JP6967856B2 - How to dispose of electrical and electronic component waste - Google Patents

How to dispose of electrical and electronic component waste Download PDF

Info

Publication number
JP6967856B2
JP6967856B2 JP2017012559A JP2017012559A JP6967856B2 JP 6967856 B2 JP6967856 B2 JP 6967856B2 JP 2017012559 A JP2017012559 A JP 2017012559A JP 2017012559 A JP2017012559 A JP 2017012559A JP 6967856 B2 JP6967856 B2 JP 6967856B2
Authority
JP
Japan
Prior art keywords
scraps
electronic component
waste
sorting
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012559A
Other languages
Japanese (ja)
Other versions
JP2018118223A (en
Inventor
勝志 青木
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017012559A priority Critical patent/JP6967856B2/en
Publication of JP2018118223A publication Critical patent/JP2018118223A/en
Application granted granted Critical
Publication of JP6967856B2 publication Critical patent/JP6967856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Electrostatic Separation (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、電気電子部品屑の処理方法に関し、特に、使用済み電子・電気機器のリサイクル処理に好適な電気電子部品屑の処理方法に関する。 The present invention relates to a method for treating electrical and electronic component waste, and more particularly to a method for treating electrical and electronic component waste suitable for recycling used electronic and electrical equipment.

近年、電気電子部品屑のリサイクルが盛んに行われている。電気電子部品屑は、部品屑中のメタル類を回収することを目的とし、電気電子部品を含む製品を焼却して破砕、あるいはそのまま破砕し、選別工程を組み合わせて、メタル類と樹脂(プラスチック)類に分別する。分別されたメタル類は、異なる種類のメタルごとに回収される。 In recent years, the recycling of electrical and electronic component scraps has been actively carried out. The purpose of electrical and electronic component scraps is to recover the metals in the component scraps, and the products containing electrical and electronic components are incinerated and crushed, or crushed as they are, and the sorting process is combined to combine the metals and resin (plastic). Sort into categories. The separated metals are collected for each different type of metal.

電気電子部品屑のリサイクルにおいては、いかに効率良く、高い回収率で所望のメタルを電気電子部品屑から回収するかについて工夫されてきた。特許第5775752号公報(特許文献1)では、家電製品に対して、破砕、篩別、磁力選別、渦電流選別、色彩選別、分離選別などを施すことにより、タングステンなどのメタルを回収することが記載されている。 In the recycling of electrical and electronic component scraps, how to efficiently recover the desired metal from the electrical and electronic component scraps with a high recovery rate has been devised. According to Japanese Patent No. 5775752 (Patent Document 1), metals such as tungsten can be recovered by subjecting home appliances to crushing, sieving, magnetic force sorting, eddy current sorting, color sorting, separation sorting, and the like. Have been described.

特開2015−123418号公報(特許文献2)では、電気電子部品屑を粉砕し、気流分離を行い、メタル屑類、樹脂屑を特に区別せずに、所定のサイズ以下の粉砕物を自溶炉のような銅製錬炉に投入して処理することが記載されている。 In Japanese Patent Application Laid-Open No. 2015-123418 (Patent Document 2), electrical and electronic component scraps are crushed, airflow separation is performed, and crushed products having a predetermined size or smaller are self-dissolved without particularly distinguishing between metal scraps and resin scraps. It is described that it is put into a copper smelting furnace such as a furnace for processing.

特許第5775752号公報Japanese Patent No. 5775752 特開2015−123418号公報JP-A-2015-123418.

しかしながら、従来の処理方法は、電気電子部品屑からメタルを回収することに重きが置かれており、電気電子部品屑中に含まれる樹脂屑の分離についてはあまり関心が払われてこなかった。 However, the conventional treatment method emphasizes the recovery of metal from the electric / electronic component waste, and has not paid much attention to the separation of the resin waste contained in the electric / electronic component waste.

即ち、樹脂屑の中には、樹脂基板上に銅配線の残っている樹脂屑(以下「基板屑」ともいう)と、樹脂基板上に銅配線のない樹脂屑及び部品の筐体等に由来する樹脂屑(以下、「プラスチック屑」ともいう)があるが、これら基板屑とプラスチック屑は比重等の物理的性質が似ているため選別が困難であった。 That is, the resin scraps are derived from the resin scraps in which the copper wiring remains on the resin substrate (hereinafter, also referred to as "board scraps"), the resin scraps having no copper wiring on the resin substrate, the housing of the parts, and the like. Although there are resin scraps (hereinafter, also referred to as “plastic scraps”), it is difficult to sort these substrate scraps and plastic scraps because they have similar physical properties such as specific gravity.

例えば特許文献1では、樹脂類とメタル類等を含む電気電子部品屑に対し、磁力選別工程、渦電流選別工程及び色彩選別工程の各工程を施して実装基板を回収し、実装基板中のメタルを回収することが記載されているが、樹脂屑の選別は行っていない。 For example, in Patent Document 1, a mounting substrate is recovered by performing each of a magnetic force sorting step, an eddy current sorting step, and a color sorting step on electrical and electronic component scraps containing resins and metals, and the metal in the mounting board is collected. Although it is stated that the resin waste is collected, the resin waste is not sorted.

特許文献2では、樹脂屑を事前に分離することなく、自溶炉等の銅製錬炉に投入して処理しているが、樹脂屑を銅製錬炉へ投入することによって過剰な熱量が発生する場合がある。これにより銅製錬炉の制御が難しくなり、操業に支障をきたす恐れがある。 In Patent Document 2, the resin scraps are charged into a copper smelting furnace such as a flash smelting furnace for processing without being separated in advance, but the resin scraps are charged into a copper smelting furnace to generate an excessive amount of heat. In some cases. This makes it difficult to control the copper smelting furnace, which may hinder operations.

更に樹脂屑の中には、難燃材であるSbを含む樹脂屑も存在する。そのような樹脂屑が銅製錬炉に多く入ってくると、銅製錬におけるSbの量が増え、所望のメタルを効率的に回収できない場合がある。銅製錬炉内には、メタルの回収に寄与しない樹脂は極力持ち込みたくないとのニーズも出てきている。 Further, among the resin scraps, there are also resin scraps containing Sb, which is a flame-retardant material. If a large amount of such resin waste enters the copper smelting furnace, the amount of Sb in the copper smelting increases, and the desired metal may not be efficiently recovered. There is also a need to bring as much resin as possible that does not contribute to the recovery of metal into the copper smelting furnace.

