JP6965892B2 - Liquid lead-acid battery, charging / discharging method of liquid lead-acid battery, and power supply system - Google Patents

Liquid lead-acid battery, charging / discharging method of liquid lead-acid battery, and power supply system Download PDF

Info

Publication number
JP6965892B2
JP6965892B2 JP2018554803A JP2018554803A JP6965892B2 JP 6965892 B2 JP6965892 B2 JP 6965892B2 JP 2018554803 A JP2018554803 A JP 2018554803A JP 2018554803 A JP2018554803 A JP 2018554803A JP 6965892 B2 JP6965892 B2 JP 6965892B2
Authority
JP
Japan
Prior art keywords
acid battery
lead
electrode plate
negative electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018554803A
Other languages
Japanese (ja)
Other versions
JPWO2018105134A1 (en
Inventor
素子 原田
真吾 荒城
富生 岩崎
隆之 木村
哲郎 大越
光利 本田
博史 春名
大郊 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2018105134A1 publication Critical patent/JPWO2018105134A1/en
Application granted granted Critical
Publication of JP6965892B2 publication Critical patent/JP6965892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、液式鉛蓄電池、液式鉛蓄電池の充放電方法、及び電源システムに関する。 The present invention relates to a liquid lead-acid battery, a charging / discharging method for the liquid lead-acid battery, and a power supply system.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー、バックアップ用電源、及び電動車の主電源に用いられる。近年の自動車では、炭酸ガス排出規制対策、低燃費化等を目的として、発電制御、信号待ち等の際にエンジンを停止するアイドリングストップアンドスタートシステム(以下、「ISS」と称する。)が採用されるようになっている。 Lead-acid batteries are widely used in industry, for example, in automobile batteries, backup power supplies, and main power supplies for electric vehicles. In recent years, automobiles have adopted an idling stop and start system (hereinafter referred to as "ISS") that stops the engine when controlling power generation, waiting for a signal, etc., for the purpose of carbon dioxide emission regulation measures, fuel efficiency, etc. It has become so.

アイドリングストップ中はオルタネータによる発電が行われないため、電動装備への電力は全て鉛蓄電池から供給され、鉛蓄電池では従来よりも深い放電が行われる。また、走行中もオルタネータの発電が制御されるため、充電不足の状態となる。 Since the alternator does not generate electricity during the idling stop, all the electric power to the electric equipment is supplied from the lead-acid battery, and the lead-acid battery discharges deeper than before. In addition, since the alternator's power generation is controlled even during driving, the battery becomes insufficiently charged.

鉛蓄電池において深い放電と充電不足とが繰り返される場合、電解液の成層化が、鉛蓄電池の短寿命化の要因として顕在化してきている。ここで、成層化とは、充放電の繰り返しにより、電解液中の硫酸イオン(SO 2−)及び硫酸水素イオン(HSO )(以下、これらを「硫酸イオン」と総称する)が沈降して、電槽の上下で電解液の比重に差が生じる現象をいう。この成層化は、鉛蓄電池の満充電容量に対する残容量の割合(以下、単に「残容量」ともいう)が小さくなるにつれて顕著になる。したがって、電解液の撹拌効果が得られにくい中間充電状態で使用されるISS車用鉛蓄電池では、成層化の抑制が重要な課題であり、特に欧州向けのISS車用鉛蓄電池のように残容量が小さい条件で使用される場合は、より高度な成層化抑制技術が求められる。When deep discharge and insufficient charging are repeated in a lead-acid battery, stratification of the electrolytic solution has become apparent as a factor for shortening the life of the lead-acid battery. Here, the stratification by repeated charge and discharge, sulfate ions in the electrolyte (SO 4 2-) and hydrogen sulfate ion (HSO 4 -) (hereinafter, these are collectively referred to as "sulfate ions") sedimentation Then, it refers to a phenomenon in which the specific gravity of the electrolytic solution differs between the upper and lower parts of the battery case. This stratification becomes more remarkable as the ratio of the remaining capacity to the fully charged capacity of the lead-acid battery (hereinafter, also simply referred to as “remaining capacity”) becomes smaller. Therefore, it is an important issue to suppress stratification in lead-acid batteries for ISS vehicles used in an intermediate charge state where it is difficult to obtain the stirring effect of the electrolytic solution, and in particular, the remaining capacity is as in the lead-acid batteries for ISS vehicles for Europe. When used under small conditions, more advanced stratification suppression technology is required.

このような課題に対し、特許文献1には、電極表面にブチルゴム等を含む多孔質樹脂層を形成することにより、保液性を確保し、鉛蓄電池の長寿命化等が可能な液式鉛蓄電池が記載されている。 In response to such problems, Patent Document 1 states that liquid lead can ensure liquid retention and extend the life of lead-acid batteries by forming a porous resin layer containing butyl rubber or the like on the electrode surface. The storage battery is listed.

特開2003−223890号公報Japanese Unexamined Patent Publication No. 2003-223890

しかし、特許文献1に記載されたような鉛蓄電池では、特に残容量が小さい条件で用いられる場合に、電解液の成層化の抑制の点で未だ改善の余地がある。 However, the lead-acid battery as described in Patent Document 1 still has room for improvement in terms of suppressing the stratification of the electrolytic solution, especially when it is used under the condition that the remaining capacity is small.

そこで、本発明は、所定の残容量で用いられる液式鉛蓄電池において、電解液の成層化を抑制し、寿命を向上させることを目的とする。 Therefore, an object of the present invention is to suppress stratification of an electrolytic solution and improve the life of a liquid lead-acid battery used with a predetermined remaining capacity.

本発明者らの検討によれば、正極近傍では、放電時に発生した水が電解液の混合を促進するため、成層化の影響は小さい一方、負極近傍では、そのような作用がないために、成層化が起こりやすい。また、成層化は、鉛蓄電池の残容量が小さいほど顕著に生じる。そこで、本発明者らは、更なる検討を重ねた結果、所定の残容量で用いられる液式鉛蓄電池において、平均細孔径が15μm以下である細孔を有する膜体を負極とセパレータとの間に設けた場合に、電解液の成層化を抑制し、耐久性を向上させることが可能になることを見出した。 According to the study by the present inventors, the effect of stratification is small in the vicinity of the positive electrode because the water generated during discharge promotes the mixing of the electrolytic solution, but there is no such effect in the vicinity of the negative electrode. Stratification is likely to occur. Further, stratification occurs more remarkably as the remaining capacity of the lead-acid battery is smaller. Therefore, as a result of further studies, the present inventors have put a film body having pores having an average pore diameter of 15 μm or less between the negative electrode and the separator in a liquid lead-acid battery used with a predetermined remaining capacity. It has been found that the stratification of the electrolytic solution can be suppressed and the durability can be improved when the electrolytic solution is provided in the above.

すなわち、本発明は、一態様において、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、負極板とセパレータとの間に配置された膜体と、電解液と、正極板、負極板、セパレータ、膜体及び電解液を収容する電槽と、を備え、膜体は、平均細孔径が15μm以下の細孔を有し、満充電容量に対する残容量の割合が90%以下となるように用いられる、液式鉛蓄電池である。 That is, in one embodiment, the present invention comprises a positive electrode plate, a negative electrode plate, a separator arranged between the positive electrode plate and the negative electrode plate, a film body arranged between the negative electrode plate and the separator, and an electrolytic solution. A positive electrode plate, a negative electrode plate, a separator, a film body, and an electric tank for accommodating an electrolytic solution, and the film body has pores having an average pore diameter of 15 μm or less, and the ratio of the remaining capacity to the full charge capacity. It is a liquid lead-acid battery used so that the value is 90% or less.

一態様において、膜体は、無機繊維を含む不織布、又は、有機繊維及び無機繊維を含む不織布を備える。 In one aspect, the film body comprises a non-woven fabric containing inorganic fibers or a non-woven fabric containing organic fibers and inorganic fibers.

