JP6965899B2 - Manufacturing method of resin adhesion reinforced fiber woven fabric and fiber reinforced resin molded product - Google Patents

Manufacturing method of resin adhesion reinforced fiber woven fabric and fiber reinforced resin molded product Download PDF

Info

Publication number
JP6965899B2
JP6965899B2 JP2018568138A JP2018568138A JP6965899B2 JP 6965899 B2 JP6965899 B2 JP 6965899B2 JP 2018568138 A JP2018568138 A JP 2018568138A JP 2018568138 A JP2018568138 A JP 2018568138A JP 6965899 B2 JP6965899 B2 JP 6965899B2
Authority
JP
Japan
Prior art keywords
woven fabric
resin
fiber woven
reinforced
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018568138A
Other languages
Japanese (ja)
Other versions
JPWO2018150978A1 (en
Inventor
博司 森
俊一 引野
聡 三島
彰 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Publication of JPWO2018150978A1 publication Critical patent/JPWO2018150978A1/en
Application granted granted Critical
Publication of JP6965899B2 publication Critical patent/JP6965899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Description

本発明の一側面は、樹脂付着強化繊維織物、及び繊維強化樹脂成形品の製造方法に関する。 One aspect of the present invention relates to a resin-adhered reinforced fiber woven fabric and a method for producing a fiber-reinforced resin molded product.

近年、例えば自動車や飛行機といった種々の分野では、燃費向上等のために、金属材料を樹脂材料に代替して機体を軽量化することが検討されている。とりわけ、十分な強度を確保するための金属代替材料として、ガラス繊維や炭素繊維といった強化繊維を含む繊維強化樹脂材料が注目されている。 In recent years, in various fields such as automobiles and airplanes, it has been studied to replace metal materials with resin materials to reduce the weight of airframes in order to improve fuel efficiency and the like. In particular, a fiber-reinforced resin material containing reinforcing fibers such as glass fiber and carbon fiber is attracting attention as a metal substitute material for ensuring sufficient strength.

繊維強化樹脂材料が適用され得る物としては、例えば、内燃機関に付属するオイルパン等の複雑な形状を有する物が挙げられる。例えば、特許文献1に記載のオイルパンでは、フランジ部にガラス繊維補強材が配置されて樹脂が注入されている。 Examples of the material to which the fiber reinforced resin material can be applied include a material having a complicated shape such as an oil pan attached to an internal combustion engine. For example, in the oil pan described in Patent Document 1, a glass fiber reinforcing material is arranged on a flange portion and resin is injected.

特開平7−27289号公報Japanese Unexamined Patent Publication No. 7-27289

しかしながら、上記の特許文献1に記載の従来技術では、強化繊維材料が一部に使用されているが、物としての強度は不十分であった。また、樹脂を注入する工程は、通常金属材料で用いられるプレス成形工程と比較して時間がかかり、製造効率が低下するおそれがある。例えば、製造効率を向上させるために、強化繊維補強材料を含む樹脂シートを所望の形状に加工して、プレス成形で加工することにより解決を図ることが可能であるように考えられるが、強化繊維補強材料を含む樹脂シートは固く、賦形性が不十分で複雑な形状に加工することは困難であり、製造効率を向上させることは難しい。 However, in the prior art described in Patent Document 1 above, although the reinforcing fiber material is partially used, the strength as a product is insufficient. In addition, the step of injecting the resin takes longer than the press molding step usually used for metal materials, and the manufacturing efficiency may decrease. For example, in order to improve the manufacturing efficiency, it is considered possible to solve the problem by processing a resin sheet containing a reinforcing fiber reinforcing material into a desired shape and processing it by press molding. The resin sheet containing the reinforcing material is hard, has insufficient shapeability, is difficult to process into a complicated shape, and is difficult to improve the manufacturing efficiency.

本発明の一側面は、このような課題を解決するために成されたものであり、プレス成形に対応可能な成形性及び賦形性を有し、取扱性の向上を図り、成形品を製造する際の製造効率の向上を図ることが可能な樹脂付着強化織物を提供することを目的とする。本発明の一側面は、このような樹脂付着強化繊維織物を用いた繊維強化樹脂成形品の製造方法を提供することを目的とする。 One aspect of the present invention has been made in order to solve such a problem, has moldability and shapeability suitable for press molding, improves handleability, and manufactures a molded product. It is an object of the present invention to provide a resin-adhered reinforced woven fabric capable of improving manufacturing efficiency at the time of production. One aspect of the present invention is to provide a method for producing a fiber-reinforced resin molded product using such a resin-attached reinforced fiber woven fabric.

本発明の一側面は、強化繊維織物の少なくとも一方の表面に熱可塑性樹脂が付着した樹脂付着強化繊維織物であって、強化繊維織物の単位面積当たりの質量Wが、25g/m以上400g/m以下の範囲にあり、強化繊維織物の通気度Pが、0.1cm/cm/s以上300cm/cm/s以下の範囲にあり、熱可塑性樹脂の融点が、70℃以上300℃以下の範囲にあり、樹脂付着強化繊維織物の全質量に対して、強化繊維織物の質量が占める割合は、20質量%以上90質量%以下の範囲にあり、熱可塑性樹脂による強化繊維織物表面の被覆率Cが、30%以上100%未満の範囲にあり、下記式(1)により表される樹脂付着係数Aが、35以上135以下の範囲にある。
A=W×(C/100)/P0.05…(1)
One aspect of the present invention is a resin-attached reinforcing fiber woven fabric in which a thermoplastic resin is attached to at least one surface of the reinforcing fiber woven fabric, and the mass W per unit area of the reinforcing fiber woven fabric is 25 g / m 2 or more and 400 g /. It is in the range of m 2 or less, the air permeability P of the reinforcing fiber woven fabric is in the range of 0.1 cm 3 / cm 2 / s or more and 300 cm 3 / cm 2 / s or less, and the melting point of the thermoplastic resin is 70 ° C. or more. The ratio of the mass of the reinforcing fiber woven fabric to the total mass of the resin-attached reinforcing fiber woven fabric is in the range of 20% by mass or more and 90% by mass or less in the range of 300 ° C. or less, and the reinforcing fiber woven fabric made of thermoplastic resin. The surface coverage C is in the range of 30% or more and less than 100%, and the resin adhesion coefficient A represented by the following formula (1) is in the range of 35 or more and 135 or less.
A = W × (C / 100) 2 / P 0.05 … (1)

樹脂付着強化繊維織物では、上記式(1)による樹脂付着係数Aが、35以上135以下の範囲にあるので、加熱加圧によるプレス成形に対応可能な成形性及び賦形性を有し、取扱性の向上を図り、成形品を製造する際の製造効率の向上を図ることができる。樹脂付着強化繊維織物では、タック性の低減が図られているので、取扱性の向上を図ることができる。タック性とは、重なっている状態の樹脂付着強化繊維織物からの剥がれ易さを示す性質である。例えば、タック性が低いと、ロール状の樹脂付着強化繊維織物から、樹脂付着強化繊維織物を引き出し易くなるので、取扱いやすく、成形品を製造する際の製造効率の向上を図ることができる。また、成形品の製造時において、従前のように樹脂を注入する必要がなく、加熱加圧によるプレス成形を行うことで、成形品を得ることができるので、製造時間の短縮を図り、製造効率の向上を図ることができる。 Since the resin adhesion coefficient A according to the above formula (1) is in the range of 35 or more and 135 or less in the resin adhesion reinforcing fiber woven fabric, it has moldability and shapeability suitable for press molding by heating and pressing, and can be handled. It is possible to improve the property and improve the manufacturing efficiency when manufacturing the molded product. Since the tackiness of the resin-adhered reinforced fiber woven fabric is reduced, the handleability can be improved. The tack property is a property that indicates the ease of peeling from the resin-attached reinforcing fiber woven fabric in an overlapping state. For example, if the tackiness is low, the resin-adhered reinforced fiber woven fabric can be easily pulled out from the roll-shaped resin-attached reinforced fiber woven fabric, so that it is easy to handle and the production efficiency at the time of manufacturing the molded product can be improved. In addition, when manufacturing a molded product, it is not necessary to inject resin as in the past, and a molded product can be obtained by press molding by heating and pressurizing, so that the manufacturing time can be shortened and the manufacturing efficiency can be reduced. Can be improved.

強化繊維織物の単位面積当たりの質量Wは、50g/m以上250g/m以下の範囲にあってもよい。これにより、十分な強度を確保することができると共に、十分な賦形性を得ることができる。The mass W per unit area of the reinforced fiber woven fabric may be in the range of 50 g / m 2 or more and 250 g / m 2 or less. As a result, sufficient strength can be secured and sufficient shapeability can be obtained.

樹脂付着係数Aは、35以上95以下でもよい。このような樹脂付着強化繊維織物によれば、十分な賦形性を得ることができ、より複雑な形状の成形品をプレス成形により製造することができ、成形品を製造する際の製造効率の向上を図ることができる。 The resin adhesion coefficient A may be 35 or more and 95 or less. According to such a resin-adhered reinforced fiber woven fabric, sufficient shapeability can be obtained, and a molded product having a more complicated shape can be manufactured by press molding. It can be improved.

強化繊維織物は、ガラス繊維織物でもよい。ガラス繊維織物の表面にシランカップリング剤が付着していてもよい。シランカップリング剤が、エポキシシランであってもよい。ガラス繊維織物の表面にシランカップリング剤が付着していると、ガラス繊維織物に対する熱可塑性樹脂の含浸が良くなり、樹脂付着強化繊維織物の成形品の強度を向上させることができる。 The reinforcing fiber woven fabric may be a glass fiber woven fabric. A silane coupling agent may be attached to the surface of the glass fiber woven fabric. The silane coupling agent may be epoxy silane. When the silane coupling agent is attached to the surface of the glass fiber woven fabric, the impregnation of the glass fiber woven fabric with the thermoplastic resin is improved, and the strength of the molded product of the resin adhesion reinforced fiber woven fabric can be improved.

本発明の一側面の繊維強化樹脂成形品の製造方法は、1枚の樹脂付着強化繊維織物、又は、複数枚の樹脂付着強化繊維織物を積層した積層物を加熱加圧する成形工程を含む。 The method for producing a fiber-reinforced resin molded product according to one aspect of the present invention includes a molding step of heating and pressurizing one resin-bonded reinforced fiber woven fabric or a laminate obtained by laminating a plurality of resin-bonded reinforced fiber woven fabrics.

