物体側に凸面を向けた負の屈折力を有するメニスカスレンズである第3レンズからなる。 The first lens group G1 has a positive refractive power as a whole, and the first lens, which is a meniscus lens having a positive refractive power with a convex surface facing the object side, and a positive refraction with the convex surface facing the object side. It is composed of a second lens, which is a meniscus lens having a force, and a third lens, which is a meniscus lens having a negative refractive power with a convex surface facing the object side.

第2レンズ群G2は全体で正の屈折力を有しており、両凹形状の負の屈折力を有する第4レンズと像側の面が非球面である物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第5レンズを貼り合わせた接合レンズからなる第2aレンズ群G2aと、両凸形状の正の屈折力を有する第6レンズと両凹形状の負の屈折力を有する第7レンズと両凸形状の正の屈折力を有する第8レンズを貼り合わせた接合レンズと、両凸形状の正の屈折力を有する第9レンズからなる第2bレンズ群G2bからなる。 The second lens group G2 has a positive refractive force as a whole, and the fourth lens having both concave and negative refractive forces and the positive surface with the convex surface facing the object side whose image side surface is aspherical. It has a second a lens group G2a consisting of a bonded lens to which a fifth lens, which is a meniscus lens having a refractive force, is bonded, a sixth lens having a positive refractive force of a biconvex shape, and a negative refractive power of a biconcave shape. It is composed of a second b lens group G2b composed of a bonded lens in which a seventh lens and an eighth lens having a biconvex positive refractive force are bonded together, and a ninth lens having a biconvex positive refractive force.

第3レンズ群G3は全体で負の屈折力を有しており、物体側に凸面を向けた負の屈折力を有する第10レンズからなる。無限遠物体から近距離物体への合焦の際には、係る第3レンズ群G3が像面側へ移動する。 The third lens group G3 has a negative refractive power as a whole, and is composed of a tenth lens having a negative refractive power with a convex surface facing the object side. When focusing from an infinity object to a short-distance object, the third lens group G3 moves to the image plane side.

第4レンズ群G4は全体で正の屈折力を有しており、両凸形状の正の屈折力を有する第11レンズと、物体側に凹面を向けた正の屈折力を有するメニスカスレンズである第12レンズと両凹形状の負の屈折力を有する第13レンズを貼り合わせた接合レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第14レンズからなる。 The fourth lens group G4 has a positive refractive power as a whole, and is an eleventh lens having a biconvex positive refractive power and a meniscus lens having a positive refractive power with a concave surface facing the object side. It is composed of a bonded lens in which a twelfth lens and a thirteenth lens having a negative refractive power of both concave shapes are bonded together, and a 14th lens which is a meniscus lens having a positive refractive power with a convex surface facing the object side.

光学フィルタFは、第4レンズ群G4と像面Iとの間に配置されている。 The optical filter F is arranged between the fourth lens group G4 and the image plane I.

続いて、以下に実施例2に係る大口径比レンズの諸言値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 70.7340 5.2918 2.00069 25.46
2 2485.4271 0.5000
3 27.2685 3.0691 1.92286 20.88
4 30.6448 3.3171
5 52.6229 1.0000 1.73800 32.26
6 23.1917 8.9296
7(絞り) ∞ 5.2485
8 -32.3626 1.7507 1.80809 22.76
9 23.4300 6.4407 1.80834 40.92
10* 709.3320 0.3436
11 81.8223 7.9483 1.83481 42.72
12 -27.4239 0.8000 1.76182 26.61
13 32.0390 7.8280 1.83481 42.72
14 -73.6801 0.1500
15 74.1069 5.0479 1.92286 20.88
16 -84.1287 (d16)
17 73.3594 0.7000 1.69895 30.05
18 20.4645 (d18)
19 33.0531 5.2416 1.92286 20.88
20 -78.8099 0.5803
21 -143.1007 4.1860 1.83481 42.72
22 -25.9812 0.8000 1.76182 26.61
23 24.6221 1.8811
24 38.3327 2.3666 1.87070 40.73
25 81.1275 13.4398
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
像面 ∞

[非球面データ]
10面
K 0.00000
A4 1.17480E-05
A6 2.68200E-09
A8 1.17490E-11
A10 -2.98550E-14

[各種データ]
INF 40倍 0.5m
焦点距離 44.11 43.68 42.04
Fナンバー 1.29 1.30 1.34
全画角2ω 27.56 27.49 27.31
像高Y 10.82 10.82 10.82
レンズ全長 102.07 102.07 102.07