一態様において、セパレータは袋状のセパレータであり、負極板及び膜体がセパレータ内に収容されている。 In one aspect, the separator is a bag-shaped separator, and the negative electrode plate and the film body are housed in the separator.

一態様において、膜体は、0.3mm以下の厚さ、20%以上の空孔率及び30g/m 〜50g/mの目付けを有する。 In one embodiment, the membrane has a thickness of 0.3 mm or less, a porosity of 20% or more and 30 g / m. 2~ 50g / m2It has a basis weight of.

本発明は、他の一態様において、上記の液式鉛蓄電池を、満充電容量に対する残容量の割合が90%以下となるように充放電する、液式鉛蓄電池の充放電方法である。 In another aspect, the present invention is a method for charging / discharging a liquid lead-acid battery, which charges / discharges the liquid lead-acid battery so that the ratio of the remaining capacity to the full charge capacity is 90% or less.

本発明は、他の一態様において、上記の液式鉛蓄電池と、液式鉛蓄電池の充放電を制御する制御部と、を備え、制御部は、液式鉛蓄電池の満充電容量に対する残容量の割合が90%以下となるように充放電を制御する、電源システムである。 In another aspect, the present invention includes the above-mentioned liquid lead-acid battery and a control unit that controls charging / discharging of the liquid lead-acid battery, and the control unit is the remaining capacity with respect to the full charge capacity of the liquid lead-acid battery. It is a power supply system that controls charge / discharge so that the ratio of the above is 90% or less.

本発明によれば、所定の残容量で用いられる液式鉛蓄電池において、電解液の成層化を抑制し、寿命を向上させることができる。 According to the present invention, in a liquid lead-acid battery used with a predetermined remaining capacity, stratification of an electrolytic solution can be suppressed and the life can be improved.

一実施形態に係る鉛蓄電池の全体構成及び内部構造を示す斜視図である。It is a perspective view which shows the whole structure and the internal structure of the lead storage battery which concerns on one Embodiment. 一実施形態に係る鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery which concerns on one Embodiment. 図2におけるI−I線に沿った矢視断面を示す模式断面図である。It is a schematic cross-sectional view which shows the cross section seen by the arrow along the line I-I in FIG. 一実施形態に係るオルタネータ回生車両の構成要素を示す図である。It is a figure which shows the component of the alternator regenerative vehicle which concerns on one Embodiment.

以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

図1は、一実施形態に係る液式鉛蓄電池(以下、単に「鉛蓄電池」ともいう)の全体構成及び内部構造を示す斜視図である。図1に示すように、本実施形態に係る鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、負極端子4と、正極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とが設けられている。 FIG. 1 is a perspective view showing the overall configuration and internal structure of the liquid lead-acid battery (hereinafter, also simply referred to as “lead-acid battery”) according to the embodiment. As shown in FIG. 1, the lead-acid battery 1 according to the present embodiment includes an electric tank 2 having an open upper surface and a lid 3 for closing the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a negative electrode terminal 4, a positive electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を負極端子4に接続する負極柱8と、電極群7を正極端子5に接続する正極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the battery case 2, an electrode group 7, a negative electrode column 8 connecting the electrode group 7 to the negative electrode terminal 4, a positive electrode column (not shown) connecting the electrode group 7 to the positive electrode terminal 5, dilute sulfuric acid, etc. Electrolyte and is stored.

鉛蓄電池1は、一実施形態において、JIS D5301において規定される区分でD以上の幅寸法を有していてよい。鉛蓄電池1の幅寸法は、例えば、JIS D5301において規定される区分でD、E、F、G又はHであってよい。 In one embodiment, the lead-acid battery 1 may have a width dimension of D or more in the category specified in JIS D5301. The width dimension of the lead storage battery 1 may be, for example, D, E, F, G or H in the classification defined in JIS D5301.

鉛蓄電池1は、一実施形態において、EN 50342−2において規定される区分でLBN0以上又はLN0以上の幅寸法を有していてよい。鉛蓄電池1の幅寸法は、例えば、EN 50342−2において規定される区分でLBN0〜6又はLN0〜6であってよい。 In one embodiment, the lead-acid battery 1 may have a width dimension of LBN0 or more or LN0 or more in the category specified in EN 50342-2. The width dimension of the lead-acid battery 1 may be, for example, LBN0 to 6 or LN0 to 6 in the classification specified in EN 50342-2.

鉛蓄電池1は、一実施形態において、170mm以上の幅寸法を有していてよい。鉛蓄電池1の幅寸法は、例えば、175mm以上又は180mm以上であってもよく、280mm以下又は225mm以下であってもよい。 The lead-acid battery 1 may have a width dimension of 170 mm or more in one embodiment. The width dimension of the lead storage battery 1 may be, for example, 175 mm or more or 180 mm or more, or 280 mm or less or 225 mm or less.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、金属鉛(Pb)を活物質として含む板状の負極板9と、二酸化鉛(PbO)を活物質として含む板状の正極板10と、負極板9と正極板10との間に配置されたセパレータ11とを備えている。電極群7は、複数の負極板9と正極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、負極板9及び正極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a plate-shaped negative electrode plate 9 containing metal lead (Pb) as an active material, a plate-shaped positive electrode plate 10 containing lead dioxide (PbO 2 ) as an active material, and a negative electrode. A separator 11 arranged between the plate 9 and the positive electrode plate 10 is provided. The electrode group 7 has a structure in which a plurality of negative electrode plates 9 and positive electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the battery case 2 via a separator 11. That is, the negative electrode plate 9 and the positive electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2.

複数の負極板9の耳部9a同士は、負極側ストラップ12で集合溶接されている。同様に、複数の正極板10の耳部10a同士は、正極側ストラップ13で集合溶接されている。そして、負極側ストラップ12及び正極側ストラップ13のが、それぞれ負極柱8及び正極柱を介して負極端子4及び正極端子5に接続される。 The ears 9a of the plurality of negative electrode plates 9 are collectively welded by the negative electrode side strap 12. Similarly, the ears 10a of the plurality of positive electrode plates 10 are collectively welded by the positive electrode side strap 13. Then, the negative electrode side strap 12 and the positive electrode side strap 13 are connected to the negative electrode terminal 4 and the positive electrode terminal 5 via the negative electrode column 8 and the positive electrode column, respectively.

図3は、図2におけるI−I線に沿った矢視断面を示す模式断面図である。図3に示すように、負極板9とセパレータ11との間には膜体14が設けられている。 FIG. 3 is a schematic cross-sectional view showing a cross section seen along the line I-I in FIG. As shown in FIG. 3, a film body 14 is provided between the negative electrode plate 9 and the separator 11.

セパレータ11は、例えば袋状に形成されており、負極板9及び膜体14は、セパレータ11内に収容されている。セパレータ11を形成する材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。セパレータ11は、これらの材料で形成された織布、不織布、多孔質膜等にSiO、Al等の無機系粒子を付着させたものであってよい。The separator 11 is formed in a bag shape, for example, and the negative electrode plate 9 and the film body 14 are housed in the separator 11. Examples of the material forming the separator 11 include polyethylene (PE), polypropylene (PP) and the like. The separator 11 may be one in which inorganic particles such as SiO 2 and Al 2 O 3 are attached to a woven fabric, a non-woven fabric, a porous film or the like formed of these materials.

セパレータ11の厚さは、好ましくは0.1mm〜0.5mm、より好ましくは0.2mm〜0.3mmである。セパレータ11の厚さが0.1mm以上であると、セパレータの強度を確保できる。セパレータ11の厚さが0.5mm以下であると、電池の内部抵抗の上昇を抑制できる。 The thickness of the separator 11 is preferably 0.1 mm to 0.5 mm, more preferably 0.2 mm to 0.3 mm. When the thickness of the separator 11 is 0.1 mm or more, the strength of the separator can be ensured. When the thickness of the separator 11 is 0.5 mm or less, an increase in the internal resistance of the battery can be suppressed.