この繊維強化樹脂成形品の製造方法では、樹脂付着強化繊維織物を加熱加圧して、成形品を得ることができ、成形品を製造する際の製造効率の向上を図ることができる。成形品の製造時において、従前のように樹脂を注入する必要がなく、加熱加圧によるプレス成形を行うことで、成形品を得ることができるので、製造時間の短縮を図り、製造効率の向上を図ることができる。 In this method for producing a fiber-reinforced resin molded product, the resin-adhered reinforced fiber woven fabric can be heated and pressed to obtain a molded product, and the production efficiency at the time of producing the molded product can be improved. When manufacturing a molded product, it is not necessary to inject resin as in the past, and a molded product can be obtained by press molding by heating and pressurizing, so that the manufacturing time can be shortened and the manufacturing efficiency can be improved. Can be planned.

成形工程では、金属代替材料として樹脂付着強化繊維織物を採用し、当該樹脂付着強化繊維織物を加熱加圧してもよい。成形工程では、自動車用金属代替材料として樹脂付着強化繊維織物を採用し、当該樹脂付着強化繊維織物を加熱加圧することができる。 In the molding step, a resin-adhered reinforced fiber woven fabric may be adopted as a metal substitute material, and the resin-attached reinforced fiber woven fabric may be heated and pressed. In the molding process, a resin-adhered reinforcing fiber woven fabric is adopted as a metal substitute material for automobiles, and the resin-adhered reinforced fiber woven fabric can be heated and pressed.

成形工程では、樹脂付着強化繊維織物を加熱加圧して、箱形に成形することができる。さらに、成形工程では、樹脂付着強化繊維織物を加熱加圧して、箱形に成形し、オイルパンを製造することができる。 In the molding step, the resin-attached reinforcing fiber woven fabric can be heated and pressed to form a box shape. Further, in the molding step, the resin-attached reinforcing fiber woven fabric can be heated and pressed to form a box shape to manufacture an oil pan.

本発明の一側面によれば、プレス成形に対応可能な成形性を有し、賦形性の向上及び取扱性の向上を図り、成形品を製造する際の製造効率の向上を図ることが可能な樹脂付着強化織物、及び繊維強化樹脂成形品の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to have moldability corresponding to press molding, improve shapeability and handleability, and improve manufacturing efficiency when manufacturing a molded product. It is possible to provide a method for producing a resin-adhered reinforced fabric and a fiber-reinforced resin molded product.

以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

本実施形態の樹脂付着強化繊維織物は強化繊維織物を有する。強化繊維織物の少なくとも一方の表面には熱可塑性樹脂が付着している。強化繊維織物の織組織は特に限定されない。強化繊維織物の織組織は、例えば、平織組織、綾織組織、または、朱子織組織でもよい。強化繊維織物の織組織は、二重織組織及び三重織組織等の多重織組織でもよい。強化繊維織物の織組織は、斜子織組織及び畦織組織等の変化組織でもよい。強化繊維織物の織組織は、模紗織組織及び砂子組織等の特別組織でもよい。強化繊維織物の織組織は、その他の織組織でもよい。 The resin-attached reinforcing fiber woven fabric of the present embodiment has a reinforcing fiber woven fabric. A thermoplastic resin is attached to at least one surface of the reinforcing fiber woven fabric. The woven structure of the reinforced fiber woven fabric is not particularly limited. The woven structure of the reinforced fiber woven fabric may be, for example, a plain weave structure, a twill weave structure, or a satin weave structure. The woven structure of the reinforced fiber woven fabric may be a multiple woven structure such as a double woven structure and a triple woven structure. The weaving structure of the reinforced fiber woven fabric may be a changing structure such as a slanted weaving structure and a ridged weaving structure. The woven structure of the reinforced fiber woven fabric may be a special structure such as a woven fabric structure or a sand grain structure. The woven structure of the reinforced fiber woven fabric may be another woven structure.

強化繊維織物は、例えば、無機強化繊維織物、または、有機強化繊維織物でもよい。無機強化繊維織物として、ガラス繊維織物、炭素繊維織物、金属繊維織物及びセラミックス繊維織物等が挙げられる。有機強化繊維織物として、アラミド繊維織物、ビニロン繊維織物、高強度ポリエチレン繊維織物及びセルロース繊維織物等が挙げられる。強化繊維織物が、ガラス繊維織物であると、成形性が特に優れたものになる。ガラス繊維織物の表面にはシランカップリング剤が付着していてもよい。ガラス繊維織物の表面にシランカップリング剤が付着していると、ガラス繊維織物に対する熱可塑性樹脂の含浸が良くなり、樹脂付着強化繊維織物の成形品の強度を向上させることができる。 The reinforcing fiber woven fabric may be, for example, an inorganic reinforcing fiber woven fabric or an organic reinforcing fiber woven fabric. Examples of the inorganic reinforced fiber woven fabric include glass fiber woven fabric, carbon fiber woven fabric, metal fiber woven fabric, and ceramic fiber woven fabric. Examples of the organic reinforced fiber woven fabric include aramid fiber woven fabric, vinylon fiber woven fabric, high-strength polyethylene fiber woven fabric, and cellulose fiber woven fabric. When the reinforcing fiber woven fabric is a glass fiber woven fabric, the moldability becomes particularly excellent. A silane coupling agent may be attached to the surface of the glass fiber woven fabric. When the silane coupling agent is attached to the surface of the glass fiber woven fabric, the impregnation of the glass fiber woven fabric with the thermoplastic resin is improved, and the strength of the molded product of the resin adhesion reinforced fiber woven fabric can be improved.

強化繊維織物は、一種類の繊維で構成されたものに限定されない。強化繊維織物は、例えば、経糸と緯糸とが異なる種類の強化繊維糸で構成されていてもよい。強化繊維織物は、経糸又は緯糸の一部に種類の異なる強化繊維糸が含まれていてもよい。強化繊維織物を構成する経糸又は緯糸は、強化繊維と、後述する熱可塑性樹脂からなる熱可塑性樹脂繊維とが、混繊、合糸、又は合撚されていてもよい。強化繊維織物の経糸又は緯糸の一部に、熱可塑性樹脂繊維糸が含まれていてもよい。 Reinforcing fiber woven fabrics are not limited to those composed of one type of fiber. The reinforcing fiber woven fabric may be composed of different types of reinforcing fiber yarns, for example, the warp yarn and the weft yarn. The reinforcing fiber woven fabric may contain different types of reinforcing fiber threads as a part of the warp or weft. The warp or weft that constitutes the reinforced fiber woven fabric may be a mixed fiber, a combined yarn, or a combined twist of the reinforcing fiber and the thermoplastic resin fiber made of a thermoplastic resin described later. A part of the warp or weft of the reinforcing fiber woven fabric may contain a thermoplastic resin fiber yarn.

シランカップリング剤としては、例えば、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、カチオニックシラン等が挙げられる。シランカップリング剤は、エポキシシランであることが好ましい。エポキシシランとしては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等が挙げられる。樹脂付着強化繊維織物は、エポキシシランが付着したガラス繊維織物を有すると、成形性が特に優れたものになる。 Examples of the silane coupling agent include epoxy silane, amino silane, acrylic silane, methacrylic silane, and cationic silane. The silane coupling agent is preferably epoxysilane. Examples of the epoxysilane include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane. When the resin-adhered reinforcing fiber woven fabric has a glass fiber woven fabric to which epoxy silane is attached, the moldability becomes particularly excellent.

熱可塑性樹脂は、強化繊維織物の一方の表面に付着していればよく、強化繊維織物の両面に熱可塑性樹脂が付着していてもよい。 The thermoplastic resin may be attached to one surface of the reinforcing fiber woven fabric, and the thermoplastic resin may be attached to both sides of the reinforcing fiber woven fabric.

熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、熱可塑性エポキシ樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリアリールエーテルケトン樹脂、液晶ポリマー(LCP)等が挙げられる。熱可塑性樹脂は、ポリアミド樹脂であることが好ましい。 Examples of the thermoplastic resin include polyamide resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfide resin, polycarbonate resin, polypropylene resin, thermoplastic epoxy resin, polyethylene resin, polyvinyl chloride resin, polyphenylene ether resin, and polyether ether. Examples thereof include a ketone resin, a polyaryl ether ketone resin, and a liquid crystal polymer (LCP). The thermoplastic resin is preferably a polyamide resin.

強化繊維織物の単位面積当たりの質量Wは、25g/m以上400g/m以下の範囲にある。この単位面積は、織物の厚み方向から見た単位面積である。強化繊維織物の単位面積当たりの質量Wは、50g/m以上250g/m以下であることが好ましい。強化繊維織物の単位面積当たりの質量Wは、70g/m以上240g/m以下であることがより好ましく、90g/m以上230g/m以下であることが更に好ましく、100g/m以上220g/m以下であることが特に好ましく、105g/m以上215g/m以下であることが最も好ましい。The mass W per unit area of the reinforced fiber woven fabric is in the range of 25 g / m 2 or more and 400 g / m 2 or less. This unit area is a unit area seen from the thickness direction of the woven fabric. The mass W per unit area of the reinforced fiber woven fabric is preferably 50 g / m 2 or more and 250 g / m 2 or less. Weight W per unit area of the reinforcing fiber fabric, more preferably more preferably 70 g / m 2 or more 240 g / m 2 or less, 90 g / m 2 or more 230 g / m 2 or less, 100 g / m 2 It is particularly preferably 220 g / m 2 or more, and most preferably 105 g / m 2 or more and 215 g / m 2 or less.

強化繊維織物の単位面積当たりの質量Wの測定方法として、強化繊維織物が無機強化繊維織物である場合には、強化繊維織物に付着した樹脂を、例えば625℃で1時間加熱して、除去した後の強化繊維織物の質量を測定することができる。また強化繊維織物が有機強化繊維織物である場合には、有機強化繊維を溶解せず、強化繊維織物に付着した樹脂を溶解する溶剤に樹脂付着強化繊維織物を浸漬し、強化繊維織物に付着した樹脂を除去した後の強化繊維織物の質量を測定することができる。なお、例えば、強化繊維織物(特にガラス繊維織物)の単位面積当たりの質量Wは、JIS R3420に準拠して測定することができる。 As a method for measuring the mass W per unit area of the reinforced fiber woven fabric, when the reinforced fiber woven fabric is an inorganic reinforced fiber woven fabric, the resin adhering to the reinforced fiber woven fabric is removed by heating at, for example, 625 ° C. for 1 hour. The mass of the later reinforced fiber woven fabric can be measured. When the reinforced fiber woven fabric is an organic reinforced fiber woven fabric, the resin-attached reinforced fiber woven fabric is immersed in a solvent that does not dissolve the organic reinforced fiber but dissolves the resin attached to the reinforced fiber woven fabric, and adheres to the reinforced fiber woven fabric. The mass of the reinforced fiber woven fabric after removing the resin can be measured. For example, the mass W per unit area of the reinforced fiber woven fabric (particularly the glass fiber woven fabric) can be measured in accordance with JIS R3420.