[可変間隔データ]
INF 40倍 0.5m
d0 ∞ 1737.2605 397.9278
d16 1.7000 2.6379 5.7114
d18 8.5116 7.5737 4.5001
BF 1.0000 1.0000 1.0001

[レンズ群データ]
群 始面 焦点距離
G1 1 179.82
G2 8 30.11
G3 17 -40.83
G4 19 48.52
G2a 8 -38.13
G2b 11 22.43
Subsequently, various values of the large-diameter ratio lens according to the second embodiment are shown below.
Numerical Example 2
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 70.7340 5.2918 2.00069 25.46
2 2485.4271 0.5000
3 27.2685 3.0691 1.92286 20.88
4 30.6448 3.3171
5 52.6229 1.0000 1.73800 32.26
6 23.1917 8.9296
7 (Aperture) ∞ 5.2485
8 -32.3626 1.7507 1.80809 22.76
9 23.4300 6.4407 1.80834 40.92
10 * 709.3320 0.3436
11 81.8223 7.9483 1.83481 42.72
12 -27.4239 0.8000 1.76182 26.61
13 32.0390 7.8280 1.83481 42.72
14 -73.6801 0.1500
15 74.1069 5.0479 1.92286 20.88
16 -84.1287 (d16)
17 73.3594 0.7000 1.69895 30.05
18 20.4645 (d18)
19 33.0531 5.2416 1.92286 20.88
20 -78.8099 0.5803
21 -143.1007 4.1860 1.83481 42.72
22 -25.9812 0.8000 1.76182 26.61
23 24.6221 1.8811
24 38.3327 2.3666 1.87070 40.73
25 81.1275 13.4398
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
Image plane ∞

[Aspherical data]
10 sides
K 0.00000
A4 1.17480E-05
A6 2.68200E-09
A8 1.17490E-11
A10 -2.98550E-14

[Various data]
INF 40 times 0.5m
Focal length 44.11 43.68 42.04
F number 1.29 1.30 1.34
Full angle of view 2ω 27.56 27.49 27.31
Image height Y 10.82 10.82 10.82
Lens total length 102.07 102.07 102.07

[Variable interval data]
INF 40 times 0.5m
d0 ∞ 1737.2605 397.9278
d16 1.7000 2.6379 5.7114
d18 8.5116 7.5737 4.5001
BF 1.0000 1.0000 1.0001

[Lens group data]
Focal length of group origin
G1 1 179.82
G2 8 30.11
G3 17 -40.83
G4 19 48.52
G2a 8 -38.13
G2b 11 22.43

図15は、本発明の実施例3の大口径比レンズのレンズ構成図である。実施例3の大口径比レンズは、物体側より順に第1レンズ群G1と開口絞りSと第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とからなる。 FIG. 15 is a lens configuration diagram of the large-diameter ratio lens of the third embodiment of the present invention. The large-diameter ratio lens of Example 3 is composed of a first lens group G1, an aperture diaphragm S, a second lens group G2, a third lens group G3, and a fourth lens group G4 in order from the object side.

第1レンズ群G1は全体で正の屈折力を有しており、両凸形状の正の屈折力を有する第1レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第2レンズと、物体側に凸面を向けた負の屈折力を有するメニスカスレンズである第3レンズからなる。 The first lens group G1 has a positive refractive power as a whole, and is a first lens having a positive refractive power of a biconvex shape and a meniscus lens having a positive refractive power with a convex surface facing the object side. It consists of a second lens and a third lens, which is a meniscus lens having a negative refractive power with a convex surface facing the object side.

第2レンズ群G2は全体で正の屈折力を有しており、両凹形状の負の屈折力を有する第4レンズと像側の面が非球面である両凸形状の正の屈折力を有する第5レンズを貼り合わせた接合レンズからなる第2aレンズ群G2aと、両凸形状の正の屈折力を有する第6レンズと両凹形状の負の屈折力を有する第7レンズと両凸形状の正の屈折力を有する第8レンズを貼り合わせた接合レンズと、両凸形状の正の屈折力を有する第9レンズからなる第2bレンズ群G2bからなる。 The second lens group G2 has a positive refractive force as a whole, and has a positive refractive force of a biconvex shape in which the surface on the image side is aspherical with the fourth lens having a negative refractive force of both concave shapes. A second a lens group G2a composed of a bonded lens to which a fifth lens having a fifth lens is bonded, a sixth lens having a positive refractive force of a biconvex shape, a seventh lens having a negative refractive power of a biconcave shape, and a biconvex shape. It is composed of a second b lens group G2b composed of a bonded lens to which an eighth lens having a positive refractive power of the above is bonded and a ninth lens having a positive refractive power of a biconvex shape.