セパレータ11の平均孔径は、好ましくは10nm〜500nm、より好ましくは30nm〜200nmである。セパレータ11の平均孔径が10nm以上であると、硫酸イオンを好適に通過させ、硫酸イオンの拡散速度を確保できる。セパレータ11の平均孔径が500nm以下であると、鉛のデンドライトの成長が抑制され、短絡が生じにくくなる。 The average pore size of the separator 11 is preferably 10 nm to 500 nm, more preferably 30 nm to 200 nm. When the average pore size of the separator 11 is 10 nm or more, sulfate ions can be suitably passed through and the diffusion rate of sulfate ions can be ensured. When the average pore diameter of the separator 11 is 500 nm or less, the growth of lead dendrites is suppressed and short circuits are less likely to occur.

本実施形態では、膜体14は、負極板9の表面を覆うように負極板9に密着した状態で設けられている。膜体14は、例えばシート状又は袋状であってよい。膜体14がシート状である場合、膜体14は負極板9に巻きつけられるようにして負極板9の表面を覆っている。膜体14が袋状である場合、負極板9は膜体14内に収容されている。 In the present embodiment, the film body 14 is provided in close contact with the negative electrode plate 9 so as to cover the surface of the negative electrode plate 9. The film body 14 may be in the form of a sheet or a bag, for example. When the film body 14 is in the form of a sheet, the film body 14 covers the surface of the negative electrode plate 9 so as to be wound around the negative electrode plate 9. When the film body 14 has a bag shape, the negative electrode plate 9 is housed in the film body 14.

膜体14は、例えば不織布を備えており、好ましくは無機繊維を含む不織布を備えている。無機繊維を含む不織布は、繊維として無機繊維のみを含む無機不織布、又は、繊維として有機繊維及び無機繊維を含む有機・無機混合不織布であってよい。無機繊維としては、SiOの繊維(ガラス繊維)等が挙げられる。有機繊維としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、アラミド等の合成繊維が挙げられる。有機・無機混合不織布は、SiO等で形成された無機粉体を更に含んでいてもよい。The film body 14 includes, for example, a non-woven fabric, preferably a non-woven fabric containing inorganic fibers. The non-woven fabric containing the inorganic fiber may be an inorganic non-woven fabric containing only the inorganic fiber as the fiber, or an organic / inorganic mixed non-woven fabric containing the organic fiber and the inorganic fiber as the fiber. Examples of the inorganic fiber include SiO 2 fiber (glass fiber). Examples of the organic fiber include synthetic fibers such as polyethylene, polypropylene, polyester, nylon and aramid. The organic / inorganic mixed nonwoven fabric may further contain an inorganic powder formed of SiO 2 or the like.

以上説明したような細孔を有する膜体14では、電解液の成層化を抑制する観点から、平均細孔径が15μm以下である。膜体14の平均細孔径は、電解液の成層化を更に抑制する観点から、好ましくは、14μm以下、13μm以下、12μm以下、11μm以下又は10μm以下である。膜体14の平均細孔径は、電池の出力を向上させる観点から、好ましくは、0.1μm以上、1μm以上、2μm以上又は3μmである。 In the film body 14 having pores as described above, the average pore diameter is 15 μm or less from the viewpoint of suppressing the stratification of the electrolytic solution. The average pore diameter of the film body 14 is preferably 14 μm or less, 13 μm or less, 12 μm or less, 11 μm or less, or 10 μm or less from the viewpoint of further suppressing the stratification of the electrolytic solution. The average pore diameter of the film body 14 is preferably 0.1 μm or more, 1 μm or more, 2 μm or more, or 3 μm from the viewpoint of improving the output of the battery.

膜体の平均細孔径は、水銀圧入法により測定される積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出される。膜体の平均細孔径は、例えば、株式会社島津製作所製、オートポアIV 9500で測定できる。 The average pore diameter of the film body is X corresponding to the median value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the integrated pore diameter distribution measured by the mercury intrusion method. It is calculated as the median diameter, which is the value of the axis (pore diameter). The average pore size of the membrane can be measured by, for example, Autopore IV 9500 manufactured by Shimadzu Corporation.

上述のような膜体14を負極板9とセパレータ11との間に設けることにより、電槽2下部における硫酸イオンの蓄積を抑制し、電解液の成層化を抑制することができる。言い換えると、膜体14を設けることにより、電槽2内部の硫酸イオンの濃度を均一に保持することができ、電池反応が偏在することを抑制できるため、鉛蓄電池1の寿命の向上が可能となる。このような膜体14をセパレータ11とは別にセパレータ11よりも負極板9の近傍に設けることにより、例えばセパレータ11に成層化抑制のための処理を施した場合に比べて、より高い成層化の抑制効果が得られる。 By providing the film body 14 as described above between the negative electrode plate 9 and the separator 11, the accumulation of sulfate ions in the lower part of the electric tank 2 can be suppressed, and the stratification of the electrolytic solution can be suppressed. In other words, by providing the membrane body 14, the concentration of sulfate ions inside the battery case 2 can be kept uniform, and the uneven distribution of the battery reaction can be suppressed, so that the life of the lead storage battery 1 can be improved. Become. By providing such a film body 14 in the vicinity of the negative electrode plate 9 separately from the separator 11, for example, higher stratification can be achieved as compared with the case where the separator 11 is subjected to a treatment for suppressing stratification. A suppressive effect can be obtained.

膜体14を設けることにより電解液の成層化が抑制される理由を、本発明者らは以下のように考えている。すなわち、充電反応で生成した硫酸イオンの集合体は膜体14の細孔に衝突し、拡散しながら高濃度粒子となってゆっくりと電解液中を沈降する。特定の平均細孔径を有する膜体14を設ける場合、膜体14を設けない場合に比べて、硫酸イオンの沈降速度が低減されるため、成層化の抑制が可能となる。鉛蓄電池1の残容量が小さい場合、硫酸イオンの量が特に多くなるため、このような傾向が顕著にみられる。 The present inventors consider the reason why the stratification of the electrolytic solution is suppressed by providing the film body 14 as follows. That is, the aggregate of sulfate ions generated in the charging reaction collides with the pores of the membrane body 14, becomes high-concentration particles while diffusing, and slowly precipitates in the electrolytic solution. When the membrane body 14 having a specific average pore diameter is provided, the sedimentation rate of sulfate ions is reduced as compared with the case where the membrane body 14 is not provided, so that stratification can be suppressed. When the remaining capacity of the lead-acid battery 1 is small, the amount of sulfate ions is particularly large, and this tendency is remarkable.

ISS車用途のように大電流で充電する際には、電極板から硫酸イオンが大量に放出されるため、膜体14の硫酸イオンの保持能力は高いほど好ましい。膜体14が不織布を備える場合、不織布を構成する繊維の繊維径は、好ましくは10μm以下、より好ましくは5μm以下である。繊維径が10μm以下であると、膜体14の比表面積が大きくなると共に、硫酸イオンを保持する空間を増やすことが可能となるため、膜体14の硫酸イオンの保持能力を更に向上させることができる。繊維径は、繊維の切れ、膜体の破れ等を抑制し、耐久性を確保する観点から、好ましくは1μm以上である。 When charging with a large current as in ISS vehicle applications, a large amount of sulfate ions are released from the electrode plate, so the higher the sulfate ion retention capacity of the membrane body 14, the more preferable. When the film body 14 includes a non-woven fabric, the fiber diameter of the fibers constituting the non-woven fabric is preferably 10 μm or less, more preferably 5 μm or less. When the fiber diameter is 10 μm or less, the specific surface area of the membrane body 14 becomes large and the space for holding sulfate ions can be increased, so that the sulfate ion holding capacity of the membrane body 14 can be further improved. can. The fiber diameter is preferably 1 μm or more from the viewpoint of suppressing fiber breakage, tearing of the film body, and ensuring durability.

