JP6966725B2 - Acid dianhydride and its use - Google Patents

Acid dianhydride and its use Download PDF

Info

Publication number
JP6966725B2
JP6966725B2 JP2018542881A JP2018542881A JP6966725B2 JP 6966725 B2 JP6966725 B2 JP 6966725B2 JP 2018542881 A JP2018542881 A JP 2018542881A JP 2018542881 A JP2018542881 A JP 2018542881A JP 6966725 B2 JP6966725 B2 JP 6966725B2
Authority
JP
Japan
Prior art keywords
formula
acid
represented
carbon atoms
acid dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018542881A
Other languages
Japanese (ja)
Other versions
JPWO2018062425A1 (en
Inventor
鎮嘉 葉
邦慶 何
光正 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2018062425A1 publication Critical patent/JPWO2018062425A1/en
Application granted granted Critical
Publication of JP6966725B2 publication Critical patent/JP6966725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、新規な酸二無水物およびそのポリアミック酸への利用に関する。 The present invention relates to novel acid dianhydrides and their use in polyamic acids.

近年、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。
これらのデバイスにおいては、ガラス基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されているが、このガラス材料を柔軟かつ軽量な樹脂材料に替えることで、デバイス自体の薄型化や軽量化、フレキシブル化が期待される。
そして、そのような樹脂材料の候補としてはポリイミドが注目を集めており、ポリイミドフィルムに関する種々の報告が従来よりなされている(例えば特許文献1,2参照)。
In recent years, with the rapid progress of electronics such as liquid crystal displays and organic electroluminescence displays, there has been a demand for devices to be thinner, lighter, and more flexible.
In these devices, various electronic elements such as thin film transistors and transparent electrodes are formed on a glass substrate. By replacing this glass material with a flexible and lightweight resin material, the device itself can be made thinner. It is expected to be lighter and more flexible.
Polyimide has been attracting attention as a candidate for such a resin material, and various reports on polyimide films have been made conventionally (see, for example, Patent Documents 1 and 2).

特開昭60−188427号公報Japanese Unexamined Patent Publication No. 60-188427 特開昭58−208322号公報Japanese Unexamined Patent Publication No. 58-208322 国際公開2011/149018号パンフレットInternational Publication 2011/149018 Pamphlet

ところで、ポリイミド樹脂材料をディスプレイの基板として用いるとき、その樹脂材料が透明性に優れるだけでなく、要求性能の一つとしてリタデーション(Retardation)が低い材料であることが望ましい。
すなわち、リタデーション(位相差)とは、複屈折(直交する2つの屈折率の差)と膜厚との積をいうが、この数値、特に厚さ方向のリタデーションは視野角特性に影響する重要な数値であり、大きなリタデーション値は、ディスプレイの表示品質の低下を招く原因となり得ることから(例えば特許文献3参照)、フレキシブルディスプレイ基板にあっても、高い柔軟性(可撓性)以外に、これらの特性も求められている。
By the way, when a polyimide resin material is used as a substrate for a display, it is desirable that the resin material not only has excellent transparency but also has low retardation as one of the required performances.
That is, the retardation (phase difference) is the product of birefringence (difference between two orthogonal refractive indexes) and the film thickness, and this numerical value, especially the retardation in the thickness direction, is important to affect the viewing angle characteristics. Since it is a numerical value and a large retardation value can cause deterioration of the display quality of the display (see, for example, Patent Document 3), even in a flexible display substrate, these are other than high flexibility (flexibility). The characteristics of are also required.

本発明は、このような事情に鑑みてなされたものであって、耐熱性、柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有するポリイミド膜を与えるポリアミック酸並びに該ポリアミック酸の製造に用いる新規な酸二無水物を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a polyamic acid and the polyamic acid that provide a polyimide film having not only excellent heat resistance, flexibility and transparency but also low retardation. It is an object of the present invention to provide a novel acid dianhydride used in the production of.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、下記式(1−1)で表される酸二無水物化合物を、テトラシクロブタン酸二無水物等の脂環式テトラカルボン酸二無水物と共に、2,2’−ジ(トリフルオロメチル)ベンジジン等の芳香族ジアミンと共重合させることで、有機溶媒に良好な溶解性を示すポリアミック酸が得られること、及び当該ポリアミック酸を有機溶媒に溶解させて得られる組成物(溶液)から、耐熱性、柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有するポリイミド膜が得られることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have introduced an acid dianhydride compound represented by the following formula (1-1) into an alicyclic tetra such as tetracyclobutanoic acid dianhydride. By copolymerizing with aromatic diamine such as 2,2'-di (trifluoromethyl) benzidine together with carboxylic acid dianhydride, a polyamic acid showing good solubility in an organic solvent can be obtained, and the polyamic acid. We have found that a polyimide film having not only excellent heat resistance, flexibility and transparency but also low retardation can be obtained from a composition (solution) obtained by dissolving an acid in an organic solvent. Was completed.

すなわち、本発明は、第1観点として、酸二無水物成分と、ジアミン成分とを反応させて得られるポリアミック酸であって、
前記酸二無水物成分が下記式(1−1)で表される酸二無水物を含むことを特徴とする、ポリアミック酸に関する。

Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)
第2観点として、前記ジアミン成分が、式(A1)で表されるジアミンを含むことを特徴とする、第1観点に記載のポリアミック酸に関する。
Figure 0006966725
(式中、Bは、式(Y−1)〜式(Y−34)からなる群から選ばれるいずれかの基を表す。)
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
(式中、*は結合手を表す。)
第3観点として、前記酸二無水物成分が、更に式(C1)で表されるテトラカルボン酸二無水物を含むことを特徴とする、第1観点又は第2観点に記載のポリアミック酸に関する。
Figure 0006966725
〔式中、Bは、式(X−1)〜式(X−12)からなる群から選ばれるいずれかの基を表す。
Figure 0006966725
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
第4観点として、第1観点乃至第3観点のうちいずれか一項に記載のポリアミック酸と、有機溶媒とを含むポリイミド膜形成用組成物に関する。
第5観点として、第4観点に記載のポリイミド膜形成用組成物を用いて形成されるポリイミド膜に関する。
第6観点として、第5観点に記載のポリイミド膜からなるフレキシブルデバイス用基板に関する。
第7観点として、式(1−1)で表されることを特徴とする酸二無水物に関する。
Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)
第8観点として、式(1−2)で表されることを特徴とする、第7観点に記載の酸二無水物に関する。
Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、dおよびeは、前記と同じ意味を示す。)
第9観点として、式(1−3)で表されることを特徴とする、第8観点に記載の酸二無水物に関する。
Figure 0006966725
第10観点として、式(2−1)で表されることを特徴とするテトラカルボン酸に関する。
Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)
第11観点として、式(2−2)で表されることを特徴とする、第10観点に記載のテトラカルボン酸に関する。
Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、dおよびeは、前記と同じ意味を示す。)
第12観点として、式(2−3)で表されることを特徴とする、第11観点に記載のテトラカルボン酸に関する。
Figure 0006966725
That is, the present invention is, as a first aspect, a polyamic acid obtained by reacting an acid dianhydride component with a diamine component.
The present invention relates to a polyamic acid, wherein the acid dianhydride component contains an acid dianhydride represented by the following formula (1-1).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )
The second aspect relates to the polyamic acid according to the first aspect, wherein the diamine component contains a diamine represented by the formula (A1).
Figure 0006966725
(In the formula, B 2 represents any group selected from the group consisting of formulas (Y-1) to (Y-34).)
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
(In the formula, * represents a bond.)
As a third aspect, the polyamic acid according to the first aspect or the second aspect, wherein the acid dianhydride component further contains a tetracarboxylic dianhydride represented by the formula (C1).
Figure 0006966725
[In the formula, B 1 represents any group selected from the group consisting of formulas (X-1) to (X-12).
Figure 0006966725
(In the equation, multiple Rs represent hydrogen atoms or methyl groups independently of each other, and * represents a bond.)]
As a fourth aspect, the present invention relates to a polyimide film forming composition containing the polyamic acid according to any one of the first aspect to the third aspect and an organic solvent.
As a fifth aspect, the present invention relates to a polyimide film formed by using the polyimide film forming composition according to the fourth aspect.
As a sixth aspect, the present invention relates to a substrate for a flexible device made of the polyimide film according to the fifth aspect.
As a seventh aspect, it relates to an acid dianhydride characterized by being represented by the formula (1-1).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )
As the eighth aspect, it relates to the acid dianhydride according to the seventh aspect, which is represented by the formula (1-2).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meanings as described above.)
As a ninth aspect, the acid dianhydride according to the eighth aspect, which is represented by the formula (1-3).
Figure 0006966725
As a tenth aspect, it relates to a tetracarboxylic acid represented by the formula (2-1).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )
As the eleventh aspect, it relates to the tetracarboxylic dian according to the tenth aspect, which is represented by the formula (2-2).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meanings as described above.)
As a twelfth aspect, it relates to the tetracarboxylic dian according to the eleventh aspect, which is represented by the formula (2-3).
Figure 0006966725

本発明のポリアミック酸は有機溶媒に良好な溶解性を示し、また該ポリアミック酸は、耐熱性、柔軟性及び透明性に優れ、さらに低いリタデーションを実現できるポリイミド膜(樹脂薄膜)を形成できる。
また、本発明のポリイミド膜は、高い透明性(高い光線透過率、低い黄色度)、耐熱性及び低いリタデーションを示すことから、フレキシブルデバイス、特にフレキシブルディスプレイの基板として好適に用いることができる。
The polyamic acid of the present invention exhibits good solubility in an organic solvent, and the polyamic acid is excellent in heat resistance, flexibility and transparency, and can form a polyimide film (resin thin film) capable of realizing lower retardation.
Further, since the polyimide film of the present invention exhibits high transparency (high light transmittance, low yellowness), heat resistance and low retardation, it can be suitably used as a substrate for a flexible device, particularly a flexible display.