第3レンズ群G3は全体で負の屈折力を有しており、物体側に凸面を向けた負の屈折力を有する第10レンズからなる。無限遠物体から近距離物体への合焦の際には、係る第3レンズ群G3が像面側へ移動する。 The third lens group G3 has a negative refractive power as a whole, and is composed of a tenth lens having a negative refractive power with a convex surface facing the object side. When focusing from an infinity object to a short-distance object, the third lens group G3 moves to the image plane side.

第4レンズ群G4は全体で正の屈折力を有しており、両凸形状の正の屈折力を有する第11レンズと、両凸形状の正の屈折力を有する第12レンズと両凹形状の負の屈折力を有する第13レンズを貼り合わせた接合レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第14レンズからなる。 The fourth lens group G4 has a positive refractive power as a whole, and has an eleventh lens having a positive refractive power of a biconvex shape, a twelfth lens having a positive refractive power of a biconvex shape, and a biconcave shape. It is composed of a bonded lens to which a 13th lens having a negative refractive power of No. 1 is bonded, and a 14th lens which is a meniscus lens having a positive refractive power with a convex surface facing the object side.

光学フィルタFは、第4レンズ群G4と像面Iとの間に配置されている。 The optical filter F is arranged between the fourth lens group G4 and the image plane I.

続いて、以下に実施例3に係る大口径比レンズの諸言値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 80.6587 5.6102 1.91082 35.25
2 -346.9864 1.0962
3 35.9081 6.1441 1.92286 20.88
4 44.1238 3.1285
5 191.8113 1.0000 1.69895 30.05
6 23.2786 5.9758
7(絞り) ∞ 5.9317
8 -25.8129 1.0000 1.69895 30.05
9 35.8846 6.7645 1.85135 40.10
10* -59.3356 0.1960
11 83.1824 6.6057 1.55032 75.50
12 -42.4070 0.8000 1.69895 30.05
13 103.7621 6.0250 1.55032 75.50
14 -47.8313 0.1500
15 237.0405 5.3072 1.83481 42.72
16 -46.2615 (d16)
17 88.1813 0.7000 1.58144 40.89
18 24.0102 (d18)
19 41.5726 4.3861 1.92286 20.88
20 -2520.1788 0.2705
21 98.8201 4.1729 1.87070 40.73
22 -39.0211 0.8000 1.69895 30.05
23 22.4576 1.4074
24 25.6740 2.3895 1.87070 40.73
25 36.7813 14.3865
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
像面 ∞

[非球面データ]
10面
K 0.00000
A4 1.04170E-05
A6 4.72650E-09
A8 3.06930E-11
A10 -4.12070E-14

[各種データ]
INF 40倍 0.5m
焦点距離 44.10 43.71 42.13
Fナンバー 1.29 1.30 1.34
全画角2ω 27.42 27.39 27.35
像高Y 10.82 10.82 10.82
レンズ全長 101.06 101.06 101.06

[可変間隔データ]
INF 40倍 0.5m
d0 ∞ 1738.1481 398.9366
d16 1.7000 3.0072 7.3741
d18 10.1154 8.8082 4.4414
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 825.16
G2 8 31.95
G3 17 -56.97
G4 19 56.23
G2a 8 -143.00
G2b 11 30.50
Subsequently, various values of the large-diameter ratio lens according to the third embodiment are shown below.
Numerical Example 3
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 80.6587 5.6102 1.91082 35.25
2 -346.9864 1.0962
3 35.9081 6.1441 1.92286 20.88
4 44.1238 3.1285
5 191.8113 1.0000 1.69895 30.05
6 23.2786 5.9758
7 (Aperture) ∞ 5.9317
8 -25.8129 1.0000 1.69895 30.05
9 35.8846 6.7645 1.85135 40.10
10 * -59.3356 0.1960
11 83.1824 6.6057 1.55032 75.50
12 -42.4070 0.8000 1.69895 30.05
13 103.7621 6.0250 1.55032 75.50
14 -47.8313 0.1500
15 237.0405 5.3072 1.83481 42.72
16 -46.2615 (d16)
17 88.1813 0.7000 1.58144 40.89
18 24.0102 (d18)
19 41.5726 4.3861 1.92286 20.88
20 -2520.1788 0.2705
21 98.8201 4.1729 1.87070 40.73
22 -39.0211 0.8000 1.69895 30.05
23 22.4576 1.4074
24 25.6740 2.3895 1.87070 40.73
25 36.7813 14.3865
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
Image plane ∞