膜体14の厚さは、内部抵抗の上昇を抑制する観点から、好ましくは0.3mm以下、より好ましくは0.25mm以下、更に好ましくは0.2mm以下、特に好ましくは0.15mm以下である。膜体14の厚さは、硫酸イオンの沈降の防止能力、電池反応への影響、強度等の観点から、例えば0.03mm以上である。膜体14が不織布を備える場合には、不織布を構成する繊維の太さ等に応じて膜体14の厚さが決定される。 The thickness of the film body 14 is preferably 0.3 mm or less, more preferably 0.25 mm or less, still more preferably 0.2 mm or less, and particularly preferably 0.15 mm or less, from the viewpoint of suppressing an increase in internal resistance. .. The thickness of the membrane body 14 is, for example, 0.03 mm or more from the viewpoint of the ability to prevent the precipitation of sulfate ions, the influence on the battery reaction, the strength, and the like. When the film body 14 includes the non-woven fabric, the thickness of the film body 14 is determined according to the thickness of the fibers constituting the non-woven fabric and the like.

膜体14の空孔率は、硫酸イオンの拡散性を確保すると共に、硫酸イオンを保持する空間を大きくする観点から、好ましくは20%以上、より好ましくは40%以上、更に好ましくは60%以上、特に好ましくは80%以上である。膜体14の空孔率は、例えば95%以下であってよい。膜体の空孔率は、膜体から適当な大きさの直方体状に切り取った試料について、下記式(1)〜(3)に従い実際の体積と見かけの体積とから算出される。
空孔率(%)={1−(実際の体積/見かけの体積)}×100 …(1)
実際の体積(cm)=重量の実測値(g)/密度(g/cm) …(2)
見かけの体積(cm)=縦(cm)×横(cm)×厚さ(cm) …(3)
なお、見かけの体積を算出する際の試料の縦、横及び厚さはいずれも実測値を用いる。
The porosity of the membrane body 14 is preferably 20% or more, more preferably 40% or more, still more preferably 60% or more, from the viewpoint of ensuring the diffusibility of sulfate ions and increasing the space for retaining sulfate ions. , Especially preferably 80% or more. The porosity of the membrane body 14 may be, for example, 95% or less. The porosity of the membrane body is calculated from the actual volume and the apparent volume of a sample cut into a rectangular parallelepiped shape of an appropriate size from the membrane body according to the following formulas (1) to (3).
Porosity (%) = {1- (actual volume / apparent volume)} x 100 ... (1)
Actual volume (cm 3 ) = measured weight (g) / density (g / cm 3 ) ... (2)
Apparent volume (cm 3 ) = length (cm) x width (cm) x thickness (cm) ... (3)
The measured values are used for the length, width, and thickness of the sample when calculating the apparent volume.

膜体14の目付けは、成層化抑制と内部抵抗上昇の抑制との両立の観点から、好ましくは30g/m〜50g/m、より好ましくは35g/m〜50g/m、更に好ましくは40g/m〜50g/mである。目付けは、膜体14の単位面積あたりの質量として算出される。Basis weight of the film body 14, from the viewpoint of compatibility between the suppression of stratification suppressing the internal resistance increase, preferably 30g / m 2 ~50g / m 2 , more preferably 35g / m 2 ~50g / m 2 , more preferably is a 40g / m 2 ~50g / m 2 . The basis weight is calculated as the mass per unit area of the film body 14.

上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆い、それらの表面に接触するように(密着した状態で)設けられていたが、他の実施形態では、膜体は、負極板9から離間するように、負極板9とセパレータ11との間に設けられていてもよい。この場合、膜体14は、例えばセパレータ11の負極側の面上に設けられていてよい。電解液の成層化をより抑制する観点からは、膜体14は、負極板9の表面に接触するように(密着した状態で)設けられていることが好ましい。 In the above embodiment, the film body 14 covers all of the main surface (the surface facing the separator 11), the side surface, and the bottom surface of the negative electrode plate 9 and is provided so as to be in contact with the surfaces thereof (in close contact with each other). However, in another embodiment, the film body may be provided between the negative electrode plate 9 and the separator 11 so as to be separated from the negative electrode plate 9. In this case, the film body 14 may be provided, for example, on the surface of the separator 11 on the negative electrode side. From the viewpoint of further suppressing the stratification of the electrolytic solution, it is preferable that the film body 14 is provided so as to be in contact with (in close contact with) the surface of the negative electrode plate 9.

上記実施形態では、膜体14は負極板9の主面(セパレータ11に対向する面)、側面及び底面のすべてを覆っていたが、他の実施形態では、膜体は、負極板9の主面(セパレータ11に対向する面)のみを覆うように設けられていてもよい。 In the above embodiment, the film body 14 covers all of the main surface (the surface facing the separator 11), the side surface and the bottom surface of the negative electrode plate 9, but in other embodiments, the film body is the main surface of the negative electrode plate 9. It may be provided so as to cover only the surface (the surface facing the separator 11).

以上説明した鉛蓄電池は、満充電容量に対する残容量の割合(残容量/満充電容量)が90%以下となるように用いられる。当該割合(残容量/満充電容量)は、85%以下又は80%以下であってもよく、50%以上、55%以上又は60%以上であってもよい。なお、鉛蓄電池は、満充電容量に対する残容量の割合が定常的に上記の範囲内になるように用いられる必要はなく、少なくとも一時的に(すなわち、満充電容量に対する残容量の割合の最小値が)上記の範囲内となるように用いられればよい。 The lead-acid battery described above is used so that the ratio of the remaining capacity to the fully charged capacity (remaining capacity / fully charged capacity) is 90% or less. The ratio (remaining capacity / fully charged capacity) may be 85% or less or 80% or less, and may be 50% or more, 55% or more, or 60% or more. The lead-acid battery does not need to be used so that the ratio of the remaining capacity to the full charge capacity is constantly within the above range, and is at least temporarily (that is, the minimum value of the ratio of the remaining capacity to the full charge capacity). However, it may be used so as to be within the above range.

次に、上述した液式鉛蓄電池を備えた電源システムの実施形態について説明する。電源システムは、一実施形態において、オルタネータ回生車両(μHEV)のエンジンルームに搭載される。ただし、本発明はこの実施形態に限定されるものではない。なお、μHEVとは、ISS機能を有し、オルタネータから供給される回生電力を受け入れ可能かつ放電負荷に放電可能な蓄電デバイスを備えたガソリン車又はディーゼル車をいう。 Next, an embodiment of a power supply system including the above-mentioned liquid lead-acid battery will be described. In one embodiment, the power supply system is mounted in the engine room of an alternator regenerative vehicle (μHEV). However, the present invention is not limited to this embodiment. The μHEV refers to a gasoline vehicle or a diesel vehicle having an ISS function, capable of accepting regenerative power supplied from an alternator, and equipped with a power storage device capable of discharging to a discharge load.

図4は、一実施形態に係るオルタネータ回生車両の構成要素を示す図である。図4に示すように、オルタネータ回生車両21は、車両制御部(ECU)22と、オルタネータ23と、放電負荷24と、電源システム25とを備えている。 FIG. 4 is a diagram showing components of an alternator regenerative vehicle according to an embodiment. As shown in FIG. 4, the alternator regenerative vehicle 21 includes a vehicle control unit (ECU) 22, an alternator 23, a discharge load 24, and a power supply system 25.

車両制御部22は、オルタネータ回生車両21全体の動作を制御する。車両制御部22は、イグニッションスイッチが、OFF位置、ON/ACC位置及びSTART位置のいずれに位置しているかを把握すると共に、アクセル、ブレーキ、エンジン等の作動状態、速度、加速度などの車両状態を把握し、把握した状態に応じた走行制御を行う。 The vehicle control unit 22 controls the operation of the entire alternator regenerative vehicle 21. The vehicle control unit 22 grasps whether the ignition switch is located at the OFF position, the ON / ACC position, or the START position, and determines the operating state of the accelerator, brake, engine, etc., and the vehicle state such as speed and acceleration. Grasp and perform running control according to the grasped state.

