JP6969358B2 - Optical system, optical equipment - Google Patents

Optical system, optical equipment Download PDF

Info

Publication number
JP6969358B2
JP6969358B2 JP2017244353A JP2017244353A JP6969358B2 JP 6969358 B2 JP6969358 B2 JP 6969358B2 JP 2017244353 A JP2017244353 A JP 2017244353A JP 2017244353 A JP2017244353 A JP 2017244353A JP 6969358 B2 JP6969358 B2 JP 6969358B2
Authority
JP
Japan
Prior art keywords
group
focusing
optical system
lens
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017244353A
Other languages
Japanese (ja)
Other versions
JP2019113576A (en
Inventor
真美 村谷
史哲 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2017244353A priority Critical patent/JP6969358B2/en
Priority to CN201880081941.9A priority patent/CN111492287B/en
Priority to US16/955,671 priority patent/US20210011256A1/en
Priority to PCT/JP2018/047010 priority patent/WO2019124499A1/en
Publication of JP2019113576A publication Critical patent/JP2019113576A/en
Application granted granted Critical
Publication of JP6969358B2 publication Critical patent/JP6969358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学系、光学機器、光学系の製造方法に関する。 The present invention relates to an optical system, an optical device, and a method for manufacturing the optical system.

従来、光学系のフォーカシング方式として、光学系の像側のレンズ群を移動させるリアフォーカス方式や、光学系の中間のレンズ群を移動させるインナーフォーカス方式が知られている(例えば、特許文献1を参照。)。しかしながら、開放Fナンバーが小さく諸収差の発生しやすい大口径レンズにおいてはレンズ群の移動による収差変動が大きいという問題があった。 Conventionally, as a focusing method of an optical system, a rear focus method for moving a lens group on the image side of the optical system and an inner focus method for moving an intermediate lens group of the optical system are known (for example, Patent Document 1). reference.). However, in a large-diameter lens having a small open F number and easily generating various aberrations, there is a problem that the aberration fluctuation due to the movement of the lens group is large.

特開2014−123018号公報Japanese Unexamined Patent Publication No. 2014-12018

本発明の第1の態様は、
物体側から順に、正の屈折力を有する前群と、開口絞りと、後群とからなり、
前記前群は、物体側から順に、正の屈折力を有する正レンズ群と、正の屈折力を有する前側合焦群を有し、
前記後群は、正の屈折力を有する後側合焦群を有し、
合焦時に前記前側合焦群と後側合焦群が物体側に移動し、前記開口絞りの位置が固定であり、前記正レンズ群と前記前側合焦群との間隔が変化し、
以下の条件式を満足する光学系を提供する。
0.250<XRF/XFF<1.500
0.010<fFA/fFF<0.750
ただし、
XFF:無限遠物体から近距離物体への合焦時の前記前側合焦群の移動量
XRF:無限遠物体から近距離物体への合焦時の前記後側合焦群の移動量
fFA:前記正レンズ群の焦点距離
fFF:前記前側合焦群の焦点距離
The first aspect of the present invention is
From the object side, it consists of a front group with a positive refractive power, an aperture stop, and a rear group.
The front group includes, in order from the object side, a positive lens group having positive refractive power, and a front case Asegun having positive refractive power,
The posterior group has a posterior focusing group having a positive refractive power.
At the time of focusing, the front focusing group and the rear focusing group move to the object side, the position of the aperture stop is fixed, and the distance between the positive lens group and the front focusing group changes.
An optical system satisfying the following conditional expression is provided.
0.250 <XRF / XFF <1.500
0.010 <fFA / fFF <0.750
However,
XFF: Movement amount of the front focusing group when focusing from an infinity object to a short-distance object XRF: Movement amount of the rear focusing group when focusing from an infinity object to a short-distance object
fFA: Focal length of the positive lens group
fFF: Focal length of the front focusing group

第1実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 1st Example. 第1実施例に係る光学系の諸収差図である。It is a figure of various aberrations of the optical system which concerns on 1st Example. 第2実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の諸収差図である。It is a figure of various aberrations of the optical system which concerns on 2nd Example. 第3実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の諸収差図である。It is a figure of various aberrations of the optical system which concerns on 3rd Example. 第4実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 4th Embodiment. 第4実施例に係る光学系の諸収差図である。It is a figure of various aberrations of the optical system which concerns on 4th Embodiment. 第5実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 5th Embodiment. 第5実施例に係る光学系の諸収差図である。It is a diagram of various aberrations of an optical system according to a fifth embodiment. 第6実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 6th Embodiment. 第6実施例に係る光学系の諸収差図である。6 is a diagram of various aberrations of the optical system according to the sixth embodiment. 第7実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 7th Example. 第7実施例に係る光学系の諸収差図である。It is a diagram of various aberrations of an optical system according to a seventh embodiment. 第8実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 8th Embodiment. 第8実施例に係る光学系の諸収差図である。It is a figure of various aberrations of the optical system which concerns on 8th Embodiment. 第9実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 9th Embodiment. 第9実施例に係る光学系の諸収差図である。9 is a diagram of various aberrations of the optical system according to the ninth embodiment. 第10実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 10th Examples. 第10実施例に係る光学系の諸収差図である。It is a diagram of various aberrations of an optical system according to a tenth embodiment. 第11実施例に係る変倍光学系の断面図である。It is sectional drawing of the variable magnification optical system which concerns on eleventh embodiment. 第11実施例に係る変倍光学系の広角端状態の諸収差図である。11 is a diagram of various aberrations of the wide-angle end state of the variable magnification optical system according to the eleventh embodiment. 第11実施例に係る変倍光学系の望遠端状態の諸収差図である。11 is a diagram of various aberrations in the telephoto end state of the variable magnification optical system according to the eleventh embodiment. 光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the optical system. 光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of an optical system.

以下、実施形態の光学系、光学機器及び光学系の製造方法について説明する。
本実施形態の光学系は、物体側から順に、正の屈折力を有する前群と、開口絞りと、後群とからなり、前記前群は、正の屈折力を有する前側合焦群を有し、前記後群は、正の屈折力を有する後側合焦群を有し、無限遠物体から近距離物体への少なくとも一部の合焦時に前記前側合焦群と後側合焦群が物体側に移動し、以下の条件式(1)を満足する。
(1) 0.250<XRF/XFF<1.500
ただし、
XFF:無限遠物体から近距離物体への合焦時の前記前側合焦群の移動量
XRF:無限遠物体から近距離物体への合焦時の前記後側合焦群の移動量
Hereinafter, an optical system, an optical device, and a method for manufacturing the optical system according to the embodiment will be described.
The optical system of the present embodiment is composed of a front group having a positive refractive power, an aperture throttle, and a rear group in order from the object side, and the front group has a front focusing group having a positive refractive power. However, the posterior group has a posterior focusing group having a positive refractive power, and the anterior focusing group and the posterior focusing group are in focus at least partly from an infinity object to a short-range object. It moves to the object side and satisfies the following conditional expression (1).
(1) 0.250 <XRF / XFF <1.500
However,
XFF: Movement amount of the front focusing group when focusing from an infinity object to a short-distance object XRF: Movement amount of the rear focusing group when focusing from an infinity object to a short-distance object

従来のレトロフォーカスタイプの広角レンズでは開口絞りの像側に位置するレンズ群を合焦群とする場合、像面変動を抑えるために合焦群を物体側へ大きく移動させる必要があった。
本実施形態の光学系は、開口絞りの物体側に配置した正レンズ群と開口絞りの像側に配置した正レンズ群とを合焦群として物体側へ移動させて合焦を行う構成により、合焦時の諸収差の変動を抑え、特に球面収差と像面湾曲収差を良好に補正することができる。また、合焦群を2つとしたことにより、それぞれの合焦群を軽量化して合焦動作の高速化を図ることもできる。
In the conventional retrofocus type wide-angle lens, when the lens group located on the image side of the aperture stop is the in-focus group, it is necessary to move the in-focus group to the object side in order to suppress the image plane fluctuation.
The optical system of the present embodiment has a configuration in which a positive lens group arranged on the object side of the aperture aperture and a positive lens group arranged on the image side of the aperture aperture are moved to the object side as an in-focus group to perform focusing. It is possible to suppress fluctuations in various aberrations during focusing, and in particular, to satisfactorily correct spherical aberration and curvature of field. Further, by setting two focusing groups, it is possible to reduce the weight of each focusing group and speed up the focusing operation.

上記条件式(1)は、合焦時の2つの合焦群の移動量の適切な範囲を規定する条件式である。なお、合焦群が物体側へ移動する場合の移動量を正とし、このことは後述する条件式(7)についても同様である。 The above conditional expression (1) is a conditional expression that defines an appropriate range of the amount of movement of the two focusing groups at the time of focusing. The amount of movement when the in-focus group moves toward the object is positive, and this also applies to the conditional expression (7) described later.

本実施形態の光学系の条件式(1)の対応値が下限値を下回ると、後側合焦群の屈折力が大きくなり過ぎて、球面収差やコマ収差等を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を0.300、更に0.350、0.400、0.450とすることがより好ましい。 When the corresponding value of the conditional expression (1) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the rear focusing group becomes too large, and spherical aberration, coma aberration, etc. can be sufficiently corrected. It will disappear. In addition, in order to ensure the effect of this embodiment, it is more preferable that the lower limit value of the conditional expression (1) is 0.300, and further preferably 0.350, 0.400, 0.450.

一方、本実施形態の光学系の条件式(1)の対応値が上限値を上回ると、後側合焦群の屈折力が小さくなり過ぎて、至近距離物体合焦時に十分な性能を確保することができず、像面湾曲収差が補正不足となってしまう。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を1.400、更に1.300、1.200、1.100、1.000、0.900とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (1) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the rear focusing group becomes too small, and sufficient performance is ensured at the time of focusing on a close-range object. This is not possible, and the curvature of field aberration is insufficiently corrected. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (1) shall be 1.400, and further set to 1.300, 1.200, 1.100, 1.000, 0.900. Is more preferable.

以上の構成により、ミラーレスカメラに好適であり、合焦群の軽量化を図りつつ合焦時の諸収差の変動を抑えて良好な光学性能を有する光学系を実現することができる。 With the above configuration, it is possible to realize an optical system that is suitable for a mirrorless camera and has good optical performance by suppressing fluctuations in various aberrations during focusing while reducing the weight of the focusing group.

また本実施形態の光学系は、合焦時に前記開口絞りの位置が固定であることが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the position of the aperture stop is fixed at the time of focusing. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

また本実施形態の光学系は、以下の条件式(2)を満足することが望ましい。
(2) 0.400<Bf/f<2.000
ただし、
Bf:無限遠物体合焦時の最も像側に位置するレンズの像側レンズ面から像面までの距離、即ちバックフォーカス
f:無限遠物体合焦時の前記光学系の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (2).
(2) 0.400 <Bf / f <2.000
However,
Bf: Distance from the image side lens surface of the lens located closest to the image side when the infinity object is in focus, that is, back focus f: Focal length of the optical system when the infinity object is in focus.

上記条件式(2)は、バックフォーカスと光学系全体の焦点距離の適切な範囲を規定する条件式である。なお、条件式(2)中のBfには、光学系中にフィルタ等の平行平板がある場合はこれを空気に置き換えて算出した値を用いるものとする。このことは後述する条件式(3)、(6)、(13)中のST、TL及びBfについても同様である。 The conditional expression (2) is a conditional expression that defines an appropriate range of the back focus and the focal length of the entire optical system. If there is a parallel flat plate such as a filter in the optical system, the value calculated by replacing it with air is used for Bf in the conditional expression (2). This also applies to ST, TL and Bf in the conditional expressions (3), (6) and (13) described later.

本実施形態の光学系の条件式(2)の対応値が上限値を上回ると、バックフォーカスが大きくなり、テレセントリック性は保たれるものの光学系全体が大型化してしまう。また、大型化に伴う前群の径の増大を抑えようとすれば歪曲収差等を補正することが困難になってしまう。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を1.900、更に1.800、1.700、1.600、1.500、1.400、1.300、1.200、1.100とすることがより好ましい。 When the corresponding value of the conditional expression (2) of the optical system of the present embodiment exceeds the upper limit value, the back focus becomes large and the telecentricity is maintained, but the entire optical system becomes large. Further, if it is attempted to suppress the increase in the diameter of the front group due to the increase in size, it becomes difficult to correct the distortion aberration and the like. In order to ensure the effect of this embodiment, the upper limit of the conditional expression (2) is 1.900, and further 1.800, 1.700, 1.600, 1.500, 1.400, 1. It is more preferably 300, 1.200 and 1.100.

一方、本実施形態の光学系の条件式(2)の対応値が下限値を下回ると、射出瞳の位置が物体側へ変位する。このため、シェーディングが顕著となり、特に画面周辺での解像の低下を招いてしまう。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を0.450、更に0.500、0.550、0.600、0.700とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (2) of the optical system of the present embodiment is lower than the lower limit value, the position of the exit pupil is displaced toward the object side. For this reason, shading becomes remarkable, which causes a decrease in resolution especially around the screen. In order to ensure the effect of this embodiment, it is more preferable that the lower limit of the conditional expression (2) is 0.450, and further preferably 0.500, 0.550, 0.600, 0.700.

また本実施形態の光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.100<ST/TL<0.600
ただし、
ST:無限遠物体合焦時の前記開口絞りから像面までの距離
TL:無限遠物体合焦時の前記最も物体側に位置するレンズの物体側レンズ面から像面までの距離、即ち光学系の全長
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (3).
(3) 0.100 <ST / TL <0.600
However,
ST: Distance from the aperture stop to the image plane when the object is in focus at infinity TL: Distance from the lens surface on the object side of the lens located on the closest object side to the image plane when the object is in focus at infinity, that is, an optical system Total length of

上記条件式(3)は、開口絞りから像面までの距離と光学系の全長の適切な範囲を規定する条件式であり、光学系における開口絞りの位置から射出瞳の位置を推し量るものである。 The above conditional expression (3) is a conditional expression that defines an appropriate range of the distance from the aperture stop to the image plane and the total length of the optical system, and estimates the position of the exit pupil from the position of the aperture stop in the optical system. ..

本実施形態の光学系の条件式(3)の対応値が上限値を上回ると、テレセントリック性は保たれるものの光学系の全長が大きくなり小型化を図ることができない。また光学系の全長が増大した状態で前群の径の小型化を図ろうとすれば、歪曲収差等を十分に補正することが困難になってしまう。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を0.570、更に0.550、0.530、0.500、0.480、0.460とすることがより好ましい。 When the corresponding value of the conditional expression (3) of the optical system of the present embodiment exceeds the upper limit value, the telecentricity is maintained, but the overall length of the optical system becomes large and miniaturization cannot be achieved. Further, if an attempt is made to reduce the diameter of the front group while the total length of the optical system is increased, it becomes difficult to sufficiently correct distortion aberration and the like. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (3) shall be 0.570, and further set to 0.550, 0.530, 0.500, 0.480, 0.460. Is more preferable.

一方、本実施形態の光学系の条件式(3)の対応値が下限値を下回ると、開口絞りが適切な位置よりも物体側に配置されることになる。このため、開口絞りで光線を均等に遮ることができず、開口を絞った時の点像に歪みが生じたり、周辺減光が悪化してしまう。また、倍率色収差を補正することも困難になってしまう。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を0.120、更に0.140、0.170、0.200、0.250、0.300、0.350とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (3) of the optical system of the present embodiment is less than the lower limit value, the aperture stop is arranged closer to the object than the appropriate position. For this reason, the light beam cannot be blocked evenly by the aperture stop, the point image when the aperture is stopped down is distorted, and the limb darkening is deteriorated. In addition, it becomes difficult to correct the chromatic aberration of magnification. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (3) is set to 0.120, and further 0.140, 0.170, 0.200, 0.250, 0.300, 0. It is more preferably 350.

また本実施形態の光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.200<βRF/βFF<1.100
ただし、
βFF:前記前側合焦群の倍率
βRF:前記後側合焦群の倍率
Further, it is desirable that the optical system of this embodiment satisfies the following conditional expression (4).
(4) 0.200 <βRF / βFF <1.10
However,
βFF: Magnification of the anterior focusing group βRF: Magnification of the posterior focusing group

上記条件式(4)は、前側合焦群と後側合焦群の適切な倍率の比を規定する条件式である。 The above conditional expression (4) is a conditional expression that defines the ratio of appropriate magnifications of the front-side focusing group and the rear-side focusing group.

本実施形態の光学系の条件式(4)の対応値が上限値を上回ると、後側合焦群の屈折力が大きくなり過ぎて、球面収差やコマ収差等を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を1.000、更に0.950、0.900、0.850、0.800、0.750、0.700とすることがより好ましい。 When the corresponding value of the conditional expression (4) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the rear focusing group becomes too large, and spherical aberration, coma aberration, etc. can be sufficiently corrected. It will disappear. In order to ensure the effect of this embodiment, the upper limit of the conditional expression (4) is set to 1.000, and further 0.950, 0.900, 0.850, 0.800, 0.750, 0. It is more preferably 700.

一方、本実施形態の光学系の条件式(4)の対応値が下限値を下回ると、後側合焦群の屈折力が小さくなり過ぎて、合焦に必要な倍率を得ることができない。このため、至近距離物体合焦時に十分な性能を確保することができず、像面湾曲収差が補正不足となってしまう。なお、本実施形態の効果を確実にするために、条件式(4)の下限値を0.220、更に0.240、0.260、0.280、0.300、0.320、0.350、0.370とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (4) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the rear focusing group becomes too small, and the magnification required for focusing cannot be obtained. For this reason, sufficient performance cannot be ensured when the object is focused at a close distance, and the curvature of field aberration is insufficiently corrected. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (4) is set to 0.220, and further 0.240, 0.260, 0.280, 0.300, 0.320, 0.320, 0. It is more preferably 350 or 0.370.

また本実施形態の光学系は、合焦時に最も物体側に位置するレンズ群の位置が固定であることが望ましい。これにより、合焦時の像倍率の変化が小さく良好な画像を得ることができ、本実施形態の光学系の機械的な構成を簡略化することができる。 Further, in the optical system of the present embodiment, it is desirable that the position of the lens group located closest to the object side at the time of focusing is fixed. As a result, a good image can be obtained with a small change in image magnification during focusing, and the mechanical configuration of the optical system of the present embodiment can be simplified.

また本実施形態の光学系は、合焦時に最も像側に位置するレンズ群の位置が固定であることが望ましい。これにより、適切な大きさのバックフォーカスと十分な射出瞳距離を確保することができ、本実施形態の光学系の機械的な構成を簡略化することができる。 Further, in the optical system of the present embodiment, it is desirable that the position of the lens group located closest to the image side at the time of focusing is fixed. As a result, it is possible to secure a back focus of an appropriate size and a sufficient exit pupil distance, and it is possible to simplify the mechanical configuration of the optical system of the present embodiment.

また本実施形態の光学系は、前記前側合焦群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有することが望ましい。これにより、倍率色収差等の諸収差を良好に補正することができる。 Further, in the optical system of the present embodiment, it is desirable that the front focusing group has at least one positive lens and at least one negative lens. As a result, various aberrations such as chromatic aberration of magnification can be satisfactorily corrected.

また本実施形態の光学系は、前記後側合焦群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有することが望ましい。これにより、倍率色収差等の諸収差を良好に補正することができる。 Further, in the optical system of the present embodiment, it is desirable that the rear focusing group has at least one positive lens and at least one negative lens. As a result, various aberrations such as chromatic aberration of magnification can be satisfactorily corrected.

また本実施形態の光学系は、前記後群は、物体側から順に、前記後側合焦群と、負の屈折力を有する負レンズ群とを有することが望ましい。これにより、球面収差や像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。また、本実施形態の光学系をカメラに搭載した際に撮像素子に対して効率良く光を導くことができる。 Further, it is desirable that the optical system of the present embodiment has the rear-side focusing group and the negative lens group having a negative refractive power in order from the object side. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed. Further, when the optical system of the present embodiment is mounted on the camera, light can be efficiently guided to the image pickup device.

また本実施形態の光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.800<(−fRB)/f<10.000
ただし、
fRB:前記負レンズ群の焦点距離
f:無限遠物体合焦時の前記光学系の焦点距離
Further, it is desirable that the optical system of this embodiment satisfies the following conditional expression (5).
(5) 0.800 <(-fRB) /f <10.000
However,
fRB: Focal length of the negative lens group f: Focal length of the optical system when focusing on an object at infinity

上記条件式(5)は、負レンズ群の焦点距離と光学系全体の焦点距離を規定する条件式である。 The conditional expression (5) is a conditional expression that defines the focal length of the negative lens group and the focal length of the entire optical system.

本実施形態の光学系の条件式(5)の対応値が上限値を上回ると、負レンズ群の屈折力が小さくなり過ぎる。このため、バックフォーカスが大きくなり光学系が大型化してしまう。また、コマ収差等を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(5)の上限値を9.000、更に8.000、7.000、6.000、5.000とすることがより好ましい。 When the corresponding value of the conditional expression (5) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the negative lens group becomes too small. Therefore, the back focus becomes large and the optical system becomes large. In addition, coma aberration and the like cannot be sufficiently corrected. In order to ensure the effect of this embodiment, it is more preferable that the upper limit of the conditional expression (5) is 9.000, and further preferably 8,000, 7,000, 6,000, and 5.000.

一方、本実施形態の光学系の条件式(5)の対応値が下限値を下回ると、負レンズ群の屈折力が大きくなり過ぎる。このため、射出瞳距離を十分に確保することができなくなってしまう。また、歪曲収差等を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(5)の下限値を1.000、更に1.200、1.400、1.600、1.800、2.000とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (5) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the negative lens group becomes too large. Therefore, it becomes impossible to secure a sufficient exit pupil distance. In addition, distortion aberration and the like cannot be sufficiently corrected. In addition, in order to ensure the effect of this embodiment, the lower limit of the conditional expression (5) is 1.000, and further, 1.200, 1.400, 1.600, 1.800, 2.000. Is more preferable.