以下、本発明についてさらに詳しく説明する。
本発明に係るポリアミック酸は、下記式(1−1)で表される酸二無水物を含む酸二無水物成分と、ジアミン成分とを重縮合反応させて得られ、すなわち、下記式(1−1)で表される酸二無水物を含む酸二無水物成分とジアミン成分との反応生成物である。
Hereinafter, the present invention will be described in more detail.
The polyamic acid according to the present invention is obtained by subjecting an acid dianhydride component containing an acid dianhydride represented by the following formula (1-1) and a diamine component to a polycondensation reaction, that is, the following formula (1). It is a reaction product of an acid dianhydride component containing an acid dianhydride represented by -1) and a diamine component.

該式(1−1)で表される酸二無水物として、特に式(1−2)で表される酸二無水物が好ましく、中でも、耐熱性、柔軟性及び透明性に優れ、低リタデーションのポリイミド膜を再現性よく与えるポリアミック酸を得ることを考慮すると、好ましくは式(1−3)で表される酸二無水物である。

Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)As the acid dianhydride represented by the formula (1-1), the acid dianhydride represented by the formula (1-2) is particularly preferable, and among them, excellent heat resistance, flexibility and transparency, and low polyimide. In consideration of obtaining a polyamic acid that gives the polyimide film of the above with good reproducibility, it is preferably an acid dianhydride represented by the formula (1-3).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )

上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
上記炭素原子数1乃至5のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソアミル基、ネオペンチル基、tert−アミル基、sec−イソアミル基、シクロペンチル基等が挙げられる。
また炭素原子数1乃至5のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、イソペントキシ基、ネオペントキシ基、tert−ペントキシ基等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group. , Isoamyl group, neopentyl group, tert-amyl group, sec-isoamyl group, cyclopentyl group and the like.
Examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group and an n-pentoxy group. , Isopentoxy group, neopentoxy group, tert-pentoxy group and the like.

本発明の上記式(1−1)〜(1−3)で表される酸二無水物は、それぞれ下記式(2−1)〜(2−3)で表されるテトラカルボン酸を脱水剤にて分子内で脱水させて得ることができる。

Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、d及びeは上記と同じ意味を表す。)The acid dianhydride represented by the above formulas (1-1) to (1-3) of the present invention is a dehydrating agent for the tetracarboxylic dianhydride represented by the following formulas (2-1) to (2-3), respectively. It can be obtained by dehydrating in the molecule.
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meanings as above.)

具体的には、上記式(1−1)で表される酸二無水物は、一例として下記スキームで示されるように、有機溶媒中、9,10−[1,2]ベンゼノアントラセン−1,4−ジオール化合物(以下、ベンゼノアントラセンジオール化合物ともいう。)と、ベンゼントリカルボン酸ハロゲン化無水物を塩基または酸吸収剤の存在下で反応させて得ることができる[反応式1]。また反応後は溶媒を除去後、再結晶、蒸留、シリカゲルカラムクロマトグラフィ等の公知の手法を用いて精製し、目的物の酸二無水物を得ることができる。
また[反応式1]の反応物を加水分解し、中間体(9,10−[1,2]ベンゼノアントラセン−1,4−ジイル ビス(ベンゼントリカルボン酸エステル)化合物)(式(2−1)で表される化合物)を得[反応式2]、この中間体を脱水剤にて分子内で脱水させる[反応式3]ことでも得ることができる。
なお上記式(1−1)〜(1−3)で表される酸二無水物及びその中間体である上記式(2−1)〜(2−3)で表されるベンゼントリカルボン酸エステル(テトラカルボン酸化合物)も本発明の対象である。

Figure 0006966725
(上記スキーム中、Xはハロゲン原子を表し、R、R、R、R、R、R、R、a、b、c、d及びeは上記と同じ意味を表す。)Specifically, the acid dianhydride represented by the above formula (1-1) is, as an example, as shown in the following scheme, in an organic solvent, 9,10- [1,2] benzenoanthracene-1. , 4-diol compound (hereinafter, also referred to as benzenoanthracenediol compound) can be obtained by reacting benzenetricarboxylic acid halide anhydride in the presence of a base or an acid absorber [Reaction Formula 1]. After the reaction, the solvent can be removed and then purified by a known method such as recrystallization, distillation, silica gel column chromatography, etc. to obtain the desired acid dianhydride.
Further, the reaction product of [Reaction formula 1] was hydrolyzed to form an intermediate (9,10- [1,2] benzenoanthracene-1,4-diylbis (benzenetricarboxylic acid ester) compound) (formula (2-1). ) Is obtained [reaction formula 2], and this intermediate is dehydrated in the molecule with a dehydrating agent [reaction formula 3].
It should be noted that the acid dianhydride represented by the above formulas (1-1) to (1-3) and the benzenetricarboxylic acid ester represented by the above formulas (2-1) to (2-3) which is an intermediate thereof ( (Tetracarboxylic acid compound) is also the subject of the present invention.
Figure 0006966725
(In the above scheme, X represents a halogen atom, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meanings as above. )

上記[反応式1]の反応において、ベンゼノアントラセンジオール化合物とベンゼントリカルボン酸ハロゲン化無水物との仕込み比は、ベンゼノアントラセンジオール化合物1モルに対し、ベンゼントリカルボン酸ハロゲン化無水物2〜4モルが好ましい。
塩基としては、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、N−メチルピペリジン、2,2,6,6−テトラメチル−N−メチルピペリジン、ピリジン、4−ジメチルアミノピリジン、N−メチルモルホリン等の有機アミン類等の有機塩基が好適に用いられる。また、塩基の使用量は、ベンゼントリカルボン酸ハロゲン化無水物1モルに対して1モル以上であれば特に限定されるものではないが、通常1〜5モル程度であり、好ましくは1〜3モル程度である。
また、反応で副生する塩酸等の酸を中和するために、酸吸収剤を用いてもよい。酸吸収剤としては、プロピレンオキシド等のエポキシド類が挙げられる。酸吸収剤の使用量は、ベンゼノアントラセンジオール化合物1モルに対して2モル以上であれば特に限定されるものではないが、通常2〜10モル程度であり、好ましくは2〜4モル程度である。
有機溶媒としては、反応に影響を及ぼさない溶媒であれば特に限定されるものではないが、ベンゼン、トルエン、キシレン、等の芳香族炭化水素類;N,N−ジメチルホルムアミド(以下、DMFという)、N,N−ジメチルアセトアミド(以下、DMAcという)、N−メチル−2−ピロリドン(以下、NMPという)等のアミド類;ジエチルエーテル、テトラヒドロフラン(以下、THFという)、1,4−ジオキサン、1,2−ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル類、2−ブタノン、4−メチル−2−ペンタノンなどのケトン類、アセトニトリル等のニトリル類、ジメチルスルホキシド(以下、DMSOという)などを用いることができる。これらの溶媒は、単独で用いても、2種以上を組み合わせて用いてもよい。なお、[反応式1]で直接目的物である酸二無水物(1−1)を精製し、取り出す場合は、溶媒中に水分が多く含まれると、エステルの加水分解が起こることから、溶媒は脱水溶媒を使用する、もしくは、脱水してから使用することが好ましい。また、[反応式2]、[反応式3]を経由して目的物である酸二無水物(1−1)を取り出す場合は、脱水溶媒を使用してもしなくてもよい。
反応温度は、0〜200℃程度とすることができるが、20〜150℃が好ましい。
反応後は、溶媒を留去し、精製することで目的物である酸二無水物を得られる。この精製法は任意であり、再結晶、蒸留、シリカゲルカラムクロマトグラフィ等公知の手法から適宜選択すればよい。また、精製時に使用する有機溶媒は、精製時に生成物と反応しない溶媒であれば特に限定されるものではなく、上記反応に使用する有機溶媒と同様である。
また、反応後の精製が難しい場合は、粗生成物のまま、加水分解し[反応式2]、テトラカルボン酸を得た後に脱水剤にて脱水環化させる[反応式3]ことで目的である酸二無水物を得ることもできる。
In the reaction of the above [Reaction Formula 1], the charging ratio of the benzenoanthracenediol compound and the benzenetricarboxylic acid halide anhydride was 2 to 4 mol of the benzenetricarboxylic acid halide anhydride with respect to 1 mol of the benzenoanthracenediol compound. Is preferable.
Examples of the base include organics such as trimethylamine, triethylamine, diisopropylamine, diisopropylethylamine, N-methylpiperidine, 2,2,6,6-tetramethyl-N-methylpiperidine, pyridine, 4-dimethylaminopyridine and N-methylmorpholine. Organic bases such as amines are preferably used. The amount of the base used is not particularly limited as long as it is 1 mol or more with respect to 1 mol of the benzenetricarboxylic acid halogenated anhydride, but is usually about 1 to 5 mol, preferably 1 to 3 mol. Degree.
Further, an acid absorber may be used to neutralize an acid such as hydrochloric acid produced as a by-product in the reaction. Examples of the acid absorber include epoxides such as propylene oxide. The amount of the acid absorber used is not particularly limited as long as it is 2 mol or more with respect to 1 mol of the benzenoanthracenediol compound, but is usually about 2 to 10 mol, preferably about 2 to 4 mol. be.
The organic solvent is not particularly limited as long as it does not affect the reaction, but aromatic hydrocarbons such as benzene, toluene, xylene, etc .; N, N-dimethylformamide (hereinafter referred to as DMF). , N, N-dimethylacetamide (hereinafter referred to as DMAc), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and other amides; diethyl ether, tetrahydrofuran (hereinafter referred to as THF), 1,4-dioxane, 1 , 2-Dimethoxyethane, ethers such as cyclopentylmethyl ether, ketones such as 2-butanone and 4-methyl-2-pentanone, nitriles such as acetonitrile, dimethylsulfoxide (hereinafter referred to as DMSO) and the like can be used. .. These solvents may be used alone or in combination of two or more. When the acid dianhydride (1-1), which is the target product, is directly purified and taken out by [Reaction Formula 1], if the solvent contains a large amount of water, the ester is hydrolyzed, so that the solvent is used. Is preferably used after using a dehydrating solvent or after dehydration. Further, when the target acid dianhydride (1-1) is taken out via [Reaction formula 2] and [Reaction formula 3], a dehydration solvent may or may not be used.
The reaction temperature can be about 0 to 200 ° C, but is preferably 20 to 150 ° C.
After the reaction, the solvent is distilled off and purified to obtain the desired acid dianhydride. This purification method is arbitrary, and may be appropriately selected from known methods such as recrystallization, distillation, and silica gel column chromatography. Further, the organic solvent used at the time of purification is not particularly limited as long as it is a solvent that does not react with the product at the time of purification, and is the same as the organic solvent used for the above reaction.
If purification after the reaction is difficult, the crude product is hydrolyzed as it is [reaction formula 2], and after obtaining tetracarboxylic acid, it is dehydrated and cyclized with a dehydrating agent [reaction formula 3]. Certain acid dianhydrides can also be obtained.