上記課題を鑑み、本発明は、電気電子部品屑から樹脂屑、特に基板屑とプラスチック屑とを効率的に分離回収でき、メタルの回収に寄与しない樹脂を金属回収処理の系外へ出すことが可能な電気電子部品屑の処理方法を提供する。 In view of the above problems, the present invention can efficiently separate and recover resin scraps, particularly substrate scraps and plastic scraps from electrical and electronic component scraps, and can take out resins that do not contribute to metal recovery to the outside of the metal recovery process. Provided is a possible method for treating electrical and electronic component waste.

本発明者は上記課題を解決するために鋭意検討したところ、静電選別することにより、物理的性質が互いに類似する基板屑とプラスチック屑とを効率良く分離回収できることを見いだした。 As a result of diligent studies to solve the above problems, the present inventor has found that substrate scraps and plastic scraps having similar physical properties can be efficiently separated and recovered by electrostatic sorting.

以上の知見を基礎として完成した本発明は一側面において、少なくとも平板状の樹脂基板を含む基板屑とプラスチック屑とを含む被処理物を静電選別することにより、金属を含まない樹脂基板を含むプラスチック屑と金属を含む樹脂基板を含む基板屑とを分離する電気電子部品屑の処理方法が提供される。 The present invention completed on the basis of the above findings includes, on one aspect, a resin substrate containing no metal by electrostatically sorting a substrate waste containing at least a flat resin substrate and a material to be treated containing plastic waste. A method for treating electrical and electronic component scraps for separating plastic scraps and substrate scraps including a resin substrate containing metal is provided.

本発明に係る電気電子部品屑の処理方法は一実施態様において、被処理物が、電気電子部品屑を風力選別して得られる軽量物である。 In one embodiment, the method for treating electrical and electronic component scraps according to the present invention is a lightweight material obtained by wind-sorting electrical and electronic component scraps.

本発明に係る電気電子部品屑の処理方法は別の一実施態様において、静電選別の前に、被処理物中に含まれる線屑を除去することを含む。 In another embodiment, the method for treating electrical and electronic component scraps according to the present invention includes removing wire scraps contained in the object to be treated before electrostatic sorting.

本発明に係る電気電子部品屑の処理方法は更に別の一実施態様において、静電選別の前に、被処理物を破砕する。 In still another embodiment of the method for treating electrical and electronic component waste according to the present invention, the object to be treated is crushed before electrostatic sorting.

本発明に係る電気電子部品屑の処理方法は更に別の一実施態様において、静電選別により分離された基板屑を含む選別物に対し、静電選別を更に繰り返す。 In still another embodiment, the method for treating electrical and electronic component scraps according to the present invention further repeats electrostatic sorting with respect to the sorted material containing the substrate scraps separated by electrostatic sorting.

本発明に係る電気電子部品屑の処理方法は更に別の一実施態様において、被処理物中のプラスチック屑の含有率が15〜90%である。 In still another embodiment of the method for treating electrical and electronic component scraps according to the present invention, the content of plastic scraps in the object to be treated is 15 to 90%.

本発明に係る電気電子部品屑の処理方法は更に別の一実施態様において、静電選別に必要な印加電圧、接地電極からのコロナ電極及び静電電極の距離及び角度、接地電極の回転数、デバイダーの角度の少なくともいずれかを調整する。 In still another embodiment, the method for treating electrical and electronic component waste according to the present invention comprises an applied voltage required for electrostatic sorting, a distance and angle between the corona electrode and the electrostatic electrode from the ground electrode, a rotation speed of the ground electrode, and the like. Adjust at least one of the divider angles.

本発明に係る電気電子部品屑の処理方法は更に別の一実施態様において、静電選別で分離された基板屑を焼却して、銅製錬炉で処理する。 In still another embodiment of the method for treating electrical and electronic component scraps according to the present invention, the substrate scraps separated by electrostatic sorting are incinerated and treated in a copper smelting furnace.

本発明に係る電気電子部品屑の処理方法は更に別の一実施態様において、銅製錬炉が自溶炉、転炉、TSL炉を含む。 In still another embodiment, the method for treating electrical and electronic component waste according to the present invention includes a flash smelting furnace, a converter, and a TSL furnace.

本発明によれば、電気電子部品屑から樹脂屑、特に基板屑とプラスチック屑とを効率的に分離回収でき、メタルの回収に寄与しない樹脂を金属回収処理の系外へ出すことが可能な電気電子部品屑の処理方法が提供できる。 According to the present invention, resin waste, particularly substrate waste and plastic waste, can be efficiently separated and recovered from electrical and electronic component scraps, and resin that does not contribute to metal recovery can be taken out of the metal recovery processing system. A method for treating electronic component waste can be provided.

本発明の実施の形態に係る電気電子部品屑の処理方法に利用可能な静電選別機の概要を示す概略図である。It is a schematic diagram which shows the outline of the electrostatic sorter which can be used for the electric electronic component waste processing method which concerns on embodiment of this invention. 実施例1における静電選別処理において、プラスチック除去率と印加電圧との関係を図2に示す。FIG. 2 shows the relationship between the plastic removal rate and the applied voltage in the electrostatic sorting process in Example 1. 実施例2の処理フローの概要を示すフロー図である。It is a flow chart which shows the outline of the processing flow of Example 2.

本発明の実施の形態に係る電気電子部品屑の処理方法は、主として電気電子部品屑の中から樹脂屑を主として分離回収するものである。ここで「樹脂屑」は、(1)樹脂基板のうち銅配線等の金属が樹脂に付着した状態にある「基板屑」と、(2)金属を実質的に含まない屑、即ち銅配線等の金属が付着していない樹脂基板と部品の筐体等に由来する樹脂を含む「プラスチック屑」とに分類される。 The method for treating electrical and electronic component scraps according to an embodiment of the present invention mainly separates and recovers resin scraps from electrical and electronic component scraps. Here, the "resin scraps" are (1) "board scraps" in which metal such as copper wiring is attached to the resin in the resin substrate, and (2) scraps containing substantially no metal, that is, copper wiring and the like. It is classified as "plastic waste" containing resin derived from the resin substrate to which the metal does not adhere and the housing of the component.

