JP6963166B2 - Wafer surface treatment method and composition used in the method - Google Patents

Wafer surface treatment method and composition used in the method Download PDF

Info

Publication number
JP6963166B2
JP6963166B2 JP2017081095A JP2017081095A JP6963166B2 JP 6963166 B2 JP6963166 B2 JP 6963166B2 JP 2017081095 A JP2017081095 A JP 2017081095A JP 2017081095 A JP2017081095 A JP 2017081095A JP 6963166 B2 JP6963166 B2 JP 6963166B2
Authority
JP
Japan
Prior art keywords
composition
group
wafer
silylating agent
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017081095A
Other languages
Japanese (ja)
Other versions
JP2018182112A (en
Inventor
朋宏 高田
貴陽 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2017081095A priority Critical patent/JP6963166B2/en
Priority to PCT/JP2018/014353 priority patent/WO2018193841A1/en
Priority to TW107112874A priority patent/TWI670767B/en
Publication of JP2018182112A publication Critical patent/JP2018182112A/en
Application granted granted Critical
Publication of JP6963166B2 publication Critical patent/JP6963166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、Si元素を有するウェハの洗浄において、所定の組成物の蒸気を用いるウェハの表面処理方法及び当該組成物に関する。 The present invention relates to a wafer surface treatment method using vapor of a predetermined composition in cleaning a wafer containing a Si element, and the composition.

ネットワークやデジタル家電用の半導体デバイスにおいて、さらなる高性能・高機能化や低消費電力化が要求されている。そのため、回路パターンの微細化が進行しており、微細化が進行するに伴って、回路パターンのパターン倒れが問題となっている。半導体デバイス製造においては、パーティクルや金属不純物の除去を目的とした洗浄工程が多用されており、その結果、半導体製造工程全体の3〜4割にまで洗浄工程が占めている。この洗浄工程において、半導体デバイスの微細化に伴うパターンのアスペクト比が高くなると、洗浄またはリンス後、気液界面がパターンを通過する時にパターンが倒れる現象がパターン倒れである。パターン倒れの発生を防止するためにパターンの設計を変更せざるを得なかったり、また生産時の歩留まりの低下に繋がったりするため、洗浄工程におけるパターン倒れを防止する方法が望まれている。 Semiconductor devices for networks and digital home appliances are required to have higher performance, higher functionality, and lower power consumption. Therefore, the miniaturization of the circuit pattern is progressing, and as the miniaturization progresses, the pattern collapse of the circuit pattern becomes a problem. In semiconductor device manufacturing, a cleaning process for the purpose of removing particles and metal impurities is often used, and as a result, the cleaning process accounts for 30 to 40% of the entire semiconductor manufacturing process. In this cleaning step, when the aspect ratio of the pattern is increased due to the miniaturization of the semiconductor device, the pattern collapse is a phenomenon in which the pattern collapses when the gas-liquid interface passes through the pattern after cleaning or rinsing. Since the design of the pattern has to be changed in order to prevent the pattern from collapsing, and the yield at the time of production is lowered, a method for preventing the pattern from collapsing in the cleaning process is desired.

パターン倒れを防止する方法として、パターン表面に撥水性保護膜を形成することが有効であることが知られている。この撥水化はパターン表面を乾燥させずに行う必要があるため、パターン表面を撥水化することができる撥水性保護膜形成用薬液により撥水性保護膜を形成する。 It is known that forming a water-repellent protective film on the surface of the pattern is effective as a method of preventing the pattern from collapsing. Since it is necessary to make the pattern surface water-repellent without drying it, the water-repellent protective film is formed by a chemical solution for forming a water-repellent protective film that can make the pattern surface water-repellent.

特許文献1では、表面に微細な凹凸パターンを有するシリコンウェハの洗浄時に、該凹凸パターン表面に撥水性保護膜を形成するための薬液であり、前記薬液は凹凸パターン表面にOH基が導入された後に、蒸気として凹凸パターン表面に供給されるものであり、
ハイドロフルオロエーテル、ハイドロクロロフルオロカーボンからなる群より選ばれた少なくとも1種以上の含フッ素溶剤を93.5〜97.499質量%;
プロピレングリコールモノメチルエーテルアセテートを2〜5質量%;
ヘキサメチルジシラザン、テトラメチルジシラザンからなる群より選ばれた少なくとも1種以上のシラザン化合物を0.5〜5質量%;
トリフルオロ酢酸、無水トリフルオロ酢酸、トリメチルシリルトリフルオロアセテートからなる群より選ばれた少なくとも1種以上の酸を0.001〜0.25質量%
含むことを特徴とする薬液、及びそれを用いるウェハの処理方法について開示されている。
In Patent Document 1, it is a chemical solution for forming a water-repellent protective film on the surface of the uneven pattern when cleaning a silicon wafer having a fine uneven pattern on the surface, and the chemical solution has OH groups introduced on the surface of the uneven pattern. Later, it is supplied as steam to the surface of the uneven pattern,
93.5 to 97.499% by mass of at least one fluorine-containing solvent selected from the group consisting of hydrofluoroethers and hydrochlorofluorocarbons;
2-5% by weight of propylene glycol monomethyl ether acetate;
0.5 to 5% by mass of at least one silazane compound selected from the group consisting of hexamethyldisilazane and tetramethyldisilazane;
0.001 to 0.25% by mass of at least one acid selected from the group consisting of trifluoroacetic acid, trifluoroacetic anhydride, and trimethylsilyl trifluoroacetate.
A chemical solution characterized by containing the same, and a method for processing a wafer using the same are disclosed.

特許第5648053号公報Japanese Patent No. 5648053

特許文献1に記載のウェハの処理方法は、複数枚のウェハの洗浄処理を一度に実施し、半導体ウェハの洗浄プロセスの効率化に有効な方法であるが、保護膜形成成分であるシラザン化合物の沸点(ヘキサメチルジシラザンの沸点:約125℃、テトラメチルジシラザンの沸点:約100℃)よりも高沸点であるプロピレングリコールモノメチルエーテルアセテート(沸点:約146℃)を必須成分として含むことから、薬液を素早く全量蒸気化するには当該プロピレングリコールモノメチルエーテルアセテートの沸点以上の温度(すなわちシラザン化合物の沸点よりも20℃以上高い温度)で十分な熱量を加える必要がある。そのため、上記の方法では蒸気化の際にシラザン化合物の熱分解が引き起こされる恐れがあった。 The method for processing a wafer described in Patent Document 1 is an effective method for cleaning a plurality of wafers at a time to improve the efficiency of the cleaning process for semiconductor wafers. Since it contains propylene glycol monomethyl ether acetate (boiling point: about 146 ° C.), which is higher than the boiling point (boiling point of hexamethyldisilazane: about 125 ° C., boiling point of tetramethyldisilazane: about 100 ° C.) as an essential component. In order to quickly vaporize the entire amount of the chemical solution, it is necessary to apply a sufficient amount of heat at a temperature equal to or higher than the boiling point of the propylene glycol monomethyl ether acetate (that is, a temperature higher than the boiling point of the silazane compound by 20 ° C. or higher). Therefore, in the above method, there is a possibility that thermal decomposition of the silazane compound may be caused at the time of vaporization.

そのため薬液に含有される溶剤は、保護膜形成成分の沸点よりも低沸点のものを用いることが望ましい。そのような溶剤と保護膜形成成分の組合せであれば、上述の蒸気化の温度を保護膜形成成分の沸点近傍(保護膜形成成分の沸点+5℃程度)までに抑えることができるため、蒸気化に伴う保護膜形成成分の熱分解が引き起こされる恐れがないためである。
また、薬液を蒸気化するに際して、安全性の観点から該蒸気の大部分を占める溶剤の引火点が高いこと(難燃性又は不燃性であること)が望ましい。上述のように低沸点かつ高引火点(難燃性又は不燃性)を満たす溶剤として含フッ素エーテル系の溶剤が挙げられる。
ただし、本発明者らが鋭意検討した結果、単純に従来のシリル化剤とそれよりも低沸点の含フッ素エーテル系溶剤を組み合わせただけでは、両者の組み合わせによっては薬液の安定性が低く、特にシリル化剤の濃度が2質量%以上の薬液では不溶物の析出や沈殿が生じ易い問題があった。
Therefore, it is desirable to use a solvent contained in the chemical solution having a boiling point lower than the boiling point of the protective film-forming component. With such a combination of the solvent and the protective film-forming component, the above-mentioned vaporization temperature can be suppressed to near the boiling point of the protective film-forming component (the boiling point of the protective film-forming component + about 5 ° C.), so that vaporization is possible. This is because there is no risk of causing thermal decomposition of the protective film-forming component.
Further, when vaporizing the chemical solution, it is desirable that the solvent which occupies most of the vapor has a high flash point (flame retardant or nonflammable) from the viewpoint of safety. As described above, as a solvent having a low boiling point and a high flash point (flame retardant or nonflammable), a fluorine-containing ether-based solvent can be mentioned.
However, as a result of diligent studies by the present inventors, the stability of the chemical solution is particularly low depending on the combination of the conventional silylating agent and the fluorine-containing ether solvent having a boiling point lower than that. When the concentration of the silylating agent is 2% by mass or more, there is a problem that insoluble matter is likely to precipitate or precipitate.

そこで本発明では、従来と同等の撥水性付与効果を奏するとともに上記の問題を解決した組成物を提供すること、及び、Si元素を有するウェハの洗浄において当該組成物の蒸気を用いるウェハの表面処理方法を提供することを課題とする。 Therefore, the present invention provides a composition that has the same water repellency-imparting effect as the conventional one and solves the above problems, and surface-treats the wafer using the vapor of the composition in cleaning the wafer containing the Si element. The challenge is to provide a method.

本発明は、表面に凹凸パターンを有し、少なくとも該凹部にSi元素を有するウェハ(以降、単に「ウェハ」と記載する場合がある)の洗浄において、
上記凹凸パターンの少なくとも凹部に液体を保持した状態で、
下記一般式[1]で表されるシリル化剤と、
上記シリル化剤の沸点よりも低沸点の下記一般式[2]で表される含フッ素エーテルが、総量100質量%のうち99.8〜100質量%である溶媒とを
含み、上記シリル化剤と溶媒の総量に対する該シリル化剤の量が、2〜30質量%である組成物(以降、単に「組成物」と記載する場合がある)の蒸気を
上記凹凸パターン表面に供して、ウェハ表面にて該蒸気を上記組成物の液体状態に状態変化して、上記凹部に保持された液体を該組成物の液体に置換して保持することにより、少なくとも上記凹部表面に撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成する、ウェハの表面処理方法である。
(R(H)4−x−ySi[N(R [1]
[式[1]中、Rは、それぞれ互いに独立して、炭素数が1〜10の炭化水素基、及び、水素元素の一部又は全てがフッ素元素に置換された炭素数が1〜8の炭化水素基から選択される基であり、Rは、それぞれ互いに独立して、水素元素の一部又は全てがフッ素元素に置換されていてもよいメチル基、エチル基、アセチル基から選択される基である。xは1〜3の整数であり、yは1〜3の整数であり、4−x−yは0〜2の整数である。]
2n+1−O−C2m+1 [2]
[式[2]中、C2n+1は、炭素数n=4〜5の直鎖状のパーフルオロアルキル基を表し、C2m+1は、炭素数m=2〜6の直鎖状又は分枝状のアルキル基を表す。]
The present invention is used in cleaning a wafer having a concavo-convex pattern on its surface and at least having a Si element in the recesses (hereinafter, may be simply referred to as "wafer").
With the liquid held in at least the recesses of the uneven pattern,
The silylating agent represented by the following general formula [1] and
The fluorine-containing ether represented by the following general formula [2] having a boiling point lower than the boiling point of the silylating agent contains a solvent in which 99.8 to 100% by mass out of a total amount of 100% by mass, and the silylating agent. The vapor of the composition (hereinafter, may be simply referred to as “composition”) in which the amount of the silylating agent with respect to the total amount of the solvent is 2 to 30% by mass is applied to the surface of the uneven pattern, and the surface of the wafer is surfaced. By changing the state of the vapor to the liquid state of the composition and replacing the liquid held in the recess with the liquid of the composition and holding the vapor, at least the surface of the recess is covered with a water-repellent protective film (hereinafter , Simply referred to as "protective film"), a method of surface treatment of a wafer.
(R 1 ) y (H) 4-xy Si [N (R 2 ) 2 ] x [1]
[In the formula [1], R 1 is independent of each other and has a hydrocarbon group having 1 to 10 carbon atoms and 1 to 8 carbon atoms in which a part or all of the hydrogen element is replaced with a fluorine element. R 2 is a group selected from the hydrocarbon groups of the above, and R 2 is independently selected from a methyl group, an ethyl group, and an acetyl group in which a part or all of the hydrogen element may be substituted with a fluorine element. It is a base. x is an integer of 1 to 3, y is an integer of 1 to 3, and 4-xy is an integer of 0 to 2. ]
C n F 2n + 1 −O−C m H 2m + 1 [2]
Wherein [2], C n F 2n + 1 represents a linear perfluoroalkyl group with carbon number n = 4~5, C m H 2m + 1 are straight-chain or carbon number m = 2 to 6 Represents a branched alkyl group. ]