一方、上記[反応式2]の反応は、式(1−1)で表される酸二無水物と水を混合すれば特に限定はないが、例えば[反応式1]で生成した(1−1)を、水、場合によっては有機溶媒、酸あるいはアルカリを添加し、加熱還流して加水分解することにより、式(2−1)で表されるベンゼントリカルボン酸エステル(テトラカルボン酸化合物)を得ることもできる。
水は、式(1−1)で表される酸二無水物に対して、通常2〜100質量倍、好ましくは2〜40質量倍、より好ましくは2〜6質量倍使用される。
また、上記の反応は有機溶媒を添加しても良い。有機溶媒としては、反応に影響を及ぼさない溶媒であれば特に限定されるものではないが、ベンゼン、トルエン、キシレン、等の芳香族炭化水素類;N,N−ジメチルホルムアミド(以下、DMFという)、N,N−ジメチルアセトアミド(以下、DMAcという)、N−メチル−2−ピロリドン(以下、NMPという)等のアミド類;ジエチルエーテル、テトラヒドロフラン(以下、THFという)、1,4−ジオキサン、1,2−ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル類、アセトン、酢酸エチル、2−ブタノン、4−メチル−2−ペンタノンなどのケトン類、アセトニトリル等のニトリル類、ジメチルスルホキシド(以下、DMSOという)などを用いることができる。これらの溶媒は、単独で用いても、2種以上を組み合わせて用いてもよい。なお、加水分解を効率よく進行させるためには、極性の高い溶媒が好ましく、例えばDMF、DMAc、NMP、THF、1,4−ジオキサン、ジエチルエーテル、アセトニトリル、アセトン、酢酸エチル等が好ましい。
また、上記の反応は酸を添加してもよい。酸は特に限定されるものではないが、酸としては、リンモリブデン酸、リンタングステン酸などのヘテロポリ酸;トリメチルボレート、トリフェニルホスフィンなどの有機酸;塩酸、硫酸または燐酸などの無機酸;蟻酸、酢酸、プロピオン酸またはp−トルエンスルホン酸などの炭化水素酸;並びにトリフルオロ酢酸などのハロゲン系炭化水素酸が挙げられる。好ましくは、塩酸、硫酸、酢酸またはp−トルエンスルホン酸が挙げられる。
酸は式(1−1)で表される酸二無水物に対して通常0〜100倍モル、好ましくは0.01〜10倍モル使用される。
また、本反応はアルカリ性水溶液を使用して加水分解をしてもよい。アルカリは特に限定されるものではないが、アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属類;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属類が挙げられる。なかでも好ましくは、水酸化ナトリウム、水酸化カリウム、水酸化リチウムが挙げられる。
アルカリの使用量は式(1−1)で表される酸二無水物に対して通常0〜100倍モル、好ましくは0.01〜10倍モル使用される。
反応温度は特に限定されないが、例えば−90〜200℃、好ましくは50〜130℃である。
反応時間は、通常、0.1ないし200時間、好ましくは0.5ないし100時間である。
On the other hand, the reaction of the above [reaction formula 2] is not particularly limited as long as the acid dianhydride represented by the formula (1-1) is mixed with water, but is produced by, for example, [reaction formula 1] (1-). A benzenetricarboxylic acid ester (tetracarboxylic acid compound) represented by the formula (2-1) is obtained by adding water, and in some cases an organic solvent, an acid or an alkali to 1), heating and refluxing and hydrolyzing. You can also get it.
Water is usually used 2 to 100 times by mass, preferably 2 to 40 times by mass, and more preferably 2 to 6 times by mass with respect to the acid dianhydride represented by the formula (1-1).
In addition, an organic solvent may be added to the above reaction. The organic solvent is not particularly limited as long as it does not affect the reaction, but aromatic hydrocarbons such as benzene, toluene, xylene, etc .; N, N-dimethylformamide (hereinafter referred to as DMF). , N, N-dimethylacetamide (hereinafter referred to as DMAc), N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and other amides; diethyl ether, tetrahydrofuran (hereinafter referred to as THF), 1,4-dioxane, 1 , 2-Dimethoxyethane, ethers such as cyclopentylmethyl ether, ketones such as acetone, ethyl acetate, 2-butanone, 4-methyl-2-pentanone, nitriles such as acetonitrile, dimethylsulfoxide (hereinafter referred to as DMSO), etc. Can be used. These solvents may be used alone or in combination of two or more. In order to promote the hydrolysis efficiently, a highly polar solvent is preferable, and for example, DMF, DMAc, NMP, THF, 1,4-dioxane, diethyl ether, acetonitrile, acetone, ethyl acetate and the like are preferable.
In addition, an acid may be added to the above reaction. The acid is not particularly limited, but examples of the acid include heteropolyacids such as phosphomolybdic acid and phosphotungstate; organic acids such as trimethylbolate and triphenylphosphine; inorganic acids such as hydrochloric acid, sulfuric acid or phosphoric acid; and formic acid. Hydrocarbic acids such as acetic acid, propionic acid or p-toluenesulfonic acid; and halogenated hydrocarbon acids such as trifluoroacetic acid can be mentioned. Preferred are hydrochloric acid, sulfuric acid, acetic acid or p-toluenesulfonic acid.
The acid is usually used in an amount of 0 to 100 times by mole, preferably 0.01 to 10 times by mole, based on the acid dianhydride represented by the formula (1-1).
Further, this reaction may be hydrolyzed using an alkaline aqueous solution. The alkali is not particularly limited, but examples of the alkali include alkali metals such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate and lithium carbonate; magnesium hydroxide, calcium hydroxide and the like. Alkaline earth metals can be mentioned. Of these, sodium hydroxide, potassium hydroxide and lithium hydroxide are preferable.
The amount of alkali used is usually 0 to 100 times mol, preferably 0.01 to 10 times mol, with respect to the acid dianhydride represented by the formula (1-1).
The reaction temperature is not particularly limited, but is, for example, −90 to 200 ° C., preferably 50 to 130 ° C.
The reaction time is usually 0.1 to 200 hours, preferably 0.5 to 100 hours.

また、上記[反応式3]の反応は、公知の方法を採用すればよく、特に制限はないが、例えば、[反応式2]で得た式(2−1)で表されるベンゼントリカルボン酸エステル(テトラカルボン酸化合物)と脱水剤を溶剤中で混合することにより式(1−1)で表される酸二無水物を得ることができる。 Further, the reaction of the above [reaction formula 3] may adopt a known method and is not particularly limited, but for example, the benzenetricarboxylic acid represented by the formula (2-1) obtained in [reaction formula 2]. An acid dianhydride represented by the formula (1-1) can be obtained by mixing an ester (tetracarboxylic acid compound) and a dehydrating agent in a solvent.

脱水剤としては、式(2−1)で表されるベンゼントリカルボン酸エステル(テトラカルボン酸化合物)に脱水剤が接触することができるものであれば特に限定はないが、例えば、脱水は、無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の脂肪族カルボン酸無水物、1,3−ジシクロヘキシルカルボジイミド、2−クロロ−1,3−ジメチルイミダゾリニウムクロリド等の脱水剤の存在下で実施することができる。また、炭素原子数が1〜3の低級カルボン酸無水物が好ましく、より好ましくは炭素原子数が1〜2の低級カルボン酸無水物が好ましく、中でも無水化後の除去がしやすく経済的に有利な点で無水酢酸が特に好ましい。 The dehydrating agent is not particularly limited as long as the dehydrating agent can come into contact with the benzenetricarboxylic acid ester (tetracarboxylic acid compound) represented by the formula (2-1). For example, dehydration is anhydrous. Perform in the presence of an aliphatic carboxylic acid anhydride such as acetic acid, propionic anhydride or trifluoroacetic anhydride, and a dehydrating agent such as 1,3-dicyclohexylcarbodiimide, 2-chloro-1,3-dimethylimidazolinium chloride. Can be done. Further, a lower carboxylic acid anhydride having 1 to 3 carbon atoms is preferable, and a lower carboxylic acid anhydride having 1 to 2 carbon atoms is more preferable, and above all, it is easy to remove after anhydrousation and is economically advantageous. Acetic anhydride is particularly preferable in that respect.