「基板屑」は、銅配線等の金属を有していることから、後述する金属回収工程において処理可能な樹脂屑である。一方「プラスチック屑」の中でも樹脂基板は、上述したようにSb等の難燃材が含まれている場合があるため、金属回収工程への持ち込みを極力回避したい樹脂屑である。 Since the "board waste" has a metal such as copper wiring, it is a resin waste that can be processed in the metal recovery step described later. On the other hand, among the "plastic scraps", the resin substrate may contain a flame-retardant material such as Sb as described above, and therefore, it is a resin scrap that is desired to be avoided as much as possible from being brought into the metal recovery process.

しかしながら、これら基板屑及びプラスチック屑は、比重が類似しているため、比重によってこれらを選別することが困難である。磁力選別や渦電流選別等によってもこれらを効率良く分離することは困難である。 However, since these substrate scraps and plastic scraps have similar specific densities, it is difficult to sort them by specific densities. It is difficult to efficiently separate these by magnetic force sorting, eddy current sorting, and the like.

本実施形態に係る処理方法では、少なくとも基板屑とプラスチック屑とを含む被処理物を静電選別することを含む。これにより、物理的性質が互いに類似する基板屑とプラスチック屑とを効率良く且つ簡単に分離回収できるものである。以下に、本発明の実施の形態に係る処理方法の具体的処理方法について、詳しく説明する The treatment method according to the present embodiment includes electrostatically sorting an object to be treated containing at least substrate waste and plastic waste. As a result, substrate scraps and plastic scraps having similar physical properties can be efficiently and easily separated and recovered. Hereinafter, a specific processing method of the processing method according to the embodiment of the present invention will be described in detail.

(処理対象)
本発明における「電気電子部品屑」とは、廃家電製品・PCや携帯電話等の電子・電気機器を破砕した屑であり、回収された後、適当な大きさには破砕されたものを指す。本発明では、電気電子部品屑とするための破砕は、処理者自身が行ってもよいが、市中で破砕されたものを購入等したものでもよい。
(Processing object)
The "electrical and electronic component scraps" in the present invention refer to scraps obtained by crushing electronic and electrical equipment such as waste home appliances, PCs and mobile phones, and after being collected, crushed to an appropriate size. .. In the present invention, the crushing for making electrical and electronic component waste may be performed by the processor himself, or may be crushed in the market and purchased.

破砕方法として、特定の装置には限定されないが、粉砕機のカテゴリーに属する装置は含まれない。また、できる限り、部品の形状を損なわない破砕がのぞましく、例えば、基板表面剥離装置、クロスフローシュレッダ、竪型回転破砕機等が用いられる。パーツセパレータ等の粗粉砕機を用いてもよい。 The crushing method is not limited to a specific device, but does not include devices belonging to the crusher category. Further, as much as possible, crushing that does not impair the shape of the component is desired, and for example, a substrate surface peeling device, a cross flow shredder, a vertical rotary crusher, or the like is used. A coarse crusher such as a parts separator may be used.

電気電子部品屑は、上記破砕方法によって、線屑、コンデンサ、ヒートシンク、IC、コネクタ等の電気電子部品が、予め単体の形で樹脂基板から分離されていることが望ましい。更に、電気電子部品が分離された樹脂基板は、ある程度の大きさに破砕されていることが望ましい。 It is desirable that the electric / electronic parts such as wire scraps, capacitors, heat sinks, ICs, and connectors are separated from the resin substrate in the form of a single body in advance by the above-mentioned crushing method. Further, it is desirable that the resin substrate from which the electrical and electronic components are separated is crushed to a certain size.

例えば、電気電子部品屑は、最大直径100mm以下程度に破砕されているものが好ましい。ただし、最大直径が小さすぎると、原料が舞い上がり、コロナ電極、静電電極まで舞い上がり、回収が困難になる場合がある。以下に制限されるものではないが、最大直径0.1mm以上程度の材料を処理対象として用いることが好ましい。 For example, the electrical and electronic component scraps are preferably crushed to a maximum diameter of about 100 mm or less. However, if the maximum diameter is too small, the raw material may fly up to the corona electrode and the electrostatic electrode, making recovery difficult. Although not limited to the following, it is preferable to use a material having a maximum diameter of about 0.1 mm or more as a processing target.

(処理フロー)
A.比重選別(風力選別)
まず、電気電子部品屑に対し、前処理として、比重差を利用した選別、或いは風力を利用した選別を行う。比重選別機等を用いて公知の比重選別を行ってもよいが、所定の条件下で風力選別を行うことで、効率良く電気電子部品屑に含まれる樹脂屑を軽量物側に濃縮させるとともに、アルミニウム屑、Niを含む鉄屑やSUS屑等を重量物側へ濃縮させることができる。
(Processing flow)
A. Specific density sorting (wind sorting)
First, as a pretreatment, the electrical and electronic component scraps are sorted by using the difference in specific density or by using wind power. A known specific gravity sorting may be performed using a specific gravity sorting machine or the like, but by performing wind power sorting under predetermined conditions, the resin waste contained in the electrical and electronic component waste is efficiently concentrated on the lightweight material side, and at the same time, the resin waste is concentrated on the lightweight material side. Aluminum scraps, iron scraps containing Ni, SUS scraps, etc. can be concentrated toward heavy objects.

風力選別工程における風量は、3〜20m/sであることが好ましく、より好ましくは8〜17m/s、更に好ましくは10m/s程度である。本発明者らの実験によれば、上記の風量で風力選別することによって、基板屑を原料(電気電子部品屑)全体の90%以上(重量基準)選別できるとともに、プラスチック屑を原料全体の40%以上(重量基準)軽量物側へ選別することができる。 The air volume in the wind power sorting step is preferably 3 to 20 m / s, more preferably 8 to 17 m / s, and even more preferably about 10 m / s. According to the experiments by the present inventors, by wind-sorting with the above air volume, 90% or more (weight-based) of the total raw material (electrical and electronic component waste) can be sorted from the substrate waste, and 40 plastic waste can be sorted from the total raw material. % Or more (weight standard) Can be sorted to the lightweight side.

軽量物側には、基板屑及びプラスチック屑の他、絶縁体等で表面が被覆された線屑、導体がむき出しの状態となった線屑、コンデンサ、IC等も一部含まれている。重量物側には、IC、コネクタ等の部品屑、アルミニウム屑、Niを含む鉄屑やSUS屑、線屑、ガラス類等が含まれている。 In addition to substrate scraps and plastic scraps, the lightweight material side also includes wire scraps whose surface is covered with an insulator or the like, wire scraps whose conductors are exposed, capacitors, ICs, and the like. The heavy object side contains parts scraps such as ICs and connectors, aluminum scraps, iron scraps containing Ni, SUS scraps, wire scraps, glass and the like.