また本実施形態の光学系は、以下の条件式(6)を満足することが望ましい。
(6) 0.060<Bf/TL<0.650
ただし、
Bf:無限遠物体合焦時の最も像側に位置するレンズの像側レンズ面から像面までの距離
TL:無限遠物体合焦時の前記最も物体側に位置するレンズの物体側レンズ面から像面までの距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (6).
(6) 0.060 <Bf / TL <0.650
However,
Bf: Distance from the image side lens surface of the lens located closest to the image side when the infinity object is in focus TL: From the object side lens surface of the lens located closest to the object side when the infinity object is in focus Distance to the image plane

上記条件式(6)は、バックフォーカスと光学系の全長を規定する条件式であり、射出瞳のおおよその位置を推し量るものである。本実施形態の光学系は、条件式(6)を満足することにより、全長を小さくしても射出瞳が像側へ比較的変位することがないため、光学系の広角化と小型化に有利となる。 The conditional expression (6) is a conditional expression that defines the back focus and the total length of the optical system, and estimates the approximate position of the exit pupil. By satisfying the conditional expression (6), the optical system of the present embodiment does not relatively displace the exit pupil toward the image side even if the total length is reduced, which is advantageous for widening and downsizing the optical system. It becomes.

本実施形態の光学系の条件式(6)の対応値が上限値を上回ると、バックフォーカスが大きくなり過ぎて光学系が大型化してしまう。或いは、光学系の全長が小さくなり過ぎて球面収差やコマ収差を補正することが困難になってしまう。なお、本実施形態の効果を確実にするために、条件式(6)の上限値を0.600、更に0.550、0.500、0.480、0.430、0.400、0.370、0.300とすることがより好ましい。 If the corresponding value of the conditional expression (6) of the optical system of the present embodiment exceeds the upper limit value, the back focus becomes too large and the optical system becomes large. Alternatively, the total length of the optical system becomes too small, and it becomes difficult to correct spherical aberration and coma. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (6) is set to 0.600, and further 0.550, 0.500, 0.480, 0.430, 0.400, 0. More preferably, it is 370 or 0.300.

一方、本実施形態の光学系の条件式(6)の対応値が下限値を下回ると、射出瞳の位置が像面に近づき過ぎて像面において光線のケラレが生じてしまう。また、これを回避しようとすれば結果的に軸外収差、特にコマ収差を補正することが困難になる可能性があるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の下限値を0.070、更に0.080、0.090、0.100、0.110とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (6) of the optical system of the present embodiment is less than the lower limit value, the position of the exit pupil is too close to the image plane and vignetting of light rays occurs on the image plane. Further, if an attempt is made to avoid this, it may be difficult to correct off-axis aberrations, particularly coma aberrations, which is not preferable. In order to ensure the effect of this embodiment, it is more preferable that the lower limit of the conditional expression (6) is 0.070, and further preferably 0.080, 0.090, 0.100, 0.110.

また本実施形態の光学系は、以下の条件式(7)を満足することが望ましい。
(7) 0.010<XRF/f<0.240
ただし、
XRF:無限遠物体から近距離物体への合焦時の前記後側合焦群の移動量
f:無限遠物体合焦時の前記光学系の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (7).
(7) 0.010 <XRF / f <0.240
However,
XRF: Movement amount of the rear focusing group when focusing from an infinite object to a short-distance object f: Focal length of the optical system when focusing on an infinite object

上記条件式(7)は、後側合焦群の移動量の適切な範囲を光学系全体の焦点距離で規定した条件式である。 The above conditional expression (7) is a conditional expression in which an appropriate range of the amount of movement of the rear focusing group is defined by the focal length of the entire optical system.

本実施形態の光学系の条件式(7)の対応値が上限値を上回ると、後側合焦群の屈折力が小さくなり過ぎて、至近距離物体合焦時に十分な性能を確保することができず、像面湾曲収差が補正不足となってしまう。なお、本実施形態の効果を確実にするために、条件式(7)の上限値を0.220、更に0.200、0.180、0.150とすることがより好ましい。 When the corresponding value of the conditional expression (7) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the rear focusing group becomes too small, and sufficient performance can be ensured at the time of focusing on a close-range object. This is not possible, and the curvature of field aberration is insufficiently corrected. In order to ensure the effect of this embodiment, it is more preferable that the upper limit of the conditional expression (7) is 0.220, further 0.200, 0.180, 0.150.

一方、本実施形態の光学系の条件式(7)の対応値が下限値を下回ると、後側合焦群の屈折力が大きくなり過ぎて、球面収差やコマ収差等を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(7)の下限値を0.013、更に0.016、0.019、0.022、0.024、0.030、0.040、0.050とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (7) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the rear focusing group becomes too large, and spherical aberration, coma aberration, etc. are sufficiently corrected. Can no longer be done. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (7) is set to 0.013, and further 0.016, 0.019, 0.022, 0.024, 0.030, 0. It is more preferably 040 or 0.050.

また本実施形態の光学系は、最も物体側に位置するレンズが負の屈折力を有することが望ましい。このようにレトロフォーカスタイプでありながら前群全体の屈折力を正とすることにより、大きな画角を確保しつつ最も物体側のレンズ群を小径化することができ、適切なバックフォーカスを確保しながら全長の短縮化を図ることもできる。 Further, in the optical system of the present embodiment, it is desirable that the lens located closest to the object side has a negative refractive power. In this way, even though it is a retrofocus type, by making the refractive power of the entire front group positive, it is possible to reduce the diameter of the lens group on the most object side while ensuring a large angle of view, and secure an appropriate back focus. However, the total length can be shortened.

また本実施形態の光学系は、前記後群が正の屈折力を有することが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the rear group has a positive refractive power. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

また本実施形態の光学系は、以下の条件式(8)を満足することが望ましい。
(8) 0.010<fRF/fFF<0.900
ただし、
fFF:前記前側合焦群の焦点距離
fRF:前記後側合焦群の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (8).
(8) 0.010 <fRF / fFF <0.990
However,
fFF: Focal length of the anterior focusing group fRF: Focal length of the posterior focusing group

上記条件式(8)は、2つの合焦群の適切な屈折力配分を焦点距離の比で記したものである。 The above conditional expression (8) describes the appropriate refractive power distribution of the two focusing groups by the ratio of the focal lengths.

本実施形態の光学系の条件式(8)の対応値が下限値を下回ると、前側合焦群の屈折力が小さくなり過ぎる。このため、前側合焦群は合焦時のストロークが大きくなり過ぎて正レンズ群と干渉してしまう。或いは、像面湾曲収差を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(8)の下限値を0.015、更に0.020、0.024とすることがより好ましい。 When the corresponding value of the conditional expression (8) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the front focusing group becomes too small. For this reason, the front focusing group has an excessively large stroke during focusing and interferes with the positive lens group. Alternatively, the curvature of field aberration cannot be sufficiently corrected. In order to ensure the effect of this embodiment, it is more preferable to set the lower limit of the conditional expression (8) to 0.015, further preferably 0.020 or 0.024.

一方、本実施形態の光学系の条件式(8)の対応値が上限値を上回ると、後側合焦群の屈折力が大きくなり過ぎる。このため、球面収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(8)の上限値を0.700、更に0.500、0.400、0.300、0.250とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (8) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the rear focusing group becomes too large. Therefore, it becomes difficult to correct spherical aberration and the like. In order to ensure the effect of this embodiment, it is more preferable that the upper limit of the conditional expression (8) is 0.700, and further preferably 0.500, 0.400, 0.300, 0.250.

また本実施形態の光学系は、以下の条件式(9)を満足することが望ましい。
(9) 0.300<fF/fR<1.300
ただし、
fF:無限遠物体合焦時の前記前群の焦点距離
fR:無限遠物体合焦時の前記後群の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (9).
(9) 0.300 <fF / fR <1.300
However,
fF: Focal length of the front group when focusing on an infinity object fR: Focal length of the rear group when focusing on an infinity object

上記条件式(9)は、前群と後群の適切な屈折力配分を規定する条件式である。 The above conditional expression (9) is a conditional expression that defines an appropriate refractive power distribution between the front group and the rear group.

本実施形態の光学系の条件式(9)の対応値が上限値を上回ると、後群の屈折力が大きくなり過ぎて、球面収差やコマ収差等を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(9)の上限値を1.200、更に1.150、1.100、1.050、1.000、0.950、0.900、0.850、0.800とすることがより好ましい。 If the corresponding value of the conditional equation (9) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the rear group becomes too large, and spherical aberration, coma aberration, etc. cannot be sufficiently corrected. .. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (9) is set to 1.200, and further 1.150, 1.100, 1.050, 1.000, 0.950, 0. More preferably, it is 900, 0.850, 0.800.

一方、本実施形態の光学系の条件式(9)の対応値が下限値を下回ると、後群の屈折力が小さくなり過ぎて、合焦に必要な倍率を得ることができない。このため、至近距離物体合焦時に十分な性能を確保することができず、像面湾曲収差が補正不足となってしまう。なお、本実施形態の効果を確実にするために、条件式(9)の下限値を0.330、更に0.350、0.380、0.400、0.430、0.450、0.480、0.500とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (9) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the rear group becomes too small and the magnification required for focusing cannot be obtained. For this reason, sufficient performance cannot be ensured when the object is focused at a close distance, and the curvature of field aberration is insufficiently corrected. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (9) is set to 0.330, and further 0.350, 0.380, 0.400, 0.430, 0.450, 0. More preferably, it is 480 or 0.500.

また本実施形態の光学系は、前記前群は、物体側から順に、正の屈折力を有する正レンズ群と、前記前側合焦群とを有することが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the front group has a positive lens group having a positive refractive power and a front focusing group in order from the object side. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

また本実施形態の光学系は、以下の条件式(10)を満足することが望ましい。
(10) 0.010<fFA/fFF<0.750
ただし、
fFA:前記正レンズ群の焦点距離
fFF:前記前側合焦群の焦点距離
Further, it is desirable that the optical system of this embodiment satisfies the following conditional expression (10).
(10) 0.010 <fFA / fFF <0.750
However,
fFA: Focal length of the positive lens group fFF: Focal length of the front focusing group

上記条件式(10)は、前側合焦群の焦点距離と正レンズ群の焦点距離を規定する条件式である。 The above conditional expression (10) is a conditional expression that defines the focal length of the front focusing group and the focal length of the positive lens group.

本実施形態の光学系の条件式(10)の対応値が上限値を上回ると、前側合焦群の屈折力が大きくなり過ぎるため、倍率色収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(10)の上限値を0.700、更に0.650、0.600、0.550、0.500、0.450、0.400、0.350、0.300、0.250とすることがより好ましい。 If the corresponding value of the conditional expression (10) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the front focusing group becomes too large, and it becomes difficult to correct the chromatic aberration of magnification or the like. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (10) is set to 0.700, and further 0.650, 0.600, 0.550, 0.500, 0.450, 0. More preferably, it is 400, 0.350, 0.300, 0.250.

一方、本実施形態の光学系の条件式(10)の対応値が下限値を下回ると、前側合焦群の屈折力が小さくなり過ぎるため、像面湾曲収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(10)の下限値を0.015、更に0.020、0.025、0.030、0.035、0.040、0.045、0.050、0.060、0.070、0.080とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (10) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the front focusing group becomes too small, and it becomes difficult to correct the curvature of field aberration and the like. It ends up. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (10) is set to 0.015, and further 0.020, 0.025, 0.030, 0.035, 0.040, 0. More preferably, it is 045, 0.050, 0.060, 0.070, 0.080.

また本実施形態の光学系は、以下の条件式(11)を満足することが望ましい。
(11) 0.010<f/fFF<0.300
ただし、
f:無限遠物体合焦時の前記光学系の焦点距離
fFF:前記前側合焦群の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (11).
(11) 0.010 <f / fFF <0.300
However,
f: Focal length of the optical system when focusing on an infinite object fFF: Focal length of the front focusing group

上記条件式(11)は、前側合焦群の焦点距離と光学系全体の焦点距離を規定する条件式である。 The conditional expression (11) is a conditional expression that defines the focal length of the front focusing group and the focal length of the entire optical system.

本実施形態の光学系の条件式(11)の対応値が上限値を上回ると、前側合焦群の屈折力が大きくなり過ぎるため、倍率色収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(11)の上限値を0.280、更に0.250、0.230、0.200、0.180、0.160、0.140、0.120、0.100、0.080とすることがより好ましい。 If the corresponding value of the conditional expression (11) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the front focusing group becomes too large, and it becomes difficult to correct the chromatic aberration of magnification or the like. In order to ensure the effect of this embodiment, the upper limit of the conditional expression (11) is set to 0.280, and further 0.250, 0.230, 0.200, 0.180, 0.160, 0. More preferably, it is 140, 0.120, 0.100, 0.080.

一方、本実施形態の光学系の条件式(11)の対応値が下限値を下回ると、前側合焦群の屈折力が小さくなり過ぎるため、像面湾曲収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(11)の下限値を0.012、更に0.014、0.016、0.017、0.020、0.025、0.030、0.035とすることがより好ましい。 On the other hand, when the corresponding value of the conditional expression (11) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the front focusing group becomes too small, and it becomes difficult to correct the curvature of field aberration and the like. It ends up. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (11) is set to 0.012, and further 0.014, 0.016, 0.017, 0.020, 0.025, 0. It is more preferably 030 or 0.035.

また本実施形態の光学系は、以下の条件式(12)を満足することが望ましい。
(12) 0.300<f/fRF<1.100
ただし、
f:無限遠物体合焦時の前記光学系の焦点距離
fRF:前記後側合焦群の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (12).
(12) 0.300 <f / fRF <1.10
However,
f: Focal length of the optical system when focusing on an infinite object fRF: Focal length of the rear focusing group

上記条件式(12)は、後側合焦群の焦点距離と光学系全体の焦点距離を規定する条件式である。 The conditional expression (12) is a conditional expression that defines the focal length of the rear focusing group and the focal length of the entire optical system.

本実施形態の光学系の条件式(12)の対応値が上限値を上回ると、後側合焦群の屈折力が小さくなり過ぎる。このため、合焦時の後側合焦群のストロークが大きくなり光学系が大型化してしまう。或いは、像面湾曲収差を十分に補正することができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(12)の上限値を1.050、更に1.000、0.950、0.900、0.850とすることがより好ましい。 When the corresponding value of the conditional expression (12) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the rear focusing group becomes too small. For this reason, the stroke of the rear focusing group at the time of focusing becomes large, and the optical system becomes large. Alternatively, the curvature of field aberration cannot be sufficiently corrected. In order to ensure the effect of this embodiment, it is more preferable that the upper limit of the conditional expression (12) is 1.050, and further preferably 1.000, 0.950, 0.900, 0.850.

一方、本実施形態の光学系の条件式(12)の対応値が下限値を下回ると、後側合焦群の屈折力が大きくなり過ぎるため、球面収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(12)の下限値を0.350、更に0.400、0.450、0.500、0.550、0.600とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (12) of the optical system of the present embodiment is less than the lower limit value, the refractive power of the rear focusing group becomes too large, and it becomes difficult to correct spherical aberration and the like. .. In addition, in order to ensure the effect of this embodiment, the lower limit of the conditional expression (12) shall be 0.350, and further set to 0.400, 0.450, 0.500, 0.550, 0.600. Is more preferable.

また本実施形態の光学系は、以下の条件式(13)を満足することが望ましい。
(13) 0.800<TL/(Fno・Bf)<6.000
ただし、
TL:無限遠物体合焦時の前記最も物体側に位置するレンズの物体側レンズ面から像面までの距離
Fno:前記光学系の開放Fナンバー
Bf:無限遠物体合焦時の最も像側に位置するレンズの像側レンズ面から像面までの距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (13).
(13) 0.800 <TL / (Fno ・ Bf) <6.60
However,
TL: Distance from the lens surface to the image plane of the lens located on the most object side when the object is in focus at infinity Fno: Open F number Bf of the optical system: To the image side when the object is in focus at infinity Distance from the image side lens surface of the located lens to the image surface

上記条件式(13)は、光学系を明るい広角レンズとするために、光学系の全長とバックフォーカスの最適なバランスを示す条件式である。 The conditional expression (13) is a conditional expression showing the optimum balance between the total length of the optical system and the back focus in order to make the optical system a bright wide-angle lens.

本実施形態の光学系の条件式(13)の対応値が上限値を上回ると、光学系の全長が増大し、光学系が大型化してしまう。或いは、Fナンバーが小さくなるため、球面収差を補正することが困難になってしまう。なお、本実施形態の効果を確実にするために、条件式(13)の上限値を5.500、更に5.000、4.500、4.300、4.100、4.000、3.800、3.600とすることがより好ましい。 If the corresponding value of the conditional expression (13) of the optical system of the present embodiment exceeds the upper limit value, the total length of the optical system increases and the optical system becomes large. Alternatively, since the F number becomes small, it becomes difficult to correct the spherical aberration. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (13) is set to 5.500, and further, 5.000, 4.500, 4.300, 4.100, 4.000, 3. It is more preferably 800 and 3.600.

一方、本実施形態の光学系の条件式(13)の対応値が下限値を下回ると、光学系の全長が小さくなり過ぎて、コマ収差等を補正することが困難になってしまう。なお、本実施形態の効果を確実にするために、条件式(13)の下限値を0.900、更に1.000、1.100、1.300、1.500、1.800、2.000、2.200、2.500とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (13) of the optical system of the present embodiment is less than the lower limit value, the total length of the optical system becomes too small, and it becomes difficult to correct coma aberration and the like. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (13) is set to 0.900, and further 1.000, 1.100, 1.300, 1.500, 1.800, 2. More preferably, it is 000, 2.200, or 2.500.

また本実施形態の光学系は、以下の条件式(14)を満足することが望ましい。
(14) |Ainf−Amod|/f<0.070
ただし、
Ainf:無限遠物体合焦時の前記光学系の半画角(単位は「°」)
Amod:最至近物体合焦時の前記光学系の半画角(単位は「°」)
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (14).
(14) | Ainf-Amod | / f <0.070
However,
Ainf: Half angle of view of the optical system when focusing on an infinity object (unit is "°")
Amod: Half angle of view of the optical system when the closest object is in focus (unit is "°")

上記条件式(14)は、無限遠物体合焦時の入射光線角と最至近物体合焦時の入射光線角の比を規定する条件式であり、合焦時の像倍率の変化を推し量るものである。 The above conditional expression (14) is a conditional expression that defines the ratio of the incident ray angle at the time of focusing on an infinite object and the incident light angle at the time of focusing on the nearest object, and estimates the change in the image magnification at the time of focusing. Is.

本実施形態の光学系の条件式(14)の対応値が上限値を上回ると、合焦時に像倍率が変化し、良好な画像を得ることができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(14)の上限値を0.065、更に0.060、0.055、0.050、0.045、0.040とすることがより好ましい。 If the corresponding value of the conditional expression (14) of the optical system of the present embodiment exceeds the upper limit value, the image magnification changes at the time of focusing, and a good image cannot be obtained. In order to ensure the effect of this embodiment, the upper limit of the conditional expression (14) is 0.065, and further, 0.060, 0.055, 0.050, 0.045, 0.040. Is more preferable.

また本実施形態の光学系は、前記前側合焦群は、1枚の正レンズと、1枚の負レンズとからなり、以下の条件式(15)を満足することが望ましい。
(15) 30.00<νFFp−νFFn<75.00
ただし、
νFFp:前記前側合焦群中の前記正レンズのd線(λ=587.6nm)に対するアッベ数
νFFn:前記前側合焦群中の前記負レンズのd線(λ=587.6nm)に対するアッベ数
Further, in the optical system of the present embodiment, the front focusing group includes one positive lens and one negative lens, and it is desirable that the following conditional expression (15) is satisfied.
(15) 30.00 <νFFp-νFFn <75.00
However,
νFFp: Abbe number with respect to the d-line (λ = 587.6 nm) of the positive lens in the front focusing group νFFn: Abbe number with respect to the d-line (λ = 587.6 nm) of the negative lens in the front focusing group

上記条件式(15)は、前側合焦群に含まれる正レンズと負レンズの分散の関係式である。本実施形態の光学系は、条件式(15)を満足することにより、色収差を良好に補正することができる。 The conditional expression (15) is a relational expression of the dispersion of the positive lens and the negative lens included in the front focusing group. The optical system of the present embodiment can satisfactorily correct chromatic aberration by satisfying the conditional expression (15).

なお、本実施形態の効果を確実にするために、条件式(15)の上限値を70.00、更に65.00、61.00、58.00、56.00とすることがより好ましい。 In order to ensure the effect of the present embodiment, it is more preferable that the upper limit of the conditional expression (15) is 70.00, and further preferably 65.00, 61.00, 58.00, 56.00.

なお、本実施形態の効果を確実にするために、条件式(15)の下限値を35.00、更に40.00、45.00、50.00とすることがより好ましい。 In order to ensure the effect of this embodiment, it is more preferable that the lower limit of the conditional expression (15) is 35.00, further 40.00, 45.00, and 50.00.

また本実施形態の光学系は、以下の条件式(16)を満足することが望ましい。
(16)−1.000<(FFr2+FFr1)/(FFr2−FFr1)<2.000
ただし、
FFr1:前記前側合焦群中の最も像側に位置する正レンズの物体側レンズ面の曲率半径
FFr2:前記前側合焦群中の最も像側に位置する正レンズの像側レンズ面の曲率半径
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (16).
(16) -1,000 <(FFr2 + FFr1) / (FFr2-FFr1) <2.000
However,
FFr1: Radius of curvature of the object-side lens surface of the positive lens located most on the image side in the front focusing group FFr2: Curvature radius of the image-side lens surface of the positive lens located on the image side of the front focusing group

上記条件式(16)は、前側合焦群中の最も像側に位置する正レンズの形状因子(シェイプファクター)を規定する条件式である。 The conditional expression (16) is a conditional expression that defines the shape factor of the positive lens located on the image side most in the front focusing group.

本実施形態の光学系の条件式(16)の対応値が上限値を上回ると、当該正レンズの物体側レンズ面の曲率が大きくなり球面収差を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(16)の上限値を1.500、更に1.300、1.000、0.900、0.800、0.700、0.600とすることがより好ましい。 When the corresponding value of the conditional expression (16) of the optical system of the present embodiment exceeds the upper limit value, the curvature of the lens surface on the object side of the positive lens becomes large and it becomes difficult to correct the spherical aberration. In addition, in order to ensure the effect of this embodiment, the upper limit of the conditional expression (16) is 1.500, and further 1.300, 1.000, 0.900, 0.800, 0.700, 0. It is more preferably 600.

