JP6969197B2 - Air supply control system for stores - Google Patents

Air supply control system for stores Download PDF

Info

Publication number
JP6969197B2
JP6969197B2 JP2017150388A JP2017150388A JP6969197B2 JP 6969197 B2 JP6969197 B2 JP 6969197B2 JP 2017150388 A JP2017150388 A JP 2017150388A JP 2017150388 A JP2017150388 A JP 2017150388A JP 6969197 B2 JP6969197 B2 JP 6969197B2
Authority
JP
Japan
Prior art keywords
store
temperature
air
air supply
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150388A
Other languages
Japanese (ja)
Other versions
JP2019027746A (en
Inventor
宏幸 寺脇
幸裕 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017150388A priority Critical patent/JP6969197B2/en
Publication of JP2019027746A publication Critical patent/JP2019027746A/en
Application granted granted Critical
Publication of JP6969197B2 publication Critical patent/JP6969197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、コンビニエンスストア等の店舗向け給気量制御システムに関するものである。 The present invention relates to an air supply amount control system for stores such as convenience stores.

コンビニエンスストア等の店舗では、オープンショーケース、コーヒーマシンなどの設備からの排熱を換気扇などで外部へ排出していることから店舗内は負圧状態になっており、この状態で入口のドアが開放されると外気が侵入し、店舗内温度と店舗外温度の差が大きい季節は店舗内空調機の負荷が増大してしまっていた。 In stores such as convenience stores, the inside of the store is in a negative pressure state because the waste heat from equipment such as open showcases and coffee machines is discharged to the outside by ventilation fans, etc., and the entrance door is in this state. When it was opened, outside air invaded, and the load on the in-store air conditioner increased during the season when the difference between the in-store temperature and the out-of-store temperature was large.

この外気侵入を抑制する手段として、従来、例えば店舗内と店舗外の気圧差を差圧計で測定し店舗内を正圧に保つように制御していた(例えば、特許文献1参照)。しかし、差圧計による正圧制御では風等の外乱により測定値が急激に変動してしまい、制御が不安定になるという課題があった。 As a means for suppressing this intrusion of outside air, conventionally, for example, the pressure difference between the inside and outside of the store is measured by a differential pressure gauge and controlled so as to keep the inside of the store at a positive pressure (see, for example, Patent Document 1). However, in the positive pressure control by the differential pressure gauge, there is a problem that the measured value suddenly fluctuates due to the disturbance such as wind, and the control becomes unstable.

この課題を解決する手段として、クリーンルームでの差圧計による正圧制御システムで使用される大がかりな中空管による基準圧伝達装置を用いた技術が開示されている(例えば、特許文献2参照)。 As a means for solving this problem, a technique using a reference pressure transmission device using a large-scale hollow tube used in a positive pressure control system using a differential pressure gauge in a clean room is disclosed (see, for example, Patent Document 2).

特開2001−153441号公報Japanese Unexamined Patent Publication No. 2001-153441 特開2013−24450号公報Japanese Unexamined Patent Publication No. 2013-24450

ところで、上述した大がかりな中空管による基準圧伝達装置は、装置全体の大型化・コストアップになるという課題があり店舗向け空調システムでは採用できなかった。 By the way, the above-mentioned reference pressure transmission device using a large-scale hollow pipe has a problem of increasing the size and cost of the entire device, and cannot be adopted in an air conditioning system for stores.

本発明は、上記実情に鑑みて、装置の大型化・コストアップを抑制し店舗内を正圧に制御可能な店舗向け給気量制御システムを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an air supply amount control system for a store, which can suppress the increase in size and cost of the device and can control the inside of the store to a positive pressure.

上記目的を達成するために、本発明に係る店舗向け給気量制御システムは、店舗内の空気を店舗外に排出する換気手段と、外気を店舗内へ供給する給気手段と、店舗内の温度を検知する店舗内温度検知手段と、店舗外の外気温度を検知する店舗外温度検知手段と、店舗内外に連通し、店舗内の気圧が店舗外の気圧より低い負圧のときは外気が店舗内に流入することにより店舗外の温度に近くなる一方、店舗内の気圧が店舗外の気圧より高い正圧のときは店舗内の空気が外部へ流出することにより店舗内の温度に近くなるところの通風口内に設置され、当該通風口内の温度を検知する通風口内温度検知手段と、前記給気手段により外気を店舗内へ供給する給気量を制御する給気量制御手段と、を備え、前記給気量制御手段は、前記各温度検知手段より収集した温度情報より基準温度差を算出し、該基準温度差により給気量を制御して店舗内を正圧に保つことを特徴とする。 In order to achieve the above object, the air supply amount control system for a store according to the present invention includes a ventilation means for discharging the air in the store to the outside of the store, an air supply means for supplying the outside air to the inside of the store, and an air supply means in the store. The inside-store temperature detecting means that detects the temperature, the outside-store temperature detecting means that detects the outside air temperature outside the store, and the outside air are communicated inside and outside the store, and when the pressure inside the store is lower than the pressure outside the store, the outside air is released. The temperature inside the store approaches the temperature outside the store by flowing into the store, while when the pressure inside the store is higher than the temperature outside the store, the air inside the store flows out to the outside and becomes close to the temperature inside the store. However, it is provided with a ventilation port temperature detecting means installed in the ventilation port and detecting the temperature in the ventilation port, and an air supply amount control means for controlling the amount of air supplied to the store by the air supply means. The air supply amount control means is characterized in that a reference temperature difference is calculated from the temperature information collected from each temperature detection means, and the supply air amount is controlled by the reference temperature difference to keep the inside of the store at a positive pressure. do.