B.静電選別
上記の風力選別工程により得られた軽量物を被処理物とし、この被処理物に対して静電選別を行う。
B. Electrostatic sorting A lightweight material obtained by the above wind power sorting step is used as an object to be processed, and electrostatic sorting is performed on this object to be processed.

静電選別は、コロナ放電により発生させた静電気を用いて、不導体物と導体物とに分ける選別処理であり、例えば図1に示すような静電選別機を用いて行うことができる。静電選別機において、被処理物中のプラスチック屑は、回転するドラム状の接地電極2と、静電電極4との間に発生する静電界によってその内部に分極が生じ、接地電極2に吸引され、ブラシ5で払い落とされて、接地電極2の下方の不導体物回収部7aで回収される(分離物A)。 The electrostatic sorting is a sorting process for separating a non-conductor and a conductor by using the static electricity generated by the corona discharge, and can be performed by using an electrostatic sorter as shown in FIG. 1, for example. In the electrostatic sorter, the plastic debris in the object to be processed is polarized inside by the static electric field generated between the rotating drum-shaped ground electrode 2 and the electrostatic electrode 4, and is attracted to the ground electrode 2. Then, it is blown off by the brush 5 and recovered by the non-conductor recovery section 7a below the ground electrode 2 (separated matter A).

一方、銅配線等の導体を一部含む基板屑は、接地電極2に対する反発力及び静電電極4による吸引力が働き、接地電極2から離れた導体物回収部7bで回収される(分離物B)。コロナ電極3はプラスチック屑の分極による帯電を促すために用いられる。不導体物回収部7aと導体物回収部7bの間にはデバイダー6が配置されており、基板屑とプラスチック屑が落下する際の軌道に応じてその角度(γ)が変更される。 On the other hand, the substrate scrap containing a part of the conductor such as copper wiring is recovered by the conductor material recovery unit 7b away from the ground electrode 2 due to the repulsive force against the ground electrode 2 and the suction force by the electrostatic electrode 4 (separated material). B). The corona electrode 3 is used to promote the charge due to the polarization of the plastic waste. A divider 6 is arranged between the non-conductor material recovery unit 7a and the conductor material recovery unit 7b, and its angle (γ) is changed according to the trajectory when the substrate waste and the plastic waste fall.

ここで、静電選別に必要な印加電圧は高くするほど、基板屑とプラスチック屑の分離特性が向上するが、高くしすぎると静電電極4からアーク放電が生じ、分離特性が悪化する場合がある。また、接地電極の中心部からのコロナ電極の距離(11)、接地電極の中心部からの静電電極の距離(12)、接地電極の中心部からデバイダーからの水平方向の距離(13)及び垂直方向の距離(14)、接地電極2の中心部を通る水平面から半時計回り方向にみたコロナ電極3の角度(α)、静電電極の角度(β)を調整することにより、基板屑とプラスチック屑の分離特性を向上させることができる。 Here, the higher the applied voltage required for electrostatic sorting, the better the separation characteristics between the substrate scraps and the plastic scraps, but if it is too high, arc discharge may occur from the electrostatic electrode 4 and the separation characteristics may deteriorate. be. Further, the distance of the corona electrode from the center of the ground electrode (11), the distance of the electrostatic electrode from the center of the ground electrode (12), the horizontal distance from the center of the ground electrode to the divider (13), and By adjusting the distance in the vertical direction (14), the angle of the corona electrode 3 (α) seen in the counterclockwise direction from the horizontal plane passing through the center of the ground electrode 2, and the angle (β) of the electrostatic electrode, the substrate scraps can be removed. The separation characteristics of plastic waste can be improved.

よって、本実施形態では、静電選別に必要な印加電圧、接地電極からのコロナ電極及び静電電極の距離及び角度、接地電極の回転数、デバイダーの角度の少なくともいずれかを調整することが好ましい。 Therefore, in the present embodiment, it is preferable to adjust at least one of the applied voltage required for electrostatic sorting, the distance and angle of the corona electrode and the electrostatic electrode from the ground electrode, the number of rotations of the ground electrode, and the angle of the divider. ..

本実施形態に係る静電選別では、被処理物のプラスチック屑の形状及び大きさによってそれぞれ分離効率は異なるが、全体に対するプラスチック屑の含有率が、重量基準で15〜90%である被処理物中のプラスチック屑であれば、良好に選別することができる。 In the electrostatic sorting according to the present embodiment, the separation efficiency differs depending on the shape and size of the plastic waste of the object to be treated, but the content of the plastic waste in the whole is 15 to 90% on a weight basis. If it is the plastic waste inside, it can be sorted well.

静電選別対象である被処理物には線屑、特に、導体がむき出しの状態の線屑が含まれる場合がある。この線屑が多く含まれると、静電選別機の印加電圧を上昇させた場合にアーク放電が生じて、基板屑とプラスチック屑の分離効率を悪化させる場合がある。このため、静電選別の前に、被処理物中に含まれる線屑を例えばピッキング等により予め除去することが好ましい。これにより、静電選別機の印加電圧を上昇させ、基板屑等の導体物回収部7bへ回収される屑を接地電極2から遠方に飛ばしやすくなるため、基板屑とプラスチック屑との分離効率が向上する。 The object to be treated to be electrostatically sorted may contain wire debris, particularly wire debris in which the conductor is exposed. If a large amount of this wire dust is contained, an arc discharge may occur when the applied voltage of the electrostatic sorter is increased, which may deteriorate the separation efficiency of the substrate waste and the plastic waste. Therefore, it is preferable to remove the debris contained in the object to be treated by, for example, picking, before electrostatic sorting. As a result, the applied voltage of the electrostatic sorter is increased, and the debris collected by the conductor material collecting unit 7b such as the substrate debris can be easily blown away from the ground electrode 2, so that the separation efficiency between the substrate debris and the plastic debris is improved. improves.

被処理物には、凹凸の大きな形状、或いは丸みを帯びている形状を有するプラスチック屑が含まれている場合もある。本発明者らの実験によれば、静電選別機の印加電圧を上昇させることにより、平板状であれば、ある程度大きなサイズのプラスチック屑も回収することができるが、例えばL字型、V字型、凹型等の立体型の厚みのあるプラスチック屑が含まれている場合、そのような形状を有するプラスチック屑は、接地電極との接地面積を十分に確保できないため、導体物回収部7b側へ分離される場合もある。 The object to be treated may contain plastic debris having a large uneven shape or a rounded shape. According to the experiments by the present inventors, by increasing the applied voltage of the electrostatic sorter, if it is a flat plate, it is possible to recover plastic scraps of a certain size, but for example, L-shaped or V-shaped. When three-dimensional thick plastic scraps such as a mold and a concave mold are contained, the plastic scraps having such a shape cannot secure a sufficient grounding area with the grounding electrode, so that the conductors are moved to the conductor recovery unit 7b side. It may be separated.