強化繊維織物の単位面積当たりの質量Wが25g/m以上であると、強度不足を回避することができる。強化繊維織物の単位面積当たりの質量Wが400g/m以下であると、十分な賦形性を得ることができる。When the mass W per unit area of the reinforced fiber woven fabric is 25 g / m 2 or more, insufficient strength can be avoided. When the mass W per unit area of the reinforced fiber woven fabric is 400 g / m 2 or less, sufficient shapeability can be obtained.

強化繊維織物の通気度Pが、0.1cm/cm/s以上300cm/cm/s以下の範囲にある。強化繊維織物の通気度Pは、1cm/cm/s以上250cm/cm/s以下であることが好ましい。強化繊維織物の通気度Pは、5cm/cm/s以上220cm/cm/s以下であることが好ましく、7cm/cm/s以上80cm/cm/s以下であることが更に好ましい。強化繊維織物の通気度Pは、10cm/cm/s以上40cm/cm/s以下であることが特に好ましく、12cm/cm/s以上30cm/cm/s以下であることがとりわけ好ましく、13cm/cm/s以上25cm/cm/s以下であることが殊に好ましく、14cm/cm/s以上24cm/cm/s以下であることが最も好ましい。The air permeability P of the reinforced fiber woven fabric is in the range of 0.1 cm 3 / cm 2 / s or more and 300 cm 3 / cm 2 / s or less. The air permeability P of the reinforced fiber woven fabric is preferably 1 cm 3 / cm 2 / s or more and 250 cm 3 / cm 2 / s or less. The air permeability P of the reinforced fiber woven fabric is preferably 5 cm 3 / cm 2 / s or more and 220 cm 3 / cm 2 / s or less, and 7 cm 3 / cm 2 / s or more and 80 cm 3 / cm 2 / s or less. Is more preferable. The air permeability P of the reinforcing fiber woven fabric is particularly preferably 10 cm 3 / cm 2 / s or more and 40 cm 3 / cm 2 / s or less, and 12 cm 3 / cm 2 / s or more and 30 cm 3 / cm 2 / s or less. This is particularly preferable, and 13 cm 3 / cm 2 / s or more and 25 cm 3 / cm 2 / s or less is particularly preferable, and 14 cm 3 / cm 2 / s or more and 24 cm 3 / cm 2 / s or less is the most preferable. preferable.

強化繊維織物の通気度Pの測定方法として、強化繊維織物が無機強化繊維織物である場合には、強化繊維織物に付着した樹脂を、例えば625℃で1時間加熱して、除去した後の強化繊維織物の通気度Pを測定することができる。また強化繊維織物が有機強化繊維織物である場合には、有機強化繊維を溶解せず、強化繊維織物に付着した樹脂を溶解する溶剤に樹脂付着強化繊維織物を浸漬し、強化繊維織物に付着した樹脂を除去した後の強化繊維織物の通気度Pを測定することができる。なお、強化繊維織物(特にガラス繊維織物)の通気度Pは、JIS R3420に準拠して測定することができる。 As a method for measuring the air permeability P of the reinforced fiber woven fabric, when the reinforced fiber woven fabric is an inorganic reinforced fiber woven fabric, the resin adhering to the reinforced fiber woven fabric is heated at, for example, 625 ° C. for 1 hour to remove the reinforced fiber woven fabric. The air permeability P of the fiber woven fabric can be measured. When the reinforced fiber woven fabric is an organic reinforced fiber woven fabric, the resin-attached reinforced fiber woven fabric is immersed in a solvent that does not dissolve the organic reinforced fiber but dissolves the resin attached to the reinforced fiber woven fabric, and adheres to the reinforced fiber woven fabric. The air permeability P of the reinforced fiber woven fabric after removing the resin can be measured. The air permeability P of the reinforced fiber woven fabric (particularly the glass fiber woven fabric) can be measured in accordance with JIS R3420.

強化繊維織物の通気度Pが、0.1cm/cm/s以上であると、樹脂付着強化繊維織物が固くなり過ぎることを防止することができる。また、強化繊維織物の通気度Pが、300cm/cm/s以下であると、樹脂付着強化繊維織物としての強度不足を防止することができる。When the air permeability P of the reinforced fiber woven fabric is 0.1 cm 3 / cm 2 / s or more, it is possible to prevent the resin-attached reinforced fiber woven fabric from becoming too hard. Further, when the air permeability P of the reinforced fiber woven fabric is 300 cm 3 / cm 2 / s or less, it is possible to prevent insufficient strength as the resin-attached reinforced fiber woven fabric.

熱可塑性樹脂の融点が、70℃以上300℃以下の範囲にある。熱可塑性樹脂の融点は、100℃以上270℃以下であることが好ましい。熱可塑性樹脂の融点は、150℃以上250℃以下であることが好ましく、180℃以上230℃以下であることがより好ましい。熱可塑性樹脂の融点は、JIS K7121に準拠して測定することができる。 The melting point of the thermoplastic resin is in the range of 70 ° C. or higher and 300 ° C. or lower. The melting point of the thermoplastic resin is preferably 100 ° C. or higher and 270 ° C. or lower. The melting point of the thermoplastic resin is preferably 150 ° C. or higher and 250 ° C. or lower, and more preferably 180 ° C. or higher and 230 ° C. or lower. The melting point of the thermoplastic resin can be measured according to JIS K7121.

熱可塑性樹脂の融点が、70℃以上であると、樹脂付着強化繊維織物におけるタック性を低減することができる。熱可塑性樹脂の融点が、300℃以下であると、繊維強化樹脂成形品を製造する際の製造効率の低下を抑制することができる。 When the melting point of the thermoplastic resin is 70 ° C. or higher, the tackiness of the resin-adhered reinforced fiber woven fabric can be reduced. When the melting point of the thermoplastic resin is 300 ° C. or lower, it is possible to suppress a decrease in production efficiency when producing a fiber-reinforced resin molded product.

樹脂付着強化繊維織物の全質量に対して、強化繊維織物の質量が占める割合Rは、20質量%以上90質量%以下の範囲にある。この割合Rは、30質量%以上85質量%以下であることが好ましい。割合Rは、50質量%以上80質量%以下であることが好ましく、60質量%以上75質量%以下であることがより好ましい。 The ratio R of the mass of the reinforcing fiber woven fabric to the total mass of the resin-attached reinforcing fiber woven fabric is in the range of 20% by mass or more and 90% by mass or less. This ratio R is preferably 30% by mass or more and 85% by mass or less. The ratio R is preferably 50% by mass or more and 80% by mass or less, and more preferably 60% by mass or more and 75% by mass or less.

樹脂付着強化繊維織物の全質量に対する強化繊維織物の質量に占める割合Rが20質量%以上であると、樹脂付着強化繊維織物の強度不足を回避することができる。割合Rが90質量%以下であると、強化繊維織物に対する熱可塑性樹脂の浸透不足を回避することができる。樹脂付着強化繊維織物の全質量Tは、例えば、強化繊維織物の単位面積当たりの質量Wと、当該強化繊維織物の少なくとも一方の表面に付着した熱可塑性樹脂の単位面積当たりの質量Bとの合計とすることができる(T=W+B)。割合R(強化繊維含有量)は、樹脂付着強化繊維織物の全質量Tに対する強化繊維織物の質量Bの割合である(R=B/T)。 When the ratio R of the total mass of the resin-bonded reinforced fiber woven fabric to the mass of the reinforced fiber woven fabric is 20% by mass or more, it is possible to avoid insufficient strength of the resin-attached reinforced fiber woven fabric. When the ratio R is 90% by mass or less, it is possible to avoid insufficient penetration of the thermoplastic resin into the reinforcing fiber woven fabric. The total mass T of the resin-adhered reinforcing fiber woven fabric is, for example, the sum of the mass W per unit area of the reinforcing fiber woven fabric and the mass B per unit area of the thermoplastic resin attached to at least one surface of the reinforcing fiber woven fabric. (T = W + B). The ratio R (reinforcing fiber content) is the ratio of the mass B of the reinforcing fiber woven fabric to the total mass T of the resin-attached reinforcing fiber woven fabric (R = B / T).

熱可塑性樹脂による強化繊維織物表面の被覆率Cは、30%以上100%未満の範囲にある。被覆率Cは、強化繊維織物の表面において、熱可塑性樹脂によって覆われて面積の割合である。被覆率Cは、40%以上95%以下であることが好ましい。被覆率Cは、45%以上90%以下であることがより好ましく、48%以上85%以下であることが更に好ましく、51%以上80%以下であることが特に好ましく、53%以上75%以下であることがとりわけ好ましく、55%以上70%以下であることが殊に好ましく、57%以上65%以下であることが最も好ましい。 The coverage C of the surface of the reinforced fiber woven fabric by the thermoplastic resin is in the range of 30% or more and less than 100%. The coverage ratio C is a ratio of the area covered with the thermoplastic resin on the surface of the reinforced fiber woven fabric. The coverage C is preferably 40% or more and 95% or less. The coverage C is more preferably 45% or more and 90% or less, further preferably 48% or more and 85% or less, particularly preferably 51% or more and 80% or less, and 53% or more and 75% or less. Is particularly preferable, 55% or more and 70% or less is particularly preferable, and 57% or more and 65% or less is most preferable.

被覆率Cが、30%未満である場合には、樹脂付着強化繊維織物が十分な成形性を有さない。一方、被覆率Cが、100%である場合には、樹脂付着強化繊維織物が変形し難くなり、十分な賦形性を有さない。 When the coverage C is less than 30%, the resin-adhered reinforcing fiber woven fabric does not have sufficient moldability. On the other hand, when the coverage C is 100%, the resin-adhered reinforcing fiber woven fabric is less likely to be deformed and does not have sufficient shapeability.

樹脂付着強化繊維織物において、強化繊維織物に樹脂が均等に付着していることが、樹脂付着強化繊維織物の成形性及び賦形性を高めるために好ましい。例えば、樹脂付着強化繊維織物から1cm×1cmの正方形の試料を少なくとも20個取り出し、この試料の質量を測定した場合の平均値に対する標準誤差の割合(標準誤差/平均値)は、15.0%以下であることが好ましい。この平均値に対する標準誤差の割合は、0.05%以上10.0%以下であることがより好ましく、0.1%以上7.5%以下であることが更に好ましい。平均値に対する標準誤差の割合は、0.15%以上5.0%以下であることが特に好ましく、0.2%以上2.5%以下であることが最も好ましい。強化繊維織物に付着する熱可塑性樹脂は、例えばドット状を成し、偏りなく分散されて配置されていることが好ましい。 In the resin-adhered reinforced fiber woven fabric, it is preferable that the resin is evenly adhered to the reinforced fiber woven fabric in order to improve the moldability and shapeability of the resin-attached reinforced fiber woven fabric. For example, the ratio of standard error to the average value (standard error / average value) when at least 20 1 cm × 1 cm square samples are taken out from the resin-attached reinforcing fiber woven fabric and the mass of this sample is measured is 15.0%. The following is preferable. The ratio of the standard error to the average value is more preferably 0.05% or more and 10.0% or less, and further preferably 0.1% or more and 7.5% or less. The ratio of the standard error to the average value is particularly preferably 0.15% or more and 5.0% or less, and most preferably 0.2% or more and 2.5% or less. It is preferable that the thermoplastic resin adhering to the reinforced fiber woven fabric has, for example, a dot shape and is evenly dispersed and arranged.