車両制御部22は、電源システム25の制御部(詳細は後述する)と通信可能となっており、電源システム25を構成する鉛蓄電池の状態に関する情報を受信すると共に、電源システム25の制御部に車両の状態情報(イグニッションスイッチの位置情報、オルタネータの作動情報等)を送信する。 The vehicle control unit 22 can communicate with the control unit of the power supply system 25 (details will be described later), receives information on the state of the lead-acid batteries constituting the power supply system 25, and informs the control unit of the power supply system 25. It transmits vehicle status information (ignition switch position information, alternator operation information, etc.).

オルタネータ23は、車両制御部22によって制御されており、オルタネータ回生車両21の制動時、アクセルオフ時等に、エンジンの回転力を(回生)電力に変換する。オルタネータ23は、ステータ及びロータで構成される発電部と、発電部で発電された交流電力を直流電力に変換する整流部と、整流部で変換された直流電力の電圧を一定とするためのボルテージレギュレータとを備えている。オルタネータ23の出力電圧は、例えば14Vに設定されている。 The alternator 23 is controlled by the vehicle control unit 22, and converts the rotational force of the engine into (regenerative) electric power when the alternator regenerative vehicle 21 is braking, the accelerator is off, or the like. The alternator 23 includes a power generation unit composed of a stator and a rotor, a rectifying unit that converts AC power generated by the power generation unit into DC power, and a voltage for keeping the voltage of the DC power converted by the rectifying unit constant. It is equipped with a regulator. The output voltage of the alternator 23 is set to, for example, 14V.

放電負荷24は、スタータ(セルモータ)及び補機を備えている。補機としては、例えば、ランプ(ライト)、エンジンポンプ(スパークプラグ)、エアコン、ファン、ラジオ、テレビ、CDプレーヤー、カーナビゲーション等が挙げられる。補機には、作動するための最低電圧(例えば8V)が電源システム25(鉛蓄電池1)から供給される。また、オルタネータ回生車両21のエンジン始動時には、イグニッションスイッチがSTART位置となり、電源システム25(鉛蓄電池1)からスタータへ電力が供給されてスタータが回転し、エンジンの回転軸にクラッチ機構を介してスタータの回転駆動力が伝達されエンジンが始動する。 The discharge load 24 includes a starter (starter motor) and auxiliary equipment. Examples of auxiliary machines include lamps (lights), engine pumps (spark plugs), air conditioners, fans, radios, televisions, CD players, car navigation systems, and the like. A minimum voltage (for example, 8V) for operating is supplied to the auxiliary machine from the power supply system 25 (lead-acid battery 1). Further, when the engine of the alternator regenerative vehicle 21 is started, the ignition switch is set to the START position, power is supplied from the power supply system 25 (lead storage battery 1) to the starter, the starter rotates, and the starter rotates on the rotating shaft of the engine via the clutch mechanism. The rotational driving force of the engine is transmitted and the engine starts.

電源システム25は、上述した鉛蓄電池1と、セレクタ26と、電池コントローラ27と、電流センサ28と、制御部29とを備えており、例えば14V系電源システムを構成している。鉛蓄電池1は、オルタネータ23から供給される回生電力を受け入れ可能かつ放電負荷24に放電可能となっている。 The power supply system 25 includes the lead-acid battery 1, the selector 26, the battery controller 27, the current sensor 28, and the control unit 29 described above, and constitutes, for example, a 14V system power supply system. The lead-acid battery 1 can accept the regenerative power supplied from the alternator 23 and can discharge to the discharge load 24.

セレクタ26は、オルタネータ23からの回生電力を鉛蓄電池1に供給すると共に、鉛蓄電池1からの電力を放電負荷24に放電する。セレクタ26は、電源システム25が鉛蓄電池1以外の第二の蓄電池(図示せず)を更に備える場合には、オルタネータ23から供給される回生電力を蓄電デバイスで受け入れる際に、オルタネータ23から鉛蓄電池1及び第二の蓄電池のいずれか一方に接続するスイッチの役割を果たすと共に、蓄電デバイスから放電負荷24に放電する際に、鉛蓄電池1及び第二の蓄電池のいずれか一方から放電負荷24に接続するスイッチの役割を果たす。 The selector 26 supplies the regenerated electric power from the alternator 23 to the lead-acid battery 1, and discharges the electric power from the lead-acid battery 1 to the discharge load 24. When the power supply system 25 further includes a second storage battery (not shown) other than the lead storage battery 1, the selector 26 receives the regenerative power supplied from the alternator 23 by the power storage device, and the lead storage battery from the alternator 23. It acts as a switch that connects to either the 1st and 2nd storage batteries, and connects to the discharge load 24 from either the lead-acid battery 1 or the 2nd storage battery when discharging from the power storage device to the discharge load 24. Acts as a switch to

電池コントローラ27は、充放電中(車両走行中及び車両走行前)に鉛蓄電池1の温度、電圧、電流等の電池状態を検出する。具体的には、鉛蓄電池1に取り付けられた温度センサが電池コントローラ27に接続されており、電池コントローラ27は、所定時間(例えば10ms)毎に温度センサの電圧をサンプリングし、サンプリング結果をRAMに格納する。電池コントローラ27は、鉛蓄電池1の正極端子及び負極端子に接続されており、鉛蓄電池1の電圧を検出する。セレクタ26と鉛蓄電池1の正極端子間には、ホール素子、シャント抵抗等の電流センサ28が配置されており、電池コントローラ27は、電流センサ28を介して鉛蓄電池1に流れる電流を所定時間(例えば2ms)毎にサンプリングし、サンプリング結果をRAMに格納する。また、電池コントローラ27は、充放電休止時(車両駐車時)には、鉛蓄電池1の開回路電圧及び温度を検出する。 The battery controller 27 detects the battery state such as the temperature, voltage, and current of the lead-acid battery 1 during charging / discharging (during vehicle traveling and before vehicle traveling). Specifically, a temperature sensor attached to the lead-acid battery 1 is connected to the battery controller 27, and the battery controller 27 samples the voltage of the temperature sensor at predetermined time (for example, 10 ms) and converts the sampling result into a RAM. Store. The battery controller 27 is connected to the positive electrode terminal and the negative electrode terminal of the lead storage battery 1 and detects the voltage of the lead storage battery 1. A current sensor 28 such as a hall element and a shunt resistor is arranged between the selector 26 and the positive terminal of the lead-acid battery 1, and the battery controller 27 allows the current flowing through the lead-acid battery 1 to flow through the current sensor 28 for a predetermined time ( For example, sampling is performed every 2 ms), and the sampling result is stored in the RAM. Further, the battery controller 27 detects the open circuit voltage and temperature of the lead storage battery 1 when charging / discharging is suspended (when the vehicle is parked).

電池コントローラ27は、制御部29に接続されており、充放電時に、RAMに格納した鉛蓄電池1の温度、電圧及び電流に関する情報を制御部29に送信し、充放電休止時に、鉛蓄電池1の開回路電圧及び温度に関する情報を制御部29に送信する。 The battery controller 27 is connected to the control unit 29, transmits information on the temperature, voltage, and current of the lead-acid battery 1 stored in the RAM to the control unit 29 during charging / discharging, and transmits the information regarding the temperature, voltage, and current of the lead-acid battery 1 stored in the RAM to the control unit 29. Information on the open circuit voltage and temperature is transmitted to the control unit 29.

制御部29は、マイクロコントローラ、通信IC、I/O、入力ポート、出力ポート等を備えるマイクロプロセッサとして構成されており、図4では、制御部29の役割を明確にするために機能別に細部を表している。 The control unit 29 is configured as a microprocessor including a microcontroller, a communication IC, an I / O, an input port, an output port, and the like. In FIG. 4, details are detailed for each function in order to clarify the role of the control unit 29. Represents.