上記ウェハの表面処理方法において、上記シリル化剤が、(CHSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSiN(CH、C11Si(CHN(CH、C13Si(CHN(CH、C15Si(CHN(CH、C17Si(CHN(CH、C19Si(CHN(CH、C1021Si(CHN(CH、C1123Si(CHN(CH、C1225Si(CHN(CH、C1327Si(CHN(CH、C1429Si(CHN(CH、C1531Si(CHN(CH、C1633Si(CHN(CH、C1735Si(CHN(CH、C1837Si(CHN(CH、(CHSi(H)N(CH、CHSi(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CSi(CH)(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CFCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、C11CHCHSi(N(CH、C13CHCHSi(N(CH、C15CHCHSi(N(CH、C17CHCHSi(N(CH、CFCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、C11CHCHSi(CH)(N(CH、C13CHCHSi(CH)(N(CH、C15CHCHSi(CH)(N(CH、C17CHCHSi(CH)(N(CH、CFCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、C11CHCHSi(CHN(CH、C13CHCHSi(CHN(CH、C15CHCHSi(CHN(CH、C17CHCHSi(CHN(CH、CFCHCHSi(CH)(H)N(CH、あるいは、上記ジメチルアミノシランのジメチルアミノ基(−N(CH基)が、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CFである化合物からなる群から選ばれる少なくとも1種であることが好ましい。 In the surface treatment method for the wafer, the silylating agent is (CH 3 ) 3 SiN (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2. Si (CH 3 ) N (CH 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (CH 3 ) N (CH 3 ) 2 , (C 3 H 7 ) 3 SiN (CH 3 ) 2 , C 4 H 9 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 H 13 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 H 15 Si (CH 3 ) 2 N (CH 3 ) 2 , C 8 H 17 Si (CH 3 ) 2 N (CH 3 ) 2 , C 9 H 19 Si (CH 3 ) 2 N (CH 3 ) 2 , C 10 H 21 Si (CH 3) ) 2 N (CH 3 ) 2 , C 11 H 23 Si (CH 3 ) 2 N (CH 3 ) 2 , C 12 H 25 Si (CH 3 ) 2 N (CH 3 ) 2 , C 13 H 27 Si (CH) 3 ) 2 N (CH 3 ) 2 , C 14 H 29 Si (CH 3 ) 2 N (CH 3 ) 2 , C 15 H 31 Si (CH 3 ) 2 N (CH 3 ) 2 , C 16 H 33 Si ( CH 3 ) 2 N (CH 3 ) 2 , C 17 H 35 Si (CH 3 ) 2 N (CH 3 ) 2 , C 18 H 37 Si (CH 3 ) 2 N (CH 3 ) 2 , (CH 3 ) 2 Si (H) N (CH 3 ) 2 , CH 3 Si (H) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (H) N (CH 3 ) 2 , C 2 H 5 Si (H) ) 2 N (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) (H) N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (H) N (CH 3 ) 2 , C 3 H 7 Si (H) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 2 F 5 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 3 F 7 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 4 F 9 CH 2 CH 2 Si (N (N (CH 3) 2) CH 3 ) 2 ) 3 , C 5 F 11 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 6 F 13 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 7 F 15 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 8 F 17 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , CF 3 CH 2 CH 2 Si (CH 3 ) (N (CH 3 )) 2 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 7 F 15 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 N ( CH 3 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 F 15 CH 2 CH 2 Si (CH) 3 ) 2 N (CH 3 ) 2 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) (H) N (CH 3 ) 2 or the above The dimethylamino groups (-N (CH 3 ) 2 groups) of methylaminosilane are -N (C 2 H 5 ) 2 , -N (CH 3 ) C (O) CH 3 , -N (CH 3 ) C (O). ) It is preferable that it is at least one selected from the group consisting of a compound which is CF 3.

上記ウェハの表面処理方法において、上記一般式[1]の−N(Rで表される基が、−N(CH基又は−N(C基であることがより好ましい。 In the surface treatment method of the wafer, a group represented by -N above general formula [1] (R 2) 2 is a -N (CH 3) 2 group, or -N (C 2 H 5) 2 group Is more preferable.

上記ウェハの表面処理方法において、上記シリル化剤が、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミンからなる群から選ばれる少なくとも1種であることが特に好ましい。 In the wafer surface treatment method, it is particularly preferable that the silylating agent is at least one selected from the group consisting of trimethylsilyldimethylamine and trimethylsilyldiethylamine.

上記ウェハの表面処理方法において、上記含フッ素エーテルが、ノナフルオロ−n−ブチルエチルエーテルであることが好ましい。 In the wafer surface treatment method, the fluorine-containing ether is preferably nonafluoro-n-butyl ethyl ether.

上記ウェハの表面処理方法において、上記組成物中の、上記シリル化剤と上記含フッ素エーテルの質量比(シリル化剤/含フッ素エーテル)が、1/99〜30/70であることが好ましい。 In the wafer surface treatment method, the mass ratio of the silylating agent to the fluorine-containing ether (silylating agent / fluorine-containing ether) in the composition is preferably 1/99 to 30/70.

上記ウェハの表面処理方法において、上記組成物が、上記シリル化剤と上記含フッ素エーテルのみからなることが好ましい。 In the wafer surface treatment method, it is preferable that the composition comprises only the silylating agent and the fluorine-containing ether.

上記ウェハの表面処理方法において、上記組成物が、さらに酸を含んでもよい。 In the wafer surface treatment method, the composition may further contain an acid.

上記ウェハの表面処理方法において、上記組成物が、上記シリル化剤と上記含フッ素エーテルと酸のみからなるものであってもよい。 In the wafer surface treatment method, the composition may consist only of the silylating agent, the fluorine-containing ether, and an acid.

上記ウェハの表面処理方法において、上記組成物に含んでもよい酸が、トリメチルシリルトリフルオロアセテート、トリメチルシリルトリフルオロメタンスルホネート、ジメチルシリルトリフルオロアセテート、ジメチルシリルトリフルオロメタンスルホネート、ブチルジメチルシリルトリフルオロアセテート、ブチルジメチルシリルトリフルオロメタンスルホネート、ヘキシルジメチルシリルトリフルオロアセテート、ヘキシルジメチルシリルトリフルオロメタンスルホネート、オクチルジメチルシリルトリフルオロアセテート、オクチルジメチルシリルトリフルオロメタンスルホネート、デシルジメチルシリルトリフルオロアセテート、及び、デシルジメチルシリルトリフルオロメタンスルホネートからなる群から選ばれる少なくとも1種であることが好ましい。 In the above wafer surface treatment method, the acids that may be contained in the above composition are trimethylsilyl trifluoroacetate, trimethylsilyl trifluoromethanesulfonate, dimethylsilyl trifluoroacetate, dimethylsilyl trifluoromethanesulfonate, butyldimethylsilyl trifluoroacetate, butyldimethylsilyl. A group consisting of trifluoromethanesulfonate, hexyldimethylsilyltrifluoroacetate, hexyldimethylsilyltrifluoromethanesulfonate, octyldimethylsilyltrifluoroacetate, octyldimethylsilyltrifluoromethanesulfonate, decyldimethylsilyltrifluoroacetate, and decyldimethylsilyltrifluoromethanesulfonate. It is preferable that it is at least one selected from.

上記ウェハの表面処理方法において、上記凹部に保持された液体が、非水溶媒であることが好ましい。 In the wafer surface treatment method, it is preferable that the liquid held in the recess is a non-aqueous solvent.

上記ウェハの表面処理方法において、少なくとも上記凹部表面に撥水性保護膜を形成した後で、該凹部に保持された液体状態の上記組成物を乾燥により除去することが好ましい。当該乾燥により、上記組成物中の溶媒や保護膜の形成に関与しなかった余剰なシリル化剤等が除去される。 In the wafer surface treatment method, it is preferable to form at least the water-repellent protective film on the surface of the recess and then remove the composition in a liquid state held in the recess by drying. The drying removes excess silylating agent and the like that were not involved in the formation of the solvent and the protective film in the composition.

上記ウェハの表面処理方法において、少なくとも上記凹部表面に撥水性保護膜を形成した後で、該凹部に保持された液体状態の上記組成物を該組成物とは異なる洗浄液に置換し、該洗浄液を乾燥により除去することが好ましい。 In the wafer surface treatment method, after forming a water-repellent protective film on at least the surface of the recess, the composition in a liquid state held in the recess is replaced with a cleaning solution different from the composition, and the cleaning solution is used. It is preferable to remove it by drying.

上記ウェハの表面処理方法において、上記乾燥後のウェハ表面に、加熱処理、光照射処理、オゾン曝露処理、プラズマ照射処理、及びコロナ放電処理からなる群から選ばれる少なくとも1つの処理を施して上記撥水性保護膜を除去してもよい。 In the wafer surface treatment method, the dried wafer surface is subjected to at least one treatment selected from the group consisting of heat treatment, light irradiation treatment, ozone exposure treatment, plasma irradiation treatment, and corona discharge treatment to repel the wafer. The aqueous protective film may be removed.

また、本発明は、
表面に凹凸パターンを有し、少なくとも該凹部にSi元素を有するウェハの洗浄において、
上記凹凸パターンの少なくとも凹部に液体を保持した状態で、該凹凸パターン表面に蒸気として供され、ウェハ表面にて蒸気から液体状態に状態変化して、上記凹部に保持された液体を置換して該凹部に保持される、
下記一般式[1]で表されるシリル化剤と、
上記シリル化剤の沸点よりも低沸点の下記一般式[2]で表される含フッ素エーテルが、総量100質量%のうち99.8〜100質量%である溶媒とを
含み、上記シリル化剤と溶媒の総量に対する該シリル化剤の量が、2〜30質量%である組成物である。
(R(H)4−x−ySi[N(R [1]
[式[1]中、Rは、それぞれ互いに独立して、炭素数が1〜10の炭化水素基、及び、水素元素の一部又は全てがフッ素元素に置換された炭素数が1〜8の炭化水素基から選択される基であり、Rは、それぞれ互いに独立して、水素元素の一部又は全てがフッ素元素に置換されていてもよいメチル基、エチル基、アセチル基から選択される基である。xは1〜3の整数であり、yは1〜3の整数であり、4−x−yは0〜2の整数である。]
2n+1−O−C2m+1 [2]
[式[2]中、C2n+1は、炭素数n=4〜5の直鎖状のパーフルオロアルキル基を表し、C2m+1は、炭素数m=2〜6の直鎖状又は分枝状のアルキル基を表す。]
In addition, the present invention
In cleaning a wafer having a concavo-convex pattern on the surface and at least the Si element in the recesses.
With the liquid held in at least the concave portion of the concave-convex pattern, the liquid is provided as vapor on the surface of the concave-convex pattern, the state changes from steam to a liquid state on the wafer surface, and the liquid held in the concave portion is replaced. Held in the recess,
The silylating agent represented by the following general formula [1] and
The fluorine-containing ether represented by the following general formula [2] having a boiling point lower than the boiling point of the silylating agent contains a solvent in which 99.8 to 100% by mass is 99.8 to 100% by mass based on the total amount of 100% by mass, and the silylating agent. The composition is such that the amount of the silylating agent with respect to the total amount of the solvent and the solvent is 2 to 30% by mass.
(R 1 ) y (H) 4-xy Si [N (R 2 ) 2 ] x [1]
[In the formula [1], R 1 is independent of each other and has a hydrocarbon group having 1 to 10 carbon atoms and 1 to 8 carbon atoms in which a part or all of the hydrogen element is replaced with a fluorine element. R 2 is a group selected from the hydrocarbon groups of the above, and R 2 is independently selected from a methyl group, an ethyl group, and an acetyl group in which a part or all of the hydrogen element may be substituted with a fluorine element. It is a base. x is an integer of 1 to 3, y is an integer of 1 to 3, and 4-xy is an integer of 0 to 2. ]
C n F 2n + 1 −O−C m H 2m + 1 [2]
Wherein [2], C n F 2n + 1 represents a linear perfluoroalkyl group with carbon number n = 4~5, C m H 2m + 1 are straight-chain or carbon number m = 2 to 6 Represents a branched alkyl group. ]