一方、本実施形態の光学系の条件式(16)の対応値が下限値を下回ると、コマ収差等を補正することが難しくなってしまう。なお、本実施形態の効果を確実にするために、条件式(16)の下限値を−0.800、更に−0.600、−0.400、−0.200、0.000とすることがより好ましい。 On the other hand, if the corresponding value of the conditional expression (16) of the optical system of the present embodiment is less than the lower limit value, it becomes difficult to correct coma aberration and the like. In addition, in order to ensure the effect of this embodiment, the lower limit of the conditional expression (16) shall be -0.800, and further set to -0.600, -0.400, -0.200, 0.000. Is more preferable.

また本実施形態の光学系は、前記前側合焦群が2枚又は3枚のレンズからなることが望ましい。これにより、前側合焦群の軽量化を図り、オートフォーカスの高速化を達成することができる。 Further, in the optical system of the present embodiment, it is desirable that the front focusing group consists of two or three lenses. As a result, the weight of the front focusing group can be reduced and the autofocus speed can be increased.

また本実施形態の光学系は、前記後側合焦群が4枚以内のレンズからなることが望ましい。これにより、これにより、後側合焦群の軽量化を図り、オートフォーカスの高速化を達成することができる。 Further, it is desirable that the optical system of the present embodiment comprises a lens having four or less rear focusing groups. As a result, it is possible to reduce the weight of the rear focusing group and achieve high-speed autofocus.

また本実施形態の光学系は、最も像側に位置するレンズ群は、像側から順に、正レンズと、負レンズとを有することが望ましい。これにより、適切な大きさのバックフォーカスと十分な射出瞳距離を確保することができる。 Further, in the optical system of the present embodiment, it is desirable that the lens group located closest to the image side has a positive lens and a negative lens in order from the image side. This makes it possible to secure an appropriately sized back focus and a sufficient exit pupil distance.

また本実施形態の光学系は、以下の条件式(17)を満足することが望ましい。
(17) 0.030<nRBp−nRBn
ただし、
nRBp:最も像側に位置するレンズ群中の正レンズのd線(λ=587.6nm)に対する屈折率
nRBn:最も像側に位置するレンズ群中の負レンズのd線(λ=587.6nm)に対する屈折率
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (17).
(17) 0.030 <nRBp-nRBn
However,
nRBp: Refractive index with respect to the d-line (λ = 587.6 nm) of the positive lens in the lens group located most on the image side nRBn: d-line (λ = 587.6 nm) of the negative lens in the lens group located on the image side most ) Refractive index

上記条件式(17)は、最も像側に位置するレンズ群中の正レンズと負レンズの屈折率差を規定する条件式である。
本実施形態の光学系の条件式(17)の対応値が下限値を下回ると、ペッツバール和を補正することができなくなり、適切な射出瞳距離とバックフォーカスを保つことができなくなってしまう。なお、本実施形態の効果を確実にするために、条件式(17)の下限値を0.040、更に0.050、0.060、0.070、0.080、0.090、0.100とすることがより好ましい。
The conditional expression (17) is a conditional expression that defines the difference in refractive index between the positive lens and the negative lens in the lens group located closest to the image side.
If the corresponding value of the conditional expression (17) of the optical system of the present embodiment is less than the lower limit value, the Petzval sum cannot be corrected, and an appropriate exit pupil distance and back focus cannot be maintained. In order to ensure the effect of this embodiment, the lower limit of the conditional expression (17) is set to 0.040, and further 0.050, 0.060, 0.070, 0.080, 0.090, 0. It is more preferably 100.

また本実施形態の光学系は、最も像側に位置するレンズ群中で最も像側に位置するレンズの像側レンズ面が像側に凸であることが望ましい。これにより、適切な射出瞳距離とバックフォーカスを確保することができる。 Further, in the optical system of the present embodiment, it is desirable that the image side lens surface of the lens located on the image side in the lens group located on the image side is convex toward the image side. This makes it possible to secure an appropriate exit pupil distance and back focus.

また本実施形態の光学系は、以下の条件式(18)、(19)を満足することが望ましい。
(18) 1.000<nRBp+0.005νRBp<2.500
(19) 1.000<nRBn+0.005νRBn<2.500
ただし、
nRBp:最も像側に位置するレンズ群中の正レンズのd線(λ=587.6nm)に対する屈折率
nRBn:最も像側に位置するレンズ群中の負レンズのd線(λ=587.6nm)に対する屈折率
νRBp:最も像側に位置するレンズ群中の正レンズのd線(λ=587.6nm)に対するアッベ数
νRBn:最も像側に位置するレンズ群中の負レンズのd線(λ=587.6nm)に対するアッベ数
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expressions (18) and (19).
(18) 1.000 <nRBp + 0.005νRBp <2.500
(19) 1.000 <nRBn + 0.005νRBn <2.500
However,
nRBp: Refractive coefficient with respect to the d-line (λ = 587.6 nm) of the positive lens in the lens group located most on the image side nRBn: d-line (λ = 587.6 nm) of the negative lens in the lens group located on the image side most ) With respect to refractive index νRBp: d-line of the positive lens in the lens group located most on the image side (λ = 587.6 nm) Abbe number νRBn: d-line of the negative lens in the lens group located on the image side most = 587.6 nm) Abbe number

上記条件式(18)は、最も像側に位置するレンズ群に含まれる正レンズの屈折率と分散の関係を規定する条件式である。本実施形態の光学系は、条件式(18)を満足することにより、色収差を良好に補正することができる。 The conditional expression (18) is a conditional expression that defines the relationship between the refractive index and the dispersion of the positive lens included in the lens group located closest to the image side. The optical system of the present embodiment can satisfactorily correct chromatic aberration by satisfying the conditional expression (18).

なお、本実施形態の効果を確実にするために、条件式(18)の上限値を2.400、更に2.300、2.200、2.100とすることがより好ましい。 In addition, in order to ensure the effect of this embodiment, it is more preferable that the upper limit value of the conditional expression (18) is 2.400, and further preferably 2.300, 2.200, 2.100.

なお、本実施形態の効果を確実にするために、条件式(18)の下限値を1.200、更に1.400、1.600、1.800とすることがより好ましい。 In order to ensure the effect of this embodiment, it is more preferable that the lower limit of the conditional expression (18) is 1.200, and further preferably 1.400, 1.600, and 1.800.

上記条件式(19)は、最も像側に位置するレンズ群に含まれる負レンズの屈折率と分散の関係を規定する条件式である。本実施形態の光学系は、条件式(19)を満足することにより、色収差を良好に補正することができる。 The conditional expression (19) is a conditional expression that defines the relationship between the refractive index and the dispersion of the negative lens included in the lens group located closest to the image side. The optical system of the present embodiment can satisfactorily correct chromatic aberration by satisfying the conditional expression (19).

なお、本実施形態の効果を確実にするために、条件式(19)の上限値を2.400、更に2.300、2.200、2.100とすることがより好ましい。 In order to ensure the effect of this embodiment, it is more preferable that the upper limit of the conditional expression (19) is 2.400, and further preferably 2.300, 2.200, 2.100.

なお、本実施形態の効果を確実にするために、条件式(19)の下限値を1.200、更に1.400、1.600、1.800とすることがより好ましい。 In order to ensure the effect of this embodiment, it is more preferable that the lower limit of the conditional expression (19) is 1.200, and further preferably 1.400, 1.600, and 1.800.

また本実施形態の光学系は、前記前側合焦群と前記開口絞りとが隣り合っていることが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the front focusing group and the aperture stop are adjacent to each other. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

また本実施形態の光学系は、前記開口絞りと前記後側合焦群とが隣り合っていることが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the aperture stop and the rear focusing group are adjacent to each other. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

また本実施形態の光学系は、前記前群は、前記前側合焦群と前記開口絞りとの間に、合焦時に位置が固定のレンズ群をさらに有することが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the front group further has a lens group whose position is fixed at the time of focusing between the front side focusing group and the aperture diaphragm. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

また本実施形態の光学系は、前記後群は、前記開口絞りと前記後側合焦群との間に、合焦時に位置が固定のレンズ群をさらに有することが望ましい。これにより、球面収差と像面湾曲収差等の諸収差を良好に補正することができ、合焦時の当該諸収差の変動も抑えることができる。 Further, in the optical system of the present embodiment, it is desirable that the rear group further has a lens group whose position is fixed at the time of focusing between the aperture stop and the rear focusing group. As a result, various aberrations such as spherical aberration and curvature of field aberration can be satisfactorily corrected, and fluctuations in the various aberrations at the time of focusing can be suppressed.

実施形態の光学機器は、上述した構成の光学系を有する。これにより、ミラーレスカメラに好適であり、合焦群の軽量化を図りつつ合焦時の諸収差の変動を抑えて良好な光学性能を有する光学機器を実現することができる。 The optical device of the embodiment has an optical system having the above-described configuration. This makes it possible to realize an optical device that is suitable for a mirrorless camera and has good optical performance by suppressing fluctuations in various aberrations during focusing while reducing the weight of the focusing group.

実施形態の光学系の製造方法は、物体側から順に、正の屈折力を有する前群と、開口絞りと、後群とからなる光学系の製造方法であって、前記前群が正の屈折力を有する前側合焦群を有するようにし、前記後群が正の屈折力を有する後側合焦群を有するようにし、合焦時に前記前側合焦群と後側合焦群が物体側に移動するようにし、前側合焦群と後側合焦群が以下の条件式(1)を満足するようにする。これにより、ミラーレスカメラに好適であり、合焦群の軽量化を図りつつ合焦時の諸収差の変動を抑えて良好な光学性能を有する光学系を製造することができる。
(1) 0.250<XRF/XFF<1.500
ただし、
XFF:無限遠物体から近距離物体への合焦時の前記前側合焦群の移動量
XRF:無限遠物体から近距離物体への合焦時の前記後側合焦群の移動量
The method for manufacturing an optical system according to an embodiment is a method for manufacturing an optical system including a front group having a positive refractive power, an aperture throttle, and a rear group in order from the object side, and the front group has positive refractive power. The front focusing group has a force, the rear group has a rear focusing group having a positive refractive power, and the front focusing group and the rear focusing group are on the object side at the time of focusing. It is moved so that the front-side focusing group and the rear-side focusing group satisfy the following conditional expression (1). This makes it possible to manufacture an optical system that is suitable for a mirrorless camera and has good optical performance by suppressing fluctuations in various aberrations during focusing while reducing the weight of the focusing group.
(1) 0.250 <XRF / XFF <1.500
However,
XFF: Movement amount of the front focusing group when focusing from an infinity object to a short-distance object XRF: Movement amount of the rear focusing group when focusing from an infinity object to a short-distance object

以下、実施形態の光学系に係る実施例を添付図面に基づいて説明する。
(第1実施例)
図1(a)及び図1(b)はそれぞれ、第1実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第1実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
Hereinafter, examples relating to the optical system of the embodiment will be described with reference to the accompanying drawings.
(First Example)
1 (a) and 1 (b) are cross-sectional views of the optical system according to the first embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the first embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸形状の正レンズL3と、両凹形状の負レンズL4と両凸形状の正レンズL5との接合レンズと、両凸形状の正レンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA consists of a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, a biconvex positive lens L3, and a biconcave lens in order from the object side. It is composed of a junction lens of a negative lens L4 and a biconvex positive lens L5, and a biconvex positive lens L6.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた負メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL11と、物体側に凸面を向けた平凸形状の正レンズL12とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a negative meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L11 and a plano-convex positive lens L12 having a convex surface facing the object side in order from the object side.

第1実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。 In the optical system according to the first embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.

以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
表1において、fは焦点距離、Bfはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に「*」を付して曲率半径rの欄に近軸曲率半径の値を示している。
Table 1 below lists the values of the specifications of the optical system according to the first embodiment.
In Table 1, f indicates a focal length, and Bf indicates a back focus (distance on the optical axis between the lens surface on the image side and the image surface I).
In [plane data], the plane number is the order of the optical planes counted from the object side, r is the radius of curvature, d is the plane spacing (distance between the nth plane (n is an integer) and the n + 1th plane), and nd is. The refractive index for the d-line (wavelength 587.6 nm) and νd indicate the Abbe number for the d-line (wavelength 587.6 nm). Further, the object surface is an object surface, the variable is a variable surface interval, the aperture S is an aperture stop S, and the image surface is an image surface I. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, "*" is added to the surface number and the value of the paraxial radius of curvature is shown in the column of radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2]+A4h+A6h+A8h
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.23456E-07」は「1.23456×10−7」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical surface data] shows the aspherical surface coefficient and the conical constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1 + {1-κ (h / r) 2 } 1/2 ] + A4h 4 + A6h 6 + A8h 8
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) along the optical axis direction from the tangent plane of the apex of the aspherical surface to the aspherical surface at height h, and κ is the conical constant. , A4, A6, A8 are the aspherical surface coefficients, and r is the radius of curvature of the reference sphere (near-axis radius of curvature). In addition, "E −n" (n is an integer) indicates “× 10 −n ”, and for example, “1.23456E-07” indicates “1.23456 × 10 −7 ”. The second-order aspherical coefficient A2 is 0, and the description is omitted.

[各種データ]において、FnoはFナンバー、2ωは画角(単位は「°」)、ωは半画角(単位は「°」)、Ymaxは最大像高、βは至近撮影倍率、TLは第1実施例に係る光学系の全長(第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。空気換算Bf、空気換算TLは、フィルタFの厚みを空気換算したBf、TLをそれぞれ示す。Ainfは無限遠物体合焦時の半画角、Amodは最至近物体合焦時の半画角をそれぞれ示す(ともに単位は「°」)。なお、無限遠は無限遠物体への合焦時、近距離は近距離物体への合焦時をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、第1実施例に係る光学系の各条件式の対応値を示す。
In [Various data], Fno is the F number, 2ω is the angle of view (unit is "°"), ω is the half angle of view (unit is "°"), Ymax is the maximum image height, β is the closest shooting magnification, and TL is. The total length of the optical system according to the first embodiment (distance on the optical axis from the first plane to the image plane I) and dn indicate variable intervals between the nth plane and the n + 1th plane. The air-converted Bf and the air-converted TL indicate Bf and TL obtained by converting the thickness of the filter F into air, respectively. Ainf indicates the half-angle of view when focusing on an infinity object, and Amod indicates the half-angle of view when focusing on the nearest object (both units are "°"). Note that infinity indicates the time of focusing on an infinity object, and short distance indicates the time of focusing on a short-distance object.
[Lens group data] shows the start surface and focal length of each lens group.
[Conditional expression corresponding value] indicates the corresponding value of each conditional expression of the optical system according to the first embodiment.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, "mm" is generally used as the unit of the focal length f, the radius of curvature r and other lengths shown in Table 1. However, the optical system is not limited to this because the same optical performance can be obtained even if the optical system is proportionally expanded or contracted.
The reference numerals in Table 1 described above shall be used in the same manner in the tables of the respective examples described later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 85.0000 2.7000 1.744000 44.80
2) 25.0533 9.4392 1.000000
3) 54.7416 2.0000 1.588870 61.13
*4) 18.4256 10.7082 1.000000
5) 516.8640 3.7787 1.903658 31.31
6) -114.1419 3.5370 1.000000
7) -50.2377 2.0000 1.620040 36.40
8) 30.6947 10.4006 1.851500 40.78
9) -261.5465 0.2000 1.000000
10) 41.0143 5.7649 1.851500 40.78
11) -317.4121 可変 1.000000
12)(仮想面) ∞ 0.0000 1.000000
13) 56.6941 4.1550 1.497820 82.57
14) -64.4398 1.2000 1.808090 22.74
15) 364.1222 可変 1.000000
16)(絞りS) ∞ 可変 1.000000
*17) -38.5516 1.4869 1.860999 37.10
*18) -43.3477 1.3930 1.000000
19) 54.9022 6.5932 1.497820 82.57
20) -18.1086 可変 1.000000
*21) -26.4619 1.4000 1.689480 31.02
22) 48.9165 2.3305 1.000000
*23) 39.3225 3.4184 1.832199 40.10
24) ∞ 17.1751 1.000000
25) ∞ 1.6000 1.516800 64.13
26) ∞ 0.9931 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 8.15384E-06 -6.41018E-09 3.11521E-11 -7.69764E-14 0.67523E-16
17 0.0000 -3.75535E-05 4.12683E-08 9.77350E-10 -1.51945E-11 0.24817E-13
18 1.0000 7.81937E-06 1.19209E-07 1.46234E-09 -1.69623E-11 0.50939E-13
21 1.5918 1.17009E-04 -7.89642E-07 5.72645E-09 -2.68019E-11 0.55035E-13
23 1.0000 -7.49387E-05 4.05516E-07 -2.44584E-09 8.81114E-12 -0.14105E-13
[各種データ]
f 20.1396
Fno 1.85813
2ω 96.9415
Ymax 21.60
TL 113.97307
空気換算TL 113.42787
Bf 19.7682
空気換算Bf 19.223
Ainf 49.11334
Amod 48.15531
無限遠 近距離
f 20.1396
β -0.1886
d0 ∞ 86.0518
d11 6.6882 3.2619
d15 4.1566 7.5829
d16 7.3258 5.5189
d20 3.5287 5.3356
2ω 96.9415
ω 48.4707
[レンズ群データ]
群 始面 f
GF 1 41.6168
GR 17 56.1686
GFA 1 50.4642
GFF 12 519.7498
GRF 17 29.1224
GRB 21 -59.3852
[条件式対応値]
(1) XRF/XFF=0.5274
(2) Bf/f=0.9545
(3) ST/TL=0.4500
(4) βRF/βFF=0.3989
(5) (−fRB)/f=2.9486
(6) Bf/TL=0.1695
(7) XRF/f=0.0897
(8) fRF/fFF=0.0560
(9) fF/fR=0.7409
(10) fFA/fFF=0.0971
(11) f/fFF=0.0387
(12) f/fRF=0.6916
(13) TL/(Fno・Bf)=3.1756
(14) |Ainf−Amod|/f=0.0476
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.0639
(17) nRBp−nRBn=0.1427
(18) nRBp+0.005νRBp=2.0327
(19) nRBn+0.005νRBn=1.8446
(Table 1) First Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 85.0000 2.7000 1.744000 44.80
2) 25.0533 9.4392 1.000000
3) 54.7416 2.0000 1.588870 61.13
* 4) 18.4256 10.7082 1.000000
5) 516.8640 3.7787 1.903658 31.31
6) -114.1419 3.5370 1.000000
7) -50.2377 2.0000 1.620040 36.40
8) 30.6947 10.4006 1.851500 40.78
9) -261.5465 0.2000 1.000000
10) 41.0143 5.7649 1.851500 40.78
11) -317.4121 Variable 1.000000
12) (Virtual surface) ∞ 0.0000 1.000000
13) 56.6941 4.1550 1.497820 82.57
14) -64.4398 1.2000 1.808090 22.74
15) 364.1222 Variable 1.000000
16) (Aperture S) ∞ Variable 1.000000
* 17) -38.5516 1.4869 1.860999 37.10
* 18) -43.3477 1.3930 1.000000
19) 54.9022 6.5932 1.497820 82.57
20) -18.1086 Variable 1.000000
* 21) -26.4619 1.4000 1.689480 31.02
22) 48.9165 2.3305 1.000000
* 23) 39.3225 3.4184 1.832199 40.10
24) ∞ 17.1751 1.000000
25) ∞ 1.6000 1.516800 64.13
26) ∞ 0.9931 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 8.15384E-06 -6.41018E-09 3.11521E-11 -7.69764E-14 0.67523E-16
17 0.0000 -3.75535E-05 4.12683E-08 9.77350E-10 -1.51945E-11 0.24817E-13
18 1.0000 7.81937E-06 1.19209E-07 1.46234E-09 -1.69623E-11 0.50939E-13
21 1.5918 1.17009E-04 -7.89642E-07 5.72645E-09 -2.68019E-11 0.55035E-13
23 1.0000 -7.49387E-05 4.05516E-07 -2.44584E-09 8.81114E-12 -0.14105E-13
[Various data]
f 20.1396
Fno 1.85813
2ω 96.9415
Ymax 21.60
TL 113.97307
Air conversion TL 113.42787
Bf 19.7682
Air conversion Bf 19.223
Ainf 49.11334
Amod 48.15531
Point at infinity short distance f 20.1396
β -0.1886
d0 ∞ 86.0518
d11 6.6882 3.2619
d15 4.1566 7.5829
d16 7.3258 5.5189
d20 3.5287 5.3356
2ω 96.9415
ω 48.4707
[Lens group data]
Group starting surface f
GF 1 41.6168
GR 17 56.1686
GFA 1 50.4642
GFF 12 519.7498
GRF 17 29.1224
GRB 21 -59.3852
[Conditional expression correspondence value]
(1) XRF / XFF = 0.5274
(2) Bf / f = 0.9545
(3) ST / TL = 0.4500
(4) βRF / βFF = 0.3989
(5) (-fRB) /f=2.9486
(6) Bf / TL = 0.1695
(7) XRF / f = 0.0897
(8) fRF / fFF = 0.0560
(9) fF / fR = 0.7409
(10) fFA / fFF = 0.0971
(11) f / fFF = 0.0387
(12) f / fRF = 0.6916
(13) TL / (Fno ・ Bf) = 3.1756
(14) | Ainf-Amod | / f = 0.0476
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.0639
(17) nRBp-nRBn = 0.1427
(18) nRBp + 0.005νRBp = 2.0327
(19) nRBn + 0.005νRBn = 1.8446

図2(a)及び図2(b)はそれぞれ、第1実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。 2 (a) and 2 (b) are aberration diagrams of the optical system according to the first embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.