樹脂付着強化繊維織物は、下記式(1)により表される樹脂付着係数Aが35以上135以下の範囲にある。
A=W×(C/100)/P0.05…(1)
(ここで、W:強化繊維織物の単位面積当たりの質量、P:強化繊維織物の通気度、C:熱可塑性樹脂による前記強化繊維織物表面の被覆率)
The resin adhesion reinforcing fiber woven fabric has a resin adhesion coefficient A represented by the following formula (1) in the range of 35 or more and 135 or less.
A = W × (C / 100) 2 / P 0.05 … (1)
(Here, W: mass per unit area of the reinforced fiber woven fabric, P: air permeability of the reinforced fiber woven fabric, C: coverage of the surface of the reinforced fiber woven fabric with the thermoplastic resin)

樹脂付着係数Aは、35以上95以下であることが好ましい。樹脂付着係数Aは、45以上85以下であることがより好ましく、50以上80以下であることが更に好ましい。樹脂付着係数Aは、55以上75以下であることが特に好ましく、60以上70以下であることが最も好ましい。 The resin adhesion coefficient A is preferably 35 or more and 95 or less. The resin adhesion coefficient A is more preferably 45 or more and 85 or less, and further preferably 50 or more and 80 or less. The resin adhesion coefficient A is particularly preferably 55 or more and 75 or less, and most preferably 60 or more and 70 or less.

樹脂付着係数Aは、35以上であると、樹脂付着強化繊維織物の成形性の低下を抑制することができる。また、樹脂付着係数Aが135以下であると、賦形性の低下を抑制することができる。 When the resin adhesion coefficient A is 35 or more, it is possible to suppress a decrease in moldability of the resin adhesion reinforcing fiber woven fabric. Further, when the resin adhesion coefficient A is 135 or less, the decrease in formability can be suppressed.

次に、繊維強化樹脂成形品について説明する。 Next, the fiber reinforced resin molded product will be described.

繊維強化樹脂成形品は、樹脂付着強化繊維織物を含み、この樹脂付着強化繊維織物を成形して得られた物である。繊維強化樹脂成形品は、例えば金属代替材料として樹脂付着強化繊維織物が用いられた物である。金属代替材料は、例えば自動車用の部品に適用される自動車用金属代替材料である。繊維強化樹脂成形品は、例えば箱形の構造を含むものである。繊維強化樹脂成形品は、全体が箱形を成すものでもよく、一部に箱形を成す部分を含むものでもよい。 The fiber-reinforced resin molded product contains a resin-attached reinforced fiber woven fabric, and is obtained by molding the resin-attached reinforced fiber woven fabric. The fiber-reinforced resin molded product is, for example, a product in which a resin-adhered reinforced fiber woven fabric is used as a metal substitute material. The metal substitute material is, for example, an automobile metal substitute material applied to an automobile part. The fiber reinforced resin molded product includes, for example, a box-shaped structure. The fiber-reinforced resin molded product may have a box shape as a whole, or may include a part having a box shape.

自動車用の部品であり、箱形の構造を含む繊維強化樹脂成形品として、例えばオイルパンが挙げられる。オイルパンは、例えば、内燃機関のクランクシャフトの下方に設けられ潤滑油を貯留する箱形の容器である。オイルパンは、例えば、貯留された潤滑油を所定の箇所に回収すべく底部に傾斜面を有する。オイルパンは、複雑な構造を含むものでもよく、簡素な構造のものでもよい。 An oil pan is mentioned as an example of a fiber reinforced resin molded product which is a component for an automobile and includes a box-shaped structure. The oil pan is, for example, a box-shaped container provided below the crankshaft of an internal combustion engine to store lubricating oil. The oil pan has, for example, an inclined surface at the bottom for collecting the stored lubricating oil in a predetermined place. The oil pan may include a complicated structure or may have a simple structure.

次に、繊維強化樹脂成形品の製造方法について説明する。 Next, a method for manufacturing a fiber-reinforced resin molded product will be described.

まず、樹脂付着強化繊維織物を準備する。所定の大きさの樹脂付着繊維織物を複数枚積層して得られた積層物を加熱加圧して成形する(成形工程)。このとき、繊維強化樹脂成形品を成形するための成形型を用いて、積層物を加圧して成形する。加熱加圧工程では、例えばヒーター等を用いて、積層物を熱可塑性樹脂の融点以上の温度に加熱した後に、加圧して成形する。なお、繊維強化樹脂成形品は、複数の樹脂付着繊維織物を積層して成形した物に限定されず、1枚の樹脂付着強化繊維織物を加熱加圧して、繊維強化樹脂成形品を成形してもよい。 First, a resin-attached reinforcing fiber woven fabric is prepared. A laminate obtained by laminating a plurality of resin-attached fiber woven fabrics having a predetermined size is heated and pressed to form (molding step). At this time, the laminate is pressed and molded by using a molding mold for molding the fiber-reinforced resin molded product. In the heating and pressurizing step, the laminate is heated to a temperature equal to or higher than the melting point of the thermoplastic resin by using, for example, a heater, and then pressurized and molded. The fiber-reinforced resin molded product is not limited to a product formed by laminating a plurality of resin-attached fiber woven fabrics, and one resin-attached reinforced fiber woven fabric is heated and pressed to form a fiber-reinforced resin molded product. May be good.

繊維強化樹脂成形品は、樹脂付着強化繊維織物のみを用いたものに限定されない。例えば、樹脂付着強化繊維織物の樹脂付着面上に他の基材を積層して得られた積層物を加熱加圧して、繊維強化樹脂成形品を成形してもよい。ここで、他の基材としては、金属箔(例えば、アルミ箔)、熱可塑性樹脂シート(例えば、塩化ビニル樹脂シート)、ミネラルウールシート(例えば、グラスウールシート)、無機ボード(例えば、石膏ボード、セラミックボード)、紙(不燃紙、ハニカムボード)等を用いることができる。 The fiber-reinforced resin molded product is not limited to the one using only the resin-adhered reinforced fiber woven fabric. For example, a fiber-reinforced resin molded product may be molded by heating and pressurizing a laminate obtained by laminating another base material on the resin-adhered surface of the resin-adhered reinforced fiber woven fabric. Here, as other base materials, metal foil (for example, aluminum foil), thermoplastic resin sheet (for example, vinyl chloride resin sheet), mineral wool sheet (for example, glass wool sheet), inorganic board (for example, gypsum board, etc.) (Ceramic board), paper (non-combustible paper, honeycomb board) and the like can be used.

以上、本実施形態の樹脂付着強化繊維織物によれば、上記式(1)による樹脂付着係数Aが、35以上135以下の範囲にあるので、加熱加圧によるプレス成形に対応可能な成形性及び賦形性を有し、取扱性の向上を図り、成形品を製造する際の製造効率の向上を図ることができる。成形品の製造時において、従前のように樹脂を注入する必要がなく、加熱加圧によるプレス成形を行うことで、成形品を得ることができるので、製造時間の短縮を図り、製造効率の向上を図ることができる。 As described above, according to the resin adhesion reinforcing fiber woven fabric of the present embodiment, the resin adhesion coefficient A according to the above formula (1) is in the range of 35 or more and 135 or less. It has shapeability, can be improved in handleability, and can be improved in manufacturing efficiency when manufacturing a molded product. When manufacturing a molded product, it is not necessary to inject resin as in the past, and a molded product can be obtained by press molding by heating and pressurizing, so that the manufacturing time can be shortened and the manufacturing efficiency can be improved. Can be planned.

本発明は、前述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能である。例えば、繊維強化樹脂成形品は、オイルパンに限定されず、その他の箱形の形状を有するものでもよく、板状の形状のものでもよく、その他の形状を有する成形品でもよい。また、繊維強化樹脂成形品は、自動車用の部品に限定されず、その他の輸送機器、機械、構造物の部品でもよい。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the fiber-reinforced resin molded product is not limited to the oil pan, and may have another box-shaped shape, a plate-shaped product, or a molded product having another shape. Further, the fiber-reinforced resin molded product is not limited to the parts for automobiles, and may be parts of other transportation equipment, machines, and structures.

次に、実施例1〜10及び比較例1〜5に係る樹脂付着強化繊維織物について説明する。 Next, the resin adhesion reinforcing fiber woven fabric according to Examples 1 to 10 and Comparative Examples 1 to 5 will be described.

[実施例1]
実施例1では、まず、135texのガラス繊維糸を経糸及び緯糸として、経糸19本/25mm及び緯糸18本/25mmの織密度で製織して強化繊維織物を得た。次に、実施例1では、ヒートクリーニング処理、及び、バイブロウォッシャーによる開繊処理を施し、3−グリシドキシプロピルトリメトキシシラン(エポキシシランの一種)で表面処理を行った。これにより、単位面積当たりの質量Wが210g/mであり、通気度Pが15cm/cm/sであり、表面にエポキシシランの付着した強化繊維織物を得た。なお、強化繊維織物の単位面積当たりの質量および強化繊維織物の通気度Pは、JIS R3420に準拠して測定した。下記の表1〜表4では、ガラス繊維を「GF」と記載している。
[Example 1]
In Example 1, first, 135tex glass fiber yarns were used as warp yarns and weft yarns and woven at a weaving density of 19 warp yarns / 25 mm and 18 weft yarns / 25 mm to obtain a reinforced fiber woven fabric. Next, in Example 1, a heat cleaning treatment and a fiber opening treatment with a vibro washer were performed, and a surface treatment was performed with 3-glycidoxypropyltrimethoxysilane (a type of epoxysilane). As a result, a reinforced fiber woven fabric having a mass W of 210 g / m 2 per unit area, an air permeability P of 15 cm 3 / cm 2 / s, and an epoxy silane attached to the surface was obtained. The mass per unit area of the reinforced fiber woven fabric and the air permeability P of the reinforced fiber woven fabric were measured in accordance with JIS R3420. In Tables 1 to 4 below, glass fibers are referred to as "GF".