上記組成物において、上記シリル化剤が、(CHSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSiN(CH、C11Si(CHN(CH、C13Si(CHN(CH、C15Si(CHN(CH、C17Si(CHN(CH、C19Si(CHN(CH、C1021Si(CHN(CH、C1123Si(CHN(CH、C1225Si(CHN(CH、C1327Si(CHN(CH、C1429Si(CHN(CH、C1531Si(CHN(CH、C1633Si(CHN(CH、C1735Si(CHN(CH、C1837Si(CHN(CH、(CHSi(H)N(CH、CHSi(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CSi(CH)(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CFCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、C11CHCHSi(N(CH、C13CHCHSi(N(CH、C15CHCHSi(N(CH、C17CHCHSi(N(CH、CFCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、C11CHCHSi(CH)(N(CH、C13CHCHSi(CH)(N(CH、C15CHCHSi(CH)(N(CH、C17CHCHSi(CH)(N(CH、CFCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、C11CHCHSi(CHN(CH、C13CHCHSi(CHN(CH、C15CHCHSi(CHN(CH、C17CHCHSi(CHN(CH、CFCHCHSi(CH)(H)N(CH、あるいは、上記ジメチルアミノシランのジメチルアミノ基(−N(CH基)が、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CFである化合物からなる群から選ばれる少なくとも1種であることが好ましい。 In the above composition, the above silylating agent is (CH 3 ) 3 SiN (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (CH). 3 ) N (CH 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (CH) 3 ) N (CH 3 ) 2 , (C 3 H 7 ) 3 SiN (CH 3 ) 2 , C 4 H 9 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH) 3 ) 2 , C 5 H 11 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 H 13 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 H 15 Si (CH 3 ) 2 N ( CH 3 ) 2 , C 8 H 17 Si (CH 3 ) 2 N (CH 3 ) 2 , C 9 H 19 Si (CH 3 ) 2 N (CH 3 ) 2 , C 10 H 21 Si (CH 3 ) 2 N (CH 3 ) 2 , C 11 H 23 Si (CH 3 ) 2 N (CH 3 ) 2 , C 12 H 25 Si (CH 3 ) 2 N (CH 3 ) 2 , C 13 H 27 Si (CH 3 ) 2 N (CH 3 ) 2 , C 14 H 29 Si (CH 3 ) 2 N (CH 3 ) 2 , C 15 H 31 Si (CH 3 ) 2 N (CH 3 ) 2 , C 16 H 33 Si (CH 3 ) 2 N (CH 3 ) 2 , C 17 H 35 Si (CH 3 ) 2 N (CH 3 ) 2 , C 18 H 37 Si (CH 3 ) 2 N (CH 3 ) 2 , (CH 3 ) 2 Si (H) ) N (CH 3 ) 2 , CH 3 Si (H) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (H) N (CH 3 ) 2 , C 2 H 5 Si (H) 2 N (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) (H) N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (H) N (CH 3 ) 2 , C 3 H 7 Si (H) ) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 2 F 5 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 3 F 7 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 4 F 9 CH 2 CH 2 Si (N (CH 3 ) 2) ) 3 , C 5 F 11 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 6 F 13 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 7 F 15 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 8 F 17 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , CF 3 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 7 F 15 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 8 F 17 CH 2 CH 2 Si (CH 3) ) (N (CH 3 ) 2 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 F 15 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) (H) N (CH 3 ) 2 , or The above dimethylaminoshi The dimethylamino groups of orchids (-N (CH 3 ) 2 groups) are -N (C 2 H 5 ) 2 , -N (CH 3 ) C (O) CH 3 , -N (CH 3 ) C (O). It is preferably at least one selected from the group consisting of compounds that are CF 3.

上記組成物において、上記一般式[1]の−N(Rで表される基が、−N(CH基又は−N(C基であることがより好ましい。 In the above composition, the group represented by -N above general formula [1] (R 2) 2 is, -N (CH 3) more to be 2 group or -N (C 2 H 5) 2 group preferable.

上記組成物において、上記シリル化剤が、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミンからなる群から選ばれる少なくとも1種であることが特に好ましい。 In the above composition, it is particularly preferable that the silylating agent is at least one selected from the group consisting of trimethylsilyldimethylamine and trimethylsilyldiethylamine.

上記組成物において、上記含フッ素エーテルが、ノナフルオロ−n−ブチルエチルエーテルであることが好ましい。 In the above composition, the fluorine-containing ether is preferably nonafluoro-n-butyl ethyl ether.

上記組成物中の、上記シリル化剤と上記含フッ素エーテルの質量比(シリル化剤/含フッ素エーテル)が、1/99〜30/70であることが好ましい。 The mass ratio of the silylating agent to the fluorine-containing ether (silylating agent / fluorine-containing ether) in the composition is preferably 1/99 to 30/70.

上記組成物が、上記シリル化剤と上記含フッ素エーテルのみからなることが好ましい。 It is preferable that the composition comprises only the silylating agent and the fluorine-containing ether.

また、上記組成物が、さらに酸を含んでもよい。 In addition, the above composition may further contain an acid.

また、上記組成物が、上記シリル化剤と上記含フッ素エーテルと酸のみからなるものであってもよい。 Further, the composition may consist only of the silylating agent, the fluorine-containing ether and the acid.

また、上記組成物に含んでもよい酸が、トリメチルシリルトリフルオロアセテート、トリメチルシリルトリフルオロメタンスルホネート、ジメチルシリルトリフルオロアセテート、ジメチルシリルトリフルオロメタンスルホネート、ブチルジメチルシリルトリフルオロアセテート、ブチルジメチルシリルトリフルオロメタンスルホネート、ヘキシルジメチルシリルトリフルオロアセテート、ヘキシルジメチルシリルトリフルオロメタンスルホネート、オクチルジメチルシリルトリフルオロアセテート、オクチルジメチルシリルトリフルオロメタンスルホネート、デシルジメチルシリルトリフルオロアセテート、及び、デシルジメチルシリルトリフルオロメタンスルホネートからなる群から選ばれる少なくとも1種であることが好ましい。 The acids that may be contained in the above composition are trimethylsilyltrifluoroacetate, trimethylsilyltrifluoromethanesulfonate, dimethylsilyltrifluoroacetate, dimethylsilyltrifluoromethanesulfonate, butyldimethylsilyltrifluoroacetate, butyldimethylsilyltrifluoromethanesulfonate, and hexyldimethyl. At least one selected from the group consisting of silyltrifluoroacetate, hexyldimethylsilyltrifluoromethanesulfonate, octyldimethylsilyltrifluoroacetate, octyldimethylsilyltrifluoromethanesulfonate, decyldimethylsilyltrifluoroacetate, and decyldimethylsilyltrifluoromethanesulfonate. Is preferable.

本発明によると、従来と同等の撥水性付与効果を奏するとともに、保護膜形成成分であるシリル化剤の熱分解が引き起こされる恐れがない温度で蒸気化でき、シリル化剤の濃度が2質量%以上であっても不溶物の析出や沈殿が抑制された組成物、及び、Si元素を有するウェハの洗浄において当該組成物の蒸気を用いるウェハの表面処理方法を提供することができる。 According to the present invention, the effect of imparting water repellency equivalent to that of the conventional one can be obtained, and vaporization can be performed at a temperature at which there is no risk of causing thermal decomposition of the silylating agent, which is a protective film-forming component, and the concentration of the silylating agent is 2% by mass. Even with the above, it is possible to provide a composition in which precipitation and precipitation of insoluble matter are suppressed, and a wafer surface treatment method using the vapor of the composition in cleaning a wafer having a Si element.

表面が微細な凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図である。It is a schematic diagram when the wafer 1 whose surface is made into the surface which has a fine concavo-convex pattern 2 is viewed. 図1中のa−a’断面の一部を示したものである。It shows a part of the aa'cross section in FIG. 液体を保持した凹部に組成物の蒸気を供する状態の模式図である。It is a schematic diagram of the state in which the vapor of the composition is supplied to the recess which holds the liquid. 保護膜が形成された凹部4に液体が保持された状態の模式図である。It is a schematic diagram of the state in which the liquid is held in the recess 4 in which the protective film is formed.

(1)本発明の組成物について
本発明の組成物は、
表面に凹凸パターンを有し、少なくとも該凹部にSi元素を有するウェハの洗浄において、
上記凹凸パターンの少なくとも凹部に液体を保持した状態で、該凹凸パターン表面に蒸気として供される組成物であって、上記ウェハ表面にて蒸気から液体状態に状態変化して、元々凹部に保持されていた液体を置換するものである。そして、当該置換によって上記凹部に液体状態の組成物が保持されることによって、該凹部表面に撥水性保護膜が形成される。
(1) About the composition of the present invention The composition of the present invention is
In cleaning a wafer having a concavo-convex pattern on the surface and at least the Si element in the recesses.
A composition provided as vapor on the surface of the concave-convex pattern with the liquid held in at least the concave portion of the concave-convex pattern, and the state changes from vapor to a liquid state on the surface of the wafer and is originally held in the concave-convex. It replaces the existing liquid. Then, the liquid composition is held in the recesses by the substitution, so that a water-repellent protective film is formed on the surface of the recesses.

本発明の組成物は、
下記一般式[1]で表されるシリル化剤と、
上記シリル化剤の沸点よりも低沸点の下記一般式[2]で表される含フッ素エーテルが、総量100質量%のうち99.8〜100質量%である溶媒とを
含み、上記シリル化剤と溶媒の総量に対する該シリル化剤の量が、2〜30質量%である組成物である。
(R(H)4−x−ySi[N(R [1]
[式[1]中、Rは、それぞれ互いに独立して、炭素数が1〜10の炭化水素基、及び、水素元素の一部又は全てがフッ素元素に置換された炭素数が1〜8の炭化水素基から選択される基であり、Rは、それぞれ互いに独立して、水素元素の一部又は全てがフッ素元素に置換されていてもよいメチル基、エチル基、アセチル基から選択される基である。xは1〜3の整数であり、yは1〜3の整数であり、4−x−yは0〜2の整数である。]
2n+1−O−C2m+1 [2]
[式[2]中、C2n+1は、炭素数n=4〜5の直鎖状のパーフルオロアルキル基を表し、C2m+1は、炭素数m=2〜6の直鎖状又は分枝状のアルキル基を表す。]
The composition of the present invention
The silylating agent represented by the following general formula [1] and
The fluorine-containing ether represented by the following general formula [2] having a boiling point lower than the boiling point of the silylating agent contains a solvent in which 99.8 to 100% by mass is 99.8 to 100% by mass based on the total amount of 100% by mass, and the silylating agent. The composition is such that the amount of the silylating agent with respect to the total amount of the solvent and the solvent is 2 to 30% by mass.
(R 1 ) y (H) 4-xy Si [N (R 2 ) 2 ] x [1]
[In the formula [1], R 1 is independent of each other and has a hydrocarbon group having 1 to 10 carbon atoms and 1 to 8 carbon atoms in which a part or all of the hydrogen element is replaced with a fluorine element. R 2 is a group selected from the hydrocarbon groups of the above, and R 2 is independently selected from a methyl group, an ethyl group, and an acetyl group in which a part or all of the hydrogen element may be substituted with a fluorine element. It is a base. x is an integer of 1 to 3, y is an integer of 1 to 3, and 4-xy is an integer of 0 to 2. ]
C n F 2n + 1 −O−C m H 2m + 1 [2]
Wherein [2], C n F 2n + 1 represents a linear perfluoroalkyl group with carbon number n = 4~5, C m H 2m + 1 are straight-chain or carbon number m = 2 to 6 Represents a branched alkyl group. ]

上記一般式[1]で表されるシリル化剤において、(R(H)4−x−ySiは撥水性の官能基を有する部位である。そして、上記シリル化剤がウェハ表面のシラノール基と反応し、上記撥水性の官能基を有する部位がウェハ表面に固定されることにより、該ウェハ表面に撥水性の保護膜が形成する。組成物がさらに酸を含む場合は、該酸により、上記シリル化剤とウェハ表面が早く反応するようになり、撥水性付与効果が得られ易くなる。 In the silylating agent represented by the general formula [1], (R 1 ) y (H) 4-xy Si is a site having a water-repellent functional group. Then, the silylating agent reacts with the silanol group on the wafer surface, and the portion having the water-repellent functional group is fixed on the wafer surface to form a water-repellent protective film on the wafer surface. When the composition further contains an acid, the acid causes the silylating agent and the wafer surface to react quickly, and the water-repellent imparting effect can be easily obtained.

上記シリル化剤の具体例としては、
(CHSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSiN(CH、C11Si(CHN(CH、C13Si(CHN(CH、C15Si(CHN(CH、C17Si(CHN(CH、C19Si(CHN(CH、C1021Si(CHN(CH、C1123Si(CHN(CH、C1225Si(CHN(CH、C1327Si(CHN(CH、C1429Si(CHN(CH、C1531Si(CHN(CH、C1633Si(CHN(CH、C1735Si(CHN(CH、C1837Si(CHN(CH、(CHSi(H)N(CH、CHSi(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CSi(CH)(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CFCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、C11CHCHSi(N(CH、C13CHCHSi(N(CH、C15CHCHSi(N(CH、C17CHCHSi(N(CH、CFCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、C11CHCHSi(CH)(N(CH、C13CHCHSi(CH)(N(CH、C15CHCHSi(CH)(N(CH、C17CHCHSi(CH)(N(CH、CFCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、C11CHCHSi(CHN(CH、C13CHCHSi(CHN(CH、C15CHCHSi(CHN(CH、C17CHCHSi(CHN(CH、CFCHCHSi(CH)(H)N(CH、あるいは、上記ジメチルアミノシランのジメチルアミノ基(−N(CH基)が、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CFである化合物等が挙げられる。
中でも、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミンからなる群から選ばれる少なくとも1種は、より撥水性付与効果に優れるため好ましい。
As a specific example of the above silylating agent,
(CH 3 ) 3 SiN (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (CH 3 ) N (CH 3 ) 2 , (C) 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (CH 3 ) N (CH 3 ) 2 , (C 3 H 7 ) 3 SiN (CH 3 ) 2 , C 4 H 9 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 Si (CH) 3 ) 2 N (CH 3 ) 2 , C 6 H 13 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 H 15 Si (CH 3 ) 2 N (CH 3 ) 2 , C 8 H 17 Si ( CH 3 ) 2 N (CH 3 ) 2 , C 9 H 19 Si (CH 3 ) 2 N (CH 3 ) 2 , C 10 H 21 Si (CH 3 ) 2 N (CH 3 ) 2 , C 11 H 23 Si (CH 3 ) 2 N (CH 3 ) 2 , C 12 H 25 Si (CH 3 ) 2 N (CH 3 ) 2 , C 13 H 27 Si (CH 3 ) 2 N (CH 3 ) 2 , C 14 H 29 Si (CH 3 ) 2 N (CH 3 ) 2 , C 15 H 31 Si (CH 3 ) 2 N (CH 3 ) 2 , C 16 H 33 Si (CH 3 ) 2 N (CH 3 ) 2 , C 17 H 35 Si (CH 3 ) 2 N (CH 3 ) 2 , C 18 H 37 Si (CH 3 ) 2 N (CH 3 ) 2 , (CH 3 ) 2 Si (H) N (CH 3 ) 2 , CH 3 Si (H) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (H) N (CH 3 ) 2 , C 2 H 5 Si (H) 2 N (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) (H) N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (H) N (CH 3 ) 2 , C 3 H 7 Si (H) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 2 F 5 CH 2 CH 2 Si (N (CH 3) 3 ) 2 ) 3 , C 3 F 7 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 4 F 9 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 5 F 11 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 6 F 13 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 7 F 15 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 8 F 17 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , CF 3 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) (N (CH 3) 3 ) 2 ) 2 , C 7 F 15 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 N ( CH 3 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 F 15 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 8 F 17 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (CH 3 ) (H) N (CH 3 ) 2 , or the dimethylamino group (-) of the above dimethylaminosilane N (CH 3) ) 2 ) are -N (C 2 H 5 ) 2 , -N (CH 3 ) C (O) CH 3 , -N (CH 3 ) C (O) CF 3 and the like.
Among them, at least one selected from the group consisting of trimethylsilyldimethylamine and trimethylsilyldiethylamine is preferable because it is more excellent in water repellency imparting effect.