また、本発明に係る店舗向け給気量制御システムは、前記基準温度差を次式から算出することを特徴とする。基準温度差=店舗内温度+店舗外温度−2×通風口内温度 Further, the air supply amount control system for stores according to the present invention is characterized in that the reference temperature difference is calculated from the following equation. Reference temperature difference = temperature inside the store + temperature outside the store-2 x temperature inside the ventilation port

また、本発明に係る店舗向け給気量制御システムは、前記給気量制御手段が、店舗内温度と店舗外温度の差が第3閾値未満であれば、給気手段を停止させることを特徴とする。 Further, the air supply amount control system for stores according to the present invention is characterized in that the air supply amount control means stops the air supply means when the difference between the temperature inside the store and the temperature outside the store is less than the third threshold value. And.

本発明によれば、店舗内の空気を店舗外に排出する換気手段と、外気を店舗内へ供給する給気手段と、店舗内の温度を検知する店舗内温度検知手段と、店舗外の外気温度を検知する店舗外温度検知手段と、店舗内外に連通し、店舗内の気圧が店舗外の気圧より低い負圧のときは外気が店舗内に流入することにより店舗外の温度に近くなる一方、店舗内の気圧が店舗外の気圧より高い正圧のときは店舗内の空気が外部へ流出することにより店舗内の温度に近くなるところの通風口内に設置され、当該通風口内の温度を検知する通風口内温度検知手段と、前記給気手段により外気を店舗内へ供給する給気量を制御する給気量制御手段を備え、前記給気量制御手段は、前記各温度検知手段より収集した温度情報より基準温度差を算出し、該基準温度差により給気量を制御して店舗内を正圧に保つことにより、風等の外乱により制御が不安定になることがなく店舗内を正圧に保つことができ空調の省エネ化が可能になり、しかも給気量制御システム全体の大型化・コストアップが抑制できるという効果を奏する。 According to the present invention, a ventilation means for discharging the air inside the store to the outside of the store, an air supply means for supplying the outside air to the inside of the store, a temperature detecting means inside the store for detecting the temperature inside the store, and an outside air outside the store. When the air pressure inside the store is lower than the air pressure outside the store, the outside air flows into the store and becomes closer to the temperature outside the store. , When the air pressure inside the store is higher than the air pressure outside the store, it is installed in the ventilation port where the temperature inside the store is close to the temperature inside the store due to the outflow of the air inside the store, and the temperature inside the ventilation port is detected. The air supply port temperature detecting means and the air supply amount controlling means for controlling the amount of air supplied to the store by the air supply means are provided, and the air supply amount controlling means is collected from each of the temperature detecting means. By calculating the reference temperature difference from the temperature information and controlling the amount of air supply by the reference temperature difference to keep the inside of the store at a positive pressure, the inside of the store is positive without the control becoming unstable due to disturbance such as wind. It is possible to maintain the air pressure, which makes it possible to save energy in air conditioning, and also has the effect of suppressing the increase in size and cost of the entire air supply amount control system.

また、前記給気量制御手段が、店舗内温度と店舗外温度の差が所定の値より小さければ、給気手段の運転を停止させることにしているため、更なる省エネ化が可能となる効果も奏する。 Further, if the difference between the temperature inside the store and the temperature outside the store is smaller than a predetermined value, the air supply amount control means stops the operation of the air supply means, so that further energy saving is possible. Also plays.

図1は、本発明の実施の形態1における店舗向け給気量制御システムの概略構成図である。FIG. 1 is a schematic configuration diagram of an air supply amount control system for stores according to the first embodiment of the present invention. 図2は、給気ファン風量と店舗内・通風口内・店舗外の温度の関係(暖房時)を示すグラフである。FIG. 2 is a graph showing the relationship (during heating) between the air volume of the air supply fan and the temperature inside the store, inside the ventilation port, and outside the store. 図3は、給気ファン風量と基準温度差の関係(暖房時)を示すグラフである。FIG. 3 is a graph showing the relationship between the air supply fan air volume and the reference temperature difference (during heating). 図4は、図1に示したインバータ制御装置の概略構成図である。FIG. 4 is a schematic configuration diagram of the inverter control device shown in FIG. 図5は、図2に示したインバータ制御装置が実施する給気量制御処理(暖房時)の処理内容を示すフローチャートである。FIG. 5 is a flowchart showing the processing contents of the supply air amount control processing (during heating) performed by the inverter control device shown in FIG. 図6は、本発明の実施の形態2における店舗向け給気量制御システムの概略構成図である。FIG. 6 is a schematic configuration diagram of an air supply amount control system for stores according to the second embodiment of the present invention. 図7は、図6に示したダンパー制御装置の概略構成図である。FIG. 7 is a schematic configuration diagram of the damper control device shown in FIG. 図8は、図7に示したダンパー制御装置が実施する給気量制御処理(暖房時)の処理内容を示すフローチャートである。FIG. 8 is a flowchart showing the processing contents of the supply air amount control processing (during heating) performed by the damper control device shown in FIG. 7.

以下に添付図面を参照して、本発明に係る店舗向け給気量制御システムの好適な実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the air supply amount control system for stores according to the present invention will be described in detail with reference to the accompanying drawings.

<実施形態1>
図1は、本発明の実施の形態1における店舗向け給気量制御システムの概略構成図である。ここで例示する店舗向け給気量制御システムは、換気扇10と、給気ファン20と、インバータ制御装置30と、第1計測部41、第2計測部42と、第3計測部43と、入力部50、を備えて構成している。
<Embodiment 1>
FIG. 1 is a schematic configuration diagram of an air supply amount control system for stores according to the first embodiment of the present invention. The air supply amount control system for stores exemplified here includes a ventilation fan 10, an air supply fan 20, an inverter control device 30, a first measurement unit 41, a second measurement unit 42, and a third measurement unit 43. The unit 50 is provided.