[Aspherical data]
10 sides
K 0.00000
A4 1.04170E-05
A6 4.72650E-09
A8 3.06930E-11
A10 -4.12070E-14

[Various data]
INF 40 times 0.5m
Focal length 44.10 43.71 42.13
F number 1.29 1.30 1.34
Full angle of view 2ω 27.42 27.39 27.35
Image height Y 10.82 10.82 10.82
Lens total length 101.06 101.06 101.06

[Variable interval data]
INF 40 times 0.5m
d0 ∞ 1738.1481 398.9366
d16 1.7000 3.0072 7.3741
d18 10.1154 8.8082 4.4414
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length of group origin
G1 1 825.16
G2 8 31.95
G3 17 -56.97
G4 19 56.23
G2a 8 -143.00
G2b 11 30.50

図22は、本発明の実施例4の大口径比レンズのレンズ構成図である。実施例4の大口径比レンズは、物体側より順に第1レンズ群G1と開口絞りSと第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とからなる。 FIG. 22 is a lens configuration diagram of the large-diameter ratio lens according to the fourth embodiment of the present invention. The large-diameter ratio lens of Example 4 is composed of a first lens group G1, an aperture diaphragm S, a second lens group G2, a third lens group G3, and a fourth lens group G4 in order from the object side.

第1レンズ群G1は全体で正の屈折力を有しており、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第1レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第2レンズと、物体側に凸面を向けた負の屈折力を有するメニスカスレンズである第3レンズからなる。 The first lens group G1 has a positive refractive power as a whole, and the first lens, which is a meniscus lens having a positive refractive power with a convex surface facing the object side, and a positive refraction with the convex surface facing the object side. It is composed of a second lens, which is a meniscus lens having a force, and a third lens, which is a meniscus lens having a negative refractive power with a convex surface facing the object side.

第2レンズ群G2は全体で正の屈折力を有しており、両凹形状の負の屈折力を有する第4レンズと像側の面が非球面である両凸形状の正の屈折力を有する第5レンズを貼り合わせた接合レンズからなる第2aレンズ群G2aと、両凸形状の正の屈折力を有する第6レンズと両凹形状の負の屈折力を有する第7レンズと両凸形状の正の屈折力を有する第8レンズを貼り合わせた接合レンズと、両凸形状の正の屈折力を有する第9レンズからなる第2bレンズ群G2bからなる。 The second lens group G2 has a positive refractive force as a whole, and has a positive refractive force of a biconvex shape in which the surface on the image side is aspherical with the fourth lens having a negative refractive force of both concave shapes. A second a lens group G2a composed of a bonded lens to which a fifth lens having a fifth lens is bonded, a sixth lens having a positive refractive force of a biconvex shape, a seventh lens having a negative refractive power of a biconcave shape, and a biconvex shape. It is composed of a second b lens group G2b composed of a bonded lens to which an eighth lens having a positive refractive power of the above is bonded and a ninth lens having a positive refractive power of a biconvex shape.

第3レンズ群G3は全体で負の屈折力を有しており、物体側に凸面を向けた負の屈折力を有する第10レンズからなる。無限遠物体から近距離物体への合焦の際には、係る第3レンズ群G3が像面側へ移動する。 The third lens group G3 has a negative refractive power as a whole, and is composed of a tenth lens having a negative refractive power with a convex surface facing the object side. When focusing from an infinity object to a short-distance object, the third lens group G3 moves to the image plane side.

第4レンズ群G4は全体で正の屈折力を有しており、両凸形状の正の屈折力を有する第11レンズと、両凸形状の正の屈折力を有する第12レンズと両凹形状の負の屈折力を有する第13レンズを貼り合わせた接合レンズと、物体側に凸面を向けた正の屈折力を有するメニスカスレンズである第14レンズからなる。 The fourth lens group G4 has a positive refractive power as a whole, and has an eleventh lens having a positive refractive power of a biconvex shape, a twelfth lens having a positive refractive power of a biconvex shape, and a biconcave shape. It is composed of a bonded lens to which a 13th lens having a negative refractive power of No. 1 is bonded, and a 14th lens which is a meniscus lens having a positive refractive power with a convex surface facing the object side.

光学フィルタFは、第4レンズ群G4と像面Iとの間に配置されている。 The optical filter F is arranged between the fourth lens group G4 and the image plane I.