次に、前記強化繊維織物の表面に、融点が225℃の熱可塑性樹脂であるポリアミド樹脂(ナイロン6、東レ株式会社製アミランCM1017)を付着させた。具体的には、ドット形状の開口部を設けたスクリーンを用いて、直径0.67mm、2.54cm(1インチ)あたり30個のドット形状で均等にポリアミド樹脂を配置した後に加熱固着させ常温まで放冷することで90g/m付着させた。実施例1では、ポリアミド樹脂の単位面積当たりの質量を90g/mとすることで、樹脂付着強化繊維織物の全質量(300g/m)に対する強化繊維織物の質量W(210g/m)の割合(強化繊維含有量)Rを70質量%(wt%)とした。これにより、実施例1では、強化繊維織物表面の被覆率Cが60%である樹脂付着強化繊維織物を得た。実施例1において、上記式(1)による樹脂付着係数Aは、66であった。Next, a polyamide resin (nylon 6, Amilan CM1017 manufactured by Toray Industries, Inc.), which is a thermoplastic resin having a melting point of 225 ° C., was attached to the surface of the reinforcing fiber woven fabric. Specifically, using a screen provided with a dot-shaped opening, the polyamide resin is evenly arranged in a diameter of 0.67 mm and 30 dots per 2.54 cm (1 inch), and then heated and fixed to room temperature. By allowing to cool, 90 g / m 2 was attached. In Example 1, the mass per unit area of the polyamide resin by a 90 g / m 2, the total mass of the resin adhesion reinforcing fiber fabric (300g / m 2) Weight of reinforcing woven fabric for W (210g / m 2) (Reinforcing fiber content) R was set to 70% by mass (wt%). As a result, in Example 1, a resin-adhered reinforced fiber woven fabric having a coverage C of 60% on the surface of the reinforced fiber woven fabric was obtained. In Example 1, the resin adhesion coefficient A according to the above formula (1) was 66.

なお、強化繊維織物表面の被覆率Cは、株式会社キーエンス製マイクロスコープVHX−600を用い、強化繊維織物の表面を観察して、強化繊維織物表面全体の面積S1(強化繊維糸が占める面積であり、強化繊維糸間に存在する空隙部分の面積は含まない)、及び、強化繊維織物表面中樹脂が付着した部分の面積S2を求め、S2/S1により求めた。また、熱可塑性樹脂の融点は、JIS K7121に準拠して測定することができる。 The coverage C on the surface of the reinforced fiber woven fabric is determined by observing the surface of the reinforced fiber woven fabric using a microscope VHX-600 manufactured by Keyence Co., Ltd. and observing the surface of the reinforced fiber woven fabric. Yes, the area of the void portion existing between the reinforcing fiber threads is not included), and the area S2 of the portion where the resin adheres on the surface of the reinforcing fiber woven fabric was determined and determined by S2 / S1. Further, the melting point of the thermoplastic resin can be measured according to JIS K7121.

熱可塑性樹脂を加熱固着させ常温まで放冷することで実施例1の樹脂付着強化繊維織物が得られた直後に、実施例1の樹脂付着強化繊維織物2枚を重ねて加圧し、その後剥離させた際の剥離度合で、樹脂付着強化繊維織物のタック性を評価した。ここで、2枚の樹脂付着強化繊維織物が貼りつくことなく剥離できる場合、又は、貼りつくが容易に剥離し樹脂付着強化繊維織物間で樹脂移行がない場合を「1」(可)、容易に剥離できない場合を「2」(不可)として評価した。この結果を下記の表1に示す。 Immediately after the resin-attached reinforced fiber woven fabric of Example 1 was obtained by heating and fixing the thermoplastic resin and allowing it to cool to room temperature, two sheets of the resin-attached reinforced fiber woven fabric of Example 1 were stacked and pressed, and then peeled off. The tackiness of the resin-adhered reinforced fiber woven fabric was evaluated by the degree of peeling at the time. Here, "1" (possible) is easy when the two resin-attached reinforcing fiber fabrics can be peeled off without sticking, or when the two resin-attached reinforcing fiber fabrics are easily peeled off and there is no resin transfer between the resin-attached reinforcing fiber fabrics. The case where the resin could not be peeled off was evaluated as "2" (impossible). The results are shown in Table 1 below.

次に、実施例1で得られた樹脂付着強化繊維織物から幅25mm、長さ200mmの試験片を切り出して、試験片の長さ方向の50mmを試験台に置き、長さ方向の150mmを試験台の外にはみ出させて垂れ下がらせた際の垂直面(試験台の側壁面)からの角度を測定することで、樹脂付着強化繊維織物の賦形性を評価した。ここで、垂直面からの角度が0°以上45°未満の場合(すなわち、試験片の垂れ下がり具合が大きい場合)を「1」(良好)、45°以上70°未満の場合を「2」(可)、70°以上90°未満の場合(試験片の垂れ下がり具合が小さい場合)を「3」(不可)として評価した。この結果を下記の表1に示す。 Next, a test piece having a width of 25 mm and a length of 200 mm was cut out from the resin-adhered reinforcing fiber woven fabric obtained in Example 1, 50 mm in the length direction of the test piece was placed on a test table, and 150 mm in the length direction was tested. The shapeability of the resin-adhered reinforced fiber woven fabric was evaluated by measuring the angle from the vertical surface (side wall surface of the test table) when it was hung out of the table. Here, the case where the angle from the vertical plane is 0 ° or more and less than 45 ° (that is, the case where the test piece hangs down greatly) is “1” (good), and the case where the angle is 45 ° or more and less than 70 ° is “2” (. Yes), the case of 70 ° or more and less than 90 ° (when the degree of sagging of the test piece is small) was evaluated as “3” (not possible). The results are shown in Table 1 below.

次に、実施例1で得られた樹脂付着強化繊維織物を、熱可塑性樹脂の融点より20℃高い温度に加熱し、5MPaで加圧してプレス成形を行って繊維強化樹脂平板を作成した。得られた繊維強化樹脂平板の外観を観察することで、樹脂付着強化繊維織物の成形性を評価した。ここで、熱可塑性樹脂が含浸し、ガラス繊維が透明になったものを「1」(良好)、ガラス繊維が完全に透明になっていないが、樹脂のひけ、かすれ、目ヨレ及び目ズレのいずれもが確認できない場合を「2」(可)、樹脂のひけ、かすれ、目ヨレ又は目ズレが確認できるものを「3」(不可)として評価した。この結果を下記の表1に示す。 Next, the resin-adhered reinforced fiber woven fabric obtained in Example 1 was heated to a temperature 20 ° C. higher than the melting point of the thermoplastic resin and pressed at 5 MPa to perform press molding to prepare a fiber-reinforced resin flat plate. By observing the appearance of the obtained fiber-reinforced resin flat plate, the moldability of the resin-adhered reinforced fiber woven fabric was evaluated. Here, the one in which the glass fiber is impregnated with the thermoplastic resin and becomes transparent is "1" (good), and the glass fiber is not completely transparent, but the resin is sinked, scratched, twisted, and misaligned. The case where none of them could be confirmed was evaluated as "2" (possible), and the case where resin sinking, faintness, eye twist or misalignment could be confirmed was evaluated as "3" (impossible). The results are shown in Table 1 below.

実施例1では、表1に示されるように、タック性の評価は、「1」(可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「1」(良好)であった。実施例1の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 In Example 1, as shown in Table 1, the tackiness evaluation is "1" (possible), the shapeability evaluation is "1" (good), and the moldability evaluation is. It was "1" (good). When the resin-adhered reinforced fiber woven fabric of Example 1 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa, a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm was obtained. I was able to.

[実施例2]
実施例2では、シランカップリング剤である3−アミノプロピルトリエトキシシラン(アミノシランの一種)で、強化繊維織物の表面処理をした以外、実施例1と全く同一の条件で、樹脂付着強化繊維織物を得た。実施例2において、上記式(1)による樹脂付着係数Aは、66であった。
[Example 2]
In Example 2, the resin-bonded reinforced fiber woven fabric was subjected to the same conditions as in Example 1 except that the surface of the reinforced fiber woven fabric was treated with 3-aminopropyltriethoxysilane (a type of aminosilane) which is a silane coupling agent. Got In Example 2, the resin adhesion coefficient A according to the above formula (1) was 66.

次に、実施例2で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表1に示す。実施例2では、タック性の評価は、「1」(可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「2」(可)であった。実施例2の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 2 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 1 below. In Example 2, the tackiness evaluation is "1" (possible), the shapeability evaluation is "1" (good), and the moldability evaluation is "2" (possible). rice field. When the resin-adhered reinforced fiber woven fabric of Example 2 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa, a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm was obtained. I was able to.

[実施例3]
実施例3では、まず、67.5texのガラス繊維糸を経糸及び緯糸として、経糸57本/25mm及び緯糸53本/25mmの織密度で製織して強化繊維織物を得た。実施例3では、シランカップリング剤である3−グリシドキシプロピルトリメトキシシラン(エポキシシランの一種)で、強化繊維織物の表面処理を行った。これにより、単位面積当たりの質量Wが300g/mであり、通気度Pが25cm/cm/sであり、表面にエポキシシランの付着した強化繊維織物を得た。
[Example 3]
In Example 3, first, 67.5 tex glass fiber yarns were used as warp yarns and weft yarns and woven at a weaving density of 57 warp yarns / 25 mm and 53 weft yarns / 25 mm to obtain a reinforced fiber woven fabric. In Example 3, the surface of the reinforcing fiber woven fabric was treated with 3-glycidoxypropyltrimethoxysilane (a type of epoxysilane), which is a silane coupling agent. As a result, a reinforced fiber woven fabric having a mass W of 300 g / m 2 per unit area, an air permeability P of 25 cm 3 / cm 2 / s, and an epoxy silane attached to the surface was obtained.

次に、前記強化繊維織物の表面に、実施例1と同じくポリアミド樹脂を付着させた。具体的には、ドット形状の直径を0.80mmとする以外は実施例1と全く同一の条件とした。実施例3では、ポリアミド樹脂を129g/m付着させ、強化繊維含有量を70質量%とした。実施例3では、熱可塑性樹脂による強化繊維織物表面の被覆率Cが70%である樹脂付着強化繊維織物を得た。実施例3において、上記式(1)による樹脂付着係数Aは、125であった。Next, the polyamide resin was attached to the surface of the reinforcing fiber woven fabric in the same manner as in Example 1. Specifically, the conditions were exactly the same as in Example 1 except that the diameter of the dot shape was 0.80 mm. In Example 3, the polyamide resin was adhered at 129 g / m 2 to make the reinforcing fiber content 70% by mass. In Example 3, a resin-adhered reinforced fiber woven fabric having a coverage C of 70% on the surface of the reinforced fiber woven fabric made of a thermoplastic resin was obtained. In Example 3, the resin adhesion coefficient A according to the above formula (1) was 125.