脱水剤の使用量は特に限定されないが、式(2−1)で表されるベンゼントリカルボン酸エステル(テトラカルボン酸化合物)に対して、2〜50当量が好ましく、特に好ましくは4〜20当量である。2〜50当量であれば、十分に無水物化が行われ、かつ得られる式(1−1)で表される酸二無水物の溶解量が増加しすぎることなく、高い収率で式(1−1)で表される酸二無水物を析出させることができる。 The amount of the dehydrating agent used is not particularly limited, but is preferably 2 to 50 equivalents, particularly preferably 4 to 20 equivalents, relative to the benzenetricarboxylic acid ester (tetracarboxylic acid compound) represented by the formula (2-1). be. If it is 2 to 50 equivalents, it is sufficiently anhydrated, and the dissolved amount of the acid dianhydride represented by the obtained formula (1-1) does not increase too much, and the formula (1) is obtained in high yield. The acid dianhydride represented by -1) can be precipitated.

上記反応は、反応に直接関与しない有機溶媒を用いることもできる。例えば、トルエン、キシレン等の炭化水素類;1,2−ジクロロエタン、1,2−ジクロロプロパン等のハロゲン化炭化水素類;更に1,4−ジオキサン等が挙げられる。 For the above reaction, an organic solvent that is not directly involved in the reaction can also be used. For example, hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as 1,2-dichloroethane and 1,2-dichloropropane; further, 1,4-dioxane and the like can be mentioned.

なお、式(2−1)で表されるベンゼントリカルボン酸エステル(テトラカルボン酸化合物)を完全に溶解させて均一系で必ずしも無水物化反応させる必要はなく、不均一系で無水物化反応を実施してもよい。 It is not always necessary to completely dissolve the benzenetricarboxylic acid ester (tetracarboxylic acid compound) represented by the formula (2-1) and carry out the anhydrous reaction in a homogeneous system, and carry out the anhydrous reaction in a heterogeneous system. You may.

反応における加熱の温度は、好ましくは30〜200℃、より好ましくは40〜180℃の範囲で行うとよく、反応温度が高いほど反応速度が向上する。このため使用溶媒の還流温度で実施するのが好ましい。 The heating temperature in the reaction is preferably in the range of 30 to 200 ° C., more preferably 40 to 180 ° C., and the higher the reaction temperature, the higher the reaction rate. Therefore, it is preferable to carry out at the reflux temperature of the solvent used.

また、反応時間は、使用する脱水剤の種類、温度等の条件に応じて適宜設定すればよいが、0.5〜20時間であることが好ましい。 The reaction time may be appropriately set according to conditions such as the type of dehydrating agent to be used and the temperature, but is preferably 0.5 to 20 hours.

上記の無水物化反応によって、使用した脱水剤に式(1−1)で表される酸二無水物が懸濁した懸濁液を得ることができる。無水物化反応の後は、得られた懸濁液をろ過することで式(1−1)で表される酸二無水物の粉末を回収できる。また、必要に応じて上記懸濁液を濃縮してもよい。
また、必要に応じて上記ろ取物を有機溶媒で洗浄してもよい。この洗浄溶媒は無水物と反応せず、目的の無水物の溶解度が低い溶媒であれば特に限定されないが、例えば、トルエン、ヘキサン、ヘプタン、アセトニトリル、アセトン、クロロホルム、酢酸エチル、炭酸ジメチル等やこれらの混合溶媒などが挙げられる。中でも酢酸エチル、炭酸ジメチルが好ましい。
さらに、減圧乾燥等により脱水剤や溶媒を除去することで、高純度の式(1−1)で表される酸二無水物を得ることができる。また、必要により再結晶、蒸留、シリカゲルカラムクロマトグラフィ等公知の手法を用いて精製することでも、目的物である酸二無水物を得られる。
By the above dehydration reaction, a suspension in which the acid dianhydride represented by the formula (1-1) is suspended in the dehydrating agent used can be obtained. After the anhydrous reaction, the powder of the acid dianhydride represented by the formula (1-1) can be recovered by filtering the obtained suspension. In addition, the suspension may be concentrated if necessary.
Further, the filter may be washed with an organic solvent, if necessary. This washing solvent does not react with the anhydride and is not particularly limited as long as it is a solvent having a low solubility of the target anhydride, but for example, toluene, hexane, heptane, acetonitrile, acetone, chloroform, ethyl acetate, dimethyl carbonate and the like, and the like. Examples include the mixed solvent of. Of these, ethyl acetate and dimethyl carbonate are preferable.
Further, by removing the dehydrating agent and the solvent by drying under reduced pressure or the like, a high-purity acid dianhydride represented by the formula (1-1) can be obtained. Further, if necessary, purification using known methods such as recrystallization, distillation, silica gel column chromatography and the like can also obtain the desired acid dianhydride.

なお、本発明で得られる式(2−1)で表される酸二無水物は、文献未記載の新規化合物であり、上記のように、これから容易に式(1−1)で表される酸二無水物が製造できるなど種々の用途に使用できる。 The acid dianhydride obtained by the present invention and represented by the formula (2-1) is a novel compound not described in the literature, and as described above, it is easily represented by the formula (1-1). It can be used for various purposes such as the production of acid dianhydride.

また、本発明で用いるベンゼノアントラセンジオール化合物は、例えば、一例として下記スキームで示されるように、公知の方法に従い、有機溶媒中、アントラセン化合物と1,4−ベンゾキノン化合物とをDiels―Alder反応させて得られる9,10−[1,2]ベンゼノアントラセン−13,16(9H,10H)−ジオン化合物を酢酸溶媒中、47%臭化水素存在下、加熱条件で処理することで得ることができる。

Figure 0006966725
(上記スキーム中、R、R、R、R、R、a、b及びeは上記と同じ意味を表す。)Further, in the benzenoanthracene diol compound used in the present invention, for example, as shown in the following scheme as an example, the anthracene compound and the 1,4-benzoquinone compound are subjected to Diels-Alder reaction in an organic solvent according to a known method. Can be obtained by treating the obtained 9,10- [1,2] benzenoanthracene-13,16 (9H, 10H) -dione compound in an acetate solvent in the presence of 47% hydrogen bromide under heating conditions. can.
Figure 0006966725
(In the above scheme, R 1 , R 2 , R 5 , R 6 , R 7 , a, b and e have the same meanings as above.)

耐熱性、柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有するポリイミド膜を与えるポリアミック酸を再現性よく得る観点から、本発明のポリアミック酸の製造に用いる酸二無水物成分は、上記式(1−1)で表される酸二無水物に加え、好ましくは脂環式テトラカルボン酸二無水物を、より好ましくは下記式(C1)で表される酸二無水物を含む。

Figure 0006966725
〔式中、Bは、式(X−1)〜(X−12)からなる群から選ばれる4価の基を表す。
Figure 0006966725
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕The acid dianhydride component used in the production of the polyamic acid of the present invention from the viewpoint of obtaining a polyamic acid that gives a polyimide film having not only excellent heat resistance, flexibility and transparency but also low retardation with good reproducibility. In addition to the acid dianhydride represented by the above formula (1-1), preferably an alicyclic tetracarboxylic dianhydride, more preferably an acid dianhydride represented by the following formula (C1). include.
Figure 0006966725
[In the formula, B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
Figure 0006966725
(In the equation, multiple Rs represent hydrogen atoms or methyl groups independently of each other, and * represents a bond.)]

上記式(C1)で表される酸二無水物の中でも、式中のBが前記式(X−1)、(X−2)、(X−4)、(X−5)、(X−6)、(X−7)、(X−8)、(X−9)、(X−11)および(X−12)で表される酸二無水物が好ましく、前記Bが前記式(X−1)、(X−2)、(X−11)および(X−12)で表される酸二無水物が特に好ましい。
また、本発明の効果を損なわない範囲において、前記酸二無水物成分には、上記式(1−1)で表される酸二無水物、上記式(C1)で表される酸二無水物以外の、その他の酸二無水物を用いてもよい。
Among the acid dianhydrides represented by the above formula (C1), B 1 in the formula is the above formulas (X-1), (X-2), (X-4), (X-5), (X). -6), (X-7), (X-8), (X-9), (X-11) and (X-12) are preferably acid dianhydrides, with B 1 being the formula. Acid dianhydrides represented by (X-1), (X-2), (X-11) and (X-12) are particularly preferred.
Further, as long as the effect of the present invention is not impaired, the acid dianhydride component includes an acid dianhydride represented by the above formula (1-1) and an acid dianhydride represented by the above formula (C1). Other acid dianhydrides other than the above may be used.

上記酸二無水物成分において、本発明の上記式(1−1)で表される酸二無水物とともに脂環式テトラカルボン酸二無水物を用いる場合における、上記式(1−1)で表される酸二無水物と脂環式テトラカルボン酸二無水物との比率は、通常、上記式(1−1)で表される酸二無水物:脂環式テトラカルボン酸二無水物=1:0.5〜1:4である。このような範囲とすることで、高耐熱性、高柔軟性、高透明性、低リタデーションのポリイミドを与えるポリアミック酸を再現性よく得ることができる。 In the above acid dianhydride component, when the alicyclic tetracarboxylic acid dianhydride is used together with the acid dianhydride represented by the above formula (1-1) of the present invention, it is represented by the above formula (1-1). The ratio of the acid dianhydride to be alicyclic tetracarboxylic acid dianhydride is usually the acid dianhydride represented by the above formula (1-1): alicyclic tetracarboxylic acid dianhydride = 1. : 0.5 to 1: 4. Within such a range, a polyamic acid that gives polyimide with high heat resistance, high flexibility, high transparency, and low retardation can be obtained with good reproducibility.

耐熱性、柔軟性及び透明性に優れるだけでなく、リタデーションが低いという特徴をも有するポリイミド膜を与えるポリアミック酸を再現性よく得る観点から、本発明のポリアミック酸の製造に用いるジアミン成分は、好ましくは芳香族ジアミンを、より好ましくは下記式(A1)で表されるジアミンを含む。

Figure 0006966725
(式中、Bは、式(Y−1)〜式(Y−34)からなる群から選ばれる2価の基を表す。)
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
(式中、*は結合手を表す。)The diamine component used in the production of the polyamic acid of the present invention is preferable from the viewpoint of obtaining a polyamic acid having a polyimide film having not only excellent heat resistance, flexibility and transparency but also low retardation with good reproducibility. Contains an aromatic diamine, more preferably a diamine represented by the following formula (A1).
Figure 0006966725
(In the formula, B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34).)
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
(In the formula, * represents a bond.)