続いて、以下に実施例4に係る大口径比レンズの諸言値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
物面 ∞ (d0)
1 65.0663 5.6127 2.00100 29.13
2 1844.1285 0.5000
3 30.0079 3.8699 1.92286 20.88
4 34.2297 3.6176
5 87.5595 1.0000 1.67270 32.17
6 21.4554 7.6134
7(絞り) ∞ 5.5523
8 -29.2207 1.0000 1.75211 25.05
9 22.9114 8.0646 1.85135 40.10
10* -99.7789 0.1500
11 85.3838 6.3591 1.83481 42.72
12 -43.9105 0.8000 1.80809 22.76
13 59.5886 5.6885 1.55032 75.50
14 -73.1805 0.1500
15 88.5287 5.1771 1.92286 20.88
16 -62.7622 (d16)
17 108.2584 0.7000 1.64769 33.84
18 22.4861 (d18)
19 35.4931 5.5000 1.92286 20.88
20 -175.2639 0.1500
21 146.4899 4.0051 1.87070 40.73
22 -37.8896 0.8000 1.75211 25.05
23 23.5184 1.8985
24 35.4726 3.4774 1.87070 40.73
25 62.5934 13.6591
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
像面 ∞

[非球面データ]
10面
K 0.00000
A4 8.99040E-06
A6 4.60580E-09
A8 1.69820E-11
A10 -1.04830E-14

[各種データ]
INF 40倍 0.5m
焦点距離 44.10 43.80 42.43
Fナンバー 1.29 1.29 1.35
全画角2ω 27.58 27.43 27.00
像高Y 10.82 10.82 10.82
レンズ全長 101.07 101.07 101.07

[可変間隔データ]
INF 40倍 0.5m
d0 ∞ 1742.2773 398.9345
d16 1.7000 2.7978 6.4508
d18 9.0202 7.9224 4.2693
BF 1.0000 1.0000 1.0000

[レンズ群データ]
群 始面 焦点距離
G1 1 360.62
G2 8 32.08
G3 17 -43.96
G4 19 45.56
G2a 8 -84.08
G2b 11 27.86
Subsequently, various values of the large-diameter ratio lens according to the fourth embodiment are shown below.
Numerical Example 4
Unit: mm
[Surface data]
Face number rd nd vd
Paraboloid ∞ (d0)
1 65.0663 5.6127 2.00100 29.13
2 1844.1285 0.5000
3 30.0079 3.8699 1.92286 20.88
4 34.2297 3.6176
5 87.5595 1.0000 1.67270 32.17
6 21.4554 7.6134
7 (Aperture) ∞ 5.5523
8 -29.2207 1.0000 1.75211 25.05
9 22.9114 8.0646 1.85135 40.10
10 * -99.7789 0.1500
11 85.3838 6.3591 1.83481 42.72
12 -43.9105 0.8000 1.80809 22.76
13 59.5886 5.6885 1.55032 75.50
14 -73.1805 0.1500
15 88.5287 5.1771 1.92286 20.88
16 -62.7622 (d16)
17 108.2584 0.7000 1.64769 33.84
18 22.4861 (d18)
19 35.4931 5.5000 1.92286 20.88
20 -175.2639 0.1500
21 146.4899 4.0051 1.87070 40.73
22 -37.8896 0.8000 1.75211 25.05
23 23.5184 1.8985
24 35.4726 3.4774 1.87070 40.73
25 62.5934 13.6591
26 ∞ 4.0000 1.51680 64.20
27 ∞ (BF)
Image plane ∞

[Aspherical data]
10 sides
K 0.00000
A4 8.99040E-06
A6 4.60580E-09
A8 1.69820E-11
A10 -1.04830E-14

[Various data]
INF 40 times 0.5m
Focal length 44.10 43.80 42.43
F number 1.29 1.29 1.35
Full angle of view 2ω 27.58 27.43 27.00
Image height Y 10.82 10.82 10.82
Lens total length 101.07 101.07 101.07

[Variable interval data]
INF 40 times 0.5m
d0 ∞ 1742.2773 398.9345
d16 1.7000 2.7978 6.4508
d18 9.0202 7.9224 4.2693
BF 1.0000 1.0000 1.0000

[Lens group data]
Focal length of group origin
G1 1 360.62
G2 8 32.08
G3 17 -43.96
G4 19 45.56
G2a 8 -84.08
G2b 11 27.86