上記シリル化剤の中でも、上記一般式[1]の−N(Rで表される基が、−N(CH基又は−N(C基であると、ウェハ表面との反応が特に早いため好ましい。 And among the above-mentioned silylating agents, group represented by -N general formula [1] (R 2) 2 is a -N (CH 3) 2 group, or -N (C 2 H 5) 2 group , It is preferable because the reaction with the wafer surface is particularly fast.

上記組成物に含まれる溶媒は、上記シリル化剤の沸点よりも低沸点の上記一般式[2]で表される含フッ素エーテルを、総量100質量%のうち99.8〜100質量%含む。上記シリル化剤の沸点以上の沸点を持つ溶媒を組成物に多量に(0.2質量%超)含有させると、蒸気化の際にシリル化剤の熱分解が引き起こされる恐れがある。これは上述したように、組成物を全量蒸気化するまでに(高沸点溶剤が全量蒸発するまでに)シリル化剤に過剰な高温や熱量が加えられることによって熱分解が引き起こされる恐れがあるためである。
また、上記のような所定のシリル化剤と溶媒を用いることで、蒸気化前の組成物中で、シリル化剤が分解し難く(組成物の安定性が高く)、不溶物の析出や沈殿を生じ難くすることができる。
不溶物の析出や沈殿を生じ難くする観点から、上記組成物に含まれる溶媒が上記含フッ素エーテルのみであることがさらに好ましい。
The solvent contained in the composition contains 99.8 to 100% by mass of the total amount of 100% by mass of the fluorine-containing ether represented by the above general formula [2], which has a boiling point lower than the boiling point of the silylating agent. If a large amount (more than 0.2% by mass) of a solvent having a boiling point equal to or higher than the boiling point of the silylating agent is contained in the composition, thermal decomposition of the silylating agent may be caused during vaporization. This is because, as described above, thermal decomposition may be caused by excessive high temperature or heat applied to the silylating agent before the entire composition is vaporized (by the time the high boiling point solvent is completely evaporated). Is.
Further, by using the predetermined silylating agent and solvent as described above, the silylating agent is hardly decomposed in the composition before vaporization (the composition is highly stable), and insoluble matter is precipitated or precipitated. Can be made less likely to occur.
From the viewpoint of making it difficult for insoluble matter to precipitate or precipitate, it is more preferable that the solvent contained in the composition is only the fluorine-containing ether.

上記含フッ素エーテルとしては、ノナフルオロ−n−ブチルエチルエーテルが不溶物の析出や沈殿を生じ難くする観点から好適に例示できる。
当然ながら、上記組成物に含まれるシリル化剤と含フッ素エーテルの組み合わせとしては、シリル化剤の沸点よりも含フッ素エーテルの沸点が低い組み合わせが選択される。さらには、上記組成物に含まれるシリル化剤と含フッ素エーテルは、両者の沸点の差が20℃以内であると、両成分が同時に沸騰・蒸発しやすいため特に好ましい。
The fluorine-containing ether can be preferably exemplified from the viewpoint that nonafluoro-n-butyl ethyl ether makes it difficult for insoluble matter to precipitate or precipitate.
As a matter of course, as the combination of the silylating agent and the fluorine-containing ether contained in the above composition, a combination having a boiling point of the fluorinated ether lower than the boiling point of the silylating agent is selected. Further, the silylating agent and the fluorine-containing ether contained in the above composition are particularly preferable when the difference in boiling points between the two is within 20 ° C. because both components are likely to boil and evaporate at the same time.

上記組成物に含まれる溶媒は、上記含フッ素エーテル以外の溶媒(以降、単に「その他溶媒」と記載する場合がある)を含んでもよい。その他溶媒の具体例としては上記一般式[2]に該当しない含フッ素エーテル(例えば、ノナフルオロ−n−ブチルメチルエーテル〔C−O−CH〕(沸点約61℃、3M製Novec7100)、1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−メトキシ−4−(トリフルオロメチル)−ペンタン〔CCF(OCH)CF(CF〕(沸点約98℃、3M製Novec7300)等)やシクロヘキサン等が挙げられる。 The solvent contained in the composition may contain a solvent other than the fluorine-containing ether (hereinafter, may be simply referred to as “other solvent”). Fluorine-containing ether which does not correspond to the general formula [2] Specific examples of other solvents (e.g., nonafluoro -n- butyl methyl ether [C 4 F 9 -O-CH 3] (boiling point of about 61 ° C., 3M Ltd. Novec7100) , 1,1,1,2,2,3,4,5,5-decafluoro-3-methoxy-4- (trifluoromethyl) -pentane [C 2 F 5 CF (OCH 3 ) CF (CF) 3 ) 2 ] (boiling point of about 98 ° C., 3M Novec 7300) and the like) and cyclohexane and the like can be mentioned.

上記シリル化剤と溶媒の総量に対するシリル化剤の量(以降、単に「シリル化剤濃度」と記載する場合がある)は、2〜30質量%である。2質量%以上であれば撥水性付与効果を発揮できる。また、30質量%以下であれば、洗浄装置の樹脂製部材等への影響を抑えることができる。3質量%以上であればより優れた撥水性付与効果を発揮しやすいため好ましい。また、20質量%以下であれば、洗浄装置の樹脂製部材等への影響がより小さくなり、価格も抑えられるため好ましい。該濃度は5〜10質量%がさらに好ましい。 The amount of the silylating agent (hereinafter, may be simply referred to as “silylating agent concentration”) with respect to the total amount of the silylating agent and the solvent is 2 to 30% by mass. If it is 2% by mass or more, the water repellency imparting effect can be exhibited. Further, if it is 30% by mass or less, the influence on the resin member of the cleaning device can be suppressed. When it is 3% by mass or more, it is preferable because it is easy to exert a more excellent water repellency imparting effect. Further, when it is 20% by mass or less, the influence on the resin member of the cleaning device is smaller and the price can be suppressed, which is preferable. The concentration is more preferably 5 to 10% by mass.

また、上記組成物は、上記シリル化剤と上記含フッ素エーテルのみからなるものであると、組成物中の全成分を蒸気化させやすく、組成物中でのシリル化剤の反応による変質を抑えることができ、該組成物の引火点を高くすることができるため好ましい。 Further, when the composition is composed of only the silylating agent and the fluorine-containing ether, all the components in the composition are easily vaporized, and deterioration due to the reaction of the silylating agent in the composition is suppressed. It is preferable because it can raise the flash point of the composition.

一方で、上記組成物は、さらに酸を含んでもよい。上述したように、酸により、上記シリル化剤とウェハ表面が早く反応するようになり、撥水性付与効果が得られ易くなる。
酸の具体例としては、トリメチルシリルトリフルオロアセテート、トリメチルシリルトリフルオロメタンスルホネート、ジメチルシリルトリフルオロアセテート、ジメチルシリルトリフルオロメタンスルホネート、ブチルジメチルシリルトリフルオロアセテート、ブチルジメチルシリルトリフルオロメタンスルホネート、ヘキシルジメチルシリルトリフルオロアセテート、ヘキシルジメチルシリルトリフルオロメタンスルホネート、オクチルジメチルシリルトリフルオロアセテート、オクチルジメチルシリルトリフルオロメタンスルホネート、デシルジメチルシリルトリフルオロアセテート、及び、デシルジメチルシリルトリフルオロメタンスルホネート等が挙げられる。
On the other hand, the composition may further contain an acid. As described above, the acid causes the silylating agent to react with the wafer surface quickly, and the water-repellent imparting effect can be easily obtained.
Specific examples of the acid include trimethylsilyltrifluoroacetate, trimethylsilyltrifluoromethanesulfonate, dimethylsilyltrifluoroacetate, dimethylsilyltrifluoromethanesulfonate, butyldimethylsilyltrifluoroacetate, butyldimethylsilyltrifluoromethanesulfonate, hexyldimethylsilyltrifluoroacetate, Examples thereof include hexyldimethylsilyltrifluoromethanesulfonate, octyldimethylsilyltrifluoroacetate, octyldimethylsilyltrifluoromethanesulfonate, decyldimethylsilyltrifluoroacetate, and decyldimethylsilyltrifluoromethanesulfonate.

上記酸のうち、保存安定性が優れることから、トリメチルシリルトリフルオロアセテートが特に好ましい。 Of the above acids, trimethylsilyl trifluoroacetate is particularly preferable because it has excellent storage stability.

上記組成物が、さらに酸を含む場合、上記シリル化剤と溶媒と酸の総量に対する酸の量(以降、単に「酸濃度」と記載する場合がある)は、0.01〜30質量%が好ましい。撥水性付与効果の観点から、該濃度は0.05〜20質量%がより好ましい。 When the composition further contains an acid, the amount of the acid (hereinafter, may be simply referred to as "acid concentration") with respect to the total amount of the silylating agent, the solvent and the acid is 0.01 to 30% by mass. preferable. From the viewpoint of the water repellency imparting effect, the concentration is more preferably 0.05 to 20% by mass.

上記の酸は、上記シリル化剤と酸化合物とが反応して生成したものであってもよい。例えば、組成物の原料として、シリル化剤であるトリメチルシリルジメチルアミンと、酸化合物である無水トリフルオロ酢酸を用いると、溶媒中で両者は反応してトリメチルシリルトリフルオロアセテートが生成し、これが組成物中で酸として機能する。なお、反応により生成した酸を用いる場合は、原料であるシリル化剤(上述の場合、トリメチルシリルジメチルアミン)を原料である酸化合物(上述の場合、無水トリフルオロ酢酸)よりも過剰に仕込むことが重要である。上記反応の結果得られる組成物において、上記シリル化剤と溶媒の総量に対する該シリル化剤の量が、2〜30質量%となるように仕込む必要がある。 The above acid may be produced by reacting the above silylating agent with an acid compound. For example, when trimethylsilyldimethylamine as a silylating agent and trifluoroacetic anhydride as an acid compound are used as raw materials for the composition, both react in a solvent to produce trimethylsilyltrifluoroacetate, which is contained in the composition. Functions as an acid. When the acid produced by the reaction is used, the silylating agent (trimethylsilyldimethylamine in the above case) as a raw material may be charged in an excess amount as compared with the acid compound (trifluoroacetic anhydride in the above case) as a raw material. is important. In the composition obtained as a result of the above reaction, it is necessary to prepare the composition so that the amount of the silylating agent is 2 to 30% by mass with respect to the total amount of the silylating agent and the solvent.

上記の酸化合物としては、例えば、トリフルオロ酢酸、無水トリフルオロ酢酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸が挙げられ、特に無水トリフルオロ酢酸が好ましい。 Examples of the above-mentioned acid compound include trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, and trifluoromethanesulfonic anhydride, and trifluoroacetic anhydride is particularly preferable.

本発明の組成物は、安定性をさらに高めるために、酸化防止剤等の添加剤を含んでいてもよい。例えば、4−メトキシフェノール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、1,4−ベンゼンジオール、2−(1,1−ジメチルエチル)−1,4−ベンゼンジオール、1,4−ベンゾキノン、1−オクタンチオール、1−ノナンチオール、1−デカンチオール、1−ウンデカンチオール、1−ドデカンチオール、オクチル−3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロ肉桂酸(例えば、BASF製、Irganox1135)、6−tert−ブチル−2,4−キシレノール等が挙げられる。 The composition of the present invention may contain additives such as antioxidants in order to further enhance stability. For example, 4-methoxyphenol, dibutylhydroxytoluene, butylhydroxyanisole, 1,4-benzenediol, 2- (1,1-dimethylethyl) -1,4-benzenediol, 1,4-benzoquinone, 1-octanethiol. , 1-nonanthiol, 1-decanethiol, 1-undecanethiol, 1-dodecanethiol, octyl-3,5-di-tert-butyl-4-hydroxy-hydropyrroic acid (eg, BASF, Irganox1135), 6 -Tert-Butyl-2,4-xylenol and the like can be mentioned.