次に、実施例3で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表1に示す。実施例3では、タック性の評価は、「1」(可)であり、賦形性の評価は、「2」(可)であり、成形性の評価は、「2」(可)であった。実施例3の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 3 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 1 below. In Example 3, the tackiness evaluation is "1" (possible), the shapeability evaluation is "2" (possible), and the moldability evaluation is "2" (possible). rice field. When the resin-adhered reinforced fiber woven fabric of Example 3 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa, a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm was obtained. I was able to.

[実施例4]
本実施4では、まず、67.5texのガラス繊維糸を経糸及び緯糸として、経糸44本/25mm及び緯糸32本/25mmの織密度で製織して強化繊維織物を得た。実施例4では、バイブロウォッシャーによる開繊処理を施し、3−グリシドキシプロピルトリメトキシシラン(エポキシシランの一種)で強化繊維織物の表面処理を行った。これにより、単位面積当たりの質量Wが180g/mであり、通気度Pが2cm/cm/sであり、表面にエポキシシランの付着した強化繊維織物を得た。
[Example 4]
In the present embodiment 4, first, 67.5 tex glass fiber yarns were used as warp yarns and weft yarns and woven at a weaving density of 44 warp yarns / 25 mm and 32 weft yarns / 25 mm to obtain a reinforced fiber woven fabric. In Example 4, the fiber was opened with a vibro washer, and the surface of the reinforced fiber woven fabric was treated with 3-glycidoxypropyltrimethoxysilane (a type of epoxysilane). As a result, a reinforced fiber woven fabric having a mass W of 180 g / m 2 per unit area, an air permeability P of 2 cm 3 / cm 2 / s, and an epoxy silane attached to the surface was obtained.

次に、前記強化繊維織物の表面に、実施例1と同じくポリアミド樹脂を付着させた。具体的には、ドット形状の直径を0.88mmとする以外は実施例1と全く同一の条件とした。実施例4では、ポリアミド樹脂を、77g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが85%である樹脂付着強化繊維織物を得た。実施例4において、上記式(1)による樹脂付着係数Aは、126であった。Next, the polyamide resin was attached to the surface of the reinforcing fiber woven fabric in the same manner as in Example 1. Specifically, the conditions were exactly the same as in Example 1 except that the diameter of the dot shape was 0.88 mm. In Example 4, a polyamide resin was adhered at 77 g / m 2 to obtain a resin-adhered reinforced fiber woven fabric having a reinforcing fiber content of 70% by mass and a coverage C on the surface of the reinforced fiber woven fabric of 85%. In Example 4, the resin adhesion coefficient A according to the above formula (1) was 126.

次に、実施例4で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表1に示す。実施例4では、タック性の評価は、「1」(可)であり、賦形性の評価は、「2」(可)であり、成形性の評価は、「1」(良好)であった。実施例4の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 4 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 1 below. In Example 4, the tackiness evaluation was "1" (possible), the shapeability evaluation was "2" (possible), and the moldability evaluation was "1" (good). rice field. The resin-adhered reinforced fiber woven fabric of Example 4 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa to obtain a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm. I was able to.

[実施例5]
実施例5では、まず、135texのガラス繊維糸を経糸及び緯糸として、経糸19本/25mm及び緯糸18本/25mmの織密度で製織して強化繊維織物を得た。実施例5では、3−グリシドキシプロピルトリメトキシシラン(エポキシシランの一種)で、強化繊維織物の表面処理を行った。これにより、単位面積当たりの質量Wが210g/mであり、通気度Pが70cm/cm/sであり、表面にエポキシシランの付着した強化維織物を得た。
[Example 5]
In Example 5, first, 135tex glass fiber yarns were used as warp yarns and weft yarns and woven at a weaving density of 19 warp yarns / 25 mm and 18 weft yarns / 25 mm to obtain a reinforced fiber woven fabric. In Example 5, the surface of the reinforcing fiber woven fabric was treated with 3-glycidoxypropyltrimethoxysilane (a type of epoxysilane). As a result, a reinforced woven fabric having a mass W of 210 g / m 2 per unit area, an air permeability P of 70 cm 3 / cm 2 / s, and an epoxy silane attached to the surface was obtained.

次に、前記強化繊維織物の表面に、実施例1と全くポリアミド樹脂を付着させた。具体的には、ドット形状の直径を0.90mmとする以外は実施例1と全く同一の条件とした。実施例5では、ポリアミド樹脂を、90g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが88%である樹脂付着強化繊維織物を得た。実施例5において、上記式(1)による樹脂付着係数Aは、132であった。Next, the polyamide resin as in Example 1 was completely adhered to the surface of the reinforcing fiber woven fabric. Specifically, the conditions were exactly the same as in Example 1 except that the diameter of the dot shape was 0.90 mm. In Example 5, a polyamide resin was adhered at 90 g / m 2 to obtain a resin-adhered reinforced fiber woven fabric having a reinforcing fiber content of 70% by mass and a coverage C of 88% on the surface of the reinforced fiber woven fabric. In Example 5, the resin adhesion coefficient A according to the above formula (1) was 132.

次に、実施例5で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表2に示す。実施例5では、タック性の評価は、「1」(可)であり、賦形性の評価は、「2」(可)であり、成形性の評価は、「1」(良好)であった。実施例5の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 5 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 2 below. In Example 5, the tackiness evaluation was "1" (possible), the shapeability evaluation was "2" (possible), and the moldability evaluation was "1" (good). rice field. When the resin-adhered reinforced fiber woven fabric of Example 5 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa, a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm was obtained. I was able to.

[実施例6]
実施例6では、まず、33.7texのガラス繊維糸を経糸及び緯糸として、経糸30本/25mm及び緯糸30本/25mmの織密度で製織して強化繊維織物を得た。実施例6では、3−グリシドキシプロピルトリメトキシシラン(エポキシシランの一種)で、強化繊維織物の表面処理を行った。これにより、単位面積当たりの質量Wが80g/mであり、通気度Pが200cm/cm/sであり、表面にエポキシシランの付着した強化繊維織物を得た。
[Example 6]
In Example 6, first, 33.7 tex glass fiber yarns were used as warp yarns and weft yarns and woven at a weaving density of 30 warp yarns / 25 mm and 30 weft yarns / 25 mm to obtain a reinforced fiber woven fabric. In Example 6, the surface of the reinforcing fiber woven fabric was treated with 3-glycidoxypropyltrimethoxysilane (a type of epoxysilane). As a result, a reinforced fiber woven fabric having a mass W of 80 g / m 2 per unit area, an air permeability P of 200 cm 3 / cm 2 / s, and an epoxy silane attached to the surface was obtained.

次に、前記強化繊維織物の表面に、実施例1と同じくポリアミド樹脂を付着させた。具体的には、ドット形状の直径を0.63mmとする以外は実施例1と全く同一の条件とした。実施例6では、ポリアミド樹脂を、34g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが80%である樹脂付着強化繊維織物を得た。実施例6において、上記式(1)による樹脂付着係数Aは、39であった。Next, the polyamide resin was attached to the surface of the reinforcing fiber woven fabric in the same manner as in Example 1. Specifically, the conditions were exactly the same as in Example 1 except that the diameter of the dot shape was 0.63 mm. In Example 6, a polyamide resin was adhered at 34 g / m 2 to obtain a resin-adhered reinforced fiber woven fabric having a reinforcing fiber content of 70% by mass and a coverage C of 80% on the surface of the reinforced fiber woven fabric. In Example 6, the resin adhesion coefficient A according to the above formula (1) was 39.

次に、実施例6で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表2に示す。実施例6では、タック性の評価は、「1」(可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「1」(良好)であった。実施例6の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 6 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 2 below. In Example 6, the tackiness evaluation was "1" (possible), the shapeability evaluation was "1" (good), and the moldability evaluation was "1" (good). rice field. The resin-adhered reinforced fiber woven fabric of Example 6 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa to obtain a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm. I was able to.

[実施例7]
実施例7では、実施例1のポリアミド樹脂に代えて、融点が122℃の熱可塑性樹脂であるポリアミド樹脂(共重合ポリアミド、エムスケミー・ジャパン製Griltex2A)を用いた以外、実施例1と全く同一の条件で、樹脂付着強化繊維織物を得た。実施例7において、上記式(1)による樹脂付着係数Aは、66であった。
[Example 7]
In Example 7, the same as in Example 1 except that a polyamide resin having a melting point of 122 ° C. (copolymerized polyamide, Griltex2A manufactured by Ems-Chemie Japan) was used instead of the polyamide resin of Example 1. Under the conditions, a resin-adhered reinforcing fiber woven fabric was obtained. In Example 7, the resin adhesion coefficient A according to the above formula (1) was 66.

次に、実施例7で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表2に示す。実施例7では、タック性の評価は、「1」(可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「1」(良好)であった。また、実施例7の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 7 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 2 below. In Example 7, the tackiness evaluation was "1" (possible), the shapeability evaluation was "1" (good), and the moldability evaluation was "1" (good). rice field. Further, when the resin-adhered reinforced fiber woven fabric of Example 7 was placed in a mold of a square drawing press and pressurized and heated under the conditions of 260 ° C. and 5 MPa, a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm was obtained. I was able to get.

[実施例8]
実施例8では、強化繊維織物として、単位面積当たりの質量Wが210g/mであり、通気度Pが50cm/cm/sである、表面処理済炭素繊維織物(日東紡績株式会社製CF3101)を用いた。実施例8では、この炭素繊維織物を用い、ヒートクリーニング処理、開繊処理及び表面処理を行わず、熱可塑性樹脂による強化繊維織物表面の被覆率Cを65%とした以外、実施例1と全く同一の条件で、樹脂付着強化繊維織物を得た。実施例8において、上位式(1)による樹脂付着係数Aは、73であった。下記の表2では、炭素繊維を「CF」と記載している。
[Example 8]
In Example 8, the surface-treated carbon fiber woven fabric (manufactured by Nitto Boseki Co., Ltd.) has a mass W of 210 g / m 2 per unit area and a breathability P of 50 cm 3 / cm 2 / s as the reinforced fiber woven fabric. CF3101) was used. In Example 8, this carbon fiber woven fabric was used, and heat cleaning treatment, fiber opening treatment, and surface treatment were not performed, and the coverage C of the surface of the reinforced fiber woven fabric with the thermoplastic resin was set to 65%. Under the same conditions, a resin-attached reinforced fiber woven fabric was obtained. In Example 8, the resin adhesion coefficient A according to the superordinate formula (1) was 73. In Table 2 below, carbon fibers are listed as "CF".

次に、実施例8で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表2に示す。実施例8では、タック性の評価は、「1」(可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「2」(可)であった。実施例8の樹脂付着強化繊維織物を、角絞りプレスの金型に配置し、260℃、5MPaの条件で加圧加熱したところ、良好な深さ50mmの箱型の繊維強化樹脂成形品を得ることができた。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Example 8 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 2 below. In Example 8, the tackiness evaluation is "1" (possible), the shapeability evaluation is "1" (good), and the moldability evaluation is "2" (possible). rice field. The resin-adhered reinforced fiber woven fabric of Example 8 was placed in a mold of a square drawing press and heated under pressure at 260 ° C. and 5 MPa to obtain a box-shaped fiber reinforced plastic molded product having a good depth of 50 mm. I was able to.