[条件式対応値]
条件式/実施例 実施例1 実施例2 実施例3 実施例4
(1) −1.07<DFcI/f3 -0.82 -1.03 -0.75 -0.99
(2) −0.8<f2b/f2a< -0.28 -0.59 -0.21 -0.33
(3) 0.7<f12/f<1.0 0.95 0.86 0.96 0.93
(4) −13.0<FcEntp/ -9.46 -11.89 -9.66 -8.84
(5) 10.0<νp−νn<60 43.82 16.11 45.45 52.73
(6) 10.0<νp´−νn<5 15.93 16.11 45.45 19.96
[Conditional expression correspondence value]
Conditional expression / Example Example 1 Example 2 Example 3 Example 4
(1) -1.07 <DFcI / f3 -0.82 -1.03 -0.75 -0.99
(2) -0.8 <f2b / f2a <-0.28 -0.59 -0.21 -0.33
(3) 0.7 <f12 / f <1.0 0.95 0.86 0.96 0.93
(4) -13.0 <FcEntp / -9.46 -11.89 -9.66 -8.84
(5) 10.0 <νp-νn <60 43.82 16.11 45.45 52.73
(6) 10.0 <νp'-νn <5 15.93 16.11 45.45 19.96

G1 第1レンズ群
G2 第2レンズ群
G2a 第2aレンズ群
G2b 第2bレンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
F 光学フィルタ
I 像面
G1 1st lens group G2 2nd lens group G2a 2a lens group G2b 2b lens group G3 3rd lens group G4 4th lens group S Aperture aperture F Optical filter I Image plane

Claims (5)