換気扇10は、店舗内に溜まっているオープンショーケース(図示せず)などから排出される排熱を、排気ダクト11を通して店舗外へ排気するものである。給気ファン20は、給気ダクト21を通して外気を店舗内へ取り入れるものである。インバータ制御装置30は、特許請求の範囲で記載している給気量制御手段に相当するもので、給気ファン20の回転数を任意に変更させることができる。例えば、インバータ制御装置30により給気ファン20の回転数を上げると給気ファン風量が増加し、店舗内に取り入れる給気量が増加し店舗内の圧力が高くなる。一方、給気ファン20の回転数を下げると給気ファン風量が減少し、店舗内に取り入れる給気量が減少し店舗内の圧力が低くなるものである。 The ventilation fan 10 exhausts the exhaust heat discharged from an open showcase (not shown) or the like accumulated in the store to the outside of the store through the exhaust duct 11. The air supply fan 20 takes in outside air into the store through the air supply duct 21. The inverter control device 30 corresponds to the supply air amount control means described in the claims, and the rotation speed of the supply air fan 20 can be arbitrarily changed. For example, when the rotation speed of the air supply fan 20 is increased by the inverter control device 30, the air supply fan air volume increases, the air supply amount taken into the store increases, and the pressure in the store increases. On the other hand, when the rotation speed of the air supply fan 20 is lowered, the air supply amount of the air supply fan decreases, the amount of air supply taken into the store decreases, and the pressure in the store decreases.

第1計測部41は、コンビニエンスストア1の店舗内に設けられており、店舗内温度(以降、店舗内温度C1という)を計測する。第2計測部42は、コンビニエンスストア1の店舗外に設けられており、店舗外温度(以降、店舗外温度C2という)を計測する。第3計測部43は、通風口70の内部に設けられており、通風口内温度(以降、通風口内温度C3という)を計測する。 The first measurement unit 41 is provided in the store of the convenience store 1 and measures the temperature inside the store (hereinafter referred to as the temperature inside the store C1). The second measuring unit 42 is provided outside the convenience store 1 and measures the outside temperature of the store (hereinafter referred to as the outside temperature C2). The third measuring unit 43 is provided inside the ventilation port 70, and measures the temperature inside the ventilation port (hereinafter referred to as the temperature inside the ventilation port C3).

入力部50は、後述する第1閾値(暖房用、冷房用)、第2閾値(暖房用、冷房用)、第3閾値を入力するもので、例えば、キーボードである。 The input unit 50 inputs a first threshold value (for heating and cooling), a second threshold value (for heating and cooling), and a third threshold value, which will be described later, and is, for example, a keyboard.

図2は、給気ファン風量と店舗内・通風口内・店舗外の温度の関係(暖房時)を示すグラフである。店舗内温度と店舗外温度が、ほぼ一定である状態で、給気ファン風量を増加させると、通風口内温度は次第に高くなっていくことがわかる。 FIG. 2 is a graph showing the relationship (during heating) between the air volume of the air supply fan and the temperature inside the store, inside the ventilation port, and outside the store. It can be seen that when the air supply fan air volume is increased while the temperature inside the store and the temperature outside the store are almost constant, the temperature inside the ventilation port gradually increases.

これは店舗内が負圧つまり店舗外気圧より低いときは、外気が通風口70を通って店舗内に流入するため通風口内温度C3は店舗外温度に近くなり、店舗内が正圧つまり店舗外気圧より高いときは、店舗内の空気が通風口70を通って外部へ流出するため通風口内温度C3は店舗内温度に近くなる原理があるといえる。そして、店舗内と店舗外気圧が同じであれば、通風口内温度C3は、店舗内温度と店舗外温度のほぼ中間値になる。 This is because when the inside of the store has a negative pressure, that is, when the air pressure is lower than the outside air pressure, the outside air flows into the store through the ventilation port 70, so that the temperature inside the ventilation port C3 becomes close to the outside temperature of the store, and the inside of the store has a positive pressure, that is, outside the store. When the air pressure is higher than the atmospheric pressure, the air inside the store flows out through the ventilation port 70, so that it can be said that there is a principle that the temperature inside the ventilation port C3 is close to the temperature inside the store. If the air pressure inside the store and the outside air pressure are the same, the temperature C3 inside the ventilation port is approximately an intermediate value between the temperature inside the store and the temperature outside the store.

冷房時の給気ファン風量と店舗内・通風口内・店舗外の温度の関係を示すグラフは、図示していないが、冷房時、店舗外温度は店舗内温度より高いので上記原理より、給気ファン風量を増加させると、通風口内温度は次第に低くなっていく、つまり低い店舗内温度に近づいていくものである。本発明は、上記の原理を利用して給気量を制御し、店舗内を正圧に保つものである。 The graph showing the relationship between the air volume of the air supply fan during cooling and the temperature inside the store, inside the ventilation port, and outside the store is not shown, but since the temperature outside the store is higher than the temperature inside the store during cooling, the air supply is based on the above principle. When the fan air volume is increased, the temperature inside the ventilation port gradually decreases, that is, it approaches the low temperature inside the store. The present invention controls the amount of air supply by using the above principle to keep the inside of the store at a positive pressure.

図3は、給気ファン風量と基準温度差の関係(暖房時)を示すグラフである。ここで、基準温度差(以降、基準温度差Caという)とは、次の式で算出した数値のことである。この数値の大きさにより、店舗内が正圧であるか負圧であるかを判断し、給気ファン風量を増減させるものである。 FIG. 3 is a graph showing the relationship between the air supply fan air volume and the reference temperature difference (during heating). Here, the reference temperature difference (hereinafter referred to as the reference temperature difference Ca) is a numerical value calculated by the following formula. Based on the magnitude of this numerical value, it is determined whether the pressure inside the store is positive or negative, and the air volume of the air supply fan is increased or decreased.