Figure 0006965899
Figure 0006965899

Figure 0006965899
Figure 0006965899

[比較例1]
比較例1では、実施例1と全く同一の強化繊維織物の表面に、実施例1と同じくポリアミド樹脂を付着させた。具体的には、ドット形状の直径を0.55mmとする以外は実施例1と全く同一の条件とした。比較例1では、ポリアミド樹脂を、90g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが40%である樹脂付着強化繊維織物を得た。比較例1において、上記式(1)による樹脂付着係数Aは、29であった。
[Comparative Example 1]
In Comparative Example 1, the polyamide resin was adhered to the surface of the same reinforcing fiber woven fabric as in Example 1 as in Example 1. Specifically, the conditions were exactly the same as in Example 1 except that the diameter of the dot shape was 0.55 mm. In Comparative Example 1, a polyamide resin was adhered at 90 g / m 2 to obtain a resin-adhered reinforced fiber woven fabric having a reinforcing fiber content of 70% by mass and a coverage C of 40% on the surface of the reinforced fiber woven fabric. In Comparative Example 1, the resin adhesion coefficient A according to the above formula (1) was 29.

次に、本比較例で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表3に示す。比較例1では、タック性の評価は、「1」(可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「3」(不可)であった。 Next, the resin-adhered reinforcing fiber woven fabric obtained in this comparative example was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 3 below. In Comparative Example 1, the tackiness evaluation was "1" (possible), the shapeability evaluation was "1" (good), and the moldability evaluation was "3" (impossible). rice field.

[比較例2]
比較例2では、実施例1と全く同一の強化繊維織物の表面に、実施例1と同じくポリアミド樹脂を付着させた。具体的には、ドット形状の直径を0.82mmとする以外は実施例1と全く同一にして、ポリアミド樹脂を、90g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが90%である樹脂付着強化繊維織物を得た。比較例2において、上記式(1)による樹脂付着係数Aは、149であった。
[Comparative Example 2]
In Comparative Example 2, the polyamide resin was adhered to the surface of the same reinforcing fiber woven fabric as in Example 1 as in Example 1. Specifically, the same as in Example 1 except that the diameter of the dot shape is 0.82 mm, the polyamide resin is adhered at 90 g / m 2 , the reinforcing fiber content is 70% by mass, and the reinforcing fiber woven fabric is used. A resin-adhered reinforced fiber woven fabric having a surface coverage C of 90% was obtained. In Comparative Example 2, the resin adhesion coefficient A according to the above formula (1) was 149.

次に、比較例2で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表3に示す。比較例2では、タック性の評価は、「1」(可)であり、賦形性の評価は、「3」(不可)であり、成形性の評価は、「1」(良好)であった。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Comparative Example 2 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 3 below. In Comparative Example 2, the tackiness evaluation was "1" (possible), the shapeability evaluation was "3" (impossible), and the moldability evaluation was "1" (good). rice field.

[比較例3]
比較例3では、実施例3と全く同一の強化繊維織物の表面に、実施例1と全く同一のポリアミド樹脂を、ドット形状の直径を0.83mmとする以外は実施例1と全く同一にして、ポリアミド樹脂を、129g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが75%である樹脂付着強化繊維織物を得た。比較例3において、上記式(1)による樹脂付着係数Aは、144であった。
[Comparative Example 3]
In Comparative Example 3, the same polyamide resin as in Example 1 was applied to the surface of the same reinforcing fiber woven fabric as in Example 3, and the same as in Example 1 except that the diameter of the dot shape was 0.83 mm. , 129 g / m 2 of polyamide resin was adhered to obtain a resin-adhered reinforced fiber woven fabric having a reinforcing fiber content of 70% by mass and a coverage C of 75% on the surface of the reinforced fiber woven fabric. In Comparative Example 3, the resin adhesion coefficient A according to the above formula (1) was 144.

次に、比較例3で得られた樹脂付着強化繊維織物について、実施例1と全く同一の条件で、タック性、賦形性及び成形性を評価した。この結果を下記の表3に示す。比較例3では、タック性の評価は、「1」(可)であり、賦形性の評価は、「3」(不可)であり、成形性の評価は、「1」(良好)であった。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Comparative Example 3 was evaluated for tackiness, shapeability and moldability under exactly the same conditions as in Example 1. The results are shown in Table 3 below. In Comparative Example 3, the tackiness evaluation was "1" (possible), the shapeability evaluation was "3" (impossible), and the moldability evaluation was "1" (good). rice field.

[比較例4]
比較例4では、実施例4と全く同一の強化繊維織物の表面に、実施例1と全く同一のポリアミド樹脂を、ドット形状の直径を0.91mmとする以外は実施例1と全く同一にして、ポリアミド樹脂を、77g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが90%である樹脂付着強化繊維織物を得た。比較例4において、上記式(1)による樹脂付着係数Aは、141であった。
[Comparative Example 4]
In Comparative Example 4, the same polyamide resin as in Example 1 was applied to the surface of the same reinforcing fiber woven fabric as in Example 4, and the same as in Example 1 except that the diameter of the dot shape was 0.91 mm. , Polyamide resin was adhered to 77 g / m 2 to obtain a resin-adhered reinforced fiber woven fabric having a reinforcing fiber content of 70% by mass and a coverage C of 90% on the surface of the reinforced fiber woven fabric. In Comparative Example 4, the resin adhesion coefficient A according to the above formula (1) was 141.

次に、比較例4で得られた樹脂付着強化繊維織物について、実施例1と全く同一にして、タック性、賦形性及び成形性を評価した。この結果を下記の表4に示す。比較例4では、タック性の評価は、「1」(可)であり、賦形性の評価は、「3」(不可)であり、成形性の評価は、「1」(良好)であった。 Next, the resin-adhered reinforcing fiber woven fabric obtained in Comparative Example 4 was made exactly the same as in Example 1 to evaluate tackiness, shapeability and moldability. The results are shown in Table 4 below. In Comparative Example 4, the tackiness evaluation was "1" (possible), the shapeability evaluation was "3" (impossible), and the moldability evaluation was "1" (good). rice field.

[比較例5]
比較例5では、実施例1と全く同一の強化繊維織物の表面に、融点が61℃であるエチレン−酢酸ビニル共重合樹脂(三井デュポンポリケミカル株式会社製エバフレックスEV150)を付着させた。具体的には、ドット形状の直径を0.67mmとする以外は実施例1と全く同一の条件にして、エチレン−酢酸ビニル共重合樹脂を、90g/m付着させ、強化繊維含有量を70質量%とし、強化繊維織物表面の被覆率Cが60%である樹脂付着強化繊維織物を得た。比較例5において、上記式(1)による樹脂付着係数Aは、66であった。
[Comparative Example 5]
In Comparative Example 5, an ethylene-vinyl acetate copolymer resin (Evaflex EV150 manufactured by Mitsui DuPont Polychemical Co., Ltd.) having a melting point of 61 ° C. was attached to the surface of the same reinforcing fiber woven fabric as in Example 1. Specifically, under exactly the same conditions as in Example 1 except that the diameter of the dot shape is 0.67 mm, an ethylene-vinyl acetate copolymer resin is adhered at 90 g / m 2 and the reinforcing fiber content is 70. A resin-adhered reinforced fiber woven fabric having a coating ratio C on the surface of the reinforced fiber woven fabric was 60% by mass. In Comparative Example 5, the resin adhesion coefficient A according to the above formula (1) was 66.

次に、本比較例で得られた樹脂付着強化繊維織物について、実施例1と全く同一にして、タック性、賦形性及び成形性を評価した。この結果を下記の表4に示す。比較例5では、タック性の評価は、「2」(不可)であり、賦形性の評価は、「1」(良好)であり、成形性の評価は、「1」(良好)であった。 Next, the resin-adhered reinforcing fiber woven fabric obtained in this comparative example was made exactly the same as in Example 1 and the tackiness, shapeability and moldability were evaluated. The results are shown in Table 4 below. In Comparative Example 5, the tackiness evaluation was "2" (impossible), the shapeability evaluation was "1" (good), and the moldability evaluation was "1" (good). rice field.

Figure 0006965899
Figure 0006965899

Figure 0006965899
Figure 0006965899

[実施例9]
実施例7で得られた樹脂付着強化繊維織物の樹脂付着面上にアルミ箔(厚さ100μm、重量250g/m、東洋アルミ株式会社製)を積層して得られた積層物を、熱可塑性樹脂の融点より20℃高い温度に加熱し、5MPaで加圧してプレス成形を行って、繊維強化樹脂成形品を作成した。得られた繊維強化樹脂成形品では、アルミ箔と、樹脂付着強化繊維織物に由来する繊維強化樹脂平板とが強固に一体化していた。
[Example 9]
The laminate obtained by laminating an aluminum foil (thickness 100 μm, weight 250 g / m 2 , manufactured by Toyo Aluminum Co., Ltd.) on the resin adhesive surface of the resin adhesive reinforced fiber woven fabric obtained in Example 7 is thermoplastic. A fiber-reinforced resin molded product was prepared by heating to a temperature 20 ° C. higher than the melting point of the resin and pressurizing at 5 MPa to perform press molding. In the obtained fiber-reinforced resin molded product, the aluminum foil and the fiber-reinforced resin flat plate derived from the resin-attached reinforced fiber woven fabric were firmly integrated.

[実施例10]
実施例7で得られた樹脂付着強化繊維織物の樹脂付着面上に塩化ビニル樹脂シート(厚さ250μm、重量300g/m)を積層して得られた積層物を、熱可塑性樹脂の融点より20℃高い温度に加熱し、5MPaで加圧してプレス成形を行って、繊維強化樹脂成形品を作成した。得られた繊維強化樹脂成形品では、塩化ビニル樹脂シートと、樹脂付着強化繊維織物に由来する繊維強化樹脂平板とが強固に一体化していた。
[Example 10]
A laminate obtained by laminating a vinyl chloride resin sheet (thickness 250 μm, weight 300 g / m 2 ) on the resin adhering surface of the resin adhering reinforcing fiber woven fabric obtained in Example 7 is obtained from the melting point of the thermoplastic resin. A fiber-reinforced resin molded product was prepared by heating to a high temperature of 20 ° C. and pressurizing at 5 MPa to perform press molding. In the obtained fiber-reinforced resin molded product, the vinyl chloride resin sheet and the fiber-reinforced resin flat plate derived from the resin-attached reinforcing fiber woven fabric were firmly integrated.