上記式(A1)で表されるジアミンの中でも、式中のBが前記式(Y−12)、(Y−13)、(Y−14)、(Y−15)、(Y−18)、(Y−27)、(Y−28)、(Y−30)および(Y−33)で表されるジアミンが好ましく、前記Bが前記式(Y−12)、(Y−13)、(Y−14)、(Y−15)および(Y−33)で表されるジアミンが特に好ましい。
また、本発明の効果を損なわない範囲において、前記ジアミン成分には、上記式(A1)で表されるジアミン以外の、その他のジアミン化合物を用いてもよい。
Among the diamine represented by the formula (A1), B 2 in the formula is the formula (Y-12), (Y -13), (Y-14), (Y-15), (Y-18) , (Y-27), (Y-28), (Y-30) and (Y-33) are preferable, and the B 2 is the above formula (Y-12), (Y-13),. Diamines represented by (Y-14), (Y-15) and (Y-33) are particularly preferred.
Further, as long as the effect of the present invention is not impaired, other diamine compounds other than the diamine represented by the above formula (A1) may be used as the diamine component.

高耐熱性、高柔軟性、高透明性、低リタデーションのポリイミド膜を与えるポリアミック酸を再現性よく得る観点から、本発明のポリアミック酸の製造に用いるジアミン成分中芳香族ジアミンの含有量は、好ましくは50mol%以上、より好ましくは60mol%以上、より一層好ましくは70モル%、さらに好ましくは80モル%、さらに一層好ましくは90モル%、最も好ましくは100モル%である。 From the viewpoint of obtaining a polyamic acid that gives a polyimide film of high heat resistance, high flexibility, high transparency, and low retardation with good reproducibility, the content of aromatic diamine in the diamine component used for producing the polyamic acid of the present invention is preferable. Is 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol%, still more preferably 80 mol%, still more preferably 90 mol%, and most preferably 100 mol%.

なお、上記酸二無水物成分として上記式(1−1)で表される酸二無水物と上記(C1)で表される酸二無水物とを用い、上記ジアミン成分として上記式(A1)で表されるジアミンを用いた場合、ポリアミック酸は下記式(4−1)で表されるモノマー単位と、下記式(4−2)で表されるモノマー単位とを有するものとなる。

Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、d、e、B及びBは、上記と同じ意味を表す。)The acid dianhydride represented by the above formula (1-1) and the acid dianhydride represented by the above (C1) are used as the acid dianhydride component, and the above formula (A1) is used as the diamine component. When the diamine represented by is used, the polyamic acid has a monomer unit represented by the following formula (4-1) and a monomer unit represented by the following formula (4-2).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, e, B 1 and B 2 have the same meanings as above.)

本発明のポリアミック酸を得る方法は特に限定されるものではなく、前述の酸二無水物成分とジアミン成分とを公知の手法によって反応、重合させればよい。
ポリアミック酸を合成する際の酸二無水物成分のモル数とジアミン成分のモル数との比は、酸二無水物成分/ジアミン成分=0.8〜1.2である。
The method for obtaining the polyamic acid of the present invention is not particularly limited, and the above-mentioned acid dianhydride component and diamine component may be reacted and polymerized by a known method.
The ratio of the number of moles of the acid dianhydride component to the number of moles of the diamine component in synthesizing the polyamic acid is acid dianhydride component / diamine component = 0.8 to 1.2.

ポリアミック酸の合成に用いられる溶媒としては、例えば、m−クレゾール、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルカプロラクタム、ジメチルスルホキシド(DMSO)、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ−ブチロラクトンなどが挙げられる。これらは、単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解しない溶媒であっても、均一な溶液が得られる範囲内で上記溶媒に加えて使用してもよい。
重縮合反応の温度は、−20〜150℃、好ましくは−5〜100℃の任意の温度を選択することができる。
Solvents used for the synthesis of polyamic acid include, for example, m-cresol, N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N- Examples thereof include methylcaprolactam, dimethyl sulfoxide (DMSO), tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, γ-butyrolactone and the like. These may be used alone or in combination. Further, even if the solvent does not dissolve the polyamic acid, it may be used in addition to the above solvent as long as a uniform solution can be obtained.
The temperature of the polycondensation reaction can be selected from any temperature of -20 to 150 ° C, preferably −5 to 100 ° C.

上述したポリアミック酸を得るための重合反応により得られたポリアミック酸含有溶液(ポリアミック酸溶液とも称する)は、そのまま、あるいは希釈もしくは濃縮した後、後述するポリイミド膜形成用組成物として使用することができる。また該ポリアミック酸含有溶液に、メタノール、エタノールなどの貧溶媒を加えてポリアミック酸を沈殿させて単離し、その単離したポリアミック酸を適当な溶媒に再溶解させてポリアミック酸含有溶液とし、これをポリイミド膜形成用組成物として使用することもできる。
ポリアミック酸含有溶液の希釈用溶媒並びに単離したポリアミック酸の再溶解用溶媒は、得られたポリアミック酸を溶解させるものであれば特に限定されるものではなく、例えば、m−クレゾール、2−ピロリドン、NMP、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、DMAc、DMF、γ−ブチロラクトンなどが挙げられる。
The polyamic acid-containing solution (also referred to as a polyamic acid solution) obtained by the polymerization reaction for obtaining the above-mentioned polyamic acid can be used as it is, or after being diluted or concentrated, as a composition for forming a polyimide film described later. .. Further, a poor solvent such as methanol or ethanol is added to the polyamic acid-containing solution to precipitate the polyamic acid, and the isolated polyamic acid is redissolved in an appropriate solvent to prepare a polyamic acid-containing solution. It can also be used as a composition for forming a polyimide film.
The solvent for diluting the polyamic acid-containing solution and the solvent for redissolving the isolated polyamic acid are not particularly limited as long as they dissolve the obtained polyamic acid, and are, for example, m-cresol and 2-pyrrolidone. , NMP, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, DMAc, DMF, γ-butyrolactone and the like.

また、単独ではポリアミック酸を溶解しない溶媒であっても、ポリアミック酸が析出しない範囲であれば上記溶媒に加えて使用することができる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステルなどが挙げられる。 Further, even if the solvent does not dissolve the polyamic acid by itself, it can be used in addition to the above solvent as long as the polyamic acid does not precipitate. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol. , 1-Phenoxy-2-propanol, Propylene Glycol Monoacetate, Propylene Glycol Diacetate, Propylene Glycol-1-monomethyl Ether-2-acetate, Propylene Glycol-1-monoethyl Ether-2-acetate, Dipropylene Glycol, 2- Examples thereof include (2-ethoxypropoxy) propanol, lactic acid methyl ester, lactic acid ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, and lactic acid isoamyl ester.

なお本発明において、ポリアミック酸の数平均分子量は、得られる薄膜の柔軟性等を向上させるという観点から、好ましくは5,000以上であり、またポリアミック酸の溶解性を確保するという観点から、好ましくは100,000以下、より好ましくは50,000以である。なお本明細書において、数平均分子量は、GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリスチレン換算値として算出される値である。 In the present invention, the number average molecular weight of the polyamic acid is preferably 5,000 or more from the viewpoint of improving the flexibility of the obtained thin film, and is preferable from the viewpoint of ensuring the solubility of the polyamic acid. Is 100,000 or less, more preferably 50,000 or more. In the present specification, the number average molecular weight is a value measured by a GPC (gel permeation chromatography) apparatus and calculated as a polystyrene-equivalent value.

以上のようにして調製したポリアミック酸含有溶液は、前述の通りポリイミド膜形成用組成物として好適に用いることができる。
そして、基板上に上記ポリイミド膜形成用組成物を塗布して得られた塗膜を加熱し、溶媒を蒸発させつつイミド化反応をさせることで、本発明のポリイミド膜を得ることができる。すなわち、本発明のポリイミド膜は、上記ポリイミド膜形成用組成物の固形分からなり、該固形分中のポリアミック酸のイミド化物を含むものである。なおここでいう固形分量とは、有機溶媒以外の成分の総質量を意味し、液状のモノマー等であっても固形分として重量に含めるものとする。上記ポリイミド膜形成用組成物における固形分量の配合量は、通常0.5〜30質量%程度、好ましくは5〜25質量%程度である。
ポリイミド膜を得る際、加熱温度は、通常100〜500℃程度であり、例えば、100〜150℃の範囲、180〜350℃の範囲、380〜450℃の範囲で段階的に加熱してもよい。
なお、ポリイミド膜と基板との密着性を更に向上させる目的で、ポリイミド膜形成用組成物に、カップリング剤等の公知の添加剤を加えてもよい。なおその他成分を含む場合も含め、本発明のポリイミド膜形成用組成物の固形分量において、上記ポリアミック酸の割合は70〜100質量%とすることができる。
上記ポリイミド膜形成用組成物並びに該組成物を用いて形成されるポリイミド膜も本発明の対象である。
The polyamic acid-containing solution prepared as described above can be suitably used as the composition for forming a polyimide film as described above.
Then, the polyimide film of the present invention can be obtained by heating the coating film obtained by applying the above-mentioned polyimide film forming composition on a substrate and causing an imidization reaction while evaporating the solvent. That is, the polyimide film of the present invention comprises the solid content of the above-mentioned polyimide film forming composition and contains an imidized polyamic acid in the solid content. The solid content amount referred to here means the total mass of the components other than the organic solvent, and even a liquid monomer or the like is included in the weight as a solid content. The blending amount of the solid content in the polyimide film forming composition is usually about 0.5 to 30% by mass, preferably about 5 to 25% by mass.
When obtaining the polyimide film, the heating temperature is usually about 100 to 500 ° C., for example, it may be heated stepwise in the range of 100 to 150 ° C., the range of 180 to 350 ° C., and the range of 380 to 450 ° C. ..
For the purpose of further improving the adhesion between the polyimide film and the substrate, a known additive such as a coupling agent may be added to the polyimide film forming composition. The proportion of the polyamic acid can be 70 to 100% by mass in the solid content of the polyimide film forming composition of the present invention, including the case where other components are contained.
The composition for forming a polyimide film and the polyimide film formed by using the composition are also the objects of the present invention.