各収差図において、FNOはFナンバー、Yは像高、NAは開口数をそれぞれ示す。詳しくは、球面収差図では最大口径に対応するFナンバーFNO又は開口数NAの値を示し、非点収差図及び歪曲収差図では像高Yの最大値をそれぞれ示し、コマ収差図では各像高の値を示す。また、各収差図において、dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。 In each aberration diagram, FNO indicates F number, Y indicates image height, and NA indicates numerical aperture. Specifically, the spherical aberration diagram shows the value of the F number FNO or the numerical aperture NA corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum value of the image height Y, and the coma aberration diagram shows each image height. Indicates the value of. Further, in each aberration diagram, d indicates an aberration at the d line (wavelength 587.6 nm), and g indicates an aberration at the g line (wavelength 435.8 nm). In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. The coma aberration diagram shows coma aberration at each image height Y. In the aberration diagram of each embodiment described later, the same reference numerals as those of this embodiment are used.

各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。 From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第2実施例)
図3(a)及び図3(b)はそれぞれ、第2実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第2実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(Second Example)
3 (a) and 3 (b) are cross-sectional views of the optical system according to the second embodiment at the time of focusing on an infinite object and the time of focusing on a short-range object, respectively.
The optical system according to the second embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸形状の正レンズL3と、両凹形状の負レンズL4と物体側に凸面を向けた正メニスカスレンズL5との接合レンズと、両凸形状の正レンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA consists of a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, a biconvex positive lens L3, and a biconcave lens in order from the object side. It is composed of a junction lens of a negative lens L4 and a positive meniscus lens L5 having a convex surface facing the object side, and a biconvex positive lens L6.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、負の屈折力を有する負レンズ群GRAと、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
負レンズ群GRAは、物体側に凸面を向けた負メニスカスレンズL9からなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた正メニスカスレンズL10と、両凸形状の正レンズL11とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL12と、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
The rear group GR is composed of a negative lens group GRA having a negative refractive power, a rear focusing group GRF having a positive refractive power, and a negative lens group GRB having a negative refractive power in order from the object side.
The negative lens group GRA is composed of a negative meniscus lens L9 having a convex surface facing the object side.
The rear focusing group GRF is composed of a positive meniscus lens L10 having a convex surface facing the image side and a biconvex positive lens L11 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L12 and a plano-convex positive lens L13 having a convex surface facing the object side in order from the object side.

第2実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS、負レンズ群GRA及び負レンズ群GRBの位置は固定である。
以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the second embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved to the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S, the negative lens group GRA, and the negative lens group GRB are fixed.
Table 2 below lists the values of the specifications of the optical system according to the second embodiment.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 89.6637 2.3000 1.744000 44.80
2) 29.1933 8.8855 1.000000
3) 80.9611 2.0000 1.588870 61.13
*4) 18.6119 11.2072 1.000000
5) 363.7622 4.9254 1.903658 31.31
6) -101.1501 2.7468 1.000000
7) -54.6987 5.0000 1.620040 36.40
8) 32.2537 8.4862 1.851500 40.78
9) 1296.4983 0.2000 1.000000
10) 45.2794 5.9980 1.851500 40.78
11) -141.1734 可変
12)(仮想面) ∞ 0.0000 1.000000
13) 41.5816 4.4074 1.497820 82.57
14) -76.5015 1.2000 1.808090 22.74
15) 129.2012 可変
16)(絞りS) ∞ 2.0000 1.000000
17) 340.8668 1.2000 1.487490 70.32
18) 102.2210 可変
*19) -96.3223 2.0483 1.860999 37.10
20) -78.6357 1.3930 1.000000
21) 60.1667 7.9457 1.497820 82.57
22) -18.5027 可変
*23) -27.6858 1.3000 1.689480 31.02
24) 44.6169 1.9137 1.000000
*25) 37.7956 2.4912 1.832199 40.10
26) ∞ 16.6751 1.000000
27) ∞ 1.6000 1.516800 63.88
28) ∞ 1.0000 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 8.02959E-06 2.44201E-09 1.15819E-11 -5.28374E-15 0.20308E-16
19 0.0000 -3.96671E-05 -9.87679E-08 2.89585E-11 -4.23597E-12 -0.17965E-15
23 1.5084 1.22824E-04 -8.31232E-07 5.29431E-09 -2.14010E-11 0.35630E-13
25 1.0000 -8.30036E-05 4.42223E-07 -2.36224E-09 7.62005E-12 -0.96482E-14
[各種データ]
f 20.4000
Fno 1.86668
2ω 96.1606
Ymax 21.60
TL 117.00851
空気換算TL 116.46331
Bf 19.27514
空気換算Bf 18.72994
Ainf 18.75122
Amod 47.95116
無限遠 近距離
f 20.4000
β -0.1896
d0 ∞ 86.3709
d11 5.7481 2.6300
d15 4.1550 7.2731
d18 6.4768 4.6001
d22 3.7053 5.5821
2ω 96.1606
ω 48.0803
[レンズ群データ]
群 始面 f
GF 1 41.2883
GR 19 54.7498
GFA 1 51.4084
GFF 12 485.7773
GRA 16 -300.0000
GRF 19 27.7405
GRB 23 -60.6065
[条件式対応値]
(1) XRF/XFF=0.6019
(2) Bf/f=0.9181
(3) ST/TL=0.4225
(4) βRF/βFF=0.3322
(5) (−fRB)/f=2.9709
(6) Bf/TL=0.16082
(7) XRF/f=0.0920
(8) fRF/fFF=0.0571
(9) fF/fR=0.7451
(10) fFA/fFF=0.1058
(11) f/fFF=0.0420
(12) f/fRF=0.7354
(13) TL/(Fno・Bf)=3.3311
(14) |Ainf−Amod|/f=0.0392
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.2957
(17) nRBp−nRBn=0.1427
(18) nRBp+0.005νRBp=2.0327
(19) nRBn+0.005νRBn=1.8446
(Table 2) Second Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 89.6637 2.3000 1.744000 44.80
2) 29.1933 8.8855 1.000000
3) 80.9611 2.0000 1.588870 61.13
* 4) 18.6119 11.2072 1.000000
5) 363.7622 4.9254 1.903658 31.31
6) -101.1501 2.7468 1.000000
7) -54.6987 5.0000 1.620040 36.40
8) 32.2537 8.4862 1.851500 40.78
9) 1296.4983 0.2000 1.000000
10) 45.2794 5.9980 1.851500 40.78
11) -141.1734 Variable
12) (Virtual surface) ∞ 0.0000 1.000000
13) 41.5816 4.4074 1.497820 82.57
14) -76.5015 1.2000 1.808090 22.74
15) 129.2012 Variable
16) (Aperture S) ∞ 2.0000 1.000000
17) 340.8668 1.2000 1.487490 70.32
18) 102.2210 variable
* 19) -96.3223 2.0483 1.860999 37.10
20) -78.6357 1.3930 1.000000
21) 60.1667 7.9457 1.497820 82.57
22) -18.5027 Variable
* 23) -27.6858 1.3000 1.689480 31.02
24) 44.6169 1.9137 1.000000
* 25) 37.7956 2.4912 1.832199 40.10
26) ∞ 16.6751 1.000000
27) ∞ 1.6000 1.516800 63.88
28) ∞ 1.0000 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 8.02959E-06 2.44201E-09 1.15819E-11 -5.28374E-15 0.20308E-16
19 0.0000 -3.96671E-05 -9.87679E-08 2.89585E-11 -4.23597E-12 -0.17965E-15
23 1.5084 1.22824E-04 -8.31232E-07 5.29431E-09 -2.14010E-11 0.35630E-13
25 1.0000 -8.30036E-05 4.42223E-07 -2.36224E-09 7.62005E-12 -0.96482E-14
[Various data]
f 20.4000
Fno 1.86668
2ω 96.1606
Ymax 21.60
TL 117.00851
Air conversion TL 116.46331
Bf 19.27514
Air conversion Bf 18.72994
Ainf 18.75122
Amod 47.95116
Point at infinity short distance f 20.4000
β -0.1896
d0 ∞ 86.3709
d11 5.7481 2.6300
d15 4.1550 7.2731
d18 6.4768 4.6001
d22 3.7053 5.5821
2ω 96.1606
ω 48.0803
[Lens group data]
Group starting surface f
GF 1 41.2883
GR 19 54.7498
GFA 1 51.4084
GFF 12 485.7773
GRA 16 -300.0000
GRF 19 27.7405
GRB 23 -60.6065
[Conditional expression correspondence value]
(1) XRF / XFF = 0.6019
(2) Bf / f = 0.9181
(3) ST / TL = 0.4225
(4) βRF / βFF = 0.3322
(5) (-fRB) /f=2.9709
(6) Bf / TL = 0.16082
(7) XRF / f = 0.0920
(8) fRF / fFF = 0.0571
(9) fF / fR = 0.7451
(10) fFA / fFF = 0.1058
(11) f / fFF = 0.0420
(12) f / fRF = 0.7354
(13) TL / (Fno ・ Bf) = 3.3311
(14) | Ainf-Amod | / f = 0.0392
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.2957
(17) nRBp-nRBn = 0.1427
(18) nRBp + 0.005νRBp = 2.0327
(19) nRBn + 0.005νRBn = 1.8446

図4(a)及び図4(b)はそれぞれ、第2実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
4 (a) and 4 (b) are aberration diagrams of the optical system according to the second embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第3実施例)
図5(a)及び図5(b)はそれぞれ、第3実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第3実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(Third Example)
5 (a) and 5 (b) are cross-sectional views of the optical system according to the third embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the third embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFと、正の屈折力を有する正レンズ群GFBとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた正メニスカスレンズL3と、両凹形状の負レンズL4と両凸形状の正レンズL5との接合レンズと、両凸形状の正レンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
正レンズ群GFBは、物体側に凸面を向けた平凸形状の正レンズL9とからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power, a front focusing group GFF having a positive refractive power, and a positive lens group GFB having a positive refractive power in order from the object side.
The positive lens group GFA includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens L3 having a convex surface facing the image side. It is composed of a junction lens of a biconcave negative lens L4 and a biconvex positive lens L5, and a biconvex positive lens L6.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.
The positive lens group GFB is composed of a plano-convex positive lens L9 having a convex surface facing the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた負メニスカスレンズL10と、両凸形状の正レンズL11とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL12と、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a negative meniscus lens L10 having a convex surface facing the image side and a biconvex positive lens L11 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L12 and a plano-convex positive lens L13 having a convex surface facing the object side in order from the object side.

第3実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、正レンズ群GFB、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the third embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved to the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the positive lens group GFB, the aperture stop S and the negative lens group GRB are fixed.
Table 3 below lists the values of the specifications of the optical system according to the third embodiment.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 97.1220 2.5000 1.744000 44.80
2) 25.5141 8.5243 1.000000
3) 54.3787 2.0000 1.588870 61.13
*4) 19.3078 12.0516 1.000000
5) -2541.0384 4.4832 1.903658 31.31
6) -89.4461 3.2029 1.000000
7) -55.7529 4.8378 1.620040 36.40
8) 31.5163 8.0322 1.851500 40.78
9) -603.1050 0.2000 1.000000
10) 44.5738 5.5569 1.851500 40.78
11) -295.5770 可変 1.000000
12)(仮想面) ∞ 0.0000 1.000000
13) 56.3391 4.1355 1.497820 82.57
14) -77.0418 2.0843 1.808090 22.74
15) 274.8271 可変 1.000000
16) 150.0000 1.6000 1.487490 70.32
17) ∞ 2.0000 1.000000
18)(絞りS) ∞ 可変 1.000000
*19) -43.8243 1.2000 1.860999 37.10
20) -57.8611 1.3930 1.000000
21) 70.5507 6.9944 1.497820 82.57
22) -17.1866 可変 1.000000
*23) -32.2891 1.3000 1.689480 31.02
24) 34.1671 2.2422 1.000000
25) 37.1466 3.3825 1.832199 40.10
26) ∞ 16.2621 1.000000
27) ∞ 1.6000 1.516800 63.88
28) ∞ 1.0000 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 6.01620E-06 6.79387E-09 -4.02993E-11 1.20323E-13 -0.15113E-15
19 0.0000 -4.87007E-05 -8.95876E-08 -3.14165E-10 -2.43481E-12 -0.23860E-13
23 5.5636 1.08484E-04 -7.41132E-07 6.01375E-09 -3.07989E-11 0.79304E-13
25 1.0000 -6.01745E-05 3.38304E-07 -1.58920E-09 5.05882E-12 -0.65680E-14
[各種データ]
f 20.2698
Fno 1.84435
2ω 96.5219
Ymax 21.60
TL 116.60345
空気換算TL 116.05825
Bf 18.86209
空気換算Bf 18.31689
Ainf 48.94839
Amod 48.37479
無限遠 近距離
f 20.2698
β -0.1902
d0 ∞ 85.4430
d11 5.6165 2.4956
d15 2.2463 5.3672
d18 8.5521 6.5490
d22 3.6056 5.6088
2ω 96.5219
ω 48.2609
[レンズ群データ]
群 始面 f
GF 1 34.2040
GR 17 66.9283
GFA 1 54.0606
GFF 12 486.5933
GFB 16 307.6986
GRF 19 31.4696
GRB 23 -58.8568
[条件式対応値]
(1) XRF/XFF=0.6418
(2) Bf/f=0.9037
(3) ST/TL=0.4049
(4) βRF/βFF=0.5105
(5) (−fRB)/f=2.9037
(6) Bf/TL=0.1578
(7) XRF/f=0.0988
(8) fRF/fFF=0.0647
(9) fF/fR=0.5111
(10) fFA/fFF=0.1111
(11) f/fFF=0.0417
(12) f/fRF=0.6441
(13) TL/(Fno・Bf)=3.4354
(14) |Ainf−Amod|/f=0.0283
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.1552
(17) nRBp−nRBn=0.1427
(18) nRBp+0.005νRBp=2.0327
(19) nRBn+0.005νRBn=1.8446
(Table 3) Third Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 97.1220 2.5000 1.744000 44.80
2) 25.5141 8.5243 1.000000
3) 54.3787 2.0000 1.588870 61.13
* 4) 19.3078 12.0516 1.000000
5) -2541.0384 4.4832 1.903658 31.31
6) -89.4461 3.2029 1.000000
7) -55.7529 4.8378 1.620040 36.40
8) 31.5163 8.0322 1.851500 40.78
9) -603.1050 0.2000 1.000000
10) 44.5738 5.5569 1.851500 40.78
11) -295.5770 Variable 1.000000
12) (Virtual surface) ∞ 0.0000 1.000000
13) 56.3391 4.1355 1.497820 82.57
14) -77.0418 2.0843 1.808090 22.74
15) 274.8271 Variable 1.000000
16) 150.0000 1.6000 1.487490 70.32
17) ∞ 2.0000 1.000000
18) (Aperture S) ∞ Variable 1.000000
* 19) -43.8243 1.2000 1.860999 37.10
20) -57.8611 1.3930 1.000000
21) 70.5507 6.9944 1.497820 82.57
22) -17.1866 Variable 1.000000
* 23) -32.2891 1.3000 1.689480 31.02
24) 34.1671 2.2422 1.000000
25) 37.1466 3.3825 1.832199 40.10
26) ∞ 16.2621 1.000000
27) ∞ 1.6000 1.516800 63.88
28) ∞ 1.0000 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 6.01620E-06 6.79387E-09 -4.02993E-11 1.20323E-13 -0.15113E-15
19 0.0000 -4.87007E-05 -8.95876E-08 -3.14165E-10 -2.43481E-12 -0.23860E-13
23 5.5636 1.08484E-04 -7.41132E-07 6.01375E-09 -3.07989E-11 0.79304E-13
25 1.0000 -6.01745E-05 3.38304E-07 -1.58920E-09 5.05882E-12 -0.65680E-14
[Various data]
f 20.2698
Fno 1.84435
2ω 96.5219
Ymax 21.60
TL 116.60345
Air conversion TL 116.05825
Bf 18.86209
Air conversion Bf 18.31689
Ainf 48.94839
Amod 48.37479
Point at infinity short distance f 20.2698
β -0.1902
d0 ∞ 85.4430
d11 5.6165 2.4956
d15 2.2463 5.3672
d18 8.5521 6.5490
d22 3.6056 5.6088
2ω 96.5219
ω 48.2609
[Lens group data]
Group starting surface f
GF 1 34.2040
GR 17 66.9283
GFA 1 54.0606
GFF 12 486.5933
GFB 16 307.6986
GRF 19 31.4696
GRB 23 -58.8568
[Conditional expression correspondence value]
(1) XRF / XFF = 0.6418
(2) Bf / f = 0.9037
(3) ST / TL = 0.4049
(4) βRF / βFF = 0.5105
(5) (-fRB) /f=2.9037
(6) Bf / TL = 0.1578
(7) XRF / f = 0.0988
(8) fRF / fFF = 0.0647
(9) fF / fR = 0.5111
(10) fFA / fFF = 0.1111
(11) f / fFF = 0.0417
(12) f / fRF = 0.6441
(13) TL / (Fno ・ Bf) = 3.4354
(14) | Ainf-Amod | / f = 0.0283
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.1552
(17) nRBp-nRBn = 0.1427
(18) nRBp + 0.005νRBp = 2.0327
(19) nRBn + 0.005νRBn = 1.8446

図6(a)及び図6(b)はそれぞれ、第3実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
6 (a) and 6 (b) are aberration diagrams of the optical system according to the third embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第4実施例)
図7(a)及び図7(b)はそれぞれ、第4実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第4実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(Fourth Example)
7 (a) and 7 (b) are cross-sectional views of the optical system according to the fourth embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the fourth embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた正メニスカスレンズL3と、両凹形状の負レンズL4と両凸形状の正レンズL5との接合レンズと、両凸形状の正レンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens L3 having a convex surface facing the image side. It is composed of a junction lens of a biconcave negative lens L4 and a biconvex positive lens L5, and a biconvex positive lens L6.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた正メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL11と、物体側に凸面を向けた平凸形状の正レンズL12とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a positive meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L11 and a plano-convex positive lens L12 having a convex surface facing the object side in order from the object side.

第4実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the fourth embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 4 below lists the values of the specifications of the optical system according to the fourth embodiment.

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 105.1730 2.5000 1.717000 47.97
2) 28.0761 6.9819 1.000000
3) 54.1318 2.0000 1.568830 56.00
*4) 19.1358 12.2439 1.000000
5) -1386.9567 3.2295 1.903658 31.31
6) -106.4455 2.3599 1.000000
7) -63.4529 3.3027 1.620040 36.40
8) 29.5793 7.1269 1.851500 40.78
9) -2671.7190 2.3092 1.000000
10) 42.2306 5.3571 1.851500 40.78
11) -303.1326 可変 1.000000
12)(仮想面) ∞ 0.0000 1.000000
13) 58.1267 4.5140 1.497820 82.57
14) -67.7518 2.5150 1.808090 22.74
15) 464.6438 可変 1.000000
16)(絞りS) ∞ 可変 1.000000
*17) -58.9498 2.0443 1.860999 37.10
18) -56.5635 1.3930 1.000000
19) 119.9079 7.3545 1.497820 82.57
20) -17.3792 可変 1.000000
*21) -27.6859 1.3000 1.689480 31.02
22) 41.8186 1.7994 1.000000
*23) 39.3203 3.4174 1.808350 40.55
24) ∞ 18.4523 1.000000
25) ∞ 1.6000 1.516800 64.13
26) ∞ 0.9866 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 1.01451E-05 3.09662E-10 2.61797E-11 -5.26695E-14 0.49110E-16
17 0.0000 -4.44232E-05 -7.92259E-08 -9.22854E-10 6.75991E-12 -0.57395E-13
21 2.0933 1.10413E-04 -7.62492E-07 5.30334E-09 -2.25140E-11 0.40859E-13
23 1.0000 -7.16079E-05 4.39983E-07 -2.36885E-09 7.66187E-12 -0.10235E-13
[各種データ]
f 23.0000
Fno 1.85172
2ω 90.6552
Ymax 21.60
TL 114.98658
空気換算TL 114.44138
Bf 21.03884
空気換算Bf 20.49364
Ainf 45.31854
Amod 44.51854
無限遠 近距離
f 23.0000
β -0.1828
d0 ∞ 104.9388
d11 5.9052 2.4996
d15 4.0403 7.4460
d16 8.5116 6.6677
d20 3.7419 5.5858
2ω 90.6552
ω 45.3276
[レンズ群データ]
群 始面 f
GF 1 44.7746
GR 17 64.6935
GFA 1 57.4905
GFF 12 413.4387
GRF 17 29.9133
GRB 21 -52.0504
[条件式対応値]
(1) XRF/XFF=0.5414
(2) Bf/f=0.8910
(3) ST/TL=0.4374
(4) βRF/βFF=0.4327
(5) (−fRB)/f=2.2631
(6) Bf/TL=0.1791
(7) XRF/f=0.0802
(8) fRF/fFF=0.0724
(9) fF/fR=0.6921
(10) fFA/fFF=0.1391
(11) f/fFF=0.0556
(12) f/fRF=0.7689
(13) TL/(Fno・Bf)=3.0157
(14) |Ainf−Amod|/f=0.0348
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.0765
(17) nRBp−nRBn=0.1189
(18) nRBp+0.005νRBp=2.0111
(19) nRBn+0.005νRBn=1.8446
(Table 4) Fourth Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 105.1730 2.5000 1.717000 47.97
2) 28.0761 6.9819 1.000000
3) 54.1318 2.0000 1.568830 56.00
* 4) 19.1358 12.2439 1.000000
5) -1386.9567 3.2295 1.903658 31.31
6) -106.4455 2.3599 1.000000
7) -63.4529 3.3027 1.620040 36.40
8) 29.5793 7.1269 1.851500 40.78
9) -2671.7190 2.3092 1.000000
10) 42.2306 5.3571 1.851500 40.78
11) -303.1326 Variable 1.000000
12) (Virtual surface) ∞ 0.0000 1.000000
13) 58.1267 4.5140 1.497820 82.57
14) -67.7518 2.5150 1.808090 22.74
15) 464.6438 Variable 1.000000
16) (Aperture S) ∞ Variable 1.000000
* 17) -58.9498 2.0443 1.860999 37.10
18) -56.5635 1.3930 1.000000
19) 119.9079 7.3545 1.497820 82.57
20) -17.3792 Variable 1.000000
* 21) -27.6859 1.3000 1.689480 31.02
22) 41.8186 1.7994 1.000000
* 23) 39.3203 3.4174 1.808350 40.55
24) ∞ 18.4523 1.000000
25) ∞ 1.6000 1.516800 64.13
26) ∞ 0.9866 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 1.01451E-05 3.09662E-10 2.61797E-11 -5.26695E-14 0.49110E-16
17 0.0000 -4.44232E-05 -7.92259E-08 -9.22854E-10 6.75991E-12 -0.57395E-13
21 2.0933 1.10413E-04 -7.62492E-07 5.30334E-09 -2.25140E-11 0.40859E-13
23 1.0000 -7.16079E-05 4.39983E-07 -2.36885E-09 7.66187E-12 -0.10235E-13
[Various data]
f 23.0000
Fno 1.85172
2ω 90.6552
Ymax 21.60
TL 114.98658
Air conversion TL 114.44138
Bf 21.03884
Air conversion Bf 20.49364
Ainf 45.31854
Amod 44.51854
Point at infinity short distance f 23.0000
β -0.1828
d0 ∞ 104.9388
d11 5.9052 2.4996
d15 4.0403 7.4460
d16 8.5116 6.6677
d20 3.7419 5.5858
2ω 90.6552
ω 45.3276
[Lens group data]
Group starting surface f
GF 1 44.7746
GR 17 64.6935
GFA 1 57.4905
GFF 12 413.4387
GRF 17 29.9133
GRB 21 -52.0504
[Conditional expression correspondence value]
(1) XRF / XFF = 0.5414
(2) Bf / f = 0.8910
(3) ST / TL = 0.4374
(4) βRF / βFF = 0.4327
(5) (-fRB) /f=2.2631
(6) Bf / TL = 0.1791
(7) XRF / f = 0.0802
(8) fRF / fFF = 0.0724
(9) fF / fR = 0.6921
(10) fFA / fFF = 0.1391
(11) f / fFF = 0.0556
(12) f / fRF = 0.7689
(13) TL / (Fno ・ Bf) = 3.0157
(14) | Ainf-Amod | / f = 0.0348
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.0765
(17) nRBp-nRBn = 0.1189
(18) nRBp + 0.005νRBp = 2.0111
(19) nRBn + 0.005νRBn = 1.8446

図8(a)及び図8(b)はそれぞれ、第4実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
8 (a) and 8 (b) are aberration diagrams of the optical system according to the fourth embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第5実施例)
図9(a)及び図9(b)はそれぞれ、第5実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第5実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(Fifth Example)
9 (a) and 9 (b) are cross-sectional views of the optical system according to the fifth embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the fifth embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた正メニスカスレンズL3と、両凹形状の負レンズL4と両凸形状の正レンズL5との接合レンズと、両凸形状の正レンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens L3 having a convex surface facing the image side. It is composed of a junction lens of a biconcave negative lens L4 and a biconvex positive lens L5, and a biconvex positive lens L6.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた正メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL11と、物体側に凸面を向けた平凸形状の正レンズL12とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a positive meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L11 and a plano-convex positive lens L12 having a convex surface facing the object side in order from the object side.