マイクロコントローラは、例えば、鉛蓄電池1の電池状態を把握(演算)するCPU、基本制御プログラム、テーブル等のプログラムデータを記憶したROM、CPUのワークエリアとして働くと共に種々のデータを一時的に記憶するRAM、及びこれらを接続する内部バスで構成されている。内部バスは、外部バスに接続されており、外部バスは入力ポートを介して電池コントローラ27に接続されている。外部バスには、セレクタ26に信号を出力するための出力ポート、I/O、及び車両制御部22と通信するための通信ICが接続されている。 The microcontroller acts as a work area for a CPU that grasps (calculates) the battery state of the lead-acid battery 1, a basic control program, a ROM that stores program data such as a table, and a CPU, and temporarily stores various data. It consists of a RAM and an internal bus that connects them. The internal bus is connected to the external bus, and the external bus is connected to the battery controller 27 via the input port. An output port for outputting a signal to the selector 26, an I / O, and a communication IC for communicating with the vehicle control unit 22 are connected to the external bus.

したがって、制御部29のマイクロコントローラ及び入力ポートが図4の状態把握部30に、マイクロコントローラ及び出力ポートが図4のセレクタ制御部に、通信IC及びI/Oが図4の通信部6Cにそれぞれ対応する。 Therefore, the microcontroller and input port of the control unit 29 are in the state grasping unit 30 of FIG. 4, the microcontroller and output port are in the selector control unit of FIG. 4, and the communication IC and I / O are in the communication unit 6C of FIG. handle.

状態把握部30は、電池コントローラ27から送信された検出データをマイクロコントローラのRAMに一旦格納し、鉛蓄電池1の電池状態等を演算(推定)する。セレクタ制御部31は、車両制御部22から受信したオルタネータ23の作動情報及び状態把握部30で演算した鉛蓄電池1の電池状態に応じて、セレクタ26を制御する。通信部32は、状態把握部30が演算した鉛蓄電池1の電池状態を所定時間(例えば2ms)毎に車両制御部22に送信すると共に、車両制御部22から車両の状態情報(イグニッションスイッチの位置情報、オルタネータ23の作動情報)を受信する。 The state grasping unit 30 temporarily stores the detection data transmitted from the battery controller 27 in the RAM of the microcontroller, and calculates (estimates) the battery state and the like of the lead storage battery 1. The selector control unit 31 controls the selector 26 according to the operation information of the alternator 23 received from the vehicle control unit 22 and the battery state of the lead storage battery 1 calculated by the state grasping unit 30. The communication unit 32 transmits the battery state of the lead-acid battery 1 calculated by the state grasping unit 30 to the vehicle control unit 22 at predetermined time (for example, 2 ms), and the vehicle control unit 22 transmits the vehicle state information (ignition switch position). Information, operation information of the alternator 23) is received.

制御部29は、鉛蓄電池1の満充電容量に対する残容量の割合(残容量/満充電容量)が90%以下となるように、鉛蓄電池1の充放電を制御する。制御部29は、当該割合(残容量/満充電容量)が、85%以下又は80%以下となるように鉛蓄電池1の充放電を制御してもよく、50%以上、55%以上又は60%以上となるように鉛蓄電池1の充放電を制御してもよい。なお、制御部29は、鉛蓄電池1の満充電容量に対する残容量の割合が定常的に上記の範囲内になるように制御する必要はなく、少なくとも一時的に(すなわち、満充電容量に対する残容量の割合の最小値が)上記の範囲内となるように制御すればよい。このように、本発明の一実施形態は、鉛蓄電池1を、満充電容量に対する残容量の割合が上記の範囲内となるように充放電する、鉛蓄電池1の充放電方法であるともいえる。 The control unit 29 controls the charge / discharge of the lead storage battery 1 so that the ratio of the remaining capacity to the full charge capacity (remaining capacity / full charge capacity) of the lead storage battery 1 is 90% or less. The control unit 29 may control the charge / discharge of the lead-acid battery 1 so that the ratio (remaining capacity / fully charged capacity) is 85% or less or 80% or less, and may be 50% or more, 55% or more, or 60. The charge / discharge of the lead storage battery 1 may be controlled so as to be% or more. The control unit 29 does not need to control so that the ratio of the remaining capacity of the lead-acid battery 1 to the full charge capacity is constantly within the above range, and at least temporarily (that is, the remaining capacity with respect to the full charge capacity). The minimum value of the ratio of) may be controlled to be within the above range. As described above, one embodiment of the present invention can be said to be a charging / discharging method for the lead-acid battery 1 in which the lead-acid battery 1 is charged / discharged so that the ratio of the remaining capacity to the full charge capacity is within the above range.

<実施例1>
一酸化鉛を主成分とする鉛粉を希硫酸で練って調製したペーストを鉛合金格子に充填したペースト式極板を用いた。その後、熟成と乾燥工程とを経て未化成極板が得られた。なお、未化成の正極板及び負極板は、いずれも2価の鉛化合物である一酸化鉛(PbO)、三塩基性希硫酸鉛(3PbO・PbSO・HO)等の混合物で構成されている。化成により、正極板の未化成物質は二酸化鉛(PbO)に酸化され、負極板の未化成物質は海綿状鉛(Pb)に還元され、既化極板(正極板、負極板)が得られた。
<Example 1>
A paste-type plate was used in which a lead alloy lattice was filled with a paste prepared by kneading lead powder containing lead monoxide as a main component with dilute sulfuric acid. After that, an unmodified electrode plate was obtained through aging and drying steps. Incidentally, the positive electrode plate and the negative electrode plate which was not chemically converted is composed both divalent lead monoxide is lead compound (PbO), a mixture of such tribasic dilute lead sulfate (3PbO · PbSO 4 · H 2 O) ing. By chemical conversion, the unmodified substance of the positive electrode plate is oxidized to lead dioxide (PbO 2 ), and the unmodified substance of the negative electrode plate is reduced to spongy lead (Pb) to obtain an existing electrode plate (positive electrode plate, negative electrode plate). Was done.

膜体として表1に示すとおりの無機不織布(主成分:SiO)を用い、負極板上に配置した。セパレータとしては、厚さが0.25mm、平均孔径が30nm〜200nmである袋状のポリエチレン製セパレータを用い、負極板及び膜体をセパレータ内に収容した。電解液としては希硫酸を用いて、成層化抑制が困難なDサイズ(JIS D5301。幅:173mm、箱高さ:204mm。負極板の幅:145mm、負極板の高さ(上枠部込み):113mm。)の定格容量60Ahの鉛蓄電池を作製した。An inorganic non-woven fabric (main component: SiO 2 ) as shown in Table 1 was used as the film body and arranged on the negative electrode plate. As the separator, a bag-shaped polyethylene separator having a thickness of 0.25 mm and an average pore diameter of 30 nm to 200 nm was used, and the negative electrode plate and the film body were housed in the separator. Dilute sulfuric acid is used as the electrolytic solution, and D size (JIS D5301. Width: 173 mm, box height: 204 mm. Negative electrode plate width: 145 mm, negative electrode plate height (including upper frame)) that is difficult to suppress stratification. : 113 mm.) A lead-acid battery with a rated capacity of 60 Ah was produced.

(平均細孔径の算出)
膜体の平均細孔径は、株式会社島津製作所製、オートポアIV 9500で測定した。膜体の平均細孔径は、水銀圧入法により測定された積算細孔径分布において、分布曲線のY軸(細孔容積又は細孔比表面積)における最小値と最大値との中間値に対応するX軸(細孔径)の値であるメディアン径として算出した。
(Calculation of average pore diameter)
The average pore size of the membrane was measured with Autopore IV 9500 manufactured by Shimadzu Corporation. The average pore diameter of the film body is X corresponding to the median value between the minimum value and the maximum value on the Y axis (pore volume or pore specific surface area) of the distribution curve in the integrated pore diameter distribution measured by the mercury intrusion method. It was calculated as the median diameter, which is the value of the shaft (pore diameter).