(算出式1)
基準温度差Ca=店舗内温度C1+店舗外温度C2−2×通風口内温度C3
図4は、本発明の実施形態1のインバータ制御装置の概略構成図である。インバータ制御装置30は、温度情報取得部31と、温度差算出部32と、温度差比較部33と、給気ファン回転数調整部34と、閾値記憶部35と、入力処理部36を備えて構成している。
(Calculation formula 1)
Reference temperature difference Ca = Store temperature C1 + Store outside temperature C2-2 x Ventilation port temperature C3
FIG. 4 is a schematic configuration diagram of the inverter control device according to the first embodiment of the present invention. The inverter control device 30 includes a temperature information acquisition unit 31, a temperature difference calculation unit 32, a temperature difference comparison unit 33, an air supply fan rotation speed adjustment unit 34, a threshold value storage unit 35, and an input processing unit 36. It is composed.

温度情報取得部31は、例えばサーミスタを用いて温度を計測する温度センサで構成された第1計測部41、第2計測部42、および第3計測部43と通信可能に構成されている。そして、温度情報取得部31は、第1計測部41、第2計測部42、および第3計測部43それぞれから温度取得結果として、店舗内温度C1、店舗外温度C2、通風口内温度C3を取得するものである。 The temperature information acquisition unit 31 is configured to be communicable with the first measurement unit 41, the second measurement unit 42, and the third measurement unit 43, which are composed of temperature sensors that measure the temperature using, for example, a thermistor. Then, the temperature information acquisition unit 31 acquires the temperature inside the store C1, the temperature outside the store C2, and the temperature inside the ventilation port C3 as the temperature acquisition results from the first measurement unit 41, the second measurement unit 42, and the third measurement unit 43, respectively. It is something to do.

温度差算出部32は、温度情報取得部31が取得した温度測定結果をもとに算出式1により基準温度差Caを算出するものである。また、温度差算出部32は、温度情報取得部31が取得した温度測定結果をもとに店舗内外温度差Cb(=|店舗内温度C1−店舗外温度C2|)を算出するものである。 The temperature difference calculation unit 32 calculates the reference temperature difference Ca by the calculation formula 1 based on the temperature measurement result acquired by the temperature information acquisition unit 31. Further, the temperature difference calculation unit 32 calculates the temperature difference Cb (= | store temperature C1-store outside temperature C2 |) based on the temperature measurement result acquired by the temperature information acquisition unit 31.

温度差比較部33は、後述する閾値記憶部35に記憶されている第1閾値(暖房用、冷房用)あるいは第2閾値(暖房用、冷房用)と温度差算出部32で算出した基準温度差Caとを比較するものである。また、温度差比較部33は、後述する閾値記憶部35に記憶されている第3閾値と温度差算出部32で算出した店舗内外温度差Cbとを比較するものである。 The temperature difference comparison unit 33 has a reference temperature calculated by the temperature difference calculation unit 32 with the first threshold value (for heating and cooling) or the second threshold value (for heating and cooling) stored in the threshold value storage unit 35 described later. This is a comparison with the difference Ca. Further, the temperature difference comparison unit 33 compares the third threshold value stored in the threshold value storage unit 35, which will be described later, with the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32.

給気ファン回転数調整部34は、暖房時、温度差比較部33の比較結果で基準温度差Caが第1閾値(暖房時)以上である場合は給気ファン回転数を所定数増加させるものである。また、給気ファン回転数調整部34は、温度差比較部33の比較結果で基準温度差Caが第2閾値(暖房時)未満である場合は給気ファン回転数を所定数減少させるものである。また、給気ファン回転数調整部34は、温度差比較部の比較結果で店舗内外温度差Cbが、第3閾値未満であれば、給気ファンを停止させるものである。 The supply air fan rotation speed adjusting unit 34 increases the supply air fan rotation speed by a predetermined number when the reference temperature difference Ca is equal to or higher than the first threshold value (during heating) in the comparison result of the temperature difference comparison unit 33 during heating. Is. Further, the supply air fan rotation speed adjusting unit 34 reduces the supply air fan rotation speed by a predetermined number when the reference temperature difference Ca is less than the second threshold value (during heating) in the comparison result of the temperature difference comparison unit 33. be. Further, the supply air fan rotation speed adjusting unit 34 stops the supply air fan if the temperature difference Cb inside and outside the store is less than the third threshold value in the comparison result of the temperature difference comparison unit.

給気ファン回転数調整部34は、冷房時、温度差比較部33の比較結果で基準温度差Caが第1閾値(冷房時)以下である場合は給気ファン回転数を所定数増加させるものである。また、給気ファン回転数調整部34は、温度差比較部33の比較結果で基準温度差Caが第2閾値(冷房時)を超える場合は給気ファン回転数を所定数減少させるものである。また、給気ファン回転数調整部34は、温度差比較部の比較結果で店舗内外温度差Cbが、第3閾値未満であれば、給気ファンを停止させるものである。 The supply air fan rotation speed adjusting unit 34 increases the supply air fan rotation speed by a predetermined number when the reference temperature difference Ca is equal to or less than the first threshold value (during cooling) in the comparison result of the temperature difference comparison unit 33 during cooling. Is. Further, the supply air fan rotation speed adjusting unit 34 reduces the supply air fan rotation speed by a predetermined number when the reference temperature difference Ca exceeds the second threshold value (during cooling) in the comparison result of the temperature difference comparison unit 33. .. Further, the supply air fan rotation speed adjusting unit 34 stops the supply air fan if the temperature difference Cb inside and outside the store is less than the third threshold value in the comparison result of the temperature difference comparison unit.