物体側から順に、第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなり、
前記第2レンズ群G2は、物体側から順に負レンズと正レンズの接合からなる負の屈折力を有する第2aレンズ群G2aと正の屈折力を有する第2bレンズ群G2bとからなり、物体側から順に正レンズ、負レンズ、正レンズ、とからなる3枚接合レンズを有し、
無限遠物体側から近距離物体側へのフォーカシングをする際、前記第3レンズ群G3が像面側へ移動し、以下の条件式を満足することを特徴とする大口径比レンズ。
(1)−1.07<DFcI/f3<−0.65
(2)−0.80<f2b/f2a<−0.18
(4)−13.0<FcEntp/h<−8.0
(5)10.0<νp−νn<60.0
(6)10.0<νp´−νn<55.0
DFcI:前記第4レンズ群G4と撮像素子との間に、d線屈折率=1.51680、厚さ=4.0000のフィルターを入れた場合の、無限遠合焦時の前記第3レンズ群G3の像面側の面から像面までの実距離
f3:前記第3レンズ群G3の焦点距離
f2a:前記第2aレンズ群G2aの焦点距離
f2b:前記第2bレンズ群G2bの焦点距離
FcEntp:無限遠合焦状態での、前記第3レンズ群G3の物体側の面を基準とした前記第2レンズ群G2による開口絞りSの結像位置
h:無限遠合焦状での、前記第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高
νp:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数
νn:前記3枚接合レンズを構成する負レンズのアッベ数
νp´:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数
From the object side, the first lens group G1, the aperture aperture S, the second lens group G2 having a positive refractive power, the third lens group G3 having a negative refractive power, and the third lens group G3 having a positive refractive power. It consists of 4 lens groups G4.
The second lens group G2 is composed of a second a lens group G2a having a negative refractive power consisting of a junction of a negative lens and a positive lens and a second b lens group G2b having a positive refractive power in order from the object side, and is on the object side. It has a three-lens junction lens consisting of a positive lens, a negative lens, and a positive lens in order from.
A large-diameter ratio lens characterized in that when focusing from the infinity object side to the short-distance object side, the third lens group G3 moves to the image plane side and satisfies the following conditional expression.
(1) -1.07 <DFcI / f3 <-0.65
(2) -0.80 <f2b / f2a <-0.18
(4) -13.0 <FcEntp / h <-8.0
(5) 10.0 <νp-νn <60.0
(6) 10.0 <νp'-νn <55.0
DFcI: The third lens group at infinity focusing when a filter having a d-line refractive index = 1.51680 and a thickness = 4.00 is inserted between the fourth lens group G4 and the image pickup element. Actual distance from the image plane side of G3 to the image plane f3: Focal length f2a of the third lens group G3: Focal length f2b of the second a lens group G2a: Focal length FcEndp of the second lens group G2b: Infinite Image formation position of the aperture aperture S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side in the far focal length state: The third lens in the infinity focal length state. The height of the main ray of the maximum focal length ray in the plane perpendicular to the optical axis in contact with the surface apex on the object side of the group G3.
νp: Abbe number of the positive lens with the larger Abbe number among the two positive lenses constituting the three-element junction lens.
νn: Abbe number of negative lenses constituting the three-lens junction lens
νp': Abbe number of the positive lens with the smaller Abbe number among the two positive lenses constituting the three-element junction lens.
物体側から順に、第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなり、
前記第2レンズ群G2は、物体側から順に負レンズと正レンズの接合からなる負の屈折力を有する第2aレンズ群G2aと正の屈折力を有する第2bレンズ群G2bとからなり、
無限遠物体側から近距離物体側へのフォーカシングをする際、前記第3レンズ群G3が像面側へ移動し、以下の条件式を満足することを特徴とする大口径比レンズ。
(1)−1.07<DFcI/f3<−0.65
(2)−0.80<f2b/f2a<−0.18
(3)0.86≦f12/f<1.05
DFcI:前記第4レンズ群G4と撮像素子との間に、d線屈折率=1.51680、厚さ=4.0000のフィルターを入れた場合の、無限遠合焦時の前記第3レンズ群G3の像面側の面から像面までの実距離
f3:前記第3レンズ群G3の焦点距離
f2a:前記第2aレンズ群G2aの焦点距離
f2b:前記第2bレンズ群G2bの焦点距離
f12:前記第1レンズ群G1と前記第2レンズ群G2の合成系の焦点距離
f:全系の無限遠合焦状態での焦点距離
From the object side, the first lens group G1, the aperture aperture S, the second lens group G2 having a positive refractive power, the third lens group G3 having a negative refractive power, and the third lens group G3 having a positive refractive power. It consists of 4 lens groups G4.
The second lens group G2 is composed of a second a lens group G2a having a negative refractive power and a second b lens group G2b having a positive refractive power, which are formed by joining a negative lens and a positive lens in order from the object side.
A large-diameter ratio lens characterized in that when focusing from the infinity object side to the short-distance object side, the third lens group G3 moves to the image plane side and satisfies the following conditional expression.
(1) -1.07 <DFcI / f3 <-0.65
(2) -0.80 <f2b / f2a <-0.18
(3) 0.86 ≦ f12 / f <1.05
DFcI: The third lens group at infinity focusing when a filter having a d-line refractive index = 1.51680 and a thickness = 4.00 is inserted between the fourth lens group G4 and the image pickup element. Actual distance f3 from the image plane side surface of G3 to the image plane: Focal length f2a of the third lens group G3: Focal length f2b of the second a lens group G2a: Focal length f12 of the second b lens group G2b: Focal length f of the combined system of the first lens group G1 and the second lens group G2: the focal length of the entire system in the infinite focus state.
下記の条件式を満足することを特徴とする請求項1に記載の大口径比レンズ。
(3)0.70<f12/f<1.05
f12:前記第1レンズ群G1と前記第2レンズ群G2の合成系の焦点距離
f:全系の無限遠合焦状態での焦点距離
The large-diameter ratio lens according to claim 1, wherein the lens satisfies the following conditional expression.
(3) 0.70 <f12 / f <1.05
f12: Focal length of the combined system of the first lens group G1 and the second lens group G2 f: Focal length of the entire system in the infinite focus state
下記の条件式を満足することを特徴とする請求項2に記載の大口径比レンズ。
(4)−13.0<FcEntp/h<−7.0
FcEntp:無限遠合焦状態での、前記第3レンズ群G3の物体側の面を基準とした前記第2レンズ群G2による開口絞りSの結像位置
h:無限遠合焦状での、前記第3レンズ群G3の物体側の面頂に接する光軸と垂直な平面における最大画角光線の主光線高
The large-diameter ratio lens according to claim 2, wherein the lens satisfies the following conditional expression.
(4) -13.0 <FcEntp / h <-7.0
FcEntp: Imaging position of the aperture stop S by the second lens group G2 with respect to the surface of the third lens group G3 on the object side in the infinity focus state h: the infinity focus state. The height of the main ray of the maximum angle of view ray in the plane perpendicular to the optical axis in contact with the surface top of the third lens group G3 on the object side.
前記第2レンズ群G2は物体側から順に正レンズ、負レンズ、正レンズ、とからなる3枚接合レンズを有し、下記の条件式を満足することを特徴とする請求項2又は4に記載の大口径比レンズ。
(5)10.0<νp−νn<60.0
(6)10.0<νp´−νn<55.0
νp:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の大きい方の正レンズのアッベ数
νn:前記3枚接合レンズを構成する負レンズのアッベ数
νp´:前記3枚接合レンズを構成する2枚の正レンズの内、アッベ数の小さい方の正レンズのアッベ数
The second lens group G2 is a positive lens in order from the object side, a negative lens having a positive lens, cemented triplet consisting of capital, according to claim 2 or 4, characterized by satisfying the following conditional expression Large diameter ratio lens.
(5) 10.0 <νp-νn <60.0
(6) 10.0 <νp'-νn <55.0
νp: Of the two positive lenses constituting the three-element junction lens, the Abbe number of the positive lens having the larger Abbe number νn: The Abbe number of the negative lens constituting the three-element junction lens νp': The three elements Of the two positive lenses that make up the junction lens, the Abbe number of the positive lens with the smaller Abbe number
JP2017142519A 2017-07-24 2017-07-24 Large aperture ratio lens Active JP6969780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142519A JP6969780B2 (en) 2017-07-24 2017-07-24 Large aperture ratio lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142519A JP6969780B2 (en) 2017-07-24 2017-07-24 Large aperture ratio lens