また、組成物の清浄性の観点から上記の添加剤は液体が好ましく、例えば、25℃大気圧で液体の1−ドデカンチオール、オクチル−3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロ肉桂酸(例えば、BASF製、Irganox1135)、6−tert−ブチル−2,4−キシレノール等が好ましい。 From the viewpoint of the cleanliness of the composition, the above additive is preferably a liquid, for example, 1-dodecanethiol, octyl-3,5-di-tert-butyl-4-hydroxy-hydro, which is a liquid at 25 ° C. at atmospheric pressure. Cinnamic acid (for example, manufactured by BASF, Irganox1135), 6-tert-butyl-2,4-xylenol and the like are preferable.

また、上記組成物の出発原料中の水分の総量が、該原料の総量に対し2000質量ppm以下であることが好ましい。水分量の総量が2000質量ppm超の場合、上記シリル化剤の効果が低下(酸を含有する場合は酸の効果も低下)し、上記保護膜を短時間で形成しにくくなる。このため、上記組成物原料中の水分量の総量は少ないほど好ましく、特に500質量ppm以下、さらには200質量ppm以下が好ましい。さらに、水の存在量が多いと、上記組成物の保管安定性が低下しやすいため、水分量は少ない方が好ましく、100質量ppm以下、さらには50質量ppm以下が好ましい。なお、上記水分量は少ないほど好ましいが上記の含有量範囲内であれば、上記組成物原料中の水分量は0.1質量ppm以上であってもよい。従って、上記組成物に含まれるシリル化剤や溶媒は水を多く含有しないものであることが好ましい。 Further, the total amount of water in the starting material of the composition is preferably 2000 mass ppm or less with respect to the total amount of the raw materials. When the total amount of water is more than 2000 mass ppm, the effect of the silylating agent is reduced (the effect of the acid is also reduced when the acid is contained), and it becomes difficult to form the protective film in a short time. Therefore, the smaller the total amount of water in the raw material of the composition, the more preferable, and particularly preferably 500 mass ppm or less, and further preferably 200 mass ppm or less. Further, when the abundance of water is large, the storage stability of the composition tends to decrease. Therefore, the water content is preferably small, preferably 100 mass ppm or less, and further preferably 50 mass ppm or less. The smaller the water content is, the more preferable it is, but as long as it is within the above content range, the water content in the composition raw material may be 0.1 mass ppm or more. Therefore, it is preferable that the silylating agent and the solvent contained in the above composition do not contain a large amount of water.

また、上記組成物中の液相での光散乱式液中粒子検出器によるパーティクル測定における0.2μmより大きい粒子の数が該組成物1mL当たり100個以下であることが好ましい。上記0.2μmより大きい粒子の数が該組成物1mL当たり100個超であると、パーティクルによるパターンダメージを誘発する恐れがありデバイスの歩留まり低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、蒸気処理装置内が汚染され、デバイスの歩留まり低下及び信頼性の低下が継続化しうる。また、0.2μmより大きい粒子の数が該組成物1mL当たり100個以下であれば、上記保護膜を形成した後の、溶媒や水による該ウェハ表面(保護膜表面)の洗浄を省略又は低減できるため好ましい。なお、上記0.2μmより大きい粒子の数は少ないほど好ましいが上記の含有量範囲内であれば該組成物1mL当たり1個以上あってもよい。なお、本発明における組成物中の液相でのパーティクル測定は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して測定するものであり、パーティクルの粒径とは、PSL(ポリスチレン製ラテックス)標準粒子基準の光散乱相当径を意味する。 Further, it is preferable that the number of particles larger than 0.2 μm in the particle measurement by the light scattering type submerged particle detector in the liquid phase in the composition is 100 or less per 1 mL of the composition. If the number of particles larger than 0.2 μm is more than 100 per 1 mL of the composition, pattern damage due to the particles may be induced, which may cause a decrease in the yield and reliability of the device, which is not preferable. In addition, the inside of the steam treatment apparatus may be contaminated, and the yield and reliability of the device may continue to decrease. Further, when the number of particles larger than 0.2 μm is 100 or less per 1 mL of the composition, cleaning of the wafer surface (protective film surface) with a solvent or water after forming the protective film is omitted or reduced. It is preferable because it can be done. It is preferable that the number of particles larger than 0.2 μm is smaller, but there may be one or more particles per 1 mL of the composition as long as it is within the above content range. In addition, the particle measurement in the liquid phase in the composition in the present invention is measured by using a commercially available measuring device in the light scattering type liquid particle measurement method using a laser as a light source, and the particle size and the particle size of the particles are measured. Means a light scattering equivalent diameter based on PSL (polystyrene latex) standard particle.

ここで、上記パーティクルとは、原料に不純物として含まれる塵、埃、有機固形物、無機固形物などの粒子や、組成物の調製中に汚染物として持ち込まれる塵、埃、有機固形物、無機固形物などの粒子などであり、最終的に組成物中で溶解せずに粒子として存在するものが該当する。 Here, the above-mentioned particles are particles such as dust, dust, organic solids, and inorganic solids contained as impurities in the raw material, and dust, dust, organic solids, and inorganic substances brought in as contaminants during the preparation of the composition. Particles such as solids that finally exist as particles without being dissolved in the composition fall under this category.

また、上記組成物中のNa、Mg、K、Ca、Mn、Fe、Cu、Li、Al、Cr、Ni、Zn及びAgの各元素(金属不純物)の含有量が、該組成物総量に対し各0.1質量ppb以下であることが好ましい。上記金属不純物含有量が、該組成物総量に対し0.1質量ppb超であると、デバイスの接合リーク電流を増大させる恐れがありデバイスの歩留まりの低下及び信頼性の低下を引き起こす原因となるため好ましくない。また、蒸気処理装置内が汚染され、デバイスの歩留まり低下及び信頼性の低下が継続化しうる。また、上記金属不純物含有量が、該組成物総量に対し各0.1質量ppb以下であると、上記保護膜をウェハ表面に形成した後の、溶媒や水による該ウェハ表面(保護膜表面)の洗浄を省略又は低減できるため好ましい。このため、上記金属不純物含有量は少ないほど好ましいが、上記の含有量範囲内であれば該組成物の総量に対して、各元素につき、0.001質量ppb以上であってもよい。 Further, the content of each element (metal impurity) of Na, Mg, K, Ca, Mn, Fe, Cu, Li, Al, Cr, Ni, Zn and Ag in the above composition is based on the total amount of the composition. Each is preferably 0.1 mass ppb or less. If the metal impurity content exceeds 0.1 mass ppb with respect to the total amount of the composition, the junction leakage current of the device may be increased, which causes a decrease in the yield and reliability of the device. Not preferred. In addition, the inside of the steam treatment apparatus may be contaminated, and the yield and reliability of the device may continue to decrease. When the metal impurity content is 0.1 mass ppb or less with respect to the total amount of the composition, the wafer surface (protective film surface) with a solvent or water after the protective film is formed on the wafer surface. It is preferable because the cleaning of the above can be omitted or reduced. Therefore, the smaller the metal impurity content is, the more preferable, but if it is within the above content range, it may be 0.001 mass ppb or more for each element with respect to the total amount of the composition.

(2)撥水性保護膜について
本発明において、撥水性保護膜とは、ウェハ表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。なお、撥水性保護膜は、上記シリル化剤から形成されたものであってもよいし、シリル化剤を主成分とする反応物を含むものであっても良い。
(2) Water-repellent protective film In the present invention, the water-repellent protective film is a film formed on the wafer surface to reduce the wettability of the wafer surface, that is, a film that imparts water repellency. .. In the present invention, water repellency means reducing the surface energy of the surface of an article to reduce interactions (interfaces) between water or other liquids and the surface of the article, such as hydrogen bonds and intermolecular forces. Is. In particular, it has a large effect of reducing the interaction with water, but also has an effect of reducing the interaction with a mixed solution of water and a liquid other than water and a liquid other than water. By reducing the interaction, the contact angle of the liquid with respect to the surface of the article can be increased. The water-repellent protective film may be formed from the above silylating agent, or may contain a reactant containing the silylating agent as a main component.

(3)ウェハについて
上記のウェハとしては、ウェハ表面にシリコン、酸化ケイ素、又は窒化ケイ素などSi元素を含む膜が形成されたもの、あるいは、上記凹凸パターンを形成したときに、該凹凸パターンの表面の少なくとも一部がシリコン、酸化ケイ素、又は窒化ケイ素などSi元素を含むものが含まれる。なお、上記組成物で保護膜を形成できるのは上記凹凸パターン中のSi元素を含む部分の表面である。
(3) Wafer As the wafer, a film containing a Si element such as silicon, silicon oxide, or silicon nitride is formed on the surface of the wafer, or when the uneven pattern is formed, the surface of the uneven pattern is formed. At least a part of the above includes those containing Si element such as silicon, silicon oxide, or silicon nitride. It should be noted that the protective film can be formed on the surface of the portion of the uneven pattern containing the Si element.

一般的に、表面に微細な凹凸パターンを有するウェハを得るには、まず、平滑なウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、又は、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分に対応するウェハ表面が選択的にエッチングされる。最後に、レジストを剥離すると、微細な凹凸パターンを有するウェハが得られる。 Generally, in order to obtain a wafer having a fine uneven pattern on the surface, first, a resist is applied to a smooth wafer surface, and then the resist is exposed through a resist mask, and then the exposed resist or the exposed resist is exposed. A resist having a desired uneven pattern is produced by etching and removing the missing resist. Further, a resist having a concavo-convex pattern can also be obtained by pressing a mold having a pattern against the resist. Next, the wafer is etched. At this time, the wafer surface corresponding to the concave portion of the resist pattern is selectively etched. Finally, when the resist is peeled off, a wafer having a fine uneven pattern is obtained.

上記ウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液で表面の洗浄を行い、乾燥等により水系洗浄液を除去すると、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が微細な凹凸パターン2を有する面とされたウェハ1を斜視したときの模式図を示し、図2は図1中のa−a’断面の一部を示したものである。凹部の幅5は、図2に示すように隣り合う凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。
なお、本発明の組成物及び表面処理方法の処理対象としては、上述の構造のウェハに限らず、例えば、三次元構造の半導体ウェハを対象とすることもできる。
When the surface of the wafer is made into a surface having a fine uneven pattern, the surface is cleaned with an aqueous cleaning solution, and the aqueous cleaning solution is removed by drying or the like, the width of the concave portion is small and the aspect ratio of the convex portion is large, the pattern collapses. Is likely to occur. The uneven pattern is defined as shown in FIGS. 1 and 2. FIG. 1 shows a schematic view of a wafer 1 having a surface having a fine uneven pattern 2 as a perspective view, and FIG. 2 shows a part of aa'cross sections in FIG. .. As shown in FIG. 2, the width 5 of the concave portion is indicated by the distance between the convex portion 3 and the convex portion 3 adjacent to each other, and the aspect ratio of the convex portion is obtained by dividing the height 6 of the convex portion by the width 7 of the convex portion. It is represented by. Pattern collapse in the cleaning step is likely to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
The processing target of the composition and the surface treatment method of the present invention is not limited to the wafer having the above-mentioned structure, and for example, a semiconductor wafer having a three-dimensional structure can be targeted.

(4)ウェハの表面処理方法について
上記のようにエッチングによって得られた、表面に微細な凹凸パターンを有するウェハは、本発明の表面処理方法に先立って、エッチングの残渣などを除去するために、水系洗浄液で洗浄されてもよいし、該洗浄後に凹部に保持された水系洗浄液を該水系洗浄液とは異なる洗浄液(以降、「洗浄液A」と記載する)に置換してさらに洗浄されてもよい。
(4) Wafer Surface Treatment Method The wafer having a fine uneven pattern on the surface obtained by etching as described above is used in order to remove etching residues and the like prior to the surface treatment method of the present invention. It may be washed with an aqueous cleaning solution, or the aqueous cleaning solution held in the recess after the cleaning may be replaced with a cleaning solution different from the aqueous cleaning solution (hereinafter, referred to as “cleaning solution A”) for further cleaning.

上記水系洗浄液の例としては、水、あるいは、水に有機溶媒、過酸化水素、オゾン、酸、アルカリ、界面活性剤のうち少なくとも1種が混合された水溶液(例えば、水の含有率が10質量%以上)とするものが挙げられる。 As an example of the above-mentioned aqueous cleaning solution, water or an aqueous solution in which at least one of an organic solvent, hydrogen peroxide, ozone, acid, alkali and a surfactant is mixed with water (for example, the content of water is 10 mass by mass). % Or more).

また、上記洗浄液Aとは、有機溶媒、該有機溶媒と水系洗浄液の混合物、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合された洗浄液を示す。 The cleaning solution A refers to an organic solvent, a mixture of the organic solvent and an aqueous cleaning solution, and a cleaning solution in which at least one of an acid, an alkali, and a surfactant is mixed therein.

ウェハの凹凸パターンの少なくとも凹部に上記の水系洗浄液や洗浄液Aを保持させる方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄装置を用いる洗浄方法に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄する洗浄装置を用いるバッチ方式が挙げられる。 As a method of holding the above-mentioned water-based cleaning liquid or cleaning liquid A in at least the concave portions of the uneven pattern of the wafer, a spin in which the liquid is supplied near the center of rotation while the wafer is held substantially horizontally and rotated to clean the wafers one by one. Examples include a single-wafer method typified by a cleaning method using a cleaning device, and a batch method using a cleaning device for immersing and cleaning a plurality of wafers in a cleaning tank.