閾値記憶部35は、第1閾値(暖房用、冷房用)と、第2閾値(暖房用、冷房用)および第3閾値を記憶するものである。初期値としてあらかじめ記憶されているが、入力部50から変更することも可能である。入力処理部36は、入力部50から入力された第1閾値(暖房用、冷房用)と、第2閾値(暖房用、冷房用)および第3閾値を処理して閾値記憶部35の値を書き換えるものである。 The threshold value storage unit 35 stores a first threshold value (for heating and cooling), a second threshold value (for heating and cooling), and a third threshold value. Although it is stored in advance as an initial value, it can be changed from the input unit 50. The input processing unit 36 processes the first threshold value (for heating and cooling), the second threshold value (for heating and cooling) and the third threshold value input from the input unit 50, and stores the value of the threshold value storage unit 35. It is something to rewrite.

図5は、図2に示したインバータ制御装置が実施する給気量制御処理(暖房時)の処理内容を示すフローチャートである。 FIG. 5 is a flowchart showing the processing contents of the supply air amount control processing (during heating) performed by the inverter control device shown in FIG.

この給気量制御処理において、インバータ制御装置30は、温度情報取得部31を通じて第1計測部41、第2計測部42および第3計測部43からの温度情報を取得した場合(ステップS1:Yes)、すなわち店舗内温度C1、店舗外温度C2および通風口内温度C3を取得したものとして、温度差算出部32は基準温度差Caおよび店舗内外温度差Cbを算出する処理を実施する(ステップS2)。 In this air supply amount control process, when the inverter control device 30 acquires temperature information from the first measurement unit 41, the second measurement unit 42, and the third measurement unit 43 through the temperature information acquisition unit 31 (step S1: Yes). ), That is, assuming that the temperature inside the store C1, the temperature outside the store C2, and the temperature inside the ventilation port C3 are acquired, the temperature difference calculation unit 32 carries out a process of calculating the reference temperature difference Ca and the temperature difference Cb inside and outside the store (step S2). ..

次に、温度差比較部33は、温度差算出部32で算出した店舗内外温度差Cbと第3閾値とを比較する(ステップS3)。温度差算出部32で算出した店舗内外温度差Cbが第3閾値以上である場合(ステップS3:Yes)、温度差比較部33は、温度差算出部32で算出した基準温度差Caと第1閾値(暖房時、例えば、1℃)とを比較する(ステップS4)。一方、温度差算出部32で算出した店舗内外温度差Cbが第3閾値未満である場合(ステップS3:No)である場合は、給気ファンを停止する処理を実施し(ステップS9)、その後リターンし処理を終了する。 Next, the temperature difference comparison unit 33 compares the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32 with the third threshold value (step S3). When the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32 is equal to or greater than the third threshold value (step S3: Yes), the temperature difference comparison unit 33 has the reference temperature difference Ca calculated by the temperature difference calculation unit 32 and the first. Compare with the threshold value (during heating, for example, 1 ° C.) (step S4). On the other hand, if the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32 is less than the third threshold value (step S3: No), a process of stopping the air supply fan is performed (step S9), and then the process is performed. It returns and ends the process.

次に、温度差算出部32で算出した基準温度差Caが第1閾値(暖房時)以上である場合(ステップS4:Yes)、給気ファン回転数調整部34は、給気ファン回転数を所定数増加させる(ステップS5)。その後、一定時間経過後(ステップS6:Yes)、次の温度情報取得処理(ステップS1)へ戻る。一方、温度差算出部32で算出した基準温度差Caが第1閾値(暖房時)未満である場合(ステップS4:No)、温度差比較部33は、温度差算出部32で算出した基準温度差Caと第2閾値(暖房時、例えば、−1℃)とを比較する(ステップS7)。温度差算出部32で算出した基準温度差Caが第2閾値(暖房時)未満である場合(ステップS7:Yes)、給気ファン回転数調整部34は、給気ファン回転数を所定数減少させた(ステップS8)後、ステップS6へ進む。一方、温度差算出部32で算出した基準温度差Caが第2閾値(暖房時)以上である場合(ステップS7:No)、給気ファン回転数調整部34は、増減処理を行わずにリターンさせて給気量制御処理を終了する。つまり、現状の給気ファンの回転数を維持する。 Next, when the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is equal to or higher than the first threshold value (during heating) (step S4: Yes), the supply air fan rotation speed adjusting unit 34 determines the supply air fan rotation speed. Increase by a predetermined number (step S5). Then, after a lapse of a certain time (step S6: Yes), the process returns to the next temperature information acquisition process (step S1). On the other hand, when the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is less than the first threshold value (during heating) (step S4: No), the temperature difference comparison unit 33 has the reference temperature calculated by the temperature difference calculation unit 32. The difference Ca is compared with the second threshold (during heating, for example, -1 ° C.) (step S7). When the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is less than the second threshold value (during heating) (step S7: Yes), the supply air fan rotation speed adjusting unit 34 reduces the supply air fan rotation speed by a predetermined number. After making it (step S8), the process proceeds to step S6. On the other hand, when the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is equal to or higher than the second threshold value (during heating) (step S7: No), the supply air fan rotation speed adjusting unit 34 returns without performing the increase / decrease process. And end the air supply amount control process. That is, the current rotation speed of the air supply fan is maintained.

冷房時の給気量制御処理内容を示すフローチャートは図示しないが、図5のステップS4とステップS7の符号の向きが逆になるのみで、その他は同じである。 Although the flowchart showing the contents of the air supply amount control process during cooling is not shown, the directions of the reference numerals in steps S4 and S7 in FIG. 5 are reversed, and the rest is the same.