Publications (2)

Publication Number Publication Date
JP2019023693A JP2019023693A (en) 2019-02-14
JP6969780B2 true JP6969780B2 (en) 2021-11-24

Family

ID=65368477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142519A Active JP6969780B2 (en) 2017-07-24 2017-07-24 Large aperture ratio lens

Country Status (1)

Country Link
JP (1) JP6969780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797770B2 (en) * 2017-09-14 2020-12-09 富士フイルム株式会社 Imaging lens and imaging device
CN116964503A (en) * 2021-04-09 2023-10-27 株式会社尼康 Optical system, optical device, and method for manufacturing optical system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220654A (en) * 2011-04-07 2012-11-12 Panasonic Corp Inner focus lens, interchangeable lens device, and camera system
JP2012242472A (en) * 2011-05-17 2012-12-10 Sigma Corp Image forming optical system
JP5797941B2 (en) * 2011-06-16 2015-10-21 株式会社シグマ Large aperture lens
JP2013037081A (en) * 2011-08-04 2013-02-21 Sony Corp Imaging lens and imaging device
JP5631856B2 (en) * 2011-12-21 2014-11-26 オリンパスイメージング株式会社 Inner focus lens system and image pickup apparatus including the same
JP5938107B2 (en) * 2012-12-03 2016-06-22 オリンパス株式会社 Imaging optical system and electronic imaging apparatus having the same
JP6422231B2 (en) * 2013-04-25 2018-11-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
KR101708895B1 (en) * 2014-11-27 2017-02-22 주식회사 삼양옵틱스 Telephoto single focal point lens system and photographing apparatus having the same
JP6392148B2 (en) * 2015-03-16 2018-09-19 富士フイルム株式会社 Imaging lens and imaging apparatus
KR20170073215A (en) * 2015-12-18 2017-06-28 삼성전자주식회사 Single focus lens and photographing lens having the same

Also Published As

Publication number Publication date
JP2019023693A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6680014B2 (en) Inner focus optical system
JP6177549B2 (en) Super wide-angle zoom lens
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP5893423B2 (en) Zoom lens and imaging apparatus having the same
JP6882087B2 (en) Lens device and imaging device
JP6300577B2 (en) Zoom lens and imaging apparatus having the same
JP2017156432A (en) Optical system, optical apparatus and method for manufacturing optical system
JP6797768B2 (en) Zoom lens and imaging device
JP2018013685A (en) Zoom lens and imaging apparatus having the same
JP6808441B2 (en) Zoom lens and imaging device with it
JP6938841B2 (en) Zoom lens and optical equipment
JP7094550B2 (en) Imaging optical system
JP6969780B2 (en) Large aperture ratio lens
JP2017116919A (en) Zoom lens system and image capturing device
JP6460711B2 (en) Zoom lens and imaging apparatus having the same
JP6784952B2 (en) Optical system and optical equipment
JP7236162B2 (en) Lens system and imaging device
JP5059210B2 (en) Zoom lens and imaging apparatus having the same
JP6587052B2 (en) Inner focus lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP6390147B2 (en) Super wide-angle zoom lens
JP7013194B2 (en) Zoom lens and image pickup device with it
JP4817551B2 (en) Zoom lens
JP6808326B2 (en) Zoom lens and imaging device with it
JP6544975B2 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211021

R150 Certificate of patent or registration of utility model

Ref document number: 6969780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150