そのため、被処理物は、なるべく平板状になるように、静電選別の前に、被処理物の形状を成形するための破砕処理することが好ましい。形状成形のための破砕処理を行うことで、基板屑とプラスチック屑との分離効率が向上する。プラスチック屑のサイズは特に制限されないが、プラスチック屑のサイズを小さくするように破砕処理してもよい。 Therefore, it is preferable that the object to be processed is crushed to form the shape of the object to be processed before electrostatic sorting so as to be as flat as possible. By performing the crushing process for shape forming, the separation efficiency between the substrate waste and the plastic waste is improved. The size of the plastic waste is not particularly limited, but the crushing treatment may be performed so as to reduce the size of the plastic waste.

導体物回収部7b側に選別された基板屑を含む選別物に対しては、更にピッキング等により、基板屑を含む選別物中に混在した基板屑や線屑を除去した後、更に上記の静電選別を更に繰り返すことで、プラスチック屑の回収率(以下「プラスチック回収率」ともいう)を向上させることができる。 For the sorted material containing the substrate waste sorted on the conductor material recovery unit 7b side, the substrate dust and wire dust mixed in the sorted material containing the substrate waste are further removed by picking or the like, and then the above-mentioned static electricity is further performed. By further repeating the electric sorting, the recovery rate of plastic waste (hereinafter, also referred to as "plastic recovery rate") can be improved.

被処理物の中には、線屑、IC等の基板屑に比べて良導体を示す材料も含まれている。図1の静電選別機においては、導体物回収部7bの隣に良導体物回収部(図示せず)を更に設けるなどして、回収部を3つ以上設けることも可能である。 The object to be treated also contains a material showing a good conductor as compared with wire scraps and substrate scraps such as IC. In the electrostatic sorter of FIG. 1, it is also possible to provide three or more recovery sections by further providing a good conductor recovery section (not shown) next to the conductor recovery section 7b.

C.焼却処理
静電選別で分けられた基板屑は焼却して、銅製錬炉等の溶融炉で処理することが好ましい。特に、銅製錬炉の中でも転炉、リサイクル型炉(TSL)炉、自溶炉等で処理することが好ましい。
C. Incinerator treatment It is preferable to incinerate the substrate scraps separated by electrostatic sorting and treat them in a melting furnace such as a copper smelting furnace. In particular, among copper smelting furnaces, it is preferable to process in a converter, a recycling type furnace (TSL) furnace, a self-melting furnace or the like.

本発明の実施の形態に係る電気電子部品屑の処理方法によれば、簡単な処理で、電気電子部品屑から樹脂屑、特にプラスチック屑と基板屑を効率的に分離することができる。樹脂屑の中でも、特にプラスチック屑を静電選別により選別し、処理プロセスの系外へ出すことにより、後段の銅製錬炉における銅等の金属回収の効率を向上させることができる。 According to the method for treating electrical and electronic component scraps according to the embodiment of the present invention, resin scraps, particularly plastic scraps and substrate scraps can be efficiently separated from the electrical and electronic component scraps by a simple treatment. Among the resin scraps, particularly plastic scraps are sorted by electrostatic sorting and taken out of the system of the treatment process, so that the efficiency of recovering metals such as copper in the copper smelting furnace at the subsequent stage can be improved.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例1)静電選別条件
風力選別機を用いて風量10m/sで処理して得られた軽量物である、プラスチック含有率の異なる被処理物A〜Dを、図1に示す静電選別機を用いて静電選別を行った。静電選別機には、日本エリーズマグネチックス株式会社製、静電ハイテンションセパレータ、EST1014を用いた。接地電極ドラム寸法(mm):φ255×355W、コロナ電極(mm):φ2×406W、静電電極寸法(mm):62×111×406W、接地電極ドラム回転数:20rpmであった。コロナ電極の角度α=90度、接地電極の中心部からのコロナ電極の距離(11)=50mm、静電電極の角度β=60℃、接地電極の中心部からの静電電極の距離(12)=100mm、デバイダー6の角度γ=90度に調整し、印加電圧を20〜40kVの間で変化させた。測定結果を表1に示し、プラスチック除去率と印加電圧との関係を図2に示す。
(Example 1) Electrostatic sorting conditions Electrostatics A to D, which are lightweight materials obtained by treating with a wind power sorter at an air volume of 10 m / s and have different plastic contents, are shown in FIG. Electrostatic sorting was performed using a sorter. As the electrostatic sorter, an electrostatic high tension separator, EST1014, manufactured by Nippon Elise Magnetics Co., Ltd. was used. The ground electrode drum size (mm): φ255 × 355 W, the corona electrode (mm): φ2 × 406 W, the electrostatic electrode size (mm): 62 × 111 × 406 W, and the ground electrode drum rotation speed: 20 rpm. Corona electrode angle α = 90 degrees, corona electrode distance (11) = 50 mm from the center of the ground electrode, electrostatic electrode angle β = 60 ° C, electrostatic electrode distance from the ground electrode center (12) ) = 100 mm, the angle of the divider 6 was adjusted to γ = 90 degrees, and the applied voltage was changed between 20 and 40 kV. The measurement results are shown in Table 1, and the relationship between the plastic removal rate and the applied voltage is shown in FIG.

Figure 0006967856
Figure 0006967856

表1中「プラスチック除去率(%)」は、被処理物1〜4に含有されるプラスチック屑の総重量に対し、不導体物回収部側に選別されたプラスチック屑の重量の割合を示す。「プラスチック含有率(%)」は、被処理物1〜4に含まれるプラスチック屑、基板屑の他にコンデンサ、線屑等を含む部品の総重量に対するプラスチック屑の総重量の割合を示す。実施例1によればプラスチック含有率(平均値)17〜80%程度の被処理物1〜4に対し、被処理物1〜4に含まれるプラスチック屑を約1割から約8割程度除去できていることが分かる。 In Table 1, "plastic removal rate (%)" indicates the ratio of the weight of the plastic waste selected on the non-conductor material recovery unit side to the total weight of the plastic waste contained in the objects to be treated 1 to 4. "Plastic content (%)" indicates the ratio of the total weight of the plastic waste to the total weight of the parts including the capacitor, the wire waste, etc. in addition to the plastic waste and the substrate waste contained in the objects to be processed 1 to 4. According to Example 1, about 10% to about 80% of the plastic waste contained in the objects to be treated 1 to 4 can be removed from the objects to be treated 1 to 4 having a plastic content (average value) of about 17 to 80%. You can see that.