このように本発明の実施の形態1であるインバータ制御装置によれば、基準温度差Caにより店舗内が正圧か負圧かを判断して、給気ファンの回転数増減させることにより給気量を調整して店舗内を正圧に保つことができる。
<実施の形態2>
図6は、本発明の実施の形態2における店舗向け給気量制御システムの概略構成図である。ここで例示する店舗向け給気量制御システムは、実施形態1の給気量制御システムの構成の中で、インバータ制御装置30に替えてダンパー制御装置60を備えて構成している。なお、ダンパー制御装置60以外の実施形態1と同様である構成には同一符号を付して説明を省略する。
As described above, according to the inverter control device according to the first embodiment of the present invention, it is determined whether the pressure inside the store is positive or negative based on the reference temperature difference Ca, and the air supply is increased or decreased by increasing or decreasing the rotation speed of the air supply fan. The amount can be adjusted to keep the inside of the store at a positive pressure.
<Embodiment 2>
FIG. 6 is a schematic configuration diagram of an air supply amount control system for stores according to the second embodiment of the present invention. The air supply amount control system for stores exemplified here is configured to include a damper control device 60 instead of the inverter control device 30 in the configuration of the air supply amount control system of the first embodiment. The same reference numerals are given to the configurations similar to those of the first embodiment other than the damper control device 60, and the description thereof will be omitted.

ダンパー制御装置60は、特許請求の範囲で記載している給気量制御手段に相当するもので、給気ダクト21内にダンパー61を設けて、このダンパー61の角度を任意に変更させることでダクト抵抗を増減させ給気量を制御するものである。たとえば、ダンパー61の角度がダクト開口面と並行(0度)であれば、ダクト口が閉じられた状態であり、ダクト開口面に直角(90度)であればダクト抵抗がゼロの開放された状態となる。つまり、ダクト角度を大きくしていくに従いダクト抵抗が小さくなるので店舗内に取り入れる給気量が増加し店舗内の圧力が高くなる。一方、ダクト角度を小さくしていくに従いダクト抵抗が大きくなり店舗内に取り入れる給気量が減少し店舗内の圧量が低くなるものである。 The damper control device 60 corresponds to the air supply amount control means described in the claims, and by providing a damper 61 in the air supply duct 21, the angle of the damper 61 can be arbitrarily changed. It controls the amount of air supply by increasing or decreasing the duct resistance. For example, if the angle of the damper 61 is parallel to the duct opening surface (0 degrees), the duct opening is closed, and if the angle is perpendicular to the duct opening surface (90 degrees), the duct resistance is zero. It becomes a state. That is, as the duct angle is increased, the duct resistance becomes smaller, so that the amount of air supplied into the store increases and the pressure in the store increases. On the other hand, as the duct angle is reduced, the duct resistance increases, the amount of air supplied into the store decreases, and the amount of pressure in the store decreases.

図7は、図6に示したダンパー制御装置の概略構成図である。ここで例示するダンパー制御装置60の構成は、実施形態1でのインバータ制御装置30の給気ファン回転数調整部34に替えてダンパー角度調整部37を備えて構成している。なお、ダンパー角度調整部37以外の実施形態1と同様である構成には同一符号を付して説明を省略する。 FIG. 7 is a schematic configuration diagram of the damper control device shown in FIG. The configuration of the damper control device 60 exemplified here is configured to include a damper angle adjusting unit 37 instead of the supply air fan rotation speed adjusting unit 34 of the inverter control device 30 in the first embodiment. The same reference numerals are given to the configurations similar to those of the first embodiment other than the damper angle adjusting unit 37, and the description thereof will be omitted.

図8は、図7に示したダンパー制御装置が実施する給気量制御処理(暖房時)の処理内容を示すフローチャートである。 FIG. 8 is a flowchart showing the processing contents of the supply air amount control processing (during heating) performed by the damper control device shown in FIG. 7.

この給気量制御処理において、ダンパー制御装置60は、温度情報取得部31を通じて第1計測部41、第2計測部42および第3計測部43からの温度情報を取得した場合(ステップS11:Yes)、すなわち店舗内温度C1、店舗外温度C2および通風口内温度C3を取得したものとして、温度差算出部32は基準温度差Caおよび店舗内外温度差Cbを算出する処理を実施する(ステップS21)。 In this air supply amount control process, the damper control device 60 acquires temperature information from the first measurement unit 41, the second measurement unit 42, and the third measurement unit 43 through the temperature information acquisition unit 31 (step S11: Yes). ), That is, assuming that the temperature inside the store C1, the temperature outside the store C2, and the temperature inside the ventilation port C3 are acquired, the temperature difference calculation unit 32 carries out a process of calculating the reference temperature difference Ca and the temperature difference Cb inside and outside the store (step S21). ..

次に、温度差比較部33は、温度差算出部32で算出した店舗内外温度差Cbと第3閾値とを比較する(ステップS31)。温度差算出部32で算出した店舗内外温度差Cbが第3閾値以上である場合(ステップS31:Yes)、温度差比較部33は、温度差算出部32で算出した基準温度差Caと第1閾値(暖房時)とを比較する(ステップS41)。一方、温度差算出部32で算出した店舗内外温度差Cbが第3閾値未満である場合(ステップS31:No)である場合は、給気ファンを停止する処理を実施する(ステップS91)。 Next, the temperature difference comparison unit 33 compares the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32 with the third threshold value (step S31). When the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32 is equal to or greater than the third threshold value (step S31: Yes), the temperature difference comparison unit 33 has the reference temperature difference Ca calculated by the temperature difference calculation unit 32 and the first. Compare with the threshold value (during heating) (step S41). On the other hand, if the temperature difference Cb inside and outside the store calculated by the temperature difference calculation unit 32 is less than the third threshold value (step S31: No), a process of stopping the air supply fan is performed (step S91).