なお、上記式(4−1)で表されるモノマー単位と上記式(4−2)で表されるモノマー単位とを有するポリアミック酸を含有する溶液より形成されるポリイミド膜において、当該ポリイミドは、下記式(5−1)で表されるモノマー単位と下記式(5−2)で表されるモノマー単位とを有するものである。

Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、d、e、B及びBは、上記と同じ意味を表す。)In the polyimide film formed from a solution containing a polyamic acid having a monomer unit represented by the above formula (4-1) and a monomer unit represented by the above formula (4-2), the polyimide is used. It has a monomer unit represented by the following formula (5-1) and a monomer unit represented by the following formula (5-2).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d, e, B 1 and B 2 have the same meanings as above.)

以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
なお、使用した試薬の略語は以下のとおりである
TH:トリプチセンヒドロキノン(9,10−ジヒドロ−9,10−[1,2]ベンゼノアントラセン−1,4−ジオール)
TH−TMLA:トリプチセレンヒドロキノン ビス−トリメリット酸
TH−TMA :トリプチセンヒドロキノン ビス−トリメリット酸二無水物
THF:テトラヒドロフラン
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
TFMB:2,2’−ジ(トリフルオロメチル)ベンジジン
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
The abbreviations for the reagents used are as follows: TH: trypticene hydroquinone (9,10-dihydro-9,10- [1,2] benzenoanthracene-1,4-diol).
TH-TMLA: trypticerene hydroquinone bis-trimellitic acid TH-TMA: trypticene hydroquinone bis-trimellitic acid dianhydride THF: tetrahydrofuran CBDA: 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride TFMB : 2,2'-di (trifluoromethyl) benzidine

また試料の調製及び物性の分析及び評価に用いた装置及びその条件は、以下の通りである。
1)HPLC分析
カラム:Inertsil ODS−3、5μm、4.6mm×250mm
オーブン:40℃
検出波長:211nm
流速:1.0mL/分
溶離液:
TH−TMLA:アセトニトリル/0.5%リン酸水溶液=50/50 サンプル注入量:5μL
TH−TMA :アセトニトリル/0.5%リン酸水溶液=50/50 サンプル注入量:5μL
※TH−TMAを溶離液で1000倍に希釈し、70℃で4時間撹拌後、TH−TMLAとして測定
2)HNMR,13CNMR分析
装置:フーリエ変換型超伝導核磁気共鳴装置(FT−NMR)(INOVA−400(Varian社)400MHz
溶媒:DMSO−d6
内標準物質:テトラメチルシラン(TMS)
The equipment and conditions used for sample preparation and analysis and evaluation of physical properties are as follows.
1) HPLC analysis column: Inertsil ODS-3, 5 μm, 4.6 mm × 250 mm
Oven: 40 ° C
Detection wavelength: 211nm
Flow rate: 1.0 mL / min Eluent:
TH-TMLA: Acetonitrile / 0.5% aqueous phosphoric acid solution = 50/50 Sample injection amount: 5 μL
TH-TMA: Acetonitrile / 0.5% aqueous phosphoric acid solution = 50/50 Sample injection amount: 5 μL *
* TH-TMA is diluted 1000 times with an eluent, stirred at 70 ° C for 4 hours, and then measured as TH-TMLA. 2) 1 HNMR, 13 CNMR analyzer: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) ) (INOVA-400 (Varian) 400MHz
Solvent: DMSO-d6
Internal standard substance: Tetramethylsilane (TMS)

1)数平均分子量及び重量平均分子量の測定
ポリアミック酸の数平均分子量(以下、Mnと略す)と重量平均分子量(以下、Mwと略す)は、装置:昭和電工(株)製、Showdex GPC−101、カラム:KD803およびKD805、カラム温度:50℃、溶出溶媒:DMF、流量:1.5ml/分、検量線:標準ポリスチレン、の条件にて測定した。
2)膜厚
得られた樹脂薄膜の膜厚は、(株)テクロック製 シックネスゲージにて測定した。
3)5%重量減少温度(Td5%
5%重量減少温度(Td5%[℃])は、TAインスツルメンツ社製 TGA Q500を用い、窒素中、樹脂薄膜約5乃至10mgを50乃至800℃まで10℃/minで昇温して測定することで求めた。
4)光線透過率(透明性)(T550nm
波長550nmの光線透過率(T550nm[%])は、日本電色工業(株)製 SA4000スペクトロメーターを用いて、室温にて、リファレンスを空気として、測定を行った。
5)リタデーション(Rth、R
厚さ方向リタデーション(Rth)及び面内リタデーション(R)を、王子計測機器(株)製、KOBURA 2100ADHを用いて、室温にて測定した。
なお、厚さ方向リタデーション(Rth)及び面内リタデーション(R)は以下の式にて算出される。
=(Nx−Ny)×d=ΔNxy×d
th=[(Nx+Ny)/2−Nz]×d=[(ΔNxz×d)+(ΔNyz×d)]/2
Nx、Ny:面内の直交する2つの屈折率(Nx>Ny、Nxを遅相軸、Nyを進相軸とも称する)
Nz:面に対して厚さ(垂直)方向の屈折率
d:膜厚
ΔNxy:面内の2つの屈折率の差(Nx−Ny)(複屈折)
ΔNxz:面内の屈折率Nxと厚さ方向の屈折率Nzの差(複屈折)
ΔNyz:面内の屈折率Nyと厚さ方向の屈折率Nzの差(複屈折)
6)面内複屈折(Δn)
前述の<5)リタデーション>により得られた厚さ方向リタデーション(Rth)の値を用い、以下の式にて算出した。
Δn=[Rth/d(フィルム膜厚)]/1000
1) Measurement of number average molecular weight and weight average molecular weight The number average molecular weight (hereinafter abbreviated as Mn) and weight average molecular weight (hereinafter abbreviated as Mw) of the polyamic acid are determined by the device: Showdex GPC-101 manufactured by Showa Denko Co., Ltd. , Columns: KD803 and KD805, column temperature: 50 ° C., elution solvent: DMF, flow rate: 1.5 ml / min, molecular weight line: standard polystyrene.
2) Film thickness The film thickness of the obtained resin thin film was measured with a thickness gauge manufactured by Teclock Co., Ltd.
3) 5% weight loss temperature (Td 5% )
The 5% weight loss temperature (Td 5% [° C.]) is measured by heating about 5 to 10 mg of a resin thin film in nitrogen at 10 ° C./min to 50 to 800 ° C. using TGA Q500 manufactured by TA Instruments. I asked for it.
4) Light transmittance (transparency) (T 550 nm )
The light transmittance (T 550 nm [%]) at a wavelength of 550 nm was measured using an SA4000 spectrometer manufactured by Nippon Denshoku Kogyo Co., Ltd. at room temperature using a reference as air.
5) Ritalization (R th , R 0 )
Thickness direction retardation (R th ) and in-plane retardation (R 0 ) were measured at room temperature using KOBURA 2100ADH manufactured by Oji Measuring Instruments Co., Ltd.
The thickness direction retardation (R th ) and the in-plane retardation (R 0 ) are calculated by the following formulas.
R 0 = (Nx-Ny) x d = ΔNxy x d
R th = [(Nx + Ny) /2-Nz] × d = [(ΔNxz × d) + (ΔNyz × d)] / 2
Nx, Ny: Two orthogonal refractive indexes in the plane (Nx> Ny, Nx is also referred to as a slow axis, Ny is also referred to as a phase advance axis).
Nz: Refractive index in the thickness (perpendicular) direction with respect to the plane d: Film thickness ΔNxy: Difference between two refractive indexes in the plane (Nx-Ny) (birefringence)
ΔNxz: Difference between in-plane refractive index Nx and refractive index Nz in the thickness direction (birefringence)
ΔNyz: Difference between the in-plane refractive index Ny and the refractive index Nz in the thickness direction (birefringence)
6) In-plane birefringence (Δn)
Using the value of the thickness direction retardation (R th ) obtained by the above-mentioned <5) retardation>, it was calculated by the following formula.
Δn = [R th / d (film thickness)] / 1000

[1]化合物の合成
<実施例1−1>(TH−TMLAの合成)

Figure 0006966725
[1] Compound synthesis <Example 1-1> (Synthesis of TH-TMLA)
Figure 0006966725