第5実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the fifth embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 5 below lists the values of the specifications of the optical system according to the fifth embodiment.

(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 397.0808 2.5000 1.655234 44.96
2) 41.1626 4.3963 1.000000
3) 63.8851 2.0000 1.556354 55.30
*4) 19.8504 11.8696 1.000000
5) -335.9120 3.4498 1.891325 32.78
6) -92.0502 2.6562 1.000000
7) -66.8872 1.9012 1.620040 36.40
8) 29.5548 8.8222 1.851500 40.78
9) -2141.5083 1.8071 1.000000
10) 44.7902 5.3588 1.851500 40.78
11) -299.4337 可変 1.000000
12)(仮想面) ∞ 0.0000 1.000000
13) 44.5714 5.4239 1.497820 82.57
14) -78.9223 2.8047 1.805180 25.45
15) 160.0738 可変 1.000000
16)(絞りS) ∞ 可変 1.000000
*17) -46.7376 2.0809 1.860999 37.10
18) -42.7565 1.3930 1.000000
19) 262.5587 7.2654 1.497820 82.57
20) -18.8498 可変 1.000000
*21) -30.1253 1.3000 1.689480 31.02
22) 40.4709 1.9883 1.000000
*23) 37.2836 3.3332 1.808350 40.55
24) ∞ 19.7825 1.000000
25) ∞ 1.6000 1.516800 64.13
26) ∞ 1.0059 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 9.77757E-06 -1.86856E-10 3.61428E-11 -7.97773E-14 0.95711E-16
17 0.0000 -3.98939E-05 -3.97571E-08 -4.94760E-10 2.83561E-12 -0.20949E-13
21 2.6936 1.03810E-04 -7.47656E-07 5.22059E-09 -2.32930E-11 0.46411E-13
23 1.0000 -6.38484E-05 4.30545E-07 -2.33889E-09 8.08344E-12 -0.12063E-13
[各種データ]
f 27.0000
Fno 1.8511
2ω 80.1035
Ymax 21.60
TL 115.00586
空気換算TL 114.46066
Bf 22.38833
空気換算Bf 21.84313
Ainf 40.75144
Amod 39.9517
無限遠 近距離
f 27.0000
β -0.1432
d0 ∞ 168.6086
d11 5.9402 2.4572
d15 4.0055 7.4884
d16 8.4916 6.7346
d20 3.8298 5.5867
2ω 80.1035
ω 40.0518
[レンズ群データ]
群 始面 f
GF 1 50.0572
GR 17 68.9718
GFA 1 67.4727
GFF 12 375.4378
GRF 17 32.8785
GRB 21 -60.8771
[条件式対応値]
(1) XRF/XFF=0.5044
(2) Bf/f=0.8090
(3) ST/TL=0.4502
(4) βRF/βFF=0.4980
(5) (−fRB)/f=2.2547
(6) Bf/TL=0.1908
(7) XRF/f=0.0651
(8) fRF/fFF=0.0876
(9) fF/fR=0.7258
(10) fFA/fFF=0.1797
(11) f/fFF=0.0719
(12) f/fRF=0.8212
(13) TL/(Fno・Bf)=2.8308
(14) |Ainf−Amod|/f=0.0296
(15) νFFp−νFFn=57.3000
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.2782
(17) nRBp−nRBn=0.1189
(18) nRBp+0.005νRBp=2.0111
(19) nRBn+0.005νRBn=1.8446
(Table 5) Fifth Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 397.0808 2.5000 1.655234 44.96
2) 41.1626 4.3963 1.000000
3) 63.8851 2.0000 1.556354 55.30
* 4) 19.8504 11.8696 1.000000
5) -335.9120 3.4498 1.891325 32.78
6) -92.0502 2.6562 1.000000
7) -66.8872 1.9012 1.620040 36.40
8) 29.5548 8.8222 1.851500 40.78
9) -2141.5083 1.8071 1.000000
10) 44.7902 5.3588 1.851500 40.78
11) -299.4337 Variable 1.000000
12) (Virtual surface) ∞ 0.0000 1.000000
13) 44.5714 5.4239 1.497820 82.57
14) -78.9223 2.8047 1.805180 25.45
15) 160.0738 Variable 1.000000
16) (Aperture S) ∞ Variable 1.000000
* 17) -46.7376 2.0809 1.860999 37.10
18) -42.7565 1.3930 1.000000
19) 262.5587 7.2654 1.497820 82.57
20) -18.8498 Variable 1.000000
* 21) -30.1253 1.3000 1.689480 31.02
22) 40.4709 1.9883 1.000000
* 23) 37.2836 3.3332 1.808350 40.55
24) ∞ 19.7825 1.000000
25) ∞ 1.6000 1.516800 64.13
26) ∞ 1.0059 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 9.77757E-06 -1.86856E-10 3.61428E-11 -7.97773E-14 0.95711E-16
17 0.0000 -3.98939E-05 -3.97571E-08 -4.94760E-10 2.83561E-12 -0.20949E-13
21 2.6936 1.03810E-04 -7.47656E-07 5.22059E-09 -2.32930E-11 0.46411E-13
23 1.0000 -6.38484E-05 4.30545E-07 -2.33889E-09 8.08344E-12 -0.12063E-13
[Various data]
f 27.0000
Fno 1.8511
2ω 80.1035
Ymax 21.60
TL 115.00586
Air conversion TL 114.46066
Bf 22.38833
Air conversion Bf 21.84313
Ainf 40.75144
Amod 39.9517
Point at infinity short distance f 27.0000
β -0.1432
d0 ∞ 168.6086
d11 5.9402 2.4572
d15 4.0055 7.4884
d16 8.4916 6.7346
d20 3.8298 5.5867
2ω 80.1035
ω 40.0518
[Lens group data]
Group starting surface f
GF 1 50.0572
GR 17 68.9718
GFA 1 67.4727
GFF 12 375.4378
GRF 17 32.8785
GRB 21 -60.8771
[Conditional expression correspondence value]
(1) XRF / XFF = 0.5044
(2) Bf / f = 0.8090
(3) ST / TL = 0.4502
(4) βRF / βFF = 0.4980
(5) (-fRB) /f=2.2547
(6) Bf / TL = 0.1908
(7) XRF / f = 0.0651
(8) fRF / fFF = 0.0876
(9) fF / fR = 0.7258
(10) fFA / fFF = 0.1797
(11) f / fFF = 0.0719
(12) f / fRF = 0.8212
(13) TL / (Fno ・ Bf) = 2.8308
(14) | Ainf-Amod | / f = 0.0296
(15) νFFp-νFFn = 57.3000
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.2782
(17) nRBp-nRBn = 0.1189
(18) nRBp + 0.005νRBp = 2.0111
(19) nRBn + 0.005νRBn = 1.8446

図10(a)及び図10(b)はそれぞれ、第5実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
10 (a) and 10 (b) are aberration diagrams of the optical system according to the fifth embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第6実施例)
図11(a)及び図11(b)はそれぞれ、第6実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第6実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(6th Example)
11 (a) and 11 (b) are cross-sectional views of the optical system according to the sixth embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the sixth embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹形状の負レンズL3と両凸形状の正レンズL4との接合レンズと、両凸形状の正レンズL5と両凹形状の負レンズL6との接合レンズとからなる。
前側合焦群GFFは、物体側から順に、物体側に凸面を向けた平凸形状の正レンズL7と像側に凹面を向けた平凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA consists of a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the image side, a biconcave negative lens L3, and a biconvex positive lens in order from the object side. It is composed of a bonded lens with a lens L4 and a bonded lens with a biconvex positive lens L5 and a biconcave negative lens L6.
The front focusing group GFF is composed of a junction lens of a plano-convex positive lens L7 having a convex surface facing the object side and a plano-concave negative lens L8 having a concave surface facing the image side in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた負メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL11と、両凸形状の正レンズL12とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a negative meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L11 and a biconvex positive lens L12 in order from the object side.

第6実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the sixth embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 6 below lists the values of the specifications of the optical system according to the sixth embodiment.

(表6)第6実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 348.4574 2.4000 1.504120 59.90
*2) 21.4609 13.4044 1.000000
3) -105.0871 4.5427 1.922860 20.88
4) -64.8044 3.8789 1.000000
5) -34.8938 2.0000 1.632947 34.71
6) 40.3703 11.1155 1.834810 42.73
7) -48.0907 0.2187 1.000000
8) 31.3856 7.6538 1.834810 42.73
9) -144.1208 1.6000 1.657414 32.27
10) 31.7227 可変 1.000000
11) 28.8127 5.3410 1.497820 82.57
12) ∞ 1.2002 1.713322 30.66
13) 55.4010 可変 1.000000
14)(絞りS) ∞ 可変 1.000000
*15) -46.5696 1.8000 1.728267 45.36
16) -592.3084 0.2365 1.000000
17) 51.5274 10.3228 1.497820 82.57
*18) -18.0668 可変 1.000000
19) -48.0041 1.4000 1.593929 38.23
20) 55.8143 2.2498 1.000000
*21) 102.4799 3.8639 1.906998 28.77
22) -1000.0000 17.2535 1.000000
23) ∞ 1.6000 1.516800 64.13
24) ∞ 0.9835 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
2 0.0000 1.12877E-05 7.54278E-09 3.77786E-11 -8.64032E-14 0.22683E-15
15 0.0000 -3.85799E-05 -9.55276E-08 2.02210E-10 -5.21627E-12 0.22387E-13
18 1.0000 1.16752E-05 -2.00823E-08 2.86154E-10 -7.78259E-13 0.34805E-14
21 1.0000 3.63716E-06 -5.43228E-09 2.25434E-11 -7.54064E-14 0.77846E-16
[各種データ]
f 34.0000
Fno 1.84694
2ω 68.7634
Ymax 21.60
TL 114.98352
空気換算TL 114.43832
Bf 19.83701
空気換算Bf 19.29181
Ainf 34.37218
Amod 33.44787
無限遠 近距離
f 34.0000
β -0.1434
d0 ∞ 216.6806
d10 5.4302 2.1248
d13 4.0990 7.4045
d14 9.0459 6.1458
d18 3.3432 6.2432
2ω 68.7634
ω 34.3817
[レンズ群データ]
群 始面 f
GF 1 47.9103
GR 15 86.8580
GFA 1 78.4519
GFF 11 186.8714
GRF 15 40.9478
GRB 19 -78.5376
[条件式対応値]
(1) XRF/XFF=0.8773
(2) Bf/f=0.5674
(3) ST/TL=0.4505
(4) βRF/βFF=0.8696
(5) (−fRB)/f=2.3099
(6) Bf/TL=0.1686
(7) XRF/f=0.0853
(8) fRF/fFF=0.2191
(9) fF/fR=0.5516
(10) fFA/fFF=0.4198
(11) f/fFF=0.1819
(12) f/fRF=0.8303
(13) TL/(Fno・Bf)=3.2118
(14) |Ainf−Amod|/f=0.0272
(15) νFFp−νFFn=51.9700
(16) (FFr2+FFr1)/(FFr2−FFr1)=1.0000
(17) nRBp−nRBn=0.3130
(18) nRBp+0.005νRBp=2.0508
(19) nRBn+0.005νRBn=1.7851
(Table 6) Sixth Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 348.4574 2.4000 1.504120 59.90
* 2) 21.4609 13.4044 1.000000
3) -105.0871 4.5427 1.922860 20.88
4) -64.8044 3.8789 1.000000
5) -34.8938 2.0000 1.632947 34.71
6) 40.3703 11.1155 1.834810 42.73
7) -48.0907 0.2187 1.000000
8) 31.3856 7.6538 1.834810 42.73
9) -144.1208 1.6000 1.657414 32.27
10) 31.7227 Variable 1.000000
11) 28.8127 5.3410 1.497820 82.57
12) ∞ 1.2002 1.713322 30.66
13) 55.4010 Variable 1.000000
14) (Aperture S) ∞ Variable 1.000000
* 15) -46.5696 1.8000 1.728267 45.36
16) -592.3084 0.2365 1.000000
17) 51.5274 10.3228 1.497820 82.57
* 18) -18.0668 Variable 1.000000
19) -48.0041 1.4000 1.593929 38.23
20) 55.8143 2.2498 1.000000
* 21) 102.4799 3.8639 1.906998 28.77
22) -1000.0000 17.2535 1.000000
23) ∞ 1.6000 1.516800 64.13
24) ∞ 0.9835 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
2 0.0000 1.12877E-05 7.54278E-09 3.77786E-11 -8.64032E-14 0.22683E-15
15 0.0000 -3.85799E-05 -9.55276E-08 2.02210E-10 -5.21627E-12 0.22387E-13
18 1.0000 1.16752E-05 -2.00823E-08 2.86154E-10 -7.78259E-13 0.34805E-14
21 1.0000 3.63716E-06 -5.43228E-09 2.25434E-11 -7.54064E-14 0.77846E-16
[Various data]
f 34.0000
Fno 1.84694
2ω 68.7634
Ymax 21.60
TL 114.98352
Air conversion TL 114.43832
Bf 19.83701
Air conversion Bf 19.29181
Ainf 34.37218
Amod 33.44787
Point at infinity short distance f 34.0000
β -0.1434
d0 ∞ 216.6806
d10 5.4302 2.1248
d13 4.0990 7.4045
d14 9.0459 6.1458
d18 3.3432 6.2432
2ω 68.7634
ω 34.3817
[Lens group data]
Group starting surface f
GF 1 47.9103
GR 15 86.8580
GFA 1 78.4519
GFF 11 186.8714
GRF 15 40.9478
GRB 19 -78.5376
[Conditional expression correspondence value]
(1) XRF / XFF = 0.8773
(2) Bf / f = 0.5674
(3) ST / TL = 0.4505
(4) βRF / βFF = 0.8696
(5) (-fRB) /f=2.3099
(6) Bf / TL = 0.1686
(7) XRF / f = 0.0853
(8) fRF / fFF = 0.2191
(9) fF / fR = 0.5516
(10) fFA / fFF = 0.4198
(11) f / fFF = 0.1819
(12) f / fRF = 0.8303
(13) TL / (Fno ・ Bf) = 3.2118
(14) | Ainf-Amod | / f = 0.0272
(15) νFFp-νFFn = 51.9700
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 1.000
(17) nRBp-nRBn = 0.3130
(18) nRBp + 0.005νRBp = 2.0508
(19) nRBn + 0.005νRBn = 1.7851

図12(a)及び図12(b)はそれぞれ、第6実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
12 (a) and 12 (b) are aberration diagrams of the optical system according to the sixth embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第7実施例)
図13(a)及び図13(b)はそれぞれ、第7実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第7実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(7th Example)
13 (a) and 13 (b) are cross-sectional views of the optical system according to the seventh embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the seventh embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、像側に凸面を向けた負メニスカスレンズL2と、両凸形状の正レンズL3と、両凹形状の負レンズL4と両凸形状の正レンズL5との接合レンズと、両凸形状の正レンズL6とからなる。なお、負メニスカスレンズL2は、像側レンズ面に樹脂を配置し非球面形状に形成した複合型非球面レンズである。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA consists of a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the image side, a biconvex positive lens L3, and a biconcave lens in order from the object side. It is composed of a junction lens of a negative lens L4 and a biconvex positive lens L5, and a biconvex positive lens L6. The negative meniscus lens L2 is a composite aspherical lens formed by arranging a resin on the image side lens surface to form an aspherical shape.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた負メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a negative meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a positive meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a plano-convex positive lens L13 having a convex surface facing the object side in order from the object side. ..

第7実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the seventh embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 7 below lists the values of the specifications of the optical system according to the seventh embodiment.

(表7)第7実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 97.4192 2.2000 1.768494 44.86
2) 25.3748 9.4393 1.000000
3) 73.0366 1.6500 1.611353 59.10
4) 28.1065 0.1500 1.513800 52.97
*5) 23.3508 8.7999 1.000000
6) 314.3211 3.3152 1.922860 20.88
7) -230.9882 3.9581 1.000000
8) -54.6239 2.1432 1.620040 36.40
9) 34.0933 10.7170 1.834810 42.73
10) -93.8515 0.2008 1.000000
11) 45.4462 5.5158 1.834810 42.73
12) -76941.34500 可変 1.000000
13) 40.4893 4.1495 1.497820 82.57
14) -135.4706 1.2000 1.808090 22.74
15) 126.4048 可変 1.000000
16)(絞りS) ∞ 可変 1.000000
*17) -20.6195 1.7865 1.860999 37.10
*18) -32.1327 1.4206 1.000000
19) 102.6671 7.8877 1.497820 82.57
20) -16.3909 可変 1.000000
21) 57.0592 2.6167 1.710936 47.27
22) 304.2075 4.1090 1.000000
*23) -22.4255 1.3000 1.689480 31.02
24) 61.5136 2.0782 1.000000
*25) 36.1918 2.6262 1.820980 42.50
26) ∞ 12.6819 1.000000
27) ∞ 1.6000 1.516800 63.88
28) ∞ 1.0000 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
5 0.0000 4.47584E-07 -6.22190E-09 1.22365E-11 -3.40101E-14 0.32669E-16
17 0.0000 9.62834E-05 -4.19153E-07 -3.28271E-09 2.90182E-11 -0.13502E-12
18 1.0000 1.33216E-04 -1.90915E-07 -3.36920E-09 2.71394E-11 -0.83703E-13
23 1.9124 1.43602E-04 -8.35674E-07 5.32507E-09 -1.97434E-11 0.34513E-13
25 1.0000 -8.47161E-05 4.39056E-07 -2.13972E-09 6.18894E-12 -0.71916E-14
[各種データ]
f 20.4000
Fno 1.85009
2ω 96.1353
Ymax 21.60
TL 115.02541
空気換算TL 114.48021
Bf 15.28192
空気換算Bf 14.73672
Ainf 48.76762
Amod 48.15648
無限遠 近距離
f 20.4000
β -0.1972
d0 ∞ 84.0279
d12 6.0921 2.2355
d15 4.3398 8.1964
d16 9.0834 5.6834
d20 2.9645 6.3646
2ω 96.1353
ω 48.0677
[レンズ群データ]
群 始面 f
GF 1 40.2194
GR 17 51.7452
GFA 1 59.7587
GFF 13 253.1359
GRF 17 40.2592
GRB 21 -156.7545
[条件式対応値]
(1) XRF/XFF=0.8816
(2) Bf/f=0.7224
(3) ST/TL=0.4421
(4) βRF/βFF=0.6742
(5) (−fRB)/f=7.684
(6) Bf/TL=0.1287
(7) XRF/f=0.1667
(8) fRF/fFF=0.1590
(9) fF/fR=0.7773
(10) fFA/fFF=0.2361
(11) f/fFF=0.0806
(12) f/fRF=0.5067
(13) TL/(Fno・Bf)=4.1989
(14) |Ainf−Amod|/f=0.0300
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.5398
(17) nRBp−nRBn=0.0765
(18) nRBp+0.005νRBp=1.9904
(19) nRBn+0.005νRBn=1.8446
(Table 7) Seventh Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 97.4192 2.2000 1.768494 44.86
2) 25.3748 9.4393 1.000000
3) 73.0366 1.6500 1.611353 59.10
4) 28.1065 0.1500 1.513800 52.97
* 5) 23.3508 8.7999 1.000000
6) 314.3211 3.3152 1.922860 20.88
7) -230.9882 3.9581 1.000000
8) -54.6239 2.1432 1.620040 36.40
9) 34.0933 10.7170 1.834810 42.73
10) -93.8515 0.2008 1.000000
11) 45.4462 5.5158 1.834810 42.73
12) -76941.34500 Variable 1.000000
13) 40.4893 4.1495 1.497820 82.57
14) -135.4706 1.2000 1.808090 22.74
15) 126.4048 Variable 1.000000
16) (Aperture S) ∞ Variable 1.000000
* 17) -20.6195 1.7865 1.860999 37.10
* 18) -32.1327 1.4206 1.000000
19) 102.6671 7.8877 1.497820 82.57
20) -16.3909 Variable 1.000000
21) 57.0592 2.6167 1.710936 47.27
22) 304.2075 4.1090 1.000000
* 23) -22.4255 1.3000 1.689480 31.02
24) 61.5136 2.0782 1.000000
* 25) 36.1918 2.6262 1.820980 42.50
26) ∞ 12.6819 1.000000
27) ∞ 1.6000 1.516800 63.88
28) ∞ 1.0000 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
5 0.0000 4.47584E-07 -6.22190E-09 1.22365E-11 -3.40101E-14 0.32669E-16
17 0.0000 9.62834E-05 -4.19153E-07 -3.28271E-09 2.90182E-11 -0.13502E-12
18 1.0000 1.33216E-04 -1.90915E-07 -3.36920E-09 2.71394E-11 -0.83703E-13
23 1.9124 1.43602E-04 -8.35674E-07 5.32507E-09 -1.97434E-11 0.34513E-13
25 1.0000 -8.47161E-05 4.39056E-07 -2.13972E-09 6.18894E-12 -0.71916E-14
[Various data]
f 20.4000
Fno 1.85009
2ω 96.1353
Ymax 21.60
TL 115.02541
Air conversion TL 114.48021
Bf 15.28192
Air conversion Bf 14.73672
Ainf 48.76762
Amod 48.15648
Point at infinity short distance f 20.4000
β -0.1972
d0 ∞ 84.0279
d12 6.0921 2.2355
d15 4.3398 8.1964
d16 9.0834 5.6834
d20 2.9645 6.3646
2ω 96.1353
ω 48.0677
[Lens group data]
Group starting surface f
GF 1 40.2194
GR 17 51.7452
GFA 1 59.7587
GFF 13 253.1359
GRF 17 40.2592
GRB 21 -156.7545
[Conditional expression correspondence value]
(1) XRF / XFF = 0.8816
(2) Bf / f = 0.7224
(3) ST / TL = 0.4421
(4) βRF / βFF = 0.6742
(5) (-fRB) /f=7.684
(6) Bf / TL = 0.1287
(7) XRF / f = 0.1667
(8) fRF / fFF = 0.1590
(9) fF / fR = 0.7773
(10) fFA / fFF = 0.2361
(11) f / fFF = 0.0806
(12) f / fRF = 0.5067
(13) TL / (Fno ・ Bf) = 4.1989
(14) | Ainf-Amod | / f = 0.0300
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.5398
(17) nRBp-nRBn = 0.0765
(18) nRBp + 0.005νRBp = 1.9904
(19) nRBn + 0.005νRBn = 1.8446