実施例9及び実施例10において「強固に一体化」しているとは、一般社団法人 日本膜構造協会試験法標準「膜材料の品質及び性能試験方法」に準拠して、樹脂付着強化繊維織物に対するアルミ箔又は塩化ビニル樹脂シートの接着強度を測定した場合に、アルミ箔又は塩化ビニル樹脂シートが樹脂付着強化繊維織物から剥離できず、破損する状態となることを意味する。 In Examples 9 and 10, "strongly integrated" means a resin-adhered reinforced fiber woven fabric in accordance with the test method standard "Film material quality and performance test method" of the Japan Film Structure Association. When the adhesive strength of the aluminum foil or the vinyl chloride resin sheet is measured with respect to the resin, it means that the aluminum foil or the vinyl chloride resin sheet cannot be peeled off from the resin adhesion reinforced fiber woven fabric and is in a state of being damaged.

Claims (11)

強化繊維織物の少なくとも一方の表面に熱可塑性樹脂が付着した樹脂付着強化繊維織物であって、
前記強化繊維織物の単位面積当たりの質量Wが、25g/m以上400g/m以下の範囲にあり、
前記強化繊維織物の通気度Pが、cm/cm/s以上300cm/cm/s以下の範囲にあり、
前記熱可塑性樹脂の融点が、70℃以上300℃以下の範囲にあり、
前記樹脂付着強化繊維織物の全質量に対して、強化繊維織物の質量が占める割合は、20質量%以上90質量%以下の範囲にあり、
前記熱可塑性樹脂による前記強化繊維織物表面の被覆率Cが、30%以上95%以下の範囲にあり、
下記式(1)により表される樹脂付着係数Aが、35以上135以下の範囲にある、樹脂付着強化繊維織物。
A=W×(C/100)/P0.05…(1)
A resin-adhered reinforced fiber woven fabric in which a thermoplastic resin is attached to at least one surface of the reinforced fiber woven fabric.
The mass W per unit area of the reinforcing fiber woven fabric is in the range of 25 g / m 2 or more and 400 g / m 2 or less.
The air permeability P of the reinforced fiber woven fabric is in the range of 7 cm 3 / cm 2 / s or more and 300 cm 3 / cm 2 / s or less.
The melting point of the thermoplastic resin is in the range of 70 ° C. or higher and 300 ° C. or lower.
The ratio of the mass of the reinforcing fiber woven fabric to the total mass of the resin-attached reinforcing fiber woven fabric is in the range of 20% by mass or more and 90% by mass or less.
The coverage C of the surface of the reinforcing fiber woven fabric by the thermoplastic resin is in the range of 30% or more and 95% or less.
A resin adhesion reinforcing fiber woven fabric in which the resin adhesion coefficient A represented by the following formula (1) is in the range of 35 or more and 135 or less.
A = W × (C / 100) 2 / P 0.05 … (1)
前記強化繊維織物の単位面積当たりの質量Wが、50g/m以上250g/m以下の範囲にある、請求項1に記載の樹脂付着強化繊維織物。 The resin-adhered reinforcing fiber woven fabric according to claim 1, wherein the mass W per unit area of the reinforcing fiber woven fabric is in the range of 50 g / m 2 or more and 250 g / m 2 or less. 前記樹脂付着係数Aが、35以上85以下である、請求項1又は2に記載の樹脂付着強化繊維織物。 The resin adhesion reinforcing fiber woven fabric according to claim 1 or 2, wherein the resin adhesion coefficient A is 35 or more and 85 or less. 前記強化繊維織物が、ガラス繊維織物である、請求項1〜3の何れか一項に記載の樹脂付着強化繊維織物。 The resin-adhered reinforcing fiber woven fabric according to any one of claims 1 to 3, wherein the reinforcing fiber woven fabric is a glass fiber woven fabric. 前記ガラス繊維織物の表面にシランカップリング剤が付着している、請求項4に記載の樹脂付着強化繊維織物。 The resin-adhered reinforcing fiber woven fabric according to claim 4, wherein the silane coupling agent is attached to the surface of the glass fiber woven fabric. 前記シランカップリング剤が、エポキシシランである、請求項5に記載の樹脂付着強化繊維織物。 The resin-adhered reinforcing fiber woven fabric according to claim 5, wherein the silane coupling agent is epoxysilane. 請求項1〜6のいずれか1項に記載の1枚の前記樹脂付着強化繊維織物、又は、複数枚の前記樹脂付着強化繊維織物を積層した積層物を加熱加圧する成形工程を含む、繊維強化樹脂成形品の製造方法。 Fiber reinforced including a molding step of heating and pressurizing one piece of the resin-bonded reinforced fiber woven fabric according to any one of claims 1 to 6 or a laminate obtained by laminating a plurality of the resin-attached reinforced fiber woven fabrics. A method for manufacturing a resin molded product. 前記成形工程では、金属代替材料として前記樹脂付着強化繊維織物を採用し、当該樹脂付着強化繊維織物を加熱加圧する、請求項7に記載の繊維強化樹脂成形品の製造方法。 The method for producing a fiber-reinforced resin molded product according to claim 7, wherein in the molding step, the resin-adhered reinforcing fiber woven fabric is adopted as a metal substitute material, and the resin-attached reinforced fiber woven fabric is heated and pressed. 前記成形工程では、自動車用金属代替材料として前記樹脂付着強化繊維織物を採用し、当該樹脂付着強化繊維織物を加熱加圧する、請求項8に記載の繊維強化樹脂成形品の製造方法。 The method for producing a fiber-reinforced resin molded product according to claim 8, wherein in the molding step, the resin-attached reinforced fiber woven fabric is adopted as a metal substitute material for an automobile, and the resin-attached reinforced fiber woven fabric is heated and pressed. 前記成形工程では、前記樹脂付着強化繊維織物を加熱加圧して、箱形に成形する、請求項7〜9の何れか一項に記載の繊維強化樹脂成形品の製造方法。 The method for producing a fiber-reinforced resin molded product according to any one of claims 7 to 9, wherein in the molding step, the resin-adhered reinforcing fiber woven fabric is heated and pressed to form a box shape. 前記成形工程では、前記樹脂付着強化繊維織物を加熱加圧して、箱形に成形し、オイルパンを製造する請求項10に記載の繊維強化樹脂成形品の製造方法。 The method for producing a fiber-reinforced resin molded product according to claim 10, wherein in the molding step, the resin-adhered reinforcing fiber woven fabric is heated and pressed to form a box shape to produce an oil pan.
JP2018568138A 2017-02-17 2018-02-07 Manufacturing method of resin adhesion reinforced fiber woven fabric and fiber reinforced resin molded product Active JP6965899B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017028267 2017-02-17
JP2017028267 2017-02-17
PCT/JP2018/004226 WO2018150978A1 (en) 2017-02-17 2018-02-07 Resin-attached reinforced fiber woven fabric, and method for producing fiber-reinforced resin molded article

Publications (2)

Publication Number Publication Date
JPWO2018150978A1 JPWO2018150978A1 (en) 2019-12-12
JP6965899B2 true JP6965899B2 (en) 2021-11-10

Family

ID=63170265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568138A Active JP6965899B2 (en) 2017-02-17 2018-02-07 Manufacturing method of resin adhesion reinforced fiber woven fabric and fiber reinforced resin molded product

Country Status (3)

Country Link
JP (1) JP6965899B2 (en)
TW (1) TWI750319B (en)
WO (1) WO2018150978A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290821B2 (en) * 2019-03-12 2023-06-14 日本ガスケット株式会社 casing material
WO2020250925A1 (en) * 2019-06-10 2020-12-17 日東紡績株式会社 Resin-coated inorganic multifilament fiber fabric and window shade using same
JP7014346B1 (en) * 2020-06-10 2022-02-01 日東紡績株式会社 Glass fiber reinforced resin molded products, electronic device housings, interior parts for mobility products, and exterior parts for mobility products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218725A (en) * 1989-02-20 1990-08-31 Ube Nitto Kasei Co Ltd Production of fiber-reinforced thermoplastic resin prepreg
JP4803028B2 (en) * 2004-03-30 2011-10-26 東レ株式会社 Preform, FRP, and production method thereof
JP5604874B2 (en) * 2007-11-13 2014-10-15 日東紡績株式会社 Non-flammable and transparent fiber reinforced resin sheet and method for producing the same
JP5547412B2 (en) * 2009-03-05 2014-07-16 帝人株式会社 Planar composite
TWI692498B (en) * 2015-04-21 2020-05-01 日商三菱瓦斯化學股份有限公司 Fiber reinforced thermoplastic resin composition
JP6443218B2 (en) * 2015-05-25 2018-12-26 三菱瓦斯化学株式会社 Manufacturing method of composite sheet

Also Published As

Publication number Publication date
TW201841761A (en) 2018-12-01
TWI750319B (en) 2021-12-21
WO2018150978A1 (en) 2018-08-23
JPWO2018150978A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6965899B2 (en) Manufacturing method of resin adhesion reinforced fiber woven fabric and fiber reinforced resin molded product
JP3894035B2 (en) Carbon fiber reinforced substrate, preform and composite material comprising the same
JP4947163B2 (en) Method for producing preform and carbon fiber reinforced plastic
CN100421924C (en) Layered product, electromagnetic-shielding molded object, and processes for producing these
AU2009201821B2 (en) Reinforcing fiber substrate, composite material and method for producing the same
JP6627756B2 (en) Resin supply material, preform, and method for producing fiber reinforced resin
WO2014103711A1 (en) Molded product having hollow structure and process for producing same
JP4177041B2 (en) Manufacturing method of fiber reinforced composite material
JP4699425B2 (en) Sandwich panel
WO2020071417A1 (en) Composite component for aircraft and manufacturing method therefor
EP1930519A2 (en) Sandwich panel
EP3263631B1 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
JP2015511194A (en) Fiber-resin composite sheet and article including the same
EP1697099A2 (en) Fire-retardant composite material
US6245407B1 (en) Thermoformable honeycomb structures
WO2017179721A1 (en) Fiber-reinforced resin intermediate material, fiber-reinforced resin molded article, and method for producing fiber-reinforced resin intermediate material
CN107690386A (en) With the automatic mode and prepreg of the prepreg transmission prepreg comprising dry fibers veil superficial layer
JP2006192745A (en) Reinforcing fiber base material, preform, fiber reinforced resin molded product and its manufacturing method
TWI699270B (en) Resin supply material, preform, and manufacturing method of fiber reinforced resin
JPWO2018117187A1 (en) Manufacturing method of composite structure and manufacturing method of integrated composite structure
TWI794278B (en) Integral body
CN102300681B (en) Conveyance member made of Cfrp and robot hand employing the same
JP4480445B2 (en) Colored panel assembly parts
JP2007162151A (en) Biaxial stitch base material and preform
TW201919844A (en) Integrated molded body and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6965899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150