窒素気流下、TH(10g)をTHF(40g)に溶解し、トリエチルアミン(11.6g)を添加し、撹拌した。その溶液を−3℃に冷却したトリメリット酸クロリド無水物(22.1g)のTHF(100g)溶液へ30分かけて滴下し、1時間攪拌した。反応液を25℃に昇温し、3時間攪拌後、THF(60g)を追加し、還流条件下(66℃)で1時間撹拌した。その後反応液を30℃まで冷却後、析出物をろ過し、TH−TMA粗物(73.6g)を得た。次にこのTH−TMA粗物を酢酸エチル(200g)及び、水(200g)の混合溶液に加え、この懸濁溶液を50℃で30分、60℃で1時間、還流条件下(78℃)で2.5時間撹拌し、該粗物を完全溶解させた。この溶液を60℃まで冷却後、水層を除去した後、有機層に水(200g)を加え、60℃で30分撹拌後水層を除去した。得られた有機層を濃縮後、70℃にて減圧乾燥し、TH−TMLA粗物を18.7g得た(HPLC面百(保持時間;9.0min);87.8%)。
この結晶は、HNMR、13CNMR分析結果から、TH−TMLAであることを確認した。
HNMR(DMSO−d6、δppm):13.6(s,4H)、8.6(m,2H )、8.5(dd,2H)、8.0(d,2H)、7.5(m,4H)、7.1(s,2H)7.0(m,4H)、5.8(s,2H).
13CNMR(DMSO−d6、δppm):168.9、167.8、163.9、144.7、143.6、139.8、139.0、133.2、132.8、130.9、130.7、129.4、125.8、124.7、120.6、47.7
TH (10 g) was dissolved in THF (40 g) under a nitrogen stream, triethylamine (11.6 g) was added, and the mixture was stirred. The solution was added dropwise to a solution of trimellitic acid chloride anhydride (22.1 g) in THF (100 g) cooled to -3 ° C. over 30 minutes, and the mixture was stirred for 1 hour. The reaction mixture was heated to 25 ° C., stirred for 3 hours, THF (60 g) was added, and the mixture was stirred under reflux conditions (66 ° C.) for 1 hour. Then, the reaction solution was cooled to 30 ° C., and the precipitate was filtered to obtain a crude TH-TMA product (73.6 g). Next, this TH-TMA crude is added to a mixed solution of ethyl acetate (200 g) and water (200 g), and this suspension solution is added at 50 ° C. for 30 minutes, 60 ° C. for 1 hour, under reflux conditions (78 ° C.). Was stirred for 2.5 hours to completely dissolve the crude product. After cooling this solution to 60 ° C. and removing the aqueous layer, water (200 g) was added to the organic layer, and the mixture was stirred at 60 ° C. for 30 minutes and then the aqueous layer was removed. The obtained organic layer was concentrated and then dried under reduced pressure at 70 ° C. to obtain 18.7 g of TH-TMLA crude (HPLC surface 100 (holding time; 9.0 min); 87.8%).
It was confirmed that this crystal was TH-TMLA from the results of 1 HNMR and 13 CNMR analysis.
1 1 HNMR (DMSO-d6, δppm): 13.6 (s, 4H), 8.6 (m, 2H), 8.5 (dd, 2H), 8.0 (d, 2H), 7.5 ( m, 4H), 7.1 (s, 2H) 7.0 (m, 4H), 5.8 (s, 2H).
13 CNMR (DMSO-d6, δppm): 168.9, 167.8, 163.9, 144.7, 143.6, 139.8, 139.0, 133.2, 132.8, 130.9, 130.7, 129.4, 125.8, 124.7, 120.6, 47.7

<実施例1−2>(TH−TMAの合成)
TH−TMLA粗物(17.7g)を無水酢酸(88g)に加え、還流条件下(130℃)にて30分撹拌した。反応液を30℃に冷却し、析出物を窒素気流化でろ過後、ろ物を無水酢酸(20g)で2度洗浄後、酢酸エチル(20g)で洗浄した。得られた未乾燥のろ物にヘキサン(20g)を加え、130℃にて減圧下共沸乾燥しTH−TMAを14.8g得た。(収率;66.8%(3Steps)、HPLC面百(保持時間;9.0min);94.9%)。
この結晶は、HNMR分析結果から、TH−TMAであることを確認した。
HNMR(DMSO−d6、δppm):8.83(d,2H)、8.78(s,2H )、8.4(d,2H)、7.5(m,4H)、7.2(s,2H)、7.0(m,4H)、5.8(s,2H).
<Example 1-2> (Synthesis of TH-TMA)
A crude TH-TMLA (17.7 g) was added to acetic anhydride (88 g), and the mixture was stirred under reflux conditions (130 ° C.) for 30 minutes. The reaction mixture was cooled to 30 ° C., the precipitate was filtered through a nitrogen stream, the filtrate was washed twice with acetic anhydride (20 g), and then washed with ethyl acetate (20 g). Hexane (20 g) was added to the obtained undried filter, and azeotropic drying was performed at 130 ° C. under reduced pressure to obtain 14.8 g of TH-TMA. (Yield; 66.8% (3 Steps), HPLC surface 100 (holding time; 9.0 min); 94.9%).
It was confirmed that this crystal was TH-TMA from the 1 HNMR analysis result.
1 1 HNMR (DMSO-d6, δppm): 8.83 (d, 2H), 8.78 (s, 2H), 8.4 (d, 2H), 7.5 (m, 4H), 7.2 ( s, 2H), 7.0 (m, 4H), 5.8 (s, 2H).

[2]ポリアミック酸溶液の調製及びそれを用いたポリイミド膜の作製
<実施例2>(モル比:TH−TMA30:CBDA70:TFMB100)
マグネチックスターラーを備えた100mLの三口フラスコに、TFMB 1.411g(4.5mmol)およびγ−ブチロラクトン 2.628gを入れて撹拌した。TFMBが溶媒に完全に溶解した後、TH−TMA 0.856g(1.4mmol)及びγ−ブチロラクトン 3.06gを加え、得られた混合物を、窒素雰囲気下、100℃で4時間撹拌した。そして、加熱温度を50℃まで下げ、CBDA 0.617g(3.2mmol)およびγ−ブチロラクトン 3.06gを加え、窒素雰囲気下で一晩反応させた。
次の日、得られた反応混合物を放冷し、そこへポリアミック酸濃度が15質量%となるようにγ−ブチロラクトンを加えてポリアミック酸溶液を調製した。
得られたポリアミック酸溶液をガラス基板上にドクターブレードにより塗布し、塗膜を50℃で30分間、140℃で30分間、200℃で60分間加熱した後、さらに真空中で300℃で60分間順次加熱し、ポリイミド膜を作製した。
[2] Preparation of polyamic acid solution and preparation of polyimide film using it <Example 2> (molar ratio: TH-TMA30: CBDA70: TFMB100)
1.411 g (4.5 mmol) of TFMB and 2.628 g of γ-butyrolactone were placed in a 100 mL three-necked flask equipped with a magnetic stirrer and stirred. After the TFMB was completely dissolved in the solvent, 0.856 g (1.4 mmol) of TH-TMA and 3.06 g of γ-butyrolactone were added, and the obtained mixture was stirred at 100 ° C. for 4 hours under a nitrogen atmosphere. Then, the heating temperature was lowered to 50 ° C., 0.617 g (3.2 mmol) of CBDA and 3.06 g of γ-butyrolactone were added, and the mixture was reacted overnight under a nitrogen atmosphere.
The next day, the obtained reaction mixture was allowed to cool, and γ-butyrolactone was added thereto so that the polyamic acid concentration was 15% by mass to prepare a polyamic acid solution.
The obtained polyamic acid solution is applied onto a glass substrate with a doctor blade, and the coating film is heated at 50 ° C. for 30 minutes, 140 ° C. for 30 minutes, 200 ° C. for 60 minutes, and then in vacuum at 300 ° C. for 60 minutes. The polyimide film was prepared by heating in sequence.

<実施例3>(モル比:TH−TMA10:CBDA90:TFMB100)
マグネチックスターラーを備えた100mLの三口フラスコに、TFMB 1.411g(4.5mmol)およびγ−ブチロラクトン 2.268gを入れて撹拌した。TFMBが溶媒に完全に溶解した後、TH−TMA 0.2855g(0.45mmol)及びγ−ブチロラクトン 1.85gを加え、得られた混合物を、窒素雰囲気下、100℃で4時間撹拌した。そして、加熱温度を50℃まで下げ、CBDA 0.7942g(4.1mmol)およびγ−ブチロラクトン 1.89gを加え、窒素雰囲気下で一晩反応させた。
次の日、得られた反応混合物を放冷し、そこへポリアミック酸濃度が15質量%となるようにγ−ブチロラクトンを加えてポリアミック酸溶液を調製した。
得られたポリアミック酸溶液をガラス基板上にドクターブレードにより塗布し、塗膜を50℃で30分間、140℃で30分間、200℃で60分間加熱した後、さらに真空中で300℃で60分間順次加熱し、ポリイミド膜を作製した。
<Example 3> (Mole ratio: TH-TMA10: CBDA90: TFMB100)
1.411 g (4.5 mmol) of TFMB and 2.268 g of γ-butyrolactone were placed in a 100 mL three-necked flask equipped with a magnetic stirrer and stirred. After the TFMB was completely dissolved in the solvent, 0.2855 g (0.45 mmol) of TH-TMA and 1.85 g of γ-butyrolactone were added, and the obtained mixture was stirred at 100 ° C. for 4 hours under a nitrogen atmosphere. Then, the heating temperature was lowered to 50 ° C., 0.7942 g (4.1 mmol) of CBDA and 1.89 g of γ-butyrolactone were added, and the mixture was reacted overnight under a nitrogen atmosphere.
The next day, the obtained reaction mixture was allowed to cool, and γ-butyrolactone was added thereto so that the polyamic acid concentration was 15% by mass to prepare a polyamic acid solution.
The obtained polyamic acid solution is applied onto a glass substrate with a doctor blade, and the coating film is heated at 50 ° C. for 30 minutes, 140 ° C. for 30 minutes, 200 ° C. for 60 minutes, and then in vacuum at 300 ° C. for 60 minutes. The polyimide film was prepared by heating in sequence.