上記洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。エーテル系溶媒の一種であるハイドロフルオロエーテルは引火点の無い不燃物であり安全性の観点から好ましく、中でも、ノナフルオロ−n−ブチルエチルエーテルは沸点がシリル化剤より低い傾向があり、本発明の組成物の蒸気を用いた置換のし易さの観点からより好ましい。 Examples of the organic solvent which is one of the preferable examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols, etc. Examples thereof include derivatives of polyhydric alcohols and solvents containing nitrogen elements. Hydrofluoro ether, which is a kind of ether solvent, is a non-combustible material having no flash point and is preferable from the viewpoint of safety. Among them, nonafluoro-n-butyl ethyl ether tends to have a lower boiling point than the silylating agent, and is of the present invention. It is more preferable from the viewpoint of ease of replacement of the composition with steam.

凹凸パターンの少なくとも凹部に、上記の水系洗浄液や洗浄液Aといった液体を保持した状態で、本発明の組成物の蒸気を上記凹凸パターン表面に供して、ウェハ表面にて該蒸気を前記組成物の液体状態に状態変化して、上記凹部に保持された液体を該組成物の液体に置換して保持することにより、少なくとも上記凹部表面に撥水性保護膜を形成する。なお、本発明のウェハの表面処理方法において、上述のように蒸気を供する際に上記凹凸パターンの少なくとも凹部に保持されている液体は、上記洗浄液Aが好ましく、中でも非水溶媒であると蒸気を用いた置換をし易いため好ましい。
本発明の組成物の蒸気を上記凹凸パターン表面に供する方法としては、例えば、チャンバ内に、凹凸パターンの少なくとも凹部に上記液体を保持したウェハを配置し、別途組成物を蒸発させて得た蒸気を配管やノズルを介して凹凸パターン表面に供給する方法等が挙げられる。蒸気の供給に際して窒素や乾燥空気などのキャリアガスを用いてもよい。
While holding a liquid such as the above-mentioned water-based cleaning liquid or cleaning liquid A in at least the concave portion of the uneven pattern, the vapor of the composition of the present invention is applied to the surface of the uneven pattern, and the vapor is applied to the surface of the wafer to be the liquid of the composition. By changing to a state and replacing the liquid held in the recess with the liquid of the composition and holding the liquid, a water-repellent protective film is formed at least on the surface of the recess. In the wafer surface treatment method of the present invention, the cleaning liquid A is preferable as the liquid held in at least the recesses of the uneven pattern when steam is applied as described above, and the vapor is particularly selected as a non-aqueous solvent. It is preferable because it is easy to replace the material used.
As a method of applying the vapor of the composition of the present invention to the surface of the uneven pattern, for example, a wafer in which the liquid is held in at least the concave portion of the uneven pattern is arranged in the chamber, and the vapor obtained by separately evaporating the composition is obtained. Can be mentioned as a method of supplying the surface of the uneven pattern via a pipe or a nozzle. A carrier gas such as nitrogen or dry air may be used to supply the steam.

また、上記の置換して保持された液体状態の組成物は該組成物とは異なる洗浄液(以降、「洗浄液B」と記載する)に置換されてもよい。 In addition, the liquid composition held by replacement may be replaced with a cleaning liquid different from the composition (hereinafter, referred to as "cleaning liquid B").

上記のように水系洗浄液や洗浄液Aでの洗浄の後に、該洗浄液を、蒸気を用いて本発明の液体状態の組成物に置換し、凹凸パターンの少なくとも凹部に液体状態の該組成物が保持されている間に、該凹凸パターンの少なくとも凹部表面に上記保護膜が形成される。本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。 After cleaning with the water-based cleaning liquid or cleaning liquid A as described above, the cleaning liquid is replaced with the liquid-state composition of the present invention using steam, and the liquid-state composition is held in at least the concave portions of the uneven pattern. During this period, the protective film is formed on at least the surface of the concave portion of the concave-convex pattern. The protective film of the present invention does not necessarily have to be continuously formed, and may not necessarily be uniformly formed, but since it can impart better water repellency, it may be continuously and uniformly formed. It is more preferable that it is formed in.

図3は、洗浄液などの液体8を保持した凹部に組成物の蒸気9を供する状態の模式図を示している。図3の模式図のウェハは、図1のa−a’断面の一部を示すものである。供給された蒸気が凹部にて液体状態に状態変化して、元々凹部に保持されていた液体8を該組成物の液体が置換し、上記凹部に液体状態の組成物が保持される。保持された組成物中の上記シリル化剤がウェハ表面のシラノール基と反応し、上述の撥水性の官能基を有する部位がウェハ表面に固定されることによって、該凹部表面に撥水性保護膜が形成される。 FIG. 3 shows a schematic view of a state in which the vapor 9 of the composition is provided in the recess holding the liquid 8 such as a cleaning liquid. The wafer in the schematic view of FIG. 3 shows a part of the aa'cross section of FIG. The supplied vapor changes to a liquid state in the recess, the liquid 8 originally held in the recess is replaced by the liquid of the composition, and the composition in the liquid state is held in the recess. The silanol group in the retained composition reacts with the silanol group on the wafer surface, and the portion having the water-repellent functional group described above is fixed to the wafer surface, so that the water-repellent protective film is formed on the concave surface. It is formed.

本発明の組成物を蒸気化する方法は特に限定はない。
例えば、所定量の液体状態の組成物を気化室に導入して、該組成物が全量蒸発するのに十分な加熱を行い、全量蒸発した後に該蒸気を、上記凹凸パターン表面に供給するべく、配管やノズルへ送り出す、バッチ式の蒸気化方法が挙げられる。
また、例えば、特許5674851号に記載のような、小規模な気化部を配管の一部に設けて組成物を加熱し、蒸発するようにして、該蒸気を配管やノズルへ送り出す、連続式の蒸気化方法が挙げられる。
なお、蒸気化の温度は、保護膜形成成分である上記シリル化剤の熱分解が引き起こされる恐れがない温度であり、該シリル化剤の沸点近傍(保護膜形成成分の沸点+5℃程度)までに抑えることが好ましい。
好ましい蒸気処理の条件としては、例えば、特許5254120号に記載のような、上述のように得た蒸気と、窒素ガスやアルゴンガスのようなキャリアガスを混合してから上記凹凸パターン表面に該混合気体を供給することが挙げられる。
処理中の基板付近の雰囲気温度すなわち蒸気の温度は元々凹部に保持されていた液体の沸点よりも低いことが好ましい。雰囲気温度(蒸気の温度)が当該沸点以上であると、元々凹部に保持されていた液体を、蒸気を用いて十分に置換する前に、該液体が揮発して該凹凸パターンが倒れる恐れがあるためである。
The method for vaporizing the composition of the present invention is not particularly limited.
For example, a predetermined amount of the composition in a liquid state is introduced into the vaporization chamber, the composition is heated sufficiently to evaporate the entire amount, and after the entire amount is evaporated, the vapor is supplied to the surface of the uneven pattern. A batch type vaporization method of sending to a pipe or a nozzle can be mentioned.
Further, for example, as described in Japanese Patent No. 5674851, a small-scale vaporizing portion is provided in a part of the pipe to heat the composition so that the composition evaporates, and the steam is sent to the pipe or the nozzle. A vaporization method can be mentioned.
The vaporization temperature is a temperature at which there is no risk of causing thermal decomposition of the silylating agent, which is a protective film-forming component, up to near the boiling point of the silylating agent (boiling point of the protective film-forming component + 5 ° C.). It is preferable to suppress it to.
As a preferable steam treatment condition, for example, as described in Japanese Patent No. 5254120, the steam obtained as described above is mixed with a carrier gas such as nitrogen gas or argon gas, and then the mixture is mixed on the surface of the uneven pattern. Supplying gas can be mentioned.
It is preferable that the atmospheric temperature near the substrate during the treatment, that is, the temperature of the vapor is lower than the boiling point of the liquid originally held in the recess. If the atmospheric temperature (steam temperature) is equal to or higher than the boiling point, the liquid may volatilize and the uneven pattern may collapse before the liquid originally held in the recess is sufficiently replaced with steam. Because.

上記のように保護膜を形成した後で、凹凸パターンの少なくとも凹部に残った液体状態の上記組成物を、洗浄液Bに置換した後に、乾燥工程に移ってもよい。該洗浄液Bの例としては、水系洗浄液、有機溶媒、水系洗浄液と有機溶媒の混合物、又は、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの、並びに、それらと上記組成物の混合物等が挙げられる。上記洗浄液Bは、パーティクルや金属不純物の除去の観点から、水、有機溶媒、又は水と有機溶媒の混合物がより好ましい。
洗浄液Bの供給は、該洗浄液を液体として供給する方法であってもよいし、該洗浄液を蒸気として供給する方法であってもよい。
After forming the protective film as described above, the composition in a liquid state remaining at least in the recesses of the uneven pattern may be replaced with the cleaning liquid B, and then the drying step may be performed. Examples of the cleaning liquid B include an aqueous cleaning liquid, an organic solvent, a mixture of an aqueous cleaning liquid and an organic solvent, or a mixture thereof with at least one of an acid, an alkali, and a surfactant, and the above composition thereof. Examples include a mixture of substances. The cleaning liquid B is more preferably water, an organic solvent, or a mixture of water and an organic solvent from the viewpoint of removing particles and metal impurities.
The cleaning liquid B may be supplied by a method of supplying the cleaning liquid as a liquid or a method of supplying the cleaning liquid as vapor.

上記洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、ラクトン系溶媒、カーボネート系溶媒、アルコール類、多価アルコールの誘導体、窒素元素含有溶媒等が挙げられる。中でも、安価にパーティクルや金属不純物の少ない品質のものが得られるため、イソプロピルアルコールが好ましい。 Examples of the organic solvent which is one of the preferable examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, lactone solvents, carbonate solvents, alcohols, etc. Examples thereof include derivatives of polyhydric alcohols and solvents containing nitrogen elements. Of these, isopropyl alcohol is preferable because quality products with few particles and metal impurities can be obtained at low cost.

また、上記保護膜は、上記洗浄液Bとして有機溶媒を用いると、該洗浄液Bの洗浄によって撥水性が低下しにくい場合がある。 Further, when an organic solvent is used as the cleaning liquid B in the protective film, the water repellency may not be easily lowered by cleaning the cleaning liquid B.

本発明の組成物により撥水化された凹部4に液体が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa−a’断面の一部を示すものである。凹凸パターン表面は上記組成物により保護膜11が形成され撥水化されている。そして、該保護膜11は、液体10が凹凸パターンから除去されるときもウェハ表面に保持される。 FIG. 4 shows a schematic view of the case where the liquid is held in the recess 4 made water-repellent by the composition of the present invention. The wafer in the schematic view of FIG. 4 shows a part of the aa'cross section of FIG. A protective film 11 is formed on the surface of the uneven pattern by the above composition to make it water repellent. Then, the protective film 11 is held on the wafer surface even when the liquid 10 is removed from the uneven pattern.

ウェハの凹凸パターンの少なくとも凹部表面に、本発明の組成物により保護膜11が形成されたとき、該表面に水が保持されたと仮定したときの接触角が70〜130°であると、パターン倒れが発生し難いため好ましい。接触角が大きいと撥水性に優れるため、75〜130°が更に好ましく、80〜130°が特に好ましい。また、洗浄液Bでの洗浄の前後で上記接触角の低下量(洗浄液Bの洗浄前の接触角−洗浄液Bの洗浄後の接触角)が10°以下であることが好ましい。 When the protective film 11 is formed by the composition of the present invention on at least the concave surface of the concave-convex pattern of the wafer, the pattern collapses when the contact angle is 70 to 130 ° assuming that water is retained on the surface. Is less likely to occur, which is preferable. Since a large contact angle is excellent in water repellency, 75 to 130 ° is more preferable, and 80 to 130 ° is particularly preferable. Further, it is preferable that the amount of decrease in the contact angle (contact angle before cleaning of cleaning liquid B-contact angle after cleaning of cleaning liquid B) before and after cleaning with cleaning liquid B is 10 ° or less.

次に、上記組成物により保護膜が形成された凹部4に保持された液体を乾燥により凹凸パターンから除去する。このとき、凹部に保持されている液体は、液体状態の上記組成物、上記洗浄液B、又は、それらの混合液でも良い。上記混合液は、組成物に含まれる各成分(シリル化剤や酸)が該組成物よりも低濃度になるように含有されたものであり、該混合液は、液体状態の上記組成物を洗浄液Bに置換する途中の状態の液でも良いし、あらかじめ上記各成分を洗浄液Bに混合して得た混合液でも良い。ウェハの清浄度の観点からは、水、有機溶媒、又は、水と有機溶媒の混合物が好ましい。また、上記凹凸パターン表面から液体が一旦除去された後で、上記凹凸パターン表面に洗浄液Bを保持させて、その後、乾燥しても良い。 Next, the liquid held in the concave portion 4 on which the protective film is formed by the above composition is removed from the uneven pattern by drying. At this time, the liquid held in the recess may be the above composition in a liquid state, the above cleaning liquid B, or a mixed liquid thereof. The mixed solution contains each component (silylating agent and acid) contained in the composition so as to have a lower concentration than the composition, and the mixed solution contains the above composition in a liquid state. It may be a liquid in the middle of being replaced with the cleaning liquid B, or a mixed liquid obtained by mixing each of the above components with the cleaning liquid B in advance. From the viewpoint of wafer cleanliness, water, an organic solvent, or a mixture of water and an organic solvent is preferable. Further, after the liquid is once removed from the surface of the uneven pattern, the cleaning liquid B may be held on the surface of the uneven pattern and then dried.