次に、温度差算出部32で算出した基準温度差Caが第1閾値(暖房時)以上である場合(ステップS41:Yes)、ダンパー角度調整部37は、ダンパー角度を所定角度大きくさせる(ステップS51)。そして、一定時間経過後した後(ステップS61:Yes),次の温度情報取得処理(ステップS11)へ戻る。一方、温度差算出部32で算出した基準温度差Caが第1閾値(暖房時)未満である場合(ステップS41:No)、温度差比較部33は、温度差算出部32で算出した基準温度差Caと第2閾値(暖房時)とを比較する(ステップS71)。温度差算出部32で算出した基準温度差Caが第2閾値(暖房時)未満である場合(ステップS71:Yes)、ダンパー角度調整部34は、ダンパー角度を所定角度小さくさせる(ステップS81)。一方、温度差算出部32で算出した基準温度差Caが第2閾値(暖房時)以上である場合(ステップS71:No)、ダンパー角度調整部34は、ダンパー角度の変更を行わずにリターンさせて給気量制御処理を終了する。つまり、現状のダンパー角度を維持する。 Next, when the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is equal to or greater than the first threshold value (during heating) (step S41: Yes), the damper angle adjusting unit 37 increases the damper angle by a predetermined angle (step). S51). Then, after a lapse of a certain period of time (step S61: Yes), the process returns to the next temperature information acquisition process (step S11). On the other hand, when the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is less than the first threshold value (during heating) (step S41: No), the temperature difference comparison unit 33 has the reference temperature calculated by the temperature difference calculation unit 32. The difference Ca and the second threshold value (during heating) are compared (step S71). When the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is less than the second threshold value (during heating) (step S71: Yes), the damper angle adjusting unit 34 reduces the damper angle by a predetermined angle (step S81). On the other hand, when the reference temperature difference Ca calculated by the temperature difference calculation unit 32 is equal to or higher than the second threshold value (during heating) (step S71: No), the damper angle adjusting unit 34 returns without changing the damper angle. And ends the air supply amount control process. That is, the current damper angle is maintained.

冷房時の給気量制御処理内容を示すフローチャートは図示しないが、図8のステップS41とステップS71の符号の向きが逆になるのみで、その他は同じである。 Although the flowchart showing the contents of the air supply amount control process during cooling is not shown, the directions of the reference numerals in step S41 and step S71 in FIG. 8 are reversed, and the rest is the same.

このように本発明の実施の形態2であるダンパー制御装置によれば、基準温度差Caにより店舗内が正圧か負圧かを判断して、ダンパー角度を変えてダクト抵抗を増減させることにより給気量を調整して店舗内を正圧に保つことができる。 As described above, according to the damper control device according to the second embodiment of the present invention, it is determined whether the pressure inside the store is positive or negative by the reference temperature difference Ca, and the damper angle is changed to increase or decrease the duct resistance. The amount of air supply can be adjusted to keep the inside of the store at a positive pressure.

以上、本発明の好適な実施の形態1及び2について説明したが、本発明はこれらに限定されるものではなく、種々の変更を行うことができ、給気量を制御できる装置であればどのような制御装置でも良い。 Although the preferred embodiments 1 and 2 of the present invention have been described above, the present invention is not limited to these, and any device can be modified and can control the amount of air supply. Such a control device may be used.

10 換気扇
20 給気ファン
30 インバータ制御装置
31 温度情報取得部
32 温度差算出部
33 温度差比較部
34 給気ファン回転数調整部
35 閾値記憶部
36 入力処理部
37 ダンパー角度調整部
41 第1計測部
42 第2計測部
43 第3計測部
50 入力部
60 ダンパー制御装置
10 Ventilation fan 20 Air supply fan 30 Inverter control device 31 Temperature information acquisition unit 32 Temperature difference calculation unit 33 Temperature difference comparison unit 34 Supply air fan rotation speed adjustment unit 35 Threshold storage unit 36 Input processing unit 37 Damper angle adjustment unit 41 First measurement Unit 42 2nd measurement unit 43 3rd measurement unit 50 Input unit 60 Damper control device

Claims (5)