上述の手順にて得られたポリイミド膜に四角形の切込みを入れて膜を剥がし、評価試料とした。
前述の手順に従い、各樹脂薄膜(評価試料)の耐熱性及び光学特性、すなわち、光線透過率(T550nm)、5%重量減少温度(Td5%)並びにリタデーション(Rth、R)、複屈折Δnに関して、それぞれ評価した。なお、ポリアミック酸の数平均分子量Mn及び重量平均分子量Mwについてもそれぞれ測定を行った。また柔軟性は、樹脂薄膜を両手で持ち鋭角(30度程度)に曲げた場合においても割れることがないものについて“柔軟”であると評価した。
結果を表1に示す。
A square notch was made in the polyimide film obtained by the above procedure, and the film was peeled off to prepare an evaluation sample.
According to the above procedure, the heat resistance and optical properties of each resin thin film (evaluation sample), that is, light transmittance (T 550 nm ), 5% weight loss temperature (Td 5% ), and refraction (R th , R 0 ), birefringence. The refraction Δn was evaluated respectively. The number average molecular weight Mn and the weight average molecular weight Mw of the polyamic acid were also measured. Further, the flexibility was evaluated as "flexible" when the resin thin film was held with both hands and did not crack even when bent at an acute angle (about 30 degrees).
The results are shown in Table 1.

Figure 0006966725
Figure 0006966725

表1に示すように、本発明の新規な酸二無水物を用いて作製したポリアミック酸より得たポリイミド膜は、いずれも、柔軟性に優れ、透過率が高く、耐熱性に優れるという結果となった。また厚さ方向のリタデーションRthは500nm未満の値、面内リタデーションRが5未満といった非常に低い値を有する結果となった。
このように、本発明の新規な酸二無水物を用いて製造したポリアミック酸より得られるポリイミド膜は、柔軟性を有し、高い透明性(高い光線透過率)及び耐熱性、そして低いリタデーションという特性を有し、すなわちフレキシブルディスプレイ基板のベースフィルムとして必要な要件を満たすものであり、フレキシブルディスプレイ基板のベースフィルムとして特に好適に用いることができることが期待できる。
As shown in Table 1, all the polyimide membranes obtained from the polyamic acid prepared by using the novel acid dianhydride of the present invention have excellent flexibility, high transmittance, and excellent heat resistance. became. The retardation R th in the thickness direction was the result of a very low value such less than the value of less than 500 nm, the in-plane retardation R 0 is 5.
As described above, the polyimide film obtained from the polyamic acid produced by using the novel acid dianhydride of the present invention has flexibility, high transparency (high light transmittance), heat resistance, and low retardation. It has characteristics, that is, it satisfies the requirements required as a base film for a flexible display substrate, and it can be expected that it can be particularly preferably used as a base film for a flexible display substrate.

Claims (12)

酸二無水物成分と、ジアミン成分とを反応させて得られるポリアミック酸であって、
前記酸二無水物成分が下記式(1−1)で表される酸二無水物を含むことを特徴とする、ポリアミック酸。
Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)
A polyamic acid obtained by reacting an acid dianhydride component with a diamine component.
A polyamic acid, wherein the acid dianhydride component contains an acid dianhydride represented by the following formula (1-1).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )
前記ジアミン成分が、式(A1)で表されるジアミンを含むことを特徴とする、請求項1に記載のポリアミック酸。
Figure 0006966725
(式中、Bは、式(Y−1)〜式(Y−34)からなる群から選ばれるいずれかの基を表す。)
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
(式中、*は結合手を表す。)
The polyamic acid according to claim 1, wherein the diamine component contains a diamine represented by the formula (A1).
Figure 0006966725
(In the formula, B 2 represents any group selected from the group consisting of formulas (Y-1) to (Y-34).)
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
Figure 0006966725
(In the formula, * represents a bond.)
前記酸二無水物成分が、更に式(C1)で表されるテトラカルボン酸二無水物を含むことを特徴とする、請求項1又は請求項2に記載のポリアミック酸。
Figure 0006966725
〔式中、Bは、式(X−1)〜式(X−12)からなる群から選ばれるいずれかの基を表す。
Figure 0006966725
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
The polyamic acid according to claim 1 or 2, wherein the acid dianhydride component further contains a tetracarboxylic dianhydride represented by the formula (C1).
Figure 0006966725
[In the formula, B 1 represents any group selected from the group consisting of formulas (X-1) to (X-12).
Figure 0006966725
(In the equation, multiple Rs represent hydrogen atoms or methyl groups independently of each other, and * represents a bond.)]
請求項1乃至請求項3のうちいずれか一項に記載のポリアミック酸と、有機溶媒とを含むポリイミド膜形成用組成物。 A polyimide film-forming composition containing the polyamic acid according to any one of claims 1 to 3 and an organic solvent. 請求項4に記載のポリイミド膜形成用組成物を用いて形成されるポリイミド膜。 A polyimide film formed by using the polyimide film forming composition according to claim 4. 請求項5に記載のポリイミド膜からなるフレキシブルデバイス用基板。 A substrate for a flexible device made of the polyimide film according to claim 5. 式(1−1)で表されることを特徴とする酸二無水物。
Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)
An acid dianhydride characterized by being represented by the formula (1-1).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )
式(1−2)で表されることを特徴とする、請求項7に記載の酸二無水物。
Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、dおよびeは、前記と同じ意味を示す。)
The acid dianhydride according to claim 7, wherein the acid dianhydride is represented by the formula (1-2).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meanings as described above.)
式(1−3)で表されることを特徴とする、請求項8に記載の酸二無水物。
Figure 0006966725
The acid dianhydride according to claim 8, wherein the acid dianhydride is represented by the formula (1-3).
Figure 0006966725
式(2−1)で表されることを特徴とするテトラカルボン酸。
Figure 0006966725
(式中、R、R、R、R及びRは、互いに独立して、ハロゲン原子、炭素原子数1乃至5のアルキル基または炭素原子数1乃至5のアルコキシ基を表し、
及びRは、互いに独立して、水素原子、ハロゲン原子、炭素原子数1乃至5のアルキル基又は炭素原子数1乃至5のアルコキシ基を表し、
aおよびbは、互いに独立して、0〜4の整数を表し、
cおよびdは、互いに独立して、0〜3の整数を表し、
eは、0〜2の整数を表す。)
A tetracarboxylic acid represented by the formula (2-1).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 independently represent a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 6 and R 7 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
a and b represent integers from 0 to 4 independently of each other.
c and d represent integers 0 to 3 independently of each other.
e represents an integer of 0 to 2. )
式(2−2)で表されることを特徴とする、請求項10に記載のテトラカルボン酸。
Figure 0006966725
(式中、R、R、R、R、R、R、R、a、b、c、dおよびeは、前記と同じ意味を示す。)
The tetracarboxylic dian according to claim 10, which is represented by the formula (2-2).
Figure 0006966725
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , a, b, c, d and e have the same meanings as described above.)
式(2−3)で表されることを特徴とする、請求項11に記載のテトラカルボン酸。
Figure 0006966725
The tetracarboxylic dian according to claim 11, which is represented by the formula (2-3).
Figure 0006966725
JP2018542881A 2016-09-28 2017-09-28 Acid dianhydride and its use Active JP6966725B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016190089 2016-09-28
JP2016190089 2016-09-28
PCT/JP2017/035325 WO2018062425A1 (en) 2016-09-28 2017-09-28 Acid dianhydride and use thereof

Publications (2)

Publication Number Publication Date
JPWO2018062425A1 JPWO2018062425A1 (en) 2019-08-29
JP6966725B2 true JP6966725B2 (en) 2021-11-17

Family

ID=61760430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018542881A Active JP6966725B2 (en) 2016-09-28 2017-09-28 Acid dianhydride and its use

Country Status (3)

Country Link
JP (1) JP6966725B2 (en)
TW (1) TWI747962B (en)
WO (1) WO2018062425A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832882B (en) 2018-08-08 2024-02-21 美商杜邦電子股份有限公司 Polymers for use in electronic devices
JP7345158B2 (en) * 2019-03-29 2023-09-15 セイカ株式会社 Diamino or dinitrobenzene compound having five aromatic rings, method for producing the same, and polyimide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182962A (en) * 2002-10-09 2004-07-02 Hitachi Chem Co Ltd Polyimide resin having triptycene skeleton and optical component
WO2014207559A2 (en) * 2013-06-06 2014-12-31 King Abdullah University Of Science And Technlology Triptycene-based dianhydrides, polyimides, methods of making each, and methods of use

Also Published As

Publication number Publication date
TWI747962B (en) 2021-12-01
TW201829546A (en) 2018-08-16
WO2018062425A1 (en) 2018-04-05
JPWO2018062425A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5190109B2 (en) Liquid crystal aligning agent comprising 3,4-dicarboxy-1,2,3,4-tetrahydro-6-tert-butyl-1-naphthalene succinic dianhydride and a polyimide resin prepared from the dianhydride
KR102557784B1 (en) Diamines and their uses
KR102062939B1 (en) Polyimide and molded body thereof
JP5359029B2 (en) Acid dianhydride, liquid crystal alignment film, and liquid crystal display element
TWI776960B (en) Polyimide resin, polyimide varnish and polyimide film
JP6806089B2 (en) Diamine and its use
JP6966725B2 (en) Acid dianhydride and its use
JP7037122B2 (en) Diamine and its use
WO2013094646A1 (en) Bis(hydroxyamide)-based acid dianhydride, method for producing same, and polyimide
JP6966726B2 (en) Acid dianhydride and its use
JP7495788B2 (en) Method for producing polyimide resin
JP6515921B2 (en) Acid dianhydride and use thereof
JP5807741B2 (en) Side chain-substituted ethylene diester type acid dianhydride, its production method and polyimide
JP4026327B2 (en) Bisaniline derivatives
JP2022121401A (en) Transparent heat-resistant plastic substrate material having both of low thermal expansion properties and solution processability
JP5754344B2 (en) Tetrahydropentalene dianhydride, process for producing the same, and polyimide
JP2013129689A (en) 4,4&#39;-cyclohexanediphenyl ester type acid dianhydride, method for producing the same, and polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R151 Written notification of patent or utility model registration

Ref document number: 6966725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151