(内部抵抗の評価)
予め初充電が完了した鉛蓄電池の内部抵抗を、1kHz交流mΩメータを用いて評価した。具体的な評価基準は、膜体を設けない場合(比較例1)の鉛蓄電池の内部抵抗を100としたときの内部抵抗の値で示した。内部抵抗の値は、好ましくは125未満であり、より好ましくは120未満であり、更に好ましくは110未満である。結果を表1に示す。
(Evaluation of internal resistance)
The internal resistance of the lead-acid battery, which had been initially charged in advance, was evaluated using a 1 kHz AC mΩ meter. The specific evaluation criteria are shown by the value of the internal resistance when the internal resistance of the lead storage battery is 100 when the film body is not provided (Comparative Example 1). The value of the internal resistance is preferably less than 125, more preferably less than 120, and even more preferably less than 110. The results are shown in Table 1.

(寿命試験(耐久性))
実施例1では、満充電容量に対する残容量の割合が50%となるように用いられた場合の鉛蓄電池の寿命性能を、次のように測定した。まず、充電が完了した満充電状態の鉛蓄電池を、湯浴温度が40±2℃に設定された水槽中に配置した。次に、以下のサイクルユニット(a)(b)を順に繰り返した。なお、60Ahの鉛蓄電池では、20時間率電流は3Aである。また、この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験であり、鉛蓄電池の電圧が10.0Vを下回った時点で寿命に達したと判断した。結果を表1に示す。
(a)15A(20時間率電流の5倍に相当)で2時間放電。
(b)15A(20時間率電流の5倍に相当)を限度に5時間充電。その際の充電上限電圧は15.6±0.1Vであった。
(Life test (durability))
In Example 1, the life performance of the lead-acid battery when used so that the ratio of the remaining capacity to the fully charged capacity was 50% was measured as follows. First, a fully charged lead-acid battery that has been fully charged was placed in a water tank in which the bath temperature was set to 40 ± 2 ° C. Next, the following cycle units (a) and (b) were repeated in order. In a 60 Ah lead-acid battery, the 20-hour rate current is 3 A. In addition, this test is a cycle test simulating how the lead-acid battery is used in the ISS vehicle, and it is judged that the life of the lead-acid battery has reached the end when the voltage of the lead-acid battery falls below 10.0V. The results are shown in Table 1.
(A) Discharge for 2 hours at 15A (equivalent to 5 times the 20-hour rate current).
(B) Charge for 5 hours up to 15A (equivalent to 5 times the 20-hour rate current). The upper limit voltage for charging at that time was 15.6 ± 0.1V.

(成層化抑制効果の評価)
電解液の成層化を抑制する効果を評価した。寿命試験と同様に充放電を繰り返し、20サイクル目における電槽内の上部と下部での電解液の上下比重差を成層化の指標とした。具体的には、電極群の上端(セパレータの上端)から1cm上までの領域を電槽内の上部とし、電極群の下端から1cm下までの領域を電槽内の下部とした。なお、電極群の高さ(電極群の下端からセパレータの上端までの長さ)は、116mmであった。そして、膜体を設けない場合(比較例1)の上下比重差を100として、上下比重差を算出した。上下比重差は、好ましくは70未満であり、より好ましくは50未満である。上下比重差が70未満であれば、成層化が抑制されたと判断した。
(Evaluation of stratification suppression effect)
The effect of suppressing the stratification of the electrolytic solution was evaluated. Charging and discharging were repeated in the same manner as in the life test, and the difference in the vertical specific density of the electrolytic solution between the upper part and the lower part in the electric tank at the 20th cycle was used as an index of stratification. Specifically, the region from the upper end of the electrode group (upper end of the separator) to 1 cm above was defined as the upper part of the battery case, and the region from the lower end of the electrode group to 1 cm below was defined as the lower part of the battery case. The height of the electrode group (the length from the lower end of the electrode group to the upper end of the separator) was 116 mm. Then, the vertical specific density difference was calculated with the vertical specific density difference of the case where the film body was not provided (Comparative Example 1) as 100. The difference in relative density between the top and bottom is preferably less than 70, and more preferably less than 50. When the difference between the upper and lower specific densities was less than 70, it was judged that stratification was suppressed.

<実施例2〜5>
寿命試験及び成層化抑制効果の評価において、満充電容量に対する残容量の割合を表1に示すとおりに変更した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Examples 2 to 5>
In the life test and the evaluation of the stratification suppressing effect, a lead storage battery was prepared and evaluated in the same manner as in Example 1 except that the ratio of the remaining capacity to the fully charged capacity was changed as shown in Table 1.

<実施例6,7>
膜体として表1に示すとおりの無機不織布を用いた以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Examples 6 and 7>
A lead-acid battery was prepared and evaluated in the same manner as in Example 1 except that the inorganic non-woven fabric as shown in Table 1 was used as the film body.

<実施例8,9>
膜体として、無機不織布に代えて有機・無機混合不織布(多孔シート。パルプ、ガラス繊維及びシリカ粉末を含む混合繊維から構成される不織布)を用いた以外は、それぞれ実施例3,4と同様にして鉛蓄電池の作製及び評価を行った。
<Examples 8 and 9>
As the film body, the same as in Examples 3 and 4, except that an organic / inorganic mixed non-woven fabric (porous sheet. Non-woven fabric composed of mixed fibers containing pulp, glass fiber and silica powder) was used instead of the inorganic non-woven fabric. The lead storage battery was prepared and evaluated.

<実施例10>
鉛蓄電池のサイズを欧州で一般的なLN1サイズ(EN 50342−2。幅:175mm、箱高さ:190mm。負極板の幅:143mm、負極板の高さ(上枠部込み):100mm。)に変更した以外は、実施例4と同様にして鉛蓄電池の作製及び評価を行った。
<Example 10>
The size of the lead-acid battery is LN1 size, which is common in Europe (EN 50342-2. Width: 175 mm, box height: 190 mm. Negative electrode plate width: 143 mm, negative electrode plate height (including upper frame): 100 mm.) A lead-acid battery was prepared and evaluated in the same manner as in Example 4 except that the lead-acid battery was changed to.

<比較例1>
負極板上に膜体を設けなかった以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative example 1>
A lead-acid battery was produced and evaluated in the same manner as in Example 1 except that the film body was not provided on the negative electrode plate.

<比較例2>
負極板上に膜体を設けず、かつ負極板に代えて正極板をセパレータ内に収容した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative example 2>
A lead-acid battery was produced and evaluated in the same manner as in Example 1 except that the film body was not provided on the negative electrode plate and the positive electrode plate was housed in the separator instead of the negative electrode plate.

<比較例3>
負極板上に膜体を設けずに正極板上に膜体を設け、かつ負極板に代えて正極板及び膜体をセパレータ内に収容した以外は、実施例1と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative example 3>
A lead-acid battery was produced in the same manner as in Example 1 except that the film body was provided on the positive electrode plate without providing the film body on the negative electrode plate, and the positive electrode plate and the film body were housed in the separator instead of the negative electrode plate. And evaluation was performed.

<比較例4>
膜体として表1に示すとおりの無機不織布を用いた以外は、実施例4と同様にして鉛蓄電池の作製及び評価を行った。
<Comparative example 4>
A lead-acid battery was prepared and evaluated in the same manner as in Example 4 except that the inorganic non-woven fabric as shown in Table 1 was used as the film body.

<参考例1,2>
寿命試験及び成層化抑制効果の評価において、満充電容量に対する残容量の割合を表1に示すとおりに変更した以外は、それぞれ実施例4,比較例4と同様にして鉛蓄電池の作製及び評価を行った。
<Reference Examples 1 and 2>
In the life test and the evaluation of the stratification suppressing effect, the lead-acid batteries were prepared and evaluated in the same manner as in Example 4 and Comparative Example 4, except that the ratio of the remaining capacity to the fully charged capacity was changed as shown in Table 1. went.