店舗内の空気を店舗外に排出する換気手段と、外気を店舗内へ供給する給気手段と、店舗内の温度を検知する店舗内温度検知手段と、店舗外の外気温度を検知する店舗外温度検知手段と、店舗内外に連通し、店舗内の気圧が店舗外の気圧より低い負圧のときは外気が店舗内に流入することにより店舗外の温度に近くなる一方、店舗内の気圧が店舗外の気圧より高い正圧のときは店舗内の空気が外部へ流出することにより店舗内の温度に近くなるところの通風口内に設置され、当該通風口内の温度を検知する通風口内温度検知手段と、前記給気手段により外気を店舗内へ供給する給気量を制御する給気量制御手段と、を備え、前記給気量制御手段は、前記各温度検知手段より収集した温度情報より基準温度差を算出し、該基準温度差により給気量を制御して店舗内を正圧に保つことを特徴とする店舗向け給気量制御システム。 Ventilation means to discharge the air inside the store to the outside of the store, air supply means to supply the outside air to the inside of the store, temperature detection means inside the store to detect the temperature inside the store, and outside the store to detect the outside air temperature outside the store. When the temperature inside the store is lower than the pressure outside the store by communicating with the temperature detecting means inside and outside the store, the outside air flows into the store and the temperature inside the store becomes closer to the temperature outside the store. When the positive pressure is higher than the pressure outside the store, it is installed in the ventilation port where the temperature inside the store is close to the temperature inside the store due to the outflow of the air inside the store, and the temperature inside the ventilation port is detected. When, and a supply amount control means for controlling the air charge supplying outside air into the store by the air supply means, the air supply amount control means, a reference from the temperature information collected from each of the temperature sensing means An air supply amount control system for stores, which is characterized by calculating a temperature difference and controlling the air supply amount based on the reference temperature difference to keep the inside of the store at a positive pressure. 前記基準温度差は、下記式から算出することを特徴とする請求項1に記載の店舗向け給気量制御システム。
(算出式):基準温度差=店舗内温度+店舗外温度−2×通風口内温度
The air supply amount control system for stores according to claim 1, wherein the reference temperature difference is calculated from the following formula.
(Calculation formula): Reference temperature difference = In-store temperature + Out-of-store temperature-2 x Ventilation port temperature
前記給気量制御手段は、店舗内温度と店舗外温度の差が第3閾値未満であれば、給気手段を停止させることを特徴とする請求項1又は請求項2に記載の店舗向け給気量制御システム。 The supply for a store according to claim 1 or 2, wherein the air supply amount control means stops the air supply means when the difference between the temperature inside the store and the temperature outside the store is less than the third threshold value. Air volume control system. 前記給気量制御手段は、インバータ制御装置であることを特徴とする請求項1乃至請求項3のうちの何れかに記載の店舗向け給気量制御システム。 The air supply amount control system for stores according to any one of claims 1 to 3, wherein the air supply amount control means is an inverter control device. 前記給気量制御手段は、ダンパー制御装置であることを特徴とする請求項1乃至請求項3のうちの何れかに記載の店舗向け給気量制御システム。 The air supply amount control system for stores according to any one of claims 1 to 3 , wherein the air supply amount control means is a damper control device.
JP2017150388A 2017-08-03 2017-08-03 Air supply control system for stores Active JP6969197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150388A JP6969197B2 (en) 2017-08-03 2017-08-03 Air supply control system for stores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150388A JP6969197B2 (en) 2017-08-03 2017-08-03 Air supply control system for stores

Publications (2)

Publication Number Publication Date
JP2019027746A JP2019027746A (en) 2019-02-21
JP6969197B2 true JP6969197B2 (en) 2021-11-24

Family

ID=65476114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150388A Active JP6969197B2 (en) 2017-08-03 2017-08-03 Air supply control system for stores

Country Status (1)

Country Link
JP (1) JP6969197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254103B2 (en) * 2019-01-15 2023-04-07 三菱電機株式会社 air conditioning system
CN111609536B (en) * 2020-06-03 2021-09-03 广东美的暖通设备有限公司 Multi-split air conditioning system, control method and computer readable storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322242A (en) * 1992-05-15 1993-12-07 Tokyo Gas Co Ltd Air supplying and discharging method and device for kitchen room
JPH11190542A (en) * 1997-12-26 1999-07-13 Natl House Ind Co Ltd Ventilation system for housing
JP2001108271A (en) * 1999-10-07 2001-04-20 Sekisui Chem Co Ltd Ventilating device, air conditioning and ventilating system as well as building employing the ventilating device
JP4484428B2 (en) * 2002-12-12 2010-06-16 旭化成ホームズ株式会社 Residential ventilation structure
JP2004293863A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Building ventilation structure and its operation control method
JP4431963B2 (en) * 2003-06-05 2010-03-17 積水ハウス株式会社 Natural ventilation system for detached house and control method thereof
JP4432467B2 (en) * 2003-11-18 2010-03-17 ダイキン工業株式会社 Ventilation control device
JP5747153B2 (en) * 2010-12-27 2015-07-08 パナソニックIpマネジメント株式会社 Store ventilator
JP5542097B2 (en) * 2011-06-24 2014-07-09 パナソニック株式会社 Double window
JP6406604B2 (en) * 2014-09-08 2018-10-17 パナソニックIpマネジメント株式会社 Ventilation control device, ventilation control system, program

Also Published As

Publication number Publication date
JP2019027746A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US10480807B2 (en) HVAC systems and methods with refrigerant leak detection
JP4336209B2 (en) Heat transfer system and heat transfer method
US20150354845A1 (en) Optimized airflow distribution system
US20170016642A1 (en) Systems for Calibrating Airflow Rates in Heating, Ventilating, and Air Conditioning (HVAC) Ducts and HVAC Systems Including the Same
US10268212B2 (en) Method and devices for balancing a group of consumers in a fluid transport system
JP6969197B2 (en) Air supply control system for stores
WO2016158938A1 (en) Air conditioner
KR101574682B1 (en) Fume hood system for laboratory with indoor suction and exhaust
TWI401399B (en) Method of utilizing air conditioner to control thermal comfort level of environment
JP2012125352A (en) Clothes dryer
CN113513816B (en) Temperature control method and device for target module, electronic equipment and storage medium
KR20130101362A (en) Air conditioner and method for controlling the same
JP5262336B2 (en) Air conditioning system
JP2009198050A (en) Precision air conditioner
JP6842858B2 (en) Ventilation device and air supply adjustment method
KR20190110405A (en) Hybrid cooling system and method for preventing dew condensation
JP6866277B2 (en) Air conditioning system and control method of air conditioning system
JP2009036425A (en) Room pressure control method and system
JP6093658B2 (en) Automatic air volume control method in the whole building air conditioning system
KR20200108815A (en) Hybrid cooling system and method for preventing dew condensation
JP2661274B2 (en) Air conditioner
JP2601054B2 (en) Air conditioner
JPH0420737A (en) Air conditioner
JP2006153397A (en) Air conditioner
JP6220564B2 (en) VAV control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150