なお、保護膜形成後に洗浄液Bで洗浄する場合、該洗浄の時間、すなわち洗浄液Bが保持される時間は、上記凹凸パターン表面のパーティクルや金属不純物の除去の観点から、10秒間以上、より好ましくは20秒間以上行うことが好ましい。上記凹凸パターン表面に形成された保護膜の撥水性能の維持効果の観点から、洗浄液Bとして有機溶媒を用いると、該洗浄を行ってもウェハ表面の撥水性を維持し易い傾向がある。一方、上記洗浄の時間が長くなりすぎると、生産性が悪くなるため15分間以内が好ましい。 When cleaning with the cleaning liquid B after forming the protective film, the cleaning time, that is, the time for holding the cleaning liquid B is 10 seconds or more, more preferably 10 seconds or more from the viewpoint of removing particles and metal impurities on the surface of the uneven pattern. It is preferable to carry out for 20 seconds or more. From the viewpoint of maintaining the water repellency of the protective film formed on the surface of the uneven pattern, when an organic solvent is used as the cleaning liquid B, the water repellency of the wafer surface tends to be easily maintained even after the cleaning. On the other hand, if the cleaning time is too long, the productivity deteriorates, so it is preferably within 15 minutes.

上記乾燥によって、凹凸パターンに保持された液体が除去される。当該乾燥は、スピン乾燥法、IPA(2−プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、送風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。 The drying removes the liquid held in the uneven pattern. The drying is preferably carried out by a well-known drying method such as a spin drying method, IPA (2-propanol) steam drying, marangoni drying, heat drying, warm air drying, blast drying, vacuum drying and the like.

上記乾燥の後で、さらに保護膜11を除去してもよい。撥水性保護膜を除去する場合、該撥水性保護膜中のC−C結合、C−F結合を切断することが有効である。その方法としては、上記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。 After the drying, the protective film 11 may be further removed. When removing the water-repellent protective film, it is effective to break the CC bond and the CF bond in the water-repellent protective film. The method is not particularly limited as long as it can break the bond, and for example, the wafer surface is irradiated with light, the wafer is heated, the wafer is exposed to ozone, and the wafer surface is irradiated with plasma. Corona discharge on the wafer surface and the like can be mentioned.

光照射で保護膜11を除去する場合、該保護膜11中のC−C結合、C−F結合の結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。紫外線照射強度は、メタルハライドランプであれば、例えば、照度計(コニカミノルタセンシング製照射強度計UM−10、受光部UM−360〔ピーク感度波長:365nm、測定波長範囲:310〜400nm〕)の測定値で100mW/cm以上が好ましく、200mW/cm以上が特に好ましい。なお、照射強度が100mW/cm未満では保護膜11を除去するのに長時間要するようになる。また、低圧水銀ランプであれば、より短波長の紫外線を照射することになるので、照射強度が低くても短時間で保護膜11を除去できるので好ましい。 When the protective film 11 is removed by light irradiation, it is shorter than the energy corresponding to the binding energies of the CC bond and the CF bond in the protective film 11 of 83 kcal / mol and 116 kcal / mol of 340 nm and 240 nm. It is preferable to irradiate ultraviolet rays including wavelengths. As the light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used. If it is a metal halide lamp, the ultraviolet irradiation intensity is measured by, for example, an illuminometer (Konica Minolta Sensing irradiation intensity meter UM-10, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310-400 nm]). 100 mW / cm 2 or more is preferable in value, 200 mW / cm 2 or more is particularly preferable. If the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the protective film 11. Further, a low-pressure mercury lamp is preferable because it irradiates ultraviolet rays having a shorter wavelength and can remove the protective film 11 in a short time even if the irradiation intensity is low.

また、光照射で保護膜11を除去する場合、紫外線で保護膜11の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって保護膜11の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源として、低圧水銀ランプやエキシマランプなどが用いられる。また、光照射しながらウェハを加熱してもよい。 Further, when the protective film 11 is removed by light irradiation, ozone is generated at the same time as the constituent components of the protective film 11 are decomposed by ultraviolet rays, and the constituent components of the protective film 11 are oxidatively volatilized by the ozone, so that the processing time is shortened. Therefore, it is particularly preferable. As this light source, a low-pressure mercury lamp, an excimer lamp, or the like is used. Further, the wafer may be heated while irradiating with light.

ウェハを加熱する場合、400〜1000℃、好ましくは、500〜900℃でウェハの加熱を行うことが好ましい。この加熱時間は、10秒〜60分間、好ましくは30秒〜10分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。 When heating the wafer, it is preferable to heat the wafer at 400 to 1000 ° C., preferably 500 to 900 ° C. This heating time is preferably 10 seconds to 60 minutes, preferably 30 seconds to 10 minutes. Further, in this step, ozone exposure, plasma irradiation, corona discharge and the like may be used in combination. Further, light irradiation may be performed while heating the wafer.

加熱により保護膜11を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に保護膜11を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。 Methods for removing the protective film 11 by heating include a method of bringing the wafer into contact with a heat source, a method of placing the wafer in a heated atmosphere such as a heat treatment furnace, and the like. The method of placing the wafers in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film 11 to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method in which the processing is completed in a short time and the processing capacity is high.

ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供することが好ましい。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。 When the wafer is exposed to ozone, it is preferable to apply ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage to the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.

上記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。 By combining the above-mentioned light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge, the protective film on the wafer surface can be efficiently removed.

以下、本発明の実施形態をより具体的に開示した実験例を示す。なお、本発明はこれらの実験例のみに限定されるものではない。 Hereinafter, an experimental example in which the embodiment of the present invention is disclosed more specifically will be shown. The present invention is not limited to these experimental examples.

ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本発明では、組成物の安定性と該組成物の蒸気でウェハを表面処理した際の撥水性付与効果について、評価を行った。なお、実験例において、接触角を評価する際にウェハ表面に接触させる液体としては、水系洗浄液の代表的なものである水を用いた。 Making the surface of the wafer a surface having an uneven pattern and replacing at least the cleaning liquid held in the concave portion of the uneven pattern with another cleaning liquid has been studied in various documents and has already been established. Therefore, in the present invention, the stability of the composition and the water-repellent imparting effect when the wafer is surface-treated with the vapor of the composition were evaluated. In the experimental example, water, which is a typical water-based cleaning liquid, was used as the liquid to be brought into contact with the wafer surface when evaluating the contact angle.

ただし、表面に凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された上記保護膜11自体の接触角を正確に評価できない。 However, in the case of a wafer having a concavo-convex pattern on its surface, the contact angle of the protective film 11 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.

水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。 The contact angle of water droplets is evaluated by dropping several μl of water droplets on the surface of the sample (base material) and forming the angle between the water droplets and the surface of the base material, as described in JIS R 3257 “Method for testing the wettability of the substrate glass surface”. It is made by the measurement of. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because the Wenzel effect and the Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the base material, and the apparent contact angle of water droplets increases.

そこで、本実験例では上記組成物の蒸気を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターンが形成されたウェハの表面に形成された保護膜とみなし、種々評価を行った。なお、本実験例では、表面が平滑なウェハとして、表面が平滑なシリコンウェハ上にSiO層を有する「SiO膜付きウェハ」を用いた。 Therefore, in this experimental example, the vapor of the above composition was applied to a wafer having a smooth surface to form a protective film on the wafer surface, and the protective film was formed on the surface of the wafer having an uneven pattern formed on the surface. It was regarded as a protective film and various evaluations were performed. In this experimental example, as a wafer having a smooth surface, a "wafer with a SiO 2 film" having two layers of SiO on a silicon wafer having a smooth surface was used.

詳細を下記に述べる。以下では、評価方法、組成物の調製、組成物の蒸気を用いたウェハの表面処理方法、評価結果を記載する。 Details are given below. Below, the evaluation method, the preparation of the composition, the surface treatment method of the wafer using the vapor of the composition, and the evaluation result are described.

〔評価方法〕
(A)組成物の安定性評価
組成物の原料を混合後、25℃で6時間静置した後の組成物の外観を観察し、不溶物の析出や沈殿の生成がないものを合格とした。また、上記混合後4日間静置した後の組成物の外観も観察し、より長期間での安定性も評価した。
〔Evaluation method〕
(A) Evaluation of Stability of Composition After mixing the raw materials of the composition and allowing it to stand at 25 ° C. for 6 hours, the appearance of the composition was observed, and those without precipitation of insoluble matter or formation of precipitation were regarded as acceptable. .. In addition, the appearance of the composition after being allowed to stand for 4 days after the above mixing was also observed, and the stability over a longer period of time was also evaluated.

(B)ウェハ表面に形成された保護膜の接触角評価(撥水性付与効果の評価)
保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA−X型)で測定し、70°以上を合格とした。
(B) Evaluation of contact angle of protective film formed on wafer surface (evaluation of water repellency imparting effect)
Approximately 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) between the water droplet and the surface of the wafer is measured with a contact angle meter (Kyowa Interface Science Co., Ltd .: CA-X type) and 70 ° The above was passed.

[実験例1]
(1)組成物の調製
表1に示すように組成物の原料として、シリル化剤としてトリメチルシリルジメチルアミン〔(CHSi−N(CH〕(沸点約86℃、以降「TMSDMA」と記載する場合がある);5.0g、溶媒としてノナフルオロ−n−ブチルエチルエーテル〔C−O−C〕(沸点約76℃、3M製Novec7200);95.0gを混合し、溶液状態の組成物を得た。すなわち、表2に示すような組成比の組成物が得られた。当該組成物は、混合後、25℃で6時間及び4日間静置した後でも不溶物の析出や沈殿の生成はなく、良好な安定性を示した。
[Experimental Example 1]
(1) Preparation of composition As shown in Table 1, trimethylsilyldimethylamine [(CH 3 ) 3 Si—N (CH 3 ) 2 ] as a silylating agent as a raw material of the composition (boiling point of about 86 ° C., hereinafter “TMSMAM” (May be described as); 5.0 g, nonafluoro-n- butylethyl ether [C 4 F 9 - OC 2 H 5] (boiling point about 76 ° C., 3M Novec 7200); 95.0 g as a solvent. The mixture was mixed to obtain a composition in a solution state. That is, a composition having a composition ratio as shown in Table 2 was obtained. After mixing, the composition showed good stability with no precipitation or precipitation of insoluble matter even after standing at 25 ° C. for 6 hours and 4 days.

(2)シリコンウェハの洗浄
平滑な熱酸化膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を1質量%のフッ酸水溶液に室温で10分浸漬し、純水に室温で1分、2−プロパノール(iPA)に室温で1分浸漬した。
(2) Cleaning of Silicon Wafer A silicon wafer with a smooth thermal oxide film (Si wafer having a thermal oxide film layer with a thickness of 1 μm on the surface) is immersed in a 1 mass% aqueous solution of hydrofluoric acid for 10 minutes at room temperature and immersed in pure water. It was immersed in 2-propanol (iPA) for 1 minute at room temperature and 1 minute at room temperature.

(3)シリコンウェハ表面への蒸気による表面処理
上記洗浄後にシリコンウェハを、iPAを液盛りした状態で蒸気処理室に水平に配置し、上記にて調製した溶液状態の組成物を、後述する方法で、蒸気化し該蒸気を蒸気処理室に供給した。そして、60℃以下のウェハ表面にて蒸気を上記組成物の液体状態に状態変化して、元々ウェハ表面に保持されていたiPAを該組成物の液体に置換した。その後、シリコンウェハを蒸気処理室から取り出し、iPAに室温で1分、純水に室温で1分浸漬した。最後に、シリコンウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface Treatment of Silicon Wafer Surface with Steam After the above cleaning, the silicon wafer is placed horizontally in the steam treatment chamber with iPA in a liquid state, and the solution-state composition prepared above is described later. Then, it was vaporized and the steam was supplied to the steam treatment chamber. Then, the vapor was changed to the liquid state of the above composition on the wafer surface at 60 ° C. or lower, and the iPA originally held on the wafer surface was replaced with the liquid of the composition. Then, the silicon wafer was taken out from the steam treatment chamber and immersed in iPA for 1 minute at room temperature and in pure water for 1 minute at room temperature. Finally, the silicon wafer was taken out from pure water and air was blown to remove the pure water on the surface.

上記組成物の蒸気の供給は以下のように行った。90℃(TMSDMAの沸点86℃+4℃であり、TMSDMAの熱分解の恐れがない温度)に加熱された蒸気化室に、窒素ガスを2dm/分の流量で流しながら、0.01g/秒の滴下速度で上記調製した溶液状態の組成物を滴下し、即座に滴下全量が蒸気化された該組成物蒸気を窒素ガスフローで蒸気処理室に供給した。当該処理を60秒間行った。 The steam of the above composition was supplied as follows. 0.01 g / sec while flowing nitrogen gas at a flow rate of 2 dm 3 / min in a vaporization chamber heated to 90 ° C. (the boiling point of TMSDMA is 86 ° C. + 4 ° C. and there is no risk of thermal decomposition of TMSDMA). The composition in the solution state prepared above was dropped at the dropping rate of the above, and the composition vapor in which the entire dropping amount was vaporized was immediately supplied to the steam treatment chamber by a nitrogen gas flow. The process was performed for 60 seconds.

上記(B)に記載した要領で接触角を評価したところ、表3に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は84°となり、撥水性付与効果を示した。 When the contact angle was evaluated according to the procedure described in (B) above, as shown in Table 3, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 84 °. It showed a water-repellent effect.