Figure 0006965892
Figure 0006965892

以上の結果から、満充電容量に対する残容量の割合が90%以下となるように用いられる鉛蓄電池において、負極とセパレータとの間に膜体を設けた実施例では成層化が抑制されているのに対し、膜体を設けていない比較例1,2、及び、正極とセパレータとの間に膜体を設けた比較例3では成層化が抑制されないことが分かった。一方、満充電容量に対する残容量の割合が90%を超えるように用いられる鉛蓄電池(参考例1,2)においては、膜体の平均細孔径による成層化抑制の程度に差は見られなかった。 From the above results, in the lead-acid battery used so that the ratio of the remaining capacity to the full charge capacity is 90% or less, stratification is suppressed in the example in which the film body is provided between the negative electrode and the separator. On the other hand, it was found that stratification was not suppressed in Comparative Examples 1 and 2 in which the film body was not provided and in Comparative Example 3 in which the film body was provided between the positive electrode and the separator. On the other hand, in the lead-acid batteries (Reference Examples 1 and 2) used so that the ratio of the remaining capacity to the full charge capacity exceeds 90%, there was no difference in the degree of suppression of stratification depending on the average pore size of the film body. ..

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。 The present invention is not limited to the above examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to the embodiment including all the described configurations.

1…鉛蓄電池、2…電槽、9…負極板、10…正極板、11…セパレータ、14…膜体、25…電源システム、29…制御部。 1 ... Lead-acid battery, 2 ... Electric tank, 9 ... Negative electrode plate, 10 ... Positive electrode plate, 11 ... Separator, 14 ... Membrane body, 25 ... Power supply system, 29 ... Control unit.

Claims (5)

正極板と、
負極板と、
前記正極板と前記負極板との間に配置されたセパレータと、
前記負極板と前記セパレータとの間に配置された膜体と、
電解液と、
前記正極板、前記負極板、前記セパレータ、前記膜体及び前記電解液を収容する電槽と、を備え、
前記膜体は、平均細孔径が15μm以下の細孔を有し、繊維として無機繊維のみを含む無機不織布であり、
満充電容量に対する残容量の割合が90%以下となるように用いられる、液式鉛蓄電池。
With the positive electrode plate
With the negative electrode plate
A separator arranged between the positive electrode plate and the negative electrode plate,
A film body arranged between the negative electrode plate and the separator,
With electrolyte
A positive electrode plate, a negative electrode plate, a separator, a film body, and an electric tank for accommodating the electrolytic solution are provided.
The film body is an inorganic non-woven fabric having pores having an average pore diameter of 15 μm or less and containing only inorganic fibers as fibers.
A liquid lead-acid battery used so that the ratio of the remaining capacity to the fully charged capacity is 90% or less.
前記セパレータが袋状のセパレータであり、前記負極板及び前記膜体が前記セパレータ内に収容されている、請求項1に記載の液式鉛蓄電池。 The liquid lead-acid battery according to claim 1, wherein the separator is a bag-shaped separator, and the negative electrode plate and the film body are housed in the separator. 前記膜体が、0.3mm以下の厚さ、20%以上の空孔率及び30g/m〜50g/mの目付けを有する、請求項1又は2に記載の液式鉛蓄電池。 The film body, 0.3 mm or less thick, has more than 20% porosity and 30g / m 2 ~50g / m 2 basis weight, a liquid type lead-acid battery according to claim 1 or 2. 請求項1〜のいずれか一項に記載の液式鉛蓄電池を、満充電容量に対する残容量の割合が90%以下となるように充放電する、液式鉛蓄電池の充放電方法。 A method for charging / discharging a liquid lead-acid battery according to any one of claims 1 to 3 , wherein the liquid lead-acid battery is charged / discharged so that the ratio of the remaining capacity to the full charge capacity is 90% or less. 請求項1〜のいずれか一項に記載の液式鉛蓄電池と、
前記液式鉛蓄電池の充放電を制御する制御部と、を備え、
前記制御部は、前記液式鉛蓄電池の満充電容量に対する残容量の割合が90%以下となるように充放電を制御する、電源システム。
The liquid lead-acid battery according to any one of claims 1 to 3 and
A control unit that controls charging / discharging of the liquid lead-acid battery is provided.
The control unit is a power supply system that controls charge / discharge so that the ratio of the remaining capacity to the full charge capacity of the liquid lead-acid battery is 90% or less.
JP2018554803A 2016-12-07 2017-02-16 Liquid lead-acid battery, charging / discharging method of liquid lead-acid battery, and power supply system Active JP6965892B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/086395 2016-12-07
PCT/JP2016/086395 WO2018105060A1 (en) 2016-12-07 2016-12-07 Liquid lead-acid battery
PCT/JP2017/005721 WO2018105134A1 (en) 2016-12-07 2017-02-16 Liquid lead-acid battery, method for charging/discharging liquid lead-acid battery, and power supply system

Publications (2)

Publication Number Publication Date
JPWO2018105134A1 JPWO2018105134A1 (en) 2019-10-24
JP6965892B2 true JP6965892B2 (en) 2021-11-10

Family

ID=62491431

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018555383A Active JP6908052B2 (en) 2016-12-07 2016-12-07 Liquid lead-acid battery
JP2018554803A Active JP6965892B2 (en) 2016-12-07 2017-02-16 Liquid lead-acid battery, charging / discharging method of liquid lead-acid battery, and power supply system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018555383A Active JP6908052B2 (en) 2016-12-07 2016-12-07 Liquid lead-acid battery

Country Status (2)

Country Link
JP (2) JP6908052B2 (en)
WO (2) WO2018105060A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274830B2 (en) * 2018-07-09 2023-05-17 エナジーウィズ株式会社 lead acid battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921332B2 (en) * 1993-05-24 1999-07-19 新神戸電機株式会社 Glass mat for lead acid battery
JP2003077445A (en) * 2001-08-31 2003-03-14 Yuasa Corp Lead acid storage battery
JP2005108538A (en) * 2003-09-29 2005-04-21 Nippon Sheet Glass Co Ltd Separator for sealed lead-acid battery, and sealed lead-acid battery
KR102482066B1 (en) * 2010-09-22 2022-12-28 다라믹 엘엘씨 Improved lead acid battery separators, batteries and related methods
KR20140021663A (en) * 2011-05-13 2014-02-20 신코베덴키 가부시키가이샤 Lead battery
JP2016177872A (en) * 2015-03-18 2016-10-06 日立化成株式会社 Lead storage battery
WO2017033497A1 (en) * 2015-08-24 2017-03-02 日立化成株式会社 Lead storage-battery separator, lead storage-battery, and method for producing same

Also Published As

Publication number Publication date
JPWO2018105060A1 (en) 2019-10-24
JP6908052B2 (en) 2021-07-21
WO2018105134A1 (en) 2018-06-14
WO2018105060A1 (en) 2018-06-14
JPWO2018105134A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP5315256B2 (en) Optimized energy storage device
JP6124292B2 (en) In-vehicle power supply device and vehicle equipped with power supply device
JP6428086B2 (en) Power supply system and automobile
JP6459774B2 (en) Control device for internal combustion engine
JP6965892B2 (en) Liquid lead-acid battery, charging / discharging method of liquid lead-acid battery, and power supply system
Soria et al. New developments on valve-regulated lead–acid batteries for advanced automotive electrical systems
JP2006086039A (en) Lead-acid storage battery
JP6750316B2 (en) Vehicle power supply system and automobile
JP2002025630A (en) Power supply system of running vehicle
JP6327046B2 (en) Power supply system and automobile
JP2017188477A (en) Lead storage battery
JP6953821B2 (en) Liquid lead-acid battery
JP2020192865A (en) Vehicular power supply control device
JP2016088178A (en) Power supply system and automobile
JP2016067142A (en) Power supply system and automobile
JP5573785B2 (en) Lead acid battery
JP6394233B2 (en) Power supply system and automobile
WO2020066763A1 (en) Lead battery
JP7152831B2 (en) lead acid battery
JP2006318658A (en) Lead-acid battery
JP7431192B2 (en) Control method for alkaline secondary batteries
JP7274830B2 (en) lead acid battery
JP7440455B2 (en) Control method for alkaline secondary batteries
JP2002051471A (en) Power supply system for vehicle, and method for estimating state of charging of the system
JP6956698B2 (en) Liquid lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350