また、図2に示すように、被処理物1〜4を用いた場合、印加電圧を30〜35kV程度に設定することによって、プラスチック除去率(プラスチック屑の除去率)を向上できていることがわかる。 Further, as shown in FIG. 2, when the objects to be processed 1 to 4 are used, the plastic removal rate (removal rate of plastic waste) can be improved by setting the applied voltage to about 30 to 35 kV. Recognize.

被処理物4は線屑や導電性の部品屑が他の被処理物1〜3に比べて多く含まれており、印加電圧を40kVへ上げることによりアーク放電が生じたため、印加電圧40kVでの評価はできなかった。被処理物1も線屑が多かったためプラスチック除去率は16〜40%程度であった。被処理物2は最大直径50mm以上のプラスチック屑も多く含まれていたが、その形状が平板状のものが多かったため、プラスチック回収率も被処理物1及び4に比べて高くなった。被処理物3は、全体的に平板状の屑が多く、屑のサイズも平均して10mm程度であり他の被処理物に比べて小さかったため、プラスチック屑の除去率が高かった。 The object 4 to be processed contains more wire debris and conductive component debris than the other objects 1 to 3 to be processed, and an arc discharge is generated by increasing the applied voltage to 40 kV. Therefore, the applied voltage is 40 kV. It could not be evaluated. Since the object 1 to be treated also contained a large amount of wire chips, the plastic removal rate was about 16 to 40%. The object 2 to be treated contained a large amount of plastic waste having a maximum diameter of 50 mm or more, but since most of the objects had a flat plate shape, the plastic recovery rate was higher than that of the objects 1 and 4. The object to be treated 3 had a large amount of flat-plate-shaped debris as a whole, and the size of the debris was about 10 mm on average, which was smaller than that of other objects to be treated, so that the removal rate of plastic debris was high.

(実施例2)静電選別繰り返しによる影響
図3に示す処理フローに沿って、10m/sの風力選別により得られた軽量物である被処理物1〜4に対し静電選別(静電分離)を2回繰り返した。図3の各選別物A、D、E中のプラスチック屑の総重量をそれぞれ測定することにより、実施例1及び実施例2による処理を経た後のプラスチック除去率を評価した。結果を表2に示す。静電選別機及び条件は印加電圧を30kVとした以外は実施例1と同様である。
(Embodiment 2) Effect of Repeated Electrostatic Sorting According to the processing flow shown in FIG. 3, electrostatic sorting (electrostatic separation) was performed on objects 1 to 4 to be treated, which are lightweight materials obtained by wind sorting at 10 m / s. ) Was repeated twice. By measuring the total weight of the plastic scraps in each of the selected products A, D, and E in FIG. 3, the plastic removal rate after the treatment according to Example 1 and Example 2 was evaluated. The results are shown in Table 2. The electrostatic sorter and conditions are the same as in Example 1 except that the applied voltage is 30 kV.

Figure 0006967856
Figure 0006967856

各被処理物1〜4共に、導体物側に移行した選別物を更に静電分離することにより回収率が増加した。特に、被処理物1及び3が、19〜43%上昇していることが分かる。 For each of the objects to be treated 1 to 4, the recovery rate was increased by further electrostatically separating the sorted material transferred to the conductor object side. In particular, it can be seen that the objects to be processed 1 and 3 are increased by 19 to 43%.

(実施例3)プラスチック屑の形状の影響
実施例2において2回目の静電選別を行った後に(D)不導体物側の選別物と(E)導体物側の選別物についてプラスチック屑の形状を評価した。静電選別により不導体物側に選別されたプラスチック屑の形状は、凹凸の小さい板状のものが多かった。導体物側に選別されたプラスチック屑の形状は、凹凸が大きい板状、丸みがある棒状、立体形状のものが多かった。プラスチック屑の形状による接地電極への接触面積の差が、プラスチック屑の分離効率に影響を及ぼしていることが分かる。
(Example 3) Effect of shape of plastic scraps Shape of plastic scraps for (D) non-conductor side sorting material and (E) conductor material side sorting material after the second electrostatic sorting in Example 2. Was evaluated. Most of the plastic scraps sorted on the non-conductor side by electrostatic sorting were plate-shaped with small irregularities. Most of the plastic scraps selected on the conductor side had a plate shape with large irregularities, a rounded rod shape, and a three-dimensional shape. It can be seen that the difference in the contact area with the ground electrode due to the shape of the plastic waste affects the separation efficiency of the plastic waste.

(実施例4)プラスチック屑の大きさの影響
実施例2で得られた図3の(D)不導体物側の選別物と(E)導体物側の選別物について、9.5mm未満、9.5mm以上〜19.0mm未満、19.0mm以上〜31.5mm未満、31.5mm以上〜37.5mm未満、37.5mm以上〜50.0mm未満の試験用篩を用いて篩別して粒度毎の分配率(%)を比較した。結果を表3に示す。
(Example 4) Effect of size of plastic waste Regarding the (D) non-conductor side sorted product and (E) conductor material side sorted product in FIG. 3 obtained in Example 2, less than 9.5 mm, 9 Sort by size using a test sieve of 1.5 mm or more and less than 19.0 mm, 19.0 mm or more and less than 31.5 mm, 31.5 mm or more and less than 37.5 mm, and 37.5 mm or more and less than 50.0 mm. The distribution rates (%) were compared. The results are shown in Table 3.

Figure 0006967856
Figure 0006967856

表3に示すように、(D)不導体物側の選別物の分配率は粒度によってばらつきが大きく、一定の傾向は見られなかった。プラスチック屑の大きさ自体がプラスチック屑の分離性能に与える影響は小さいものと考えられる。 As shown in Table 3, (D) the distribution ratio of the selected material on the non-conductor side varied greatly depending on the particle size, and no constant tendency was observed. It is considered that the size of the plastic waste itself has a small effect on the separation performance of the plastic waste.