図14(a)及び図14(b)はそれぞれ、第7実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
14 (a) and 14 (b) are aberration diagrams of the optical system according to the seventh embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第8実施例)
図15(a)及び図15(b)はそれぞれ、第8実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第8実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(8th Example)
15 (a) and 15 (b) are cross-sectional views of the optical system according to the eighth embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the eighth embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、両凹形状の負レンズL1と、両凹形状の負レンズL2と両凸形状の正レンズL3との接合レンズと、両凸形状の正レンズL4と両凹形状の負レンズL5との接合レンズとからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL6と両凹形状の負レンズL7との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA includes a biconcave negative lens L1, a junction lens of a biconcave negative lens L2 and a biconvex positive lens L3, and a biconvex positive lens L4 in order from the object side. It consists of a junction lens with a concave negative lens L5.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L6 and a biconcave negative lens L7 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、両凹形状の負レンズL8と、両凸形状の正レンズL9とからなる。
負レンズ群GRBは、物体側から順に、像側に凸面を向けた負メニスカスレンズL10と、像側に凸面を向けた負メニスカスレンズL11とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a biconcave negative lens L8 and a biconvex positive lens L9 in order from the object side.
The negative lens group GRB is composed of a negative meniscus lens L10 having a convex surface facing the image side and a negative meniscus lens L11 having a convex surface facing the image side in order from the object side.

第8実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the eighth embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved to the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 8 below lists the values of the specifications of the optical system according to the eighth embodiment.

(表8)第8実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) -1384.5606 2.4000 1.518230 58.82
*2) 22.7521 19.5726 1.000000
3) -210.4727 2.0000 1.603420 38.03
4) 34.8221 11.0013 1.834810 42.73
5) -98.9663 0.2000 1.000000
6) 41.5127 8.8597 1.834810 42.73
7) -70.1358 1.6000 1.647690 33.72
8) 41.7744 可変 1.000000
9) 30.8554 5.2069 1.497820 82.57
10) -344.9897 1.2000 1.672700 32.18
11) 59.4370 可変 1.000000
12)(絞りS) ∞ 可変 1.000000
*13) -128.3993 1.8000 1.834810 42.73
14) 316.2495 1.3930 1.000000
15) 98.6994 10.2289 1.497820 82.57
*16) -18.9378 可変 1.000000
17) -47.2364 3.0654 1.902650 35.72
18) -35.8672 5.9831 1.000000
19) -30.0877 1.4000 1.688931 31.07
20) -1077.5863 14.3679 1.000000
21) ∞ 1.6000 1.516800 64.13
22) ∞ 0.9778 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
2 0.0000 8.60806E-06 -2.33850E-09 3.59347E-11 -7.01381E-14 0.61254E-16
13 0.0000 -3.09776E-05 -8.13151E-08 -2.38297E-10 2.73111E-14 -0.12604E-13
16 1.0000 4.53043E-07 -2.70015E-08 4.55831E-11 -6.17207E-13 0.12765E-14
[各種データ]
f 34.1413
Fno 1.85683
2ω 65.0328
Ymax 21.60
TL 114.97777
空気換算TL 114.43257
Bf 53.1934
空気換算Bf 54.6482
Ainf 33.09508
Amod 32.1484
無限遠 近距離
f 34.1413
β -0.1418
d0 ∞ 221.3238
d8 5.7439 2.0995
d11 4.0000 7.6445
d12 9.1921 6.0059
d16 3.1853 6.3715
2ω 65.0328
ω 32.5164
[レンズ群データ]
群 始面 f
GF 1 57.9019
GR 13 86.1509
GFA 1 102.0669
GFF 9 196.0962
GRF 13 42.5650
GRB 17 -65.8197
[条件式対応値]
(1) XRF/XFF=0.8743
(2) Bf/f=1.5421
(3) ST/TL=0.1433
(4) βRF/βFF=0.8301
(5) (−fRB)/f=1.9279
(6) Bf/TL=0.4600
(7) XRF/f=0.0933
(8) fRF/fFF=0.2171
(9) fF/fR=0.6721
(10) fFA/fFF=0.5205
(11) f/fFF=0.1741
(12) f/fRF=0.8021
(13) TL/(Fno・Bf)=1.1706
(14) |Ainf−Amod|/f=0.0277
(15) νFFp−νFFn=50.3900
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.8358
(17) nRBp−nRBn=0.2137
(18) nRBp+0.005νRBp=2.0813
(19) nRBn+0.005νRBn=1.8443
(Table 8) Example 8
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) -1384.5606 2.4000 1.518230 58.82
* 2) 22.7521 19.5726 1.000000
3) -210.4727 2.0000 1.603420 38.03
4) 34.8221 11.0013 1.834810 42.73
5) -98.9663 0.2000 1.000000
6) 41.5127 8.8597 1.834810 42.73
7) -70.1358 1.6000 1.647690 33.72
8) 41.7744 Variable 1.000000
9) 30.8554 5.2069 1.497820 82.57
10) -344.9897 1.2000 1.672700 32.18
11) 59.4370 Variable 1.000000
12) (Aperture S) ∞ Variable 1.000000
* 13) -128.3993 1.8000 1.834810 42.73
14) 316.2495 1.3930 1.000000
15) 98.6994 10.2289 1.497820 82.57
* 16) -18.9378 Variable 1.000000
17) -47.2364 3.0654 1.902650 35.72
18) -35.8672 5.9831 1.000000
19) -30.0877 1.4000 1.688931 31.07
20) -1077.5863 14.3679 1.000000
21) ∞ 1.6000 1.516800 64.13
22) ∞ 0.9778 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
2 0.0000 8.60806E-06 -2.33850E-09 3.59347E-11 -7.01381E-14 0.61254E-16
13 0.0000 -3.09776E-05 -8.13151E-08 -2.38297E-10 2.73111E-14 -0.12604E-13
16 1.0000 4.53043E-07 -2.70015E-08 4.55831E-11 -6.17207E-13 0.12765E-14
[Various data]
f 34.1413
Fno 1.85683
2ω 65.0328
Ymax 21.60
TL 114.97777
Air conversion TL 114.43257
Bf 53.1934
Air conversion Bf 54.6482
Ainf 33.09508
Amod 32.1484
Point at infinity short distance f 34.1413
β -0.1418
d0 ∞ 221.3238
d8 5.7439 2.0995
d11 4.0000 7.6445
d12 9.1921 6.0059
d16 3.1853 6.3715
2ω 65.0328
ω 32.5164
[Lens group data]
Group starting surface f
GF 1 57.9019
GR 13 86.1509
GFA 1 102.0669
GFF 9 196.0962
GRF 13 42.5650
GRB 17 -65.8197
[Conditional expression correspondence value]
(1) XRF / XFF = 0.8743
(2) Bf / f = 1.5421
(3) ST / TL = 0.1433
(4) βRF / βFF = 0.8301
(5) (-fRB) /f=1.9279
(6) Bf / TL = 0.4600
(7) XRF / f = 0.0933
(8) fRF / fFF = 0.2171
(9) fF / fR = 0.6721
(10) fFA / fFF = 0.5205
(11) f / fFF = 0.1741
(12) f / fRF = 0.8021
(13) TL / (Fno ・ Bf) = 1.1706
(14) | Ainf-Amod | / f = 0.0277
(15) νFFp-νFFn = 50.3900
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.8358
(17) nRBp-nRBn = 0.2137
(18) nRBp + 0.005νRBp = 2.0813
(19) nRBn + 0.005νRBn = 1.8443

図16(a)及び図16(b)はそれぞれ、第8実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
16 (a) and 16 (b) are aberration diagrams of the optical system according to the eighth embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第9実施例)
図17(a)及び図17(b)はそれぞれ、第9実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第9実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(9th Example)
17 (a) and 17 (b) are cross-sectional views of the optical system according to the ninth embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the ninth embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凹形状の負レンズL3と、物体側に凸面を向けた負メニスカスレンズL4と両凸形状の正レンズL5との接合レンズと、物体側に凸面を向けた正メニスカスレンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA consists of a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, a biconcave negative lens L3, and a convex surface toward the object side, in order from the object side. It is composed of a junction lens of a negative meniscus lens L4 facing the lens and a biconvex positive lens L5, and a positive meniscus lens L6 having a convex surface facing the object side.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた負メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、物体側から順に、両凹形状の負レンズL11と、両凸形状の正レンズL12とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a negative meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L11 and a biconvex positive lens L12 in order from the object side.

第9実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表9に、第9実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the ninth embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 9 below lists the values of the specifications of the optical system according to the ninth embodiment.

(表9)第9実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 90.1539 2.0000 1.658440 50.83
2) 35.0000 1.0023 1.000000
3) 38.0000 1.8000 1.622910 58.30
*4) 17.5155 13.7363 1.000000
5) -135.7140 1.6000 1.593190 67.90
6) 48.9808 6.5355 1.000000
7) 861.6049 2.4809 1.620040 36.40
8) 31.3689 9.0000 1.851500 40.78
9) -150.1624 3.1783 1.000000
10) 40.3712 5.2632 1.851500 40.78
11) 1025.5030 可変 1.000000
12) 32.7343 4.0000 1.497820 82.57
13) -155.0414 1.2000 1.808090 22.74
14) 62.0187 可変 1.000000
15)(絞りS) ∞ 可変 1.000000
*16) -45.5353 2.0000 1.860999 37.10
*17) -52.3373 1.5881 1.000000
18) 60.0000 7.3310 1.497820 82.57
19) -19.2015 可変 1.000000
*20) -27.0655 1.2000 1.689480 31.02
21) 81.9849 1.4246 1.000000
*22) 43.0859 4.0000 1.882023 37.22
23) -1000.0000 17.7393 1.000000
24) ∞ 1.6000 1.516800 63.88
25) ∞ 1.0000 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 1.52130E-05 -1.37943E-09 1.13792E-10 -3.10899E-13 0.49329E-15
16 0.0000 -3.46585E-05 1.35812E-08 1.68641E-09 -1.95052E-11 0.59812E-13
17 1.0000 2.60772E-06 8.97314E-08 1.41490E-09 -1.26537E-11 0.35190E-13
20 1.5918 1.23579E-04 -8.07461E-07 5.37616E-09 -2.11181E-11 0.34821E-13
22 1.0000 -8.27671E-05 4.88811E-07 -2.91586E-09 9.85401E-12 -0.14168E-13
[各種データ]
f 20.0000
Fno 1.854
2ω 97.6294
Ymax 21.60
TL 114.09
空気換算TL 113.5448
Bf 20.33935
空気換算Bf 19.79415
Ainf 48.68147
Amod 47.75113
無限遠 近距離
f 20.0000
β -0.1987
d0 ∞ 80.5848
d11 8.0031 5.1763
d14 5.0918 7.9186
d15 7.1424 4.7424
d19 4.1730 6.5730
2ω 97.6294
ω 48.8147
[レンズ群データ]
群 始面 f
GF 1 51.8791
GR 16 47.3528
GFA 1 59.9544
GFF 12 1108.3235
GRF 16 31.1504
GRB 20 -88.9793
[条件式対応値]
(1) XRF/XFF=0.8490
(2) Bf/f=0.9897
(3) ST/TL=0.4285
(4) βRF/βFF=0.3388
(5) (−fRB)/f=4.4490
(6) Bf/TL=0.1743
(7) XRF/f=0.1200
(8) fRF/fFF=0.0281
(9) fF/fR=1.0956
(10) fFA/fFF=0.0541
(11) f/fFF=0.0180
(12) f/fRF=0.6420
(13) TL/(Fno・Bf)=3.0940
(14) |Ainf−Amod|/f=0.0465
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.6513
(17) nRBp−nRBn=0.1925
(18) nRBp+0.005νRBp=1.6719
(19) nRBn+0.005νRBn=2.0681
(Table 9) Example 9
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 90.1539 2.0000 1.658440 50.83
2) 35.0000 1.0023 1.000000
3) 38.0000 1.8000 1.622910 58.30
* 4) 17.5155 13.7363 1.000000
5) -135.7140 1.6000 1.593190 67.90
6) 48.9808 6.5355 1.000000
7) 861.6049 2.4809 1.620040 36.40
8) 31.3689 9.0000 1.851500 40.78
9) -150.1624 3.1783 1.000000
10) 40.3712 5.2632 1.851500 40.78
11) 1025.5030 Variable 1.000000
12) 32.7343 4.0000 1.497820 82.57
13) -155.0414 1.2000 1.808090 22.74
14) 62.0187 Variable 1.000000
15) (Aperture S) ∞ Variable 1.000000
* 16) -45.5353 2.0000 1.860999 37.10
* 17) -52.3373 1.5881 1.000000
18) 60.0000 7.3310 1.497820 82.57
19) -19.2015 Variable 1.000000
* 20) -27.0655 1.2000 1.689480 31.02
21) 81.9849 1.4246 1.000000
* 22) 43.0859 4.0000 1.882023 37.22
23) -1000.0000 17.7393 1.000000
24) ∞ 1.6000 1.516800 63.88
25) ∞ 1.0000 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 1.52130E-05 -1.37943E-09 1.13792E-10 -3.10899E-13 0.49329E-15
16 0.0000 -3.46585E-05 1.35812E-08 1.68641E-09 -1.95052E-11 0.59812E-13
17 1.0000 2.60772E-06 8.97314E-08 1.41490E-09 -1.26537E-11 0.35190E-13
20 1.5918 1.23579E-04 -8.07461E-07 5.37616E-09 -2.11181E-11 0.34821E-13
22 1.0000 -8.27671E-05 4.88811E-07 -2.91586E-09 9.85401E-12 -0.14168E-13
[Various data]
f 20.0000
Fno 1.854
2ω 97.6294
Ymax 21.60
TL 114.09
Air conversion TL 113.5448
Bf 20.33935
Air conversion Bf 19.79415
Ainf 48.68147
Amod 47.75113
Point at infinity short distance f 20.0000
β -0.1987
d0 ∞ 80.5848
d11 8.0031 5.1763
d14 5.0918 7.9186
d15 7.1424 4.7424
d19 4.1730 6.5730
2ω 97.6294
ω 48.8147
[Lens group data]
Group starting surface f
GF 1 51.8791
GR 16 47.3528
GFA 1 59.9544
GFF 12 1108.3235
GRF 16 31.1504
GRB 20 -88.9793
[Conditional expression correspondence value]
(1) XRF / XFF = 0.8490
(2) Bf / f = 0.9897
(3) ST / TL = 0.4285
(4) βRF / βFF = 0.3388
(5) (-fRB) /f=4.4490
(6) Bf / TL = 0.1743
(7) XRF / f = 0.1200
(8) fRF / fFF = 0.0281
(9) fF / fR = 1.0956
(10) fFA / fFF = 0.0541
(11) f / fFF = 0.0180
(12) f / fRF = 0.6420
(13) TL / (Fno ・ Bf) = 3.0940
(14) | Ainf-Amod | / f = 0.0465
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.6513
(17) nRBp-nRBn = 0.1925
(18) nRBp + 0.005νRBp = 1.6719
(19) nRBn + 0.005νRBn = 2.0681

図18(a)及び図18(b)はそれぞれ、第9実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。 18 (a) and 18 (b) are aberration diagrams of the optical system according to the ninth embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.

各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。 From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第10実施例)
図19(a)及び図19(b)はそれぞれ、第10実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の断面図である。
第9実施例に係る光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(10th Example)
19 (a) and 19 (b) are cross-sectional views of the optical system according to the tenth embodiment when focusing on an infinite object and when focusing on a short-range object, respectively.
The optical system according to the ninth embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた正メニスカスレンズL3と、両凹形状の負レンズL4と両凸形状の正レンズL5との接合レンズと、両凸形状の正レンズL6とからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL7と両凹形状の負レンズL8との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA includes, in order from the object side, a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens L3 having a convex surface facing the image side. It is composed of a junction lens of a biconcave negative lens L4 and a biconvex positive lens L5, and a biconvex positive lens L6.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L7 and a biconcave negative lens L8 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、像側に凸面を向けた負メニスカスレンズL9と、両凸形状の正レンズL10とからなる。
負レンズ群GRBは、両凹形状の負レンズL11からなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a negative meniscus lens L9 having a convex surface facing the image side and a biconvex positive lens L10 in order from the object side.
The negative lens group GRB is composed of a biconcave negative lens L11.

第10実施例に係る光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、正レンズ群GFA、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表10に、第10実施例に係る光学系の諸元の値を掲げる。
In the optical system according to the tenth embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved toward the object side along the optical axis to focus from an infinity object to a short-range object. At the time of focusing, the positions of the positive lens group GFA, the aperture stop S and the negative lens group GRB are fixed.
Table 10 below lists the values of the specifications of the optical system according to the tenth embodiment.