(実施例5)線屑の影響
実施例2で回収した被処理物1〜4の不導体物側選別物(D)に対し、線屑(被覆無し)を0wt%(条件1)、11wt%(条件2)、20wt%(条件3)、30wt%(条件4)とそれぞれ混合した後に静電選別を行い、回収率への影響を評価した。静電選別機の条件は実施例2と同様とし、各条件について3回繰り返した。結果を表4に示す。
(Example 5) Effect of wire chips (condition 1) and 11 wt% of wire chips (without coating) are 0 wt% (condition 1) and 11 wt% of the non-conductor side sorted products (D) of the objects to be treated 1 to 4 collected in Example 2. (Condition 2), 20 wt% (Condition 3), and 30 wt% (Condition 4) were mixed, and then electrostatic sorting was performed to evaluate the effect on the recovery rate. The conditions of the electrostatic sorter were the same as in Example 2, and each condition was repeated 3 times. The results are shown in Table 4.

Figure 0006967856
Figure 0006967856

プラスチック除去率(%)は、線屑含有なし(条件1)で平均84%であったのに対し、線屑含有あり(条件2〜4)では、59〜93%となった。また、線屑の混合割合が大きい程、除去率の標準偏差が大きく、バラツキが大きくなった。 The plastic removal rate (%) was 84% on average without the debris content (Condition 1), whereas it was 59 to 93% with the debris content (Conditions 2 to 4). In addition, the larger the mixing ratio of the debris, the larger the standard deviation of the removal rate and the larger the variation.

(実施例6)コンデンサの影響
実施例5と同様に、実施例2で回収した被処理物1〜4の不導体物側選別物(D)に対し、コンデンサを0wt%(条件1)、11wt%(条件2)、20wt%(条件3)、30wt%(条件4)それぞれ混合した後に静電選別を行い、回収率への影響を評価した。静電選別機の条件は実施例2と同様とし、各条件について3回繰り返した。結果を表5に示す。
(Example 6) Effect of capacitor As in Example 5, the capacitor was 0 wt% (condition 1) and 11 wt with respect to the non-conductor side sorted product (D) of the objects to be processed 1 to 4 recovered in Example 2. % (Condition 2), 20 wt% (Condition 3), and 30 wt% (Condition 4) were mixed and then electrostatically sorted to evaluate the effect on the recovery rate. The conditions of the electrostatic sorter were the same as in Example 2, and each condition was repeated 3 times. The results are shown in Table 5.

Figure 0006967856
Figure 0006967856

プラスチック除去率(%)は、コンデンサ含有なし(条件1)で平均85%であったのに対し、コンデンサ含有あり(条件2〜4)では、平均79〜84%となった。除去率の標準偏差については、コンデンサは線屑に対して小さいことがわかった。 The plastic removal rate (%) was 85% on average without the capacitor (Condition 1), whereas it was 79 to 84% on average with the capacitor (Conditions 2 to 4). Regarding the standard deviation of the removal rate, it was found that the capacitor was small with respect to the debris.

(実施例7)基板屑の影響
実施例5と同様に、実施例2で回収した被処理物1〜4の不導体物側選別物(D)に対し、基板屑を0wt%(条件1)、11wt%(条件2)、20wt%(条件3)、30wt%(条件4)それぞれ混合した後に静電選別を行い、回収率への影響を評価した。静電選別機の条件は実施例2と同様とし、各条件について3回繰り返した。結果を表6に示す。
(Example 7) Effect of substrate waste As in Example 5, the substrate waste is 0 wt% (condition 1) with respect to the non-conductor side sorted product (D) of the objects to be processed 1 to 4 recovered in Example 2. , 11 wt% (Condition 2), 20 wt% (Condition 3), and 30 wt% (Condition 4) were mixed and then electrostatically sorted to evaluate the effect on the recovery rate. The conditions of the electrostatic sorter were the same as in Example 2, and each condition was repeated 3 times. The results are shown in Table 6.

Figure 0006967856
Figure 0006967856

プラスチック除去率(%)は、基板屑含有なし(条件1)で平均75%であったのに対し、基板屑含有あり(条件2〜4)では、平均76〜78%となった。 The plastic removal rate (%) was 75% on average when the substrate waste was not contained (Condition 1), whereas it was 76 to 78% on average when the substrate waste was contained (Conditions 2 to 4).

Claims (9)

少なくとも平板状の樹脂基板を含む基板屑とプラスチック屑とを含む被処理物を静電選別することにより、金属を含まない樹脂基板を含むプラスチック屑と金属を含む樹脂基板を含む基板屑とを分離し、
前記静電選別の前に、前記被処理物が平板状を有するように、前記被処理物の形状を成形するための破砕処理をすることを特徴とする電気電子部品屑の処理方法。
By electrostatically sorting a substrate waste containing at least a flat plate-shaped resin substrate and a material to be processed containing plastic waste, the plastic waste containing a resin substrate containing no metal and the substrate waste containing a resin substrate containing metal are separated. death,
A method for treating electrical and electronic component waste , which comprises performing a crushing treatment for forming the shape of the object to be processed so that the object to be processed has a flat plate shape before the electrostatic sorting.
前記被処理物が、電気電子部品屑を風力選別して得られる軽量物であることを特徴とする請求項1に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component scraps according to claim 1, wherein the object to be treated is a lightweight material obtained by wind-sorting electrical and electronic component scraps. 前記静電選別の前に、前記被処理物中に含まれる導体がむき出しの線屑を除去することを特徴とする請求項1又は2に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component scraps according to claim 1 or 2, wherein the conductor contained in the object to be treated removes bare wire dust before the electrostatic sorting. 前記静電選別により分離された前記基板屑を含む選別物に対し、静電選別を更に繰り返すことを特徴とする請求項1〜のいずれか1項に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component scraps according to any one of claims 1 to 3 , wherein electrostatic sorting is further repeated for the sorted material containing the substrate scraps separated by the electrostatic sorting. 前記被処理物中のプラスチック屑の含有率が15〜90%であることを特徴とする請求項1〜のいずれか1項に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component scraps according to any one of claims 1 to 4 , wherein the content of the plastic scraps in the object to be treated is 15 to 90%. 前記静電選別に必要な印加電圧、接地電極からのコロナ電極及び静電電極の距離及び角度、接地電極の回転数、デバイダーの角度の少なくともいずれかを調整することを特徴とする請求項1〜のいずれか1項に記載の電気電子部品屑の処理方法。 Claims 1 to 1, characterized in that at least one of the applied voltage required for the electrostatic sorting, the distance and angle of the corona electrode and the electrostatic electrode from the ground electrode, the number of rotations of the ground electrode, and the angle of the divider is adjusted. 5. The method for treating electrical and electronic component waste according to any one of 5. 前記静電選別で分離された基板屑を焼却して、銅製錬炉で処理することを特徴とする請求項1〜のいずれか1項に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component scraps according to any one of claims 1 to 6 , wherein the substrate scraps separated by electrostatic sorting are incinerated and treated in a copper smelting furnace. 前記銅製錬炉が自溶炉、転炉、TSL炉を含むことを特徴とする請求項に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component waste according to claim 7 , wherein the copper smelting furnace includes a flash smelting furnace, a converter, and a TSL furnace. 前記静電選別の印加電圧を30kV以上40kV未満とすることを特徴とする請求項1〜のいずれか1項に記載の電気電子部品屑の処理方法。 The method for treating electrical and electronic component waste according to any one of claims 1 to 7 , wherein the applied voltage for electrostatic sorting is 30 kV or more and less than 40 kV.
JP2017012559A 2017-01-26 2017-01-26 How to dispose of electrical and electronic component waste Active JP6967856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012559A JP6967856B2 (en) 2017-01-26 2017-01-26 How to dispose of electrical and electronic component waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012559A JP6967856B2 (en) 2017-01-26 2017-01-26 How to dispose of electrical and electronic component waste