(表10)第10実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 105.7357 2.3000 1.785897 43.93
2) 30.3881 7.3810 1.000000
3) 55.0000 2.0000 1.658441 50.88
*4) 18.9645 13.6074 1.000000
5) -171.0476 4.6738 1.785896 44.20
6) -49.1804 3.4817 1.000000
7) -43.6767 1.7001 1.603420 38.01
8) 37.4040 8.0414 1.851500 40.78
9) -251.6551 4.7235 1.000000
10) 37.7511 6.3961 1.851500 40.78
11) -472.8256 可変 1.000000
12)(仮想面) ∞ 0.0000 1.000000
13) 56.1535 4.8469 1.497820 82.57
14) -61.5295 1.7129 1.808090 22.74
15) 251.7243 可変 1.000000
16)(絞りS) ∞ 可変 1.000000
*17) -60.5230 1.2000 1.860999 37.10
*18) -100.0047 1.3930 1.000000
19) 59.4711 7.5979 1.497820 82.57
20) -16.5046 可変 1.000000
*21) -554.5946 1.3092 1.740769 27.79
*22) 32.1694 17.9272 1.000000
23) ∞ 1.6000 1.516800 64.13
24) ∞ 0.9825 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
4 0.0000 9.44198E-06 -7.85173E-10 1.82058E-11 -5.42737E-14 0.53658E-16
17 1.0000 -3.05779E-05 -1.19989E-07 -2.26470E-09 4.74211E-12 -0.32614E-15
18 1.0000 1.85793E-05 6.97129E-09 -1.71822E-09 6.73792E-12 0.27686E-13
21 1.0000 -2.35430E-05 -5.88083E-08 1.25271E-09 -1.14966E-11 0.26434E-13
22 1.0000 -1.41315E-05 -1.06653E-07 1.37968E-09 -9.70244E-12 0.22570E-13
[各種データ]
f 20.6000
Fno 1.85674
2ω 95.6062
Ymax 21.60
TL 114.98248
空気換算TL 114.43728
Bf 20.50968
空気換算Bf 19.96448
Ainf 48.46075
Amod 48.04852
無限遠 近距離
f 20.6000
β -0.1881
d0 ∞ 87.1901
d11 5.6564 2.5472
d15 4.2430 7.3520
d16 8.5222 6.5750
d20 3.6864 5.6336
2ω 95.6062
ω 47.8031
[レンズ群データ]
群 始面 f
GF 1 33.8040
GR 17 81.1675
GFA 1 37.0214
GFF 12 1160.9972
GRF 17 30.1283
GRB 21 -41.0072
[条件式対応値]
(1) XRF/XFF=0.6263
(2) Bf/f=0.9691
(3) ST/TL=0.3816
(4) βRF/βFF=0.4486
(5) (−fRB)/f=1.9906
(6) Bf/TL=0.1745
(7) XRF/f=0.0945
(8) fRF/fFF=0.0260
(9) fF/fR=0.4165
(10) fFA/fFF=0.0319
(11) f/fFF=0.0177
(12) f/fRF=0.6837
(13) TL/(Fno・Bf)=3.0872
(14) |Ainf−Amod|/f=0.0200
(15) νFFp−νFFn=59.8300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.0457
(19) nRBn+0.005νRBn=1.8797
(Table 10) Example 10
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 105.7357 2.3000 1.785897 43.93
2) 30.3881 7.3810 1.000000
3) 55.0000 2.0000 1.658441 50.88
* 4) 18.9645 13.6074 1.000000
5) -171.0476 4.6738 1.785896 44.20
6) -49.1804 3.4817 1.000000
7) -43.6767 1.7001 1.603420 38.01
8) 37.4040 8.0414 1.851500 40.78
9) -251.6551 4.7235 1.000000
10) 37.7511 6.3961 1.851500 40.78
11) -472.8256 Variable 1.000000
12) (Virtual surface) ∞ 0.0000 1.000000
13) 56.1535 4.8469 1.497820 82.57
14) -61.5295 1.7129 1.808090 22.74
15) 251.7243 Variable 1.000000
16) (Aperture S) ∞ Variable 1.000000
* 17) -60.5230 1.2000 1.860999 37.10
* 18) -100.0047 1.3930 1.000000
19) 59.4711 7.5979 1.497820 82.57
20) -16.5046 Variable 1.000000
* 21) -554.5946 1.3092 1.740769 27.79
* 22) 32.1694 17.9272 1.000000
23) ∞ 1.6000 1.516800 64.13
24) ∞ 0.9825 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
4 0.0000 9.44198E-06 -7.85173E-10 1.82058E-11 -5.42737E-14 0.53658E-16
17 1.0000 -3.05779E-05 -1.19989E-07 -2.26470E-09 4.74211E-12 -0.32614E-15
18 1.0000 1.85793E-05 6.97129E-09 -1.71822E-09 6.73792E-12 0.27686E-13
21 1.0000 -2.35430E-05 -5.88083E-08 1.25271E-09 -1.14966E-11 0.26434E-13
22 1.0000 -1.41315E-05 -1.06653E-07 1.37968E-09 -9.70244E-12 0.22570E-13
[Various data]
f 20.6000
Fno 1.85674
2ω 95.6062
Ymax 21.60
TL 114.98248
Air conversion TL 114.43728
Bf 20.50968
Air conversion Bf 19.96448
Ainf 48.46075
Amod 48.04852
Point at infinity short distance f 20.6000
β -0.1881
d0 ∞ 87.1901
d11 5.6564 2.5472
d15 4.2430 7.3520
d16 8.5222 6.5750
d20 3.6864 5.6336
2ω 95.6062
ω 47.8031
[Lens group data]
Group starting surface f
GF 1 33.8040
GR 17 81.1675
GFA 1 37.0214
GFF 12 1160.9972
GRF 17 30.1283
GRB 21 -41.0072
[Conditional expression correspondence value]
(1) XRF / XFF = 0.6263
(2) Bf / f = 0.9691
(3) ST / TL = 0.3816
(4) βRF / βFF = 0.4486
(5) (-fRB) /f=1.9906
(6) Bf / TL = 0.1745
(7) XRF / f = 0.0945
(8) fRF / fFF = 0.0260
(9) fF / fR = 0.4165
(10) fFA / fFF = 0.0319
(11) f / fFF = 0.0177
(12) f / fRF = 0.6837
(13) TL / (Fno ・ Bf) = 3.0872
(14) | Ainf-Amod | / f = 0.0200
(15) νFFp-νFFn = 59.8300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.0457
(19) nRBn + 0.005νRBn = 1.8797

図20(a)及び図20(b)はそれぞれ、第10実施例に係る光学系の無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
20 (a) and 20 (b) are aberration diagrams of the optical system according to the tenth embodiment when focusing on an infinite object and when focusing on a short-distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object, and has excellent imaging performance.

(第11実施例)
図21(a)及び図21(b)はそれぞれ、第11実施例に係る変倍光学系の広角端状態及び望遠端状態における無限遠物体合焦時の断面図である。
第11実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する前群GFと、開口絞りSと、正の屈折力を有する後群GRとから構成されている。なお、像面Iの物体側近傍にはフィルタFが配置されている。
(11th Example)
21 (a) and 21 (b) are cross-sectional views of the variable magnification optical system according to the eleventh embodiment when the infinity object is in focus in the wide-angle end state and the telephoto end state, respectively.
The variable magnification optical system according to the eleventh embodiment is composed of a front group GF having a positive refractive power, an aperture stop S, and a rear group GR having a positive refractive power in order from the object side. A filter F is arranged near the object side of the image plane I.

前群GFは、物体側から順に、正の屈折力を有する正レンズ群GFAと、正の屈折力を有する前側合焦群GFFとからなる。
正レンズ群GFAは、物体側から順に、負の屈折力を有する負レンズ群GFA1と、正の屈折力を有する正レンズ群GFA2とからなる。
負レンズ群GFA1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3とからなる。
正レンズ群GFA2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL4と両凸形状の正レンズL5との接合レンズからなる。
前側合焦群GFFは、物体側から順に、両凸形状の正レンズL6と両凹形状の負レンズL7との接合レンズからなる。
The front group GF is composed of a positive lens group GFA having a positive refractive power and a front focusing group GFF having a positive refractive power in order from the object side.
The positive lens group GFA is composed of a negative lens group GFA1 having a negative refractive power and a positive lens group GFA2 having a positive refractive power in order from the object side.
The negative lens group GFA1 consists of a negative meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a convex surface facing the object side, and a positive meniscus lens L3 having a convex surface facing the object side, in order from the object side. Become.
The positive lens group GFA2 is composed of a junction lens of a negative meniscus lens L4 having a convex surface facing the object side and a biconvex positive lens L5 in order from the object side.
The front focusing group GFF is composed of a junction lens of a biconvex positive lens L6 and a biconcave negative lens L7 in order from the object side.

後群GRは、物体側から順に、正の屈折力を有する後側合焦群GRFと、負の屈折力を有する負レンズ群GRBとからなる。
後側合焦群GRFは、物体側から順に、両凸形状の正レンズL8と、物体側に凸面を向けた負メニスカスレンズL9と両凸形状の正レンズL10との接合レンズとからなる。
負レンズ群GRBは、両凹形状の負レンズL11と、物体側に凸面を向けた平凸形状の正レンズL12とからなる。
The rear group GR is composed of a rear focusing group GRF having a positive refractive power and a negative lens group GRB having a negative refractive power in order from the object side.
The rear focusing group GRF is composed of a biconvex positive lens L8, a negative meniscus lens L9 having a convex surface facing the object side, and a junction lens of a biconvex positive lens L10 in order from the object side.
The negative lens group GRB includes a biconcave negative lens L11 and a plano-convex positive lens L12 with a convex surface facing the object side.

第11実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、負レンズ群GFA1と正レンズ群GFA2の間隔が減少し、後側合焦群GRFと負レンズ群GRBの間隔が増加するように、負レンズ群GFA1が光軸に沿って像側へ移動し、正レンズ群GFA2、前側合焦群GFF、開口絞りS及び後側合焦群GRFが光軸に沿って物体側へ一体的に移動し、負レンズ群GRBが光軸に沿って物体側へ移動する。 In the variable magnification optical system according to the eleventh embodiment, the distance between the negative lens group GFA1 and the positive lens group GFA2 decreases when the magnification is changed from the wide-angle end state to the telescopic end state, and the rear focusing group GRF and the negative lens group The negative lens group GFA1 moves toward the image side along the optical axis so that the GRB spacing increases, and the positive lens group GFA2, the front focusing group GFF, the aperture aperture S, and the rear focusing group GRF move to the optical axis. It moves integrally to the object side along the optical axis, and the negative lens group GRB moves to the object side along the optical axis.

第11実施例に係る変倍光学系では、前側合焦群GFFと後側合焦群GRFを光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。なお、合焦時、負レンズ群GFA1、正レンズ群GFA2、開口絞りS及び負レンズ群GRBの位置は固定である。
以下の表11に、第11実施例に係る変倍光学系の諸元の値を掲げる。なお、表10において、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
In the variable magnification optical system according to the eleventh embodiment, the anterior focusing group GFF and the posterior focusing group GRF are moved to the object side along the optical axis to focus from an infinity object to a short-range object. .. At the time of focusing, the positions of the negative lens group GFA1, the positive lens group GFA2, the aperture stop S, and the negative lens group GRB are fixed.
Table 11 below lists the values of the specifications of the variable magnification optical system according to the eleventh embodiment. In Table 10, W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state.

(表11)第11実施例
[面データ]
面番号 r d nd νd
物面 ∞ 1.000000
1) 109.0633 2.7000 1.638540 55.34
*2) 18.2077 12.4865 1.000000
3) 495.8681 2.0000 1.832199 40.10
*4) 44.2568 9.5236 1.000000
5) 52.5025 4.8000 1.903658 31.31
6) 159.6343 可変 1.000000
7) 57.0442 1.3000 1.903658 31.31
8) 30.3255 4.5545 1.834000 37.18
9) -195.4912 可変 1.000000
10) 34.2035 4.3182 1.487490 70.32
11) -47.4756 2.2701 1.784696 26.29
12) 111.8345 可変 1.000000
13)(絞りS) ∞ 3.0000 1.000000
14)(仮想面) ∞ 可変 1.000000
*15) 47.8005 3.0298 1.801000 34.92
*16) -89.2527 1.3930 1.000000
17) 147.9048 1.2000 1.717000 47.97
18) 18.1175 5.5049 1.497820 82.57
19) -21.4691 可変 1.000000
*20) -28.3302 1.3000 1.800999 34.97
21) 40.6201 1.9545 1.000000
*22) 42.1307 3.1144 1.516800 64.13
23) ∞ 19.0966 1.000000
24) ∞ 1.6000 1.516800 64.13
25) ∞ 可変 1.000000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10 A12
2 0.0000 8.83674E-06 1.69121E-08 -7.80852E-13 -2.62893E-14 0.29153E-15
4 0.0000 4.63846E-06 -4.54541E-09 8.68492E-12 -6.95178E-14 0.99796E-16
15 0.0000 -1.84011E-05 -1.16137E-07 2.01508E-10 -2.76953E-11 -0.12398E-12
16 1.0000 2.48230E-06 -1.38570E-08 -4.12767E-09 5.44261E-11 -0.60620E-12
20 0.0000 6.56671E-05 -4.14077E-07 7.30290E-11 2.75237E-11 -0.16734E-12
22 1.0000 -9.56724E-05 5.39674E-07 -2.04380E-09 1.77405E-14 0.25533E-13
[各種データ]
変倍比 1.31707
W M T
f 20.5000 23.87447 27.0000
Fno 3.98168 4.21631 4.45032
2ω 99.4639 78.1570
Ymax 22.10 22.10 22.10
TL 124.40748 117.05375 112.89064
空気換算TL 123.86228 116.50855 112.34544
Bf 21.65029 23.31104 25.1404
空気換算Bf 21.10509 22.76584 24.5952
Ainf 49.6919 43.47611 39.14618
Amod 49.31936 43.09172 38.74231
W W T T
無限遠 近距離 無限遠 近距離
f 20.5000 27.0000
β -0.0971 -0.0976
d0 ∞ 190.2532 ∞ 259.2733
d6 19.4177 19.4177 3.0621 3.0622
d9 5.8637 4.8842 5.8637 4.6753
d12 4.0208 5.0002 4.0208 5.2088
d14 5.4611 4.9170 5.4611 4.8304
d19 3.5448 4.0891 4.8933 5.5240
d25 0.9537 0.9537 4.4438 4.4438
2ω 99.4639 78.1570
ω 49.7319 39.0785
[レンズ群データ]
W T
群 始面 f f
GF 1 53.8809 118.2665
GR 15 75.7150 66.6110
GFA1 1 -32.1287
GFA2 7 56.6718
GFA 1 71.4662 199.6032
GFF 10 625.4485
GRF 15 25.9374
GRB 20 -28.8034
[条件式対応値]
(1) XRF/XFF=0.5556
(2) Bf/f=1.0295
(3) ST/TL=0.4086
(4) βRF/βFF=0.2630
(5) (−fRB)/f=1.4050
(6) Bf/TL=0.1704
(7) XRF/f=0.0266
(8) fRF/fFF=11.0363
(9) fF/fR=0.7116
(10) fFA/fFF=0.1143(広角端)、0.3191(望遠端)
(11) f/fFF=0.0328
(12) f/fRF=0.7904
(13) TL/(Fno・Bf)=1.4740
(14) |Ainf−Amod|/f=0.0182
(15) νFFp−νFFn=44.0300
(16) (FFr2+FFr1)/(FFr2−FFr1)=0.1625
(17) nRBp−nRBn=-0.2842
(18) nRBp+0.005νRBp=1.8375
(19) nRBn+0.005νRBn=1.9758
(Table 11) 11th Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞ 1.000000
1) 109.0633 2.7000 1.638540 55.34
* 2) 18.2077 12.4865 1.000000
3) 495.8681 2.0000 1.832199 40.10
* 4) 44.2568 9.5236 1.000000
5) 52.5025 4.8000 1.903658 31.31
6) 159.6343 Variable 1.000000
7) 57.0442 1.3000 1.903658 31.31
8) 30.3255 4.5545 1.834000 37.18
9) -195.4912 Variable 1.000000
10) 34.2035 4.3182 1.487490 70.32
11) -47.4756 2.2701 1.784696 26.29
12) 111.8345 Variable 1.000000
13) (Aperture S) ∞ 3.0000 1.000000
14) (Virtual surface) ∞ Variable 1.000000
* 15) 47.8005 3.0298 1.801000 34.92
* 16) -89.2527 1.3930 1.000000
17) 147.9048 1.2000 1.717000 47.97
18) 18.1175 5.5049 1.497820 82.57
19) -21.4691 Variable 1.000000
* 20) -28.3302 1.3000 1.800999 34.97
21) 40.6201 1.9545 1.000000
* 22) 42.1307 3.1144 1.516800 64.13
23) ∞ 19.0966 1.000000
24) ∞ 1.6000 1.516800 64.13
25) ∞ Variable 1.000000
Image plane ∞
[Aspherical data]
Surface number κ A4 A6 A8 A10 A12
2 0.0000 8.83674E-06 1.69121E-08 -7.80852E-13 -2.62893E-14 0.29153E-15
4 0.0000 4.63846E-06 -4.54541E-09 8.68492E-12 -6.95178E-14 0.99796E-16
15 0.0000 -1.84011E-05 -1.16137E-07 2.01508E-10 -2.76953E-11 -0.12398E-12
16 1.0000 2.48230E-06 -1.38570E-08 -4.12767E-09 5.44261E-11 -0.60620E-12
20 0.0000 6.56671E-05 -4.14077E-07 7.30290E-11 2.75237E-11 -0.16734E-12
22 1.0000 -9.56724E-05 5.39674E-07 -2.04380E-09 1.77405E-14 0.25533E-13
[Various data]
Scale ratio 1.31707
WMT
f 20.5000 23.87447 27.0000
Fno 3.98168 4.21631 4.45032
2ω 99.4639 78.1570
Ymax 22.10 22.10 22.10
TL 124.40748 117.05375 112.89064
Air conversion TL 123.86228 116.50855 112.34544
Bf 21.65029 23.31104 25.1404
Air conversion Bf 21.10509 22.76584 24.5952
Ainf 49.6919 43.47611 39.14618
Amod 49.31936 43.09172 38.74231
WWTT
Point at infinity Short distance Point at infinity Short distance f 20.5000 27.0000
β -0.0971 -0.0976
d0 ∞ 190.2532 ∞ 259.2733
d6 19.4177 19.4177 3.0621 3.0622
d9 5.8637 4.8842 5.8637 4.6753
d12 4.0208 5.0002 4.0208 5.2088
d14 5.4611 4.9170 5.4611 4.8304
d19 3.5448 4.0891 4.8933 5.5240
d25 0.9537 0.9537 4.4438 4.4438
2ω 99.4639 78.1570
ω 49.7319 39.0785
[Lens group data]
WT
Group starting surface f f
GF 1 53.8809 118.2665
GR 15 75.7150 66.6110
GFA1 1 -32.1287
GFA2 7 56.6718
GFA 1 71.4662 199.6032
GFF 10 625.4485
GRF 15 25.9374
GRB 20 -28.8034
[Conditional expression correspondence value]
(1) XRF / XFF = 0.5556
(2) Bf / f = 1.0295
(3) ST / TL = 0.4086
(4) βRF / βFF = 0.2630
(5) (-fRB) /f=1.4050
(6) Bf / TL = 0.1704
(7) XRF / f = 0.0266
(8) fRF / fFF = 11.0363
(9) fF / fR = 0.7116
(10) fFA / fFF = 0.1143 (wide-angle end), 0.3191 (telephoto end)
(11) f / fFF = 0.0328
(12) f / fRF = 0.7904
(13) TL / (Fno ・ Bf) = 1.4740
(14) | Ainf-Amod | / f = 0.0182
(15) νFFp-νFFn = 44.0300
(16) (FFr2 + FFr1) / (FFr2-FFr1) = 0.1625
(17) nRBp-nRBn = -0.2842
(18) nRBp + 0.005νRBp = 1.8375
(19) nRBn + 0.005νRBn = 1.9758

図22(a)及び図22(b)はそれぞれ、第11実施例に係る変倍光学系の広角端状態における無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
図23(a)及び図23(b)はそれぞれ、第11実施例に係る変倍光学系の望遠端状態における無限遠物体合焦時及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、各焦点距離状態において無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
22 (a) and 22 (b) are aberration diagrams at the time of focusing on an infinity object and the time of focusing on a short-distance object in the wide-angle end state of the variable magnification optical system according to the eleventh embodiment, respectively.
23 (a) and 23 (b) are aberration diagrams at the time of focusing on an infinity object and the time of focusing on a short-distance object in the telephoto end state of the variable magnification optical system according to the eleventh embodiment, respectively.
From each aberration diagram, the variable magnification optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinite object to the time of focusing on a short-range object in each focal length state, and has excellent imaging performance. You can see that.

上記各実施例によれば、ミラーレスカメラに好適であり、合焦群の軽量化を図りつつ合焦時の諸収差の変動を抑えて良好な光学性能を有する光学系を実現することができる。 According to each of the above embodiments, it is suitable for a mirrorless camera, and it is possible to realize an optical system having good optical performance by suppressing fluctuations in various aberrations during focusing while reducing the weight of the focusing group. ..

なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 It should be noted that each of the above examples shows a specific example of the invention of the present application, and the invention of the present application is not limited thereto. The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.

本実施形態の光学系の実施例として2群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、3群等)の光学系を構成することもできる。具体的には、上記各実施例の光学系の最も物体側や最も像側等にレンズ又はレンズ群を追加した構成でも構わない。また、前群及び後群は、2群又は3群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群等)とすることもできる。具体的には、上記各実施例の前群の最も物体側や最も像側、正レンズ群と前側合焦群の間、後群の最も物体側や最も像側、後側合焦群と負レンズ群の間等にレンズ又はレンズ群を追加した構成でも構わない。 As an example of the optical system of the present embodiment, a two-group configuration is shown, but the present application is not limited to this, and an optical system having another group configuration (for example, three groups or the like) can also be configured. Specifically, a lens or a lens group may be added to the most object side, the most image side, or the like of the optical system of each of the above embodiments. Further, the front group and the rear group are shown to have a two-group or three-group configuration, but the present application is not limited to this, and other group configurations (for example, four groups, etc.) may be used. Specifically, it is negative between the most object side and the most image side of the front group, between the positive lens group and the front focusing group, and the most object side, the most image side, and the posterior focusing group of the rear group in each of the above embodiments. A lens or a lens group may be added between the lens groups.

上記各実施例の光学系は、前側合焦群及び後側合焦群を合焦レンズ群としている。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ、ステッピングモータ、VCMモータ等による駆動にも適しており、高速なオートフォーカスとオートフォーカス時の静粛性を良好に達成することができる。 In the optical system of each of the above examples, the anterior focusing group and the posterior focusing group are the focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by a motor for autofocus, for example, an ultrasonic motor, a stepping motor, a VCM motor, etc., and has high-speed autofocus and auto. Quietness at the time of focusing can be satisfactorily achieved.

また、上記各実施例の光学系は、いずれかのレンズ群全体又はその一部を防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。
また、上記各実施例の光学系における開口絞りは、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
Further, in the optical system of each of the above embodiments, the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component in the direction perpendicular to the optical axis, or in-plane including the optical axis. It is also possible to provide vibration isolation by rotating (swinging) in the direction.
Further, the aperture diaphragm in the optical system of each of the above embodiments may be configured such that a lens frame substitutes the role of the aperture diaphragm without providing a member as the aperture diaphragm.

また、上記各実施例の光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。また、各レンズは、ガラス素材で形成されていても、樹脂素材で形成されていても、又はガラス素材と樹脂素材との複合でもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens constituting the optical system of each of the above embodiments may be a spherical surface or a flat surface, or may be an aspherical surface. Further, each lens may be formed of a glass material, a resin material, or a composite of a glass material and a resin material. When the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable. When the lens surface is aspherical, it can be either an aspherical surface formed by grinding, a glass mold aspherical surface formed by molding glass into an aspherical shape, or a composite aspherical surface formed by forming a resin provided on the glass surface into an aspherical shape. good. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

また、上記各実施例の光学系を構成するレンズのレンズ面に、反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。特に、上記各実施例の光学系は最も物体側から数えて2番目のレンズの物体側のレンズ面に反射防止膜を施すことが好ましい。 Further, an antireflection film may be applied to the lens surface of the lens constituting the optical system of each of the above embodiments. As a result, flares and ghosts can be reduced, and high-contrast and high optical performance can be achieved. In particular, in the optical system of each of the above embodiments, it is preferable to provide an antireflection film on the lens surface of the second lens on the object side, counting from the object side.

次に、本実施形態の光学系を備えたカメラを図24に基づいて説明する。
図24は本実施形態の光学系を備えたカメラの構成を示す図である。
図24に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る光学系を備えたレンズ交換式のミラーレスカメラである。
Next, a camera provided with the optical system of the present embodiment will be described with reference to FIG. 24.
FIG. 24 is a diagram showing a configuration of a camera provided with the optical system of the present embodiment.
As shown in FIG. 24, the camera 1 is a lens-interchangeable mirrorless camera provided with the optical system according to the first embodiment as the photographing lens 2.

本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
In the present camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and passed through an OLPF (Optical low pass filter) (not shown) on the image pickup surface of the image pickup unit 3. Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the image pickup unit 3, and the image of the subject is generated. This image is displayed on an EVF (Electronic viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4.
Further, when the photographer presses the release button (not shown), the image of the subject generated by the image pickup unit 3 is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

本カメラ1は、撮影レンズ2として上記第1実施例に係る光学系を搭載したことにより、ミラーレスカメラに好適であり、合焦群の軽量化を図りつつ合焦時の諸収差の変動を抑えて良好な光学性能を実現することができる。 This camera 1 is suitable for a mirrorless camera because it is equipped with the optical system according to the first embodiment as the photographing lens 2, and changes in various aberrations during focusing while reducing the weight of the focusing group. It is possible to suppress and realize good optical performance.

なお、上記第2〜第11実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Even if a camera having the optical system according to the second to eleventh embodiments mounted as the photographing lens 2 is configured, the same effect as that of the camera 1 can be obtained. Further, even when the single-lens reflex type camera having a quick return mirror and observing the subject by the finder optical system is equipped with the optical system according to each of the above embodiments, the same effect as that of the camera 1 can be obtained.

最後に、本実施形態の光学系の製造方法の概略を図25に基づいて説明する。
図25は本実施形態の光学系の製造方法の概略を示す図である。
図25に示す本実施形態の光学系の製造方法は、物体側から順に、正の屈折力を有する前群と、開口絞りと、後群とからなる光学系の製造方法であって、以下のステップS1〜S5を含むものである。
Finally, an outline of the method for manufacturing the optical system of the present embodiment will be described with reference to FIG. 25.
FIG. 25 is a diagram showing an outline of a method for manufacturing an optical system according to the present embodiment.
The method for manufacturing the optical system of the present embodiment shown in FIG. 25 is a method for manufacturing an optical system including a front group having a positive refractive power, an aperture stop, and a rear group in order from the object side, and is as follows. It includes steps S1 to S5.

ステップS1:前群、開口絞り及び後群を準備し、鏡筒内に物体側から順に配置する。
ステップS2:前群が正の屈折力を有する前側合焦群を有するようにする。
ステップS3:後群が正の屈折力を有する後側合焦群を有するようにする。
ステップS4:合焦時に前側合焦群と合焦群が物体側に移動するようにする。
Step S1: The front group, the aperture stop and the rear group are prepared and arranged in the lens barrel in order from the object side.
Step S2: Make the front group have a front focusing group having a positive refractive power.
Step S3: Make the posterior group have a posterior focusing group having a positive refractive power.
Step S4: At the time of focusing, the front focusing group and the focusing group move to the object side.

ステップS5:前側合焦群と後側合焦群が以下の条件式(1)を満足するようにする。
(1)0.250<XRF/XFF<1.500
ただし、
XFF:無限遠物体から近距離物体への合焦時の前側合焦群の移動量
XRF:無限遠物体から近距離物体への合焦時の後側合焦群の移動量
Step S5: The anterior focusing group and the posterior focusing group satisfy the following conditional expression (1).
(1) 0.250 <XRF / XFF <1.500
However,
XFF: Movement amount of the front focusing group when focusing from an infinity object to a short-distance object XRF: Movement amount of the rear focusing group when focusing from an infinity object to a short-distance object

斯かる本実施形態の光学系の製造方法によれば、ミラーレスカメラに好適であり、合焦群の軽量化を図りつつ合焦時の諸収差の変動を抑えて良好な光学性能を有する光学系を製造することができる。 According to the method for manufacturing an optical system according to the present embodiment, the optical system is suitable for a mirrorless camera, and has good optical performance by suppressing fluctuations in various aberrations during focusing while reducing the weight of the focusing group. The system can be manufactured.

GFA:正レンズ群、GFF:前側合焦群、GRF:後側合焦群、GRB:負レンズ群、S:開口絞り、I:像面 GFA: Positive lens group, GFF: Anterior focus group, GRF: Posterior focus group, GRB: Negative lens group, S: Aperture aperture, I: Image plane

Claims (33)

物体側から順に、正の屈折力を有する前群と、開口絞りと、後群とからなり、
前記前群は、物体側から順に、正の屈折力を有する正レンズ群と、正の屈折力を有する前側合焦群を有し、
前記後群は、正の屈折力を有する後側合焦群を有し、
合焦時に前記前側合焦群と後側合焦群が物体側に移動し、前記開口絞りの位置が固定であり、前記正レンズ群と前記前側合焦群との間隔が変化し、
以下の条件式を満足する光学系。
0.250<XRF/XFF<1.500
0.010<fFA/fFF<0.750
ただし、
XFF:無限遠物体から近距離物体への合焦時の前記前側合焦群の移動量
XRF:無限遠物体から近距離物体への合焦時の前記後側合焦群の移動量
fFA:前記正レンズ群の焦点距離
fFF:前記前側合焦群の焦点距離
From the object side, it consists of a front group with a positive refractive power, an aperture stop, and a rear group.
The front group includes, in order from the object side, a positive lens group having positive refractive power, and a front case Asegun having positive refractive power,
The posterior group has a posterior focusing group having a positive refractive power.
At the time of focusing, the front focusing group and the rear focusing group move to the object side, the position of the aperture stop is fixed, and the distance between the positive lens group and the front focusing group changes.
An optical system that satisfies the following conditional expression.
0.250 <XRF / XFF <1.500
0.010 <fFA / fFF <0.750
However,
XFF: Movement amount of the front focusing group when focusing from an infinity object to a short-distance object XRF: Movement amount of the rear focusing group when focusing from an infinity object to a short-distance object
fFA: Focal length of the positive lens group
fFF: Focal length of the front focusing group
以下の条件式を満足する請求項1に記載の光学系。
0.400<Bf/f<2.000
ただし、
Bf:無限遠物体合焦時の最も像側に位置するレンズの像側レンズ面から像面までの距離
f:無限遠物体合焦時の前記光学系の焦点距離
The optical system according to claim 1, which satisfies the following conditional expression.
0.400 <Bf / f <2.000
However,
Bf: Distance from the image side lens surface of the lens located closest to the image side when the infinity object is in focus f: Focal length of the optical system when the infinity object is in focus
以下の条件式を満足する請求項1又は2に記載の光学系。
0.100<ST/TL<0.600
ただし、
ST:無限遠物体合焦時の前記開口絞りから像面までの距離
TL:無限遠物体合焦時の前記最も物体側に位置するレンズの物体側レンズ面から像面までの距離
The optical system according to claim 1 or 2 , which satisfies the following conditional expression.
0.100 <ST / TL <0.600
However,
ST: Distance from the aperture stop to the image plane when the object is in focus at infinity TL: Distance from the lens surface on the object side of the lens located on the closest object side to the image plane when the object is in focus at infinity.
以下の条件式を満足する請求項1からのいずれか一項に記載の光学系。
0.200<βRF/βFF<1.100
ただし、
βFF:前記前側合焦群の倍率
βRF:前記後側合焦群の倍率
The optical system according to any one of claims 1 to 3 , which satisfies the following conditional expression.
0.200 <βRF / βFF <1.10
However,
βFF: Magnification of the anterior focusing group βRF: Magnification of the posterior focusing group
合焦時に前記正レンズ群の位置が固定である請求項1からのいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 4 , wherein the position of the positive lens group is fixed at the time of focusing. 合焦時に最も像側に位置するレンズの位置が固定である請求項1からのいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 5 position of the lens positioned closest to the image side when focusing is fixed. 前記前側合焦群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有する請求項1からのいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 6 , wherein the front focusing group has at least one positive lens and at least one negative lens. 前記後側合焦群は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有する請求項1からのいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 7 , wherein the rear focusing group has at least one positive lens and at least one negative lens. 前記後群は、物体側から順に、前記後側合焦群と、負の屈折力を有する負レンズ群とを有し、合焦時に前記後側合焦群と前記負レンズ群との間隔が変化する請求項1からのいずれか一項に記載の光学系。 The rear group includes, in order from the object side, and the rear focusing lens group, have a negative lens group having a negative refractive power, the distance between the negative lens group and the rear focusing lens group when focusing The optical system according to any one of claims 1 to 8, which changes. 以下の条件式を満足する請求項に記載の光学系。
0.800<(−fRB)/f<10.000
ただし、
fRB:前記負レンズ群の焦点距離
f:無限遠物体合焦時の前記光学系の焦点距離
The optical system according to claim 9 , which satisfies the following conditional expression.
0.800 <(-fRB) /f<10.000
However,
fRB: Focal length of the negative lens group f: Focal length of the optical system when focusing on an object at infinity
以下の条件式を満足する請求項1から10のいずれか一項に記載の光学系。
0.060<Bf/TL<0.650
ただし、
Bf:無限遠物体合焦時の最も像側に位置するレンズの像側レンズ面から像面までの距離
TL:無限遠物体合焦時の前記最も物体側に位置するレンズの物体側レンズ面から像面までの距離
The optical system according to any one of claims 1 to 10 , which satisfies the following conditional expression.
0.060 <Bf / TL <0.650
However,
Bf: Distance from the image side lens surface of the lens located closest to the image side when the infinity object is in focus TL: From the object side lens surface of the lens located closest to the object side when the infinity object is in focus Distance to the image plane
以下の条件式を満足する請求項1から11のいずれか一項に記載の光学系。
0.010<XRF/f<0.240
ただし、
XRF:無限遠物体から近距離物体への合焦時の前記後側合焦群の移動量
f:無限遠物体合焦時の前記光学系の焦点距離
The optical system according to any one of claims 1 to 11 , which satisfies the following conditional expression.
0.010 <XRF / f <0.240
However,
XRF: Movement amount of the rear focusing group when focusing from an infinite object to a short-distance object f: Focal length of the optical system when focusing on an infinite object
最も物体側に位置するレンズが負の屈折力を有する請求項1から12のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 12 , wherein the lens located closest to the object has a negative refractive power. 前記後群が正の屈折力を有する請求項1から13のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 13 , wherein the rear group has a positive refractive power. 以下の条件式を満足する請求項1から14のいずれか一項に記載の光学系。
0.010<fRF/fFF<0.900
ただし、
fFF:前記前側合焦群の焦点距離
fRF:前記後側合焦群の焦点距離
The optical system according to any one of claims 1 to 14 , which satisfies the following conditional expression.
0.010 <fRF / fFF <0.990
However,
fFF: Focal length of the anterior focusing group fRF: Focal length of the posterior focusing group
以下の条件式を満足する請求項1から15のいずれか一項に記載の光学系。
0.300<fF/fR<1.300
ただし、
fF:無限遠物体合焦時の前記前群の焦点距離
fR:無限遠物体合焦時の前記後群の焦点距離
The optical system according to any one of claims 1 to 15 , which satisfies the following conditional expression.
0.300 <fF / fR <1.300
However,
fF: Focal length of the front group when focusing on an infinity object fR: Focal length of the rear group when focusing on an infinity object
以下の条件式を満足する請求項1から16のいずれか一項に記載の光学系。
0.010<f/fFF<0.300
ただし、
f:無限遠物体合焦時の前記光学系の焦点距離
fFF:前記前側合焦群の焦点距離
The optical system according to any one of claims 1 to 16 , which satisfies the following conditional expression.
0.010 <f / fFF <0.300
However,
f: Focal length of the optical system when focusing on an infinite object fFF: Focal length of the front focusing group
以下の条件式を満足する請求項1から17のいずれか一項に記載の光学系。
0.300<f/fRF<1.100
ただし、
f:無限遠物体合焦時の前記光学系の焦点距離
fRF:前記後側合焦群の焦点距離
The optical system according to any one of claims 1 to 17 , which satisfies the following conditional expression.
0.300 <f / fRF <1.10
However,
f: Focal length of the optical system when focusing on an infinite object fRF: Focal length of the rear focusing group
以下の条件式を満足する請求項1から18のいずれか一項に記載の光学系。
0.800<TL/(Fno・Bf)<6.000
ただし、
TL:無限遠物体合焦時の前記最も物体側に位置するレンズの物体側レンズ面から像面までの距離
Fno:前記光学系の開放Fナンバー
Bf:無限遠物体合焦時の最も像側に位置するレンズの像側レンズ面から像面までの距離
The optical system according to any one of claims 1 to 18 , which satisfies the following conditional expression.
0.800 <TL / (Fno ・ Bf) <6.60
However,
TL: Distance from the lens surface to the image plane of the lens located on the most object side when the object is in focus at infinity Fno: Open F number Bf of the optical system: To the image side when the object is in focus at infinity Distance from the image side lens surface of the located lens to the image surface
以下の条件式を満足する請求項1から19のいずれか一項に記載の光学系。
|Ainf−Amod|/f<0.070
ただし、
Ainf:無限遠物体合焦時の前記光学系の半画角
Amod:最至近物体合焦時の前記光学系の半画角
The optical system according to any one of claims 1 to 19 , which satisfies the following conditional expression.
| Ainf-Amod | / f <0.070
However,
Ainf: Half-angle of view of the optical system when focusing on an infinite object Amod: Half-angle of view of the optical system when focusing on the nearest object
前記前側合焦群は、1枚の正レンズと、1枚の負レンズとからなり、
以下の条件式を満足する請求項1から20のいずれか一項に記載の光学系。
30.00<νFFp−νFFn<75.00
ただし、
νFFp:前記前側合焦群中の前記正レンズのアッベ数
νFFn:前記前側合焦群中の前記負レンズのアッベ数
The front focusing group consists of one positive lens and one negative lens.
The optical system according to any one of claims 1 to 20 , which satisfies the following conditional expression.
30.00 <νFFp-νFFn <75.00
However,
νFFp: Abbe number of the positive lens in the front focusing group νFFn: Abbe number of the negative lens in the front focusing group
以下の条件式を満足する請求項1から21のいずれか一項に記載の光学系。
−1.000<(FFr2+FFr1)/(FFr2−FFr1)<2.000
ただし、
FFr1:前記前側合焦群中の最も像側に位置する正レンズの物体側レンズ面の曲率半径
FFr2:前記前側合焦群中の最も像側に位置する正レンズの像側レンズ面の曲率半径
The optical system according to any one of claims 1 to 21 , which satisfies the following conditional expression.
-1,000 <(FFr2 + FFr1) / (FFr2-FFr1) <2.000
However,
FFr1: Radius of curvature of the object-side lens surface of the positive lens located most on the image side in the front focusing group FFr2: Curvature radius of the image-side lens surface of the positive lens located on the image side of the front focusing group
前記前側合焦群が2枚又は3枚のレンズからなる請求項1から22のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 22 , wherein the front focusing group comprises two or three lenses. 前記後側合焦群が4枚以内のレンズからなる請求項1から23のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 23 , comprising a lens having four or less rear focusing groups. 最も像側のレンズが正レンズであり、最も像側から2番目のレンズが負レンズである請求項1から24のいずれか一項に記載の光学系。 The most image side of the lens is a positive lens, an optical system according to claim 1, any one of 24 which is the second lens is a negative lens from the image side. 以下の条件式を満足する請求項1から25のいずれか一項に記載の光学系。
0.030<nRBp−nRBn
ただし、
nRBp:最も像側に位置するレンズ群中の正レンズの屈折率
nRBn:最も像側に位置するレンズ群中の負レンズの屈折率
The optical system according to any one of claims 1 to 25 , which satisfies the following conditional expression.
0.030 <nRBp-nRBn
However,
nRBp: Refractive index of the positive lens in the lens group located most on the image side nRBn: Refractive index of the negative lens in the lens group located on the image side most
も像側に位置するレンズの像側レンズ面が像側に凸である請求項1から26のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 26 image-side lens surface of the lens positioned most image side is convex toward the image side. 以下の条件式を満足する請求項1から27のいずれか一項に記載の光学系。
1.000<nRBp+0.005νRBp<2.500
1.000<nRBn+0.005νRBn<2.500
ただし、
nRBp:最も像側に位置するレンズ群中の正レンズの屈折率
nRBn:最も像側に位置するレンズ群中の負レンズの屈折率
νRBp:最も像側に位置するレンズ群中の正レンズのアッベ数
νRBn:最も像側に位置するレンズ群中の負レンズのアッベ数
The optical system according to any one of claims 1 to 27 , which satisfies the following conditional expression.
1.000 <nRBp + 0.005νRBp <2.500
1.000 <nRBn + 0.005νRBn <2.500
However,
nRBp: Refractive coefficient of the positive lens in the lens group located most on the image side nRBn: Refractive coefficient of the negative lens in the lens group located on the image side νRBp: Abbe of the positive lens in the lens group located on the image side most Number νRBn: Abbe number of negative lenses in the lens group located closest to the image side
前記前側合焦群と前記開口絞りとが隣り合っている請求項1から28のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 28 , wherein the front focusing group and the aperture diaphragm are adjacent to each other. 前記開口絞りと前記後側合焦群とが隣り合っている請求項1から29のいずれか一項に記載の光学系。 The optical system according to any one of claims 1 to 29 , wherein the aperture stop and the rear focusing group are adjacent to each other. 前記前群は、前記前側合焦群と前記開口絞りとの間に、合焦時に位置が固定の第1固定レンズ群をさらに有し、
前記前側合焦群と前記第1固定レンズ群との間隔は合焦時に変化する請求項1から2830のいずれか一項に記載の光学系。
The front group, between the front focusing lens group and the aperture stop, is located at the time of focusing to further have a first fixed lens group fixed,
The optical system according to any one of claims 1 to 28 , 30 , wherein the distance between the front focusing group and the first fixed lens group changes at the time of focusing.
前記後群は、前記開口絞りと前記後側合焦群との間に、合焦時に位置が固定の第2固定レンズ群をさらに有し、
前記後側合焦群と前記第2固定レンズ群との間隔は合焦時に変化する請求項1から2931のいずれか一項に記載の光学系。
The rear group further has a second fixed lens group whose position is fixed at the time of focusing between the aperture stop and the rear focusing group.
The optical system according to any one of claims 1 to 29 , 31 , wherein the distance between the rear focusing group and the second fixed lens group changes at the time of focusing.
請求項1から請求項32のいずれか一項に記載の光学系を有する光学機器。 An optical device having the optical system according to any one of claims 1 to 32.
JP2017244353A 2017-12-20 2017-12-20 Optical system, optical equipment Active JP6969358B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017244353A JP6969358B2 (en) 2017-12-20 2017-12-20 Optical system, optical equipment
CN201880081941.9A CN111492287B (en) 2017-12-20 2018-12-20 Optical system and optical apparatus
US16/955,671 US20210011256A1 (en) 2017-12-20 2018-12-20 Optical system, optical equipment, and manufacturing method for optical system
PCT/JP2018/047010 WO2019124499A1 (en) 2017-12-20 2018-12-20 Optical system, optical apparatus, and optical system manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017244353A JP6969358B2 (en) 2017-12-20 2017-12-20 Optical system, optical equipment

Publications (2)

Publication Number Publication Date
JP2019113576A JP2019113576A (en) 2019-07-11
JP6969358B2 true JP6969358B2 (en) 2021-11-24

Family

ID=67221449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244353A Active JP6969358B2 (en) 2017-12-20 2017-12-20 Optical system, optical equipment

Country Status (1)

Country Link
JP (1) JP6969358B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220291488A1 (en) * 2019-08-29 2022-09-15 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP7467134B2 (en) 2020-01-27 2024-04-15 キヤノン株式会社 Optical system, and imaging device and lens device having the same
CN116482829A (en) 2023-04-11 2023-07-25 辰瑞光学(常州)股份有限公司 Optical imaging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316341A (en) * 1998-05-02 1999-11-16 Canon Inc Inner focus type photographing lens
JP6260003B2 (en) * 2014-12-22 2018-01-17 パナソニックIpマネジメント株式会社 Lens system, interchangeable lens device, and camera system
JP6253615B2 (en) * 2015-07-27 2017-12-27 キヤノン株式会社 Optical system and optical apparatus including the same
JP6721859B2 (en) * 2016-02-29 2020-07-15 株式会社ニコン Optical system and optical equipment

Also Published As

Publication number Publication date
JP2019113576A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6669281B2 (en) Zoom lens and optical equipment
JP2019148827A (en) Zoom lens and optical device
WO2016121944A1 (en) Zoom lens, optical apparatus, and zoom lens production method
JP6969358B2 (en) Optical system, optical equipment
JP6915667B2 (en) Zoom lens and optical equipment
JP5407363B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
CN107884917B (en) Variable magnification optical system and optical device
WO2019124499A1 (en) Optical system, optical apparatus, and optical system manufacturing method
JP5545064B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
WO2022244840A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP7006245B2 (en) Optical system, optical equipment
WO2020157801A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP6828252B2 (en) Optical system and optical equipment
JP5510114B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP5407365B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
US20220244502A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP6554759B2 (en) Photographic lens, optical apparatus equipped with the photographic lens, and method of manufacturing photographic lens
JP5407364B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP7143882B2 (en) Optical system, optical instrument, and method of manufacturing optical system
WO2015119252A1 (en) Imaging lens, optical device provided with same, and imaging lens production method
US20230367109A1 (en) Zoom optical system, optical apparatus, and method for manufacturing zoom optical system
JP5445040B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP6589888B2 (en) Zoom lens and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150