Publications (2)

Publication Number Publication Date
JP2018118223A JP2018118223A (en) 2018-08-02
JP6967856B2 true JP6967856B2 (en) 2021-11-17

Family

ID=63043348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012559A Active JP6967856B2 (en) 2017-01-26 2017-01-26 How to dispose of electrical and electronic component waste

Country Status (1)

Country Link
JP (1) JP6967856B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087056A (en) * 2018-10-31 2021-07-09 제이엑스금속주식회사 Composition analysis apparatus for scrap of electronic/electric equipment parts, apparatus for processing electronic/electric equipment scraps, and method for processing scrap of electronic/electric equipment parts
JP7029424B2 (en) 2019-03-29 2022-03-03 Jx金属株式会社 How to dispose of scraps of electronic and electrical equipment parts
JP7101635B2 (en) * 2019-03-29 2022-07-15 Jx金属株式会社 How to dispose of scraps of electronic and electrical equipment parts
JP7253661B2 (en) * 2021-03-03 2023-04-06 Dowaエコシステム株式会社 Processing method of solar cell module
KR102335510B1 (en) * 2021-04-20 2021-12-08 한국지질자원연구원 Method for separating material of waste coffee capsule
CN113638080B (en) * 2021-07-14 2024-02-13 石河子大学 Electrostatic seed cotton foreign fiber removing modularized device
AU2022421948A1 (en) * 2021-12-21 2024-07-11 Newsouth Innovations Pty Limited Method for recycling silicon photovoltaic modules
KR102679035B1 (en) * 2022-01-20 2024-06-26 정재기 Static electricity separator
CN118355511A (en) * 2022-02-02 2024-07-16 同和环保再生事业有限公司 Solar cell module processing method
WO2024157351A1 (en) * 2023-01-24 2024-08-02 三菱電機株式会社 Method executed in computer for controlling electrostatic sorting device, program, and electrostatic sorting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725505B2 (en) * 1991-12-02 1998-03-11 株式会社日立製作所 Waste treatment method and apparatus
JP2710206B2 (en) * 1994-03-14 1998-02-10 日本電気株式会社 How to collect valuables from printed circuit boards
JPH1057927A (en) * 1996-08-15 1998-03-03 Nakajima Shoten:Kk Method for treating compound waste
JP4686827B2 (en) * 2000-08-17 2011-05-25 三菱電機株式会社 Reusable plastic production method and apparatus
JP2002346433A (en) * 2001-05-28 2002-12-03 Hitachi Zosen Corp Method and device for sorting plastic by vibration
JP2004025128A (en) * 2002-06-28 2004-01-29 Hitachi Zosen Corp Vibration sorter for conductive material and plastic material
JP4001830B2 (en) * 2003-03-25 2007-10-31 日立造船株式会社 Method and apparatus for sorting conductive material and plastic material
JP2006181520A (en) * 2004-12-28 2006-07-13 Maderekkusu Kk Recycling method for shredder dust and recycling apparatus
JP2007260498A (en) * 2006-03-27 2007-10-11 Kaneka Corp Electrostatic separator, electrostatic separation system and electrostatic separation process for nonmagnetic metal-containing plastic
JP5209249B2 (en) * 2007-08-03 2013-06-12 Dowaメタルマイン株式会社 Copper manufacturing method
CN102676822B (en) * 2011-03-11 2014-01-01 深圳市格林美高新技术股份有限公司 Burning-free non-cyaniding method for treating waste printed circuit board
JP5775752B2 (en) * 2011-06-17 2015-09-09 三井金属鉱業株式会社 Method for recovering valuable metals from home appliances
JP6050222B2 (en) * 2013-12-26 2016-12-21 パンパシフィック・カッパー株式会社 Disposal of electrical and electronic parts waste

Also Published As

Publication number Publication date
JP2018118223A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6967856B2 (en) How to dispose of electrical and electronic component waste
RU2663924C1 (en) Method of electrical and electronic elements preparation for regeneration of valuable substances
JP7438261B2 (en) How to remove linear objects
CA3135345C (en) Method for processing electronic and electric device component scraps
KR20210155790A (en) Apparatus for collecting copper from wasted electric wire
JP7076178B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP6859151B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP6817127B2 (en) How to treat shredder dust
JP6912234B2 (en) Valuable metal recovery method
WO2020203918A1 (en) Method for processing electronic/electrical device component scraps
JP7091571B1 (en) How to handle the solar cell module
JP2019177361A (en) Component scrap processing method
CA3135424C (en) Method for processing electronic/electrical device component scraps
JP2019025395A (en) Valuable metal recovery method and recovery system
Bilici et al. Increasing the recovery rate of metals from WEEE by corona-electrostatic separation
JP6938414B2 (en) How to dispose of parts waste
RU2321462C2 (en) Method of processing of electronic and cable scrap
GB2129337A (en) An electrical separator of the ion bombardment type
JP2019171342A (en) Processing method of electronic-electrical equipment component scrap
Pavlović et al. TECHNOLOGIES OF ELECTRONIC WASTE RECYCLING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R151 Written notification of patent or utility model registration

Ref document number: 6967856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151