Figure 0006963166
Figure 0006963166

Figure 0006963166
Figure 0006963166

Figure 0006963166
Figure 0006963166

[実験例2〜7、比較実験例1〜22]
組成物の原料として実験例1で用いたシリル化剤の種類、含フッ素エーテルの溶媒中の含有量、その他溶媒の種類や含有量、酸の種類や濃度、蒸気化室の温度などの条件を変更して、それ以外は実験例1と同様にウェハの表面処理を行い、さらにその評価を行った。原料、組成物、及び評価結果を表1〜6に示す。なお、表中で、「TMSDEA」はトリメチルシリルジエチルアミンを意味し、「TFAA」は無水トリフルオロ酢酸を意味し、「HMDS」は1,1,1,3,3,3−ヘキサメチルジシラザンを意味し、「TMSTFA」はトリメチルシリルトリフルオロアセテートを意味し、「TFA」はトリフルオロ酢酸を意味し、「TMDS」は1,1,3,3−テトラメチルジシラザンを意味し、「PGMEA」はプロピレングリコールモノメチルエーテルアセテートを意味し、「DCTFP」は1,2−ジクロロ−3,3,3−トリフルオロプロペンを意味する。
なお、実験例2では、組成物原料を混合すると、TMSDMAとTFAAが反応して、原料の酸化合物であるTFAAは反応により消費され、
酸であるTMSTFA、
副生物であるN,N−ジメチル−2,2,2−トリフルオロアセトアミド(以降、DMTFAA)、
及び、余剰のTMSDMAが含有された表2に示す組成物が得られた。
また、比較実験例11では、組成物原料を混合すると、HMDSとTFAが反応して、原料の酸化合物であるTFAは反応により消費され、
酸であるTMSTFA、
副生物であるNH
及び、余剰のHMDSが含有された表2に示す組成物が得られた。
また、比較実験例12では、組成物原料を混合すると、HMDSとTFAAが反応して、原料の酸化合物であるTFAAは反応により消費され、
酸であるTMSTFA、
副生物であるトリメチルシリルトリフルオロアセトアミド(以降、TMSTFAA)、
及び、余剰のHMDSが含有された表2に示す組成物が得られた。
また、比較実験例15では、組成物原料を混合すると、TMDSとTFAが反応して、原料の酸化合物であるTFAは反応により消費され、
酸であるDMSTFA、
副生物であるNH
及び、余剰のTMDSが含有された表2に示す組成物が得られた。
また、比較実験例16では、組成物原料を混合すると、TMDSとTFAAが反応して、原料の酸化合物であるTFAAは反応により消費され、
酸であるDMSTFA、
副生物であるジメチルシリルトリフルオロアセトアミド(以降、DMSTFAA)、
及び、余剰のTMDSが含有された表2に示す組成物が得られた。
また、比較実験例18では、組成物原料を混合すると、HMDSとTFAが反応して、原料の酸化合物であるTFAは反応により消費され、
酸であるTMSTFA、
副生物であるNH
及び、余剰のHMDSが含有された表5に示す組成物が得られた。
また、比較実験例19では、組成物原料を混合すると、HMDSとTFAAが反応して、原料の酸化合物であるTFAAは反応により消費され、
酸であるTMSTFA、
副生物であるTMSTFAA、
及び、余剰のHMDSが含有された表5に示す組成物が得られた。
また、比較実験例22では、組成物原料を混合すると、TMDSとTFAが反応して、原料の酸化合物であるTFAは反応により消費され、
酸であるDMSTFA、
副生物であるNH
及び、余剰のTMDSが含有された表5に示す組成物が得られた。
[Experimental Examples 2-7, Comparative Experimental Examples 1-22]
Conditions such as the type of silylating agent used in Experimental Example 1 as a raw material for the composition, the content of fluorine-containing ether in the solvent, the type and content of other solvents, the type and concentration of acid, and the temperature of the vaporization chamber are set. After the change, the surface treatment of the wafer was performed in the same manner as in Experimental Example 1 except for the above, and the evaluation was further performed. The raw materials, compositions, and evaluation results are shown in Tables 1-6. In the table, "TMSDEA" means trimethylsilyldiethylamine, "TFAA" means trifluoroacetic anhydride, and "HMDS" means 1,1,1,3,3,3-hexamethyldisilazane. However, "TMSTFA" means trimethylsilyltrifluoroacetate, "TFA" means trifluoroacetic acid, "TMDS" means 1,1,3,3-tetramethyldisilazane, and "PGMEA" means propylene. It means glycol monomethyl ether acetate, and "DCTFP" means 1,2-dichloro-3,3,3-trifluoropropene.
In Experimental Example 2, when the composition raw materials are mixed, MTSDMA and TFAA react with each other, and TFAA, which is an acid compound of the raw materials, is consumed by the reaction.
TMSTFA, which is an acid,
By-product N, N-dimethyl-2,2,2-trifluoroacetamide (hereinafter DMTFAA),
And, the composition shown in Table 2 containing the surplus MTSDMA was obtained.
Further, in Comparative Experimental Example 11, when the composition raw materials were mixed, HMDS and TFA reacted, and TFA, which is an acid compound of the raw materials, was consumed by the reaction.
TMSTFA, which is an acid,
By-product NH 3 ,
And, the composition shown in Table 2 containing the surplus HMDS was obtained.
Further, in Comparative Experimental Example 12, when the composition raw materials were mixed, HMDS and TFAA reacted, and TFAA, which is an acid compound of the raw materials, was consumed by the reaction.
TMSTFA, which is an acid,
By-product, trimethylsilyltrifluoroacetamide (TMSTFAA),
And, the composition shown in Table 2 containing the surplus HMDS was obtained.
Further, in Comparative Experimental Example 15, when the composition raw materials were mixed, TMDS and TFA reacted, and TFA, which is an acid compound of the raw materials, was consumed by the reaction.
DMSTFA, which is an acid,
By-product NH 3 ,
And, the composition shown in Table 2 containing the surplus TMDS was obtained.
Further, in Comparative Experimental Example 16, when the composition raw materials were mixed, TMDS and TFAA reacted, and TFAA, which is an acid compound of the raw materials, was consumed by the reaction.
DMSTFA, which is an acid,
By-product, dimethylsilyltrifluoroacetamide (hereinafter DMSTFAA),
And, the composition shown in Table 2 containing the surplus TMDS was obtained.
Further, in Comparative Experimental Example 18, when the composition raw materials were mixed, HMDS and TFA reacted, and TFA, which is an acid compound of the raw materials, was consumed by the reaction.
TMSTFA, which is an acid,
By-product NH 3 ,
And, the composition shown in Table 5 containing the surplus HMDS was obtained.
Further, in Comparative Experimental Example 19, when the composition raw materials were mixed, HMDS and TFAA reacted, and TFAA, which is an acid compound of the raw materials, was consumed by the reaction.
TMSTFA, which is an acid,
TMSTFAA, a by-product,
And, the composition shown in Table 5 containing the surplus HMDS was obtained.
Further, in Comparative Experimental Example 22, when the composition raw materials were mixed, TMDS and TFA reacted, and TFA, which is an acid compound of the raw materials, was consumed by the reaction.
DMSTFA, which is an acid,
By-product NH 3 ,
And, the composition shown in Table 5 containing the surplus TMDS was obtained.

Figure 0006963166
Figure 0006963166

Figure 0006963166
Figure 0006963166

Figure 0006963166
Figure 0006963166

本発明で規定する組成物は、いずれも、上記シリル化剤の沸点よりも低沸点の上記一般式[2]で表される含フッ素エーテルが、総量100質量%のうち99.8〜100質量%である溶媒を用いたものであるため、シリル化剤の熱分解が引き起こされる恐れがない温度で蒸気化でき、原料を混合後25℃で6時間静置した後に不溶物の析出や沈殿の生成が観察されず優れた安定性を示した。中でも、組成物が、シリル化剤と含フッ素エーテルのみからなる実験例1と7、及び、組成物が、シリル化剤と含フッ素エーテルと酸のみからなる実験例2は、原料を混合後25℃で4日間静置した後にも不溶物の析出や沈殿の生成が観察されず特に優れた安定性を示した。
また、本発明で規定する組成物を用いた実験例1〜7は、いずれも良好な撥水性付与効果を示した。
In each of the compositions specified in the present invention, the fluorine-containing ether represented by the above general formula [2] having a boiling point lower than the boiling point of the silylating agent is 99.8 to 100% by mass out of a total amount of 100% by mass. Since it uses a solvent of%%, it can be vaporized at a temperature at which there is no risk of causing thermal decomposition of the silylating agent, and after the raw materials are mixed and allowed to stand at 25 ° C. for 6 hours, insoluble matter precipitates or precipitates. No formation was observed and excellent stability was shown. Among them, Experimental Examples 1 and 7 in which the composition is composed of only the silylating agent and the fluorine-containing ether and Experimental Example 2 in which the composition is composed of only the silylating agent, the fluorine-containing ether and the acid are 25 after mixing the raw materials. No precipitation or precipitation of insoluble matter was observed even after standing at ° C for 4 days, showing particularly excellent stability.
In addition, all of Experimental Examples 1 to 7 using the composition specified in the present invention showed a good water repellency-imparting effect.

一方、本発明の規定から外れた組成物を用いた比較実験例1〜16では、組成物の安定性が不十分(この場合、接触角の評価はしなかった)、あるいは、撥水性付与効果が不十分であった。 On the other hand, in Comparative Experimental Examples 1 to 16 using a composition deviating from the specification of the present invention, the stability of the composition was insufficient (in this case, the contact angle was not evaluated), or the water repellency imparting effect was obtained. Was inadequate.

比較実験例17〜22は、シリル化剤濃度を上述の実験例に合わせて約5.0質量%とした以外は、特許文献1(特許第5648053号公報)の実施例1〜6に相当する実験例であり、本願の実験例と同等の撥水性付与効果を示すものの、組成物の安定性が不十分であった。また保護膜形成成分の沸点よりも高沸点の溶剤が3質量%含有されているために、蒸気化の際の温度をシリル化剤の沸点よりも20℃以上高い温度にしたためシリル化剤の熱分解が引き起こされる恐れがあったといえる。 Comparative Experimental Examples 17 to 22 correspond to Examples 1 to 6 of Patent Document 1 (Patent No. 5648053), except that the concentration of the silylating agent was set to about 5.0% by mass in accordance with the above-mentioned Experimental Example. This is an experimental example, and although it shows the same water repellency-imparting effect as the experimental example of the present application, the stability of the composition was insufficient. Further, since the solvent having a boiling point higher than the boiling point of the protective film forming component is contained in an amount of 3% by mass, the temperature at the time of vaporization is set to a temperature 20 ° C. or more higher than the boiling point of the silylating agent, so that the heat of the silylating agent is increased. It can be said that there was a risk of decomposition.

1 ウェハ
2 ウェハ表面の微細な凹凸パターン
3 パターンの凸部
4 パターンの凹部
5 凹部の幅
6 凸部の高さ
7 凸部の幅
8 凹部4に保持された液体
9 組成物の蒸気
10 凹部4に保持された液体
11 保護膜
1 Wafer 2 Fine uneven pattern on the wafer surface 3 Convex part of the pattern 4 Concave part of the pattern 5 Width of the concave part 6 Height of the convex part 7 Width of the convex part 8 Liquid held in the concave portion 4 9 Vapor of the composition 10 Concave part 4 Liquid 11 protective film held in

Claims (24)

表面に凹凸パターンを有し、少なくとも該凹部にSi元素を有するウェハの洗浄において、
前記凹凸パターンの少なくとも凹部に液体を保持した状態で、
下記一般式[1]で表されるシリル化剤と、
前記シリル化剤の沸点よりも低沸点の下記一般式[2]で表される含フッ素エーテルが、総量100質量%のうち99.8〜100質量%である溶媒とを
含み、前記シリル化剤と溶媒の総量に対する該シリル化剤の量が、2〜30質量%である組成物の蒸気を
前記凹凸パターン表面に供して、ウェハ表面にて該蒸気を前記組成物の液体状態に状態変化して、前記凹部に保持された液体を該組成物の液体に置換して保持することにより、少なくとも前記凹部表面に撥水性保護膜を形成する、ウェハの表面処理方法。
(R(H)4−x−ySi[N(R [1]
[式[1]中、Rは、それぞれ互いに独立して、炭素数が1〜10の炭化水素基、及び、水素元素の一部又は全てがフッ素元素に置換された炭素数が1〜8の炭化水素基から選択される基であり、Rは、それぞれ互いに独立して、水素元素の一部又は全てがフッ素元素に置換されていてもよいメチル基、エチル基、アセチル基から選択される基である。xは1〜3の整数であり、yは1〜3の整数であり、4−x−yは0〜2の整数である。]
2n+1−O−C2m+1 [2]
[式[2]中、C2n+1は、炭素数n=4〜5の直鎖状のパーフルオロアルキル基を表し、C2m+1は、炭素数m=2〜6の直鎖状又は分枝状のアルキル基を表す。]
In cleaning a wafer having a concavo-convex pattern on the surface and at least the Si element in the recesses.
With the liquid held in at least the recesses of the uneven pattern,
The silylating agent represented by the following general formula [1] and
The fluorinated ether represented by the following general formula [2] having a boiling point lower than the boiling point of the silylating agent contains a solvent in which 99.8 to 100% by mass out of a total amount of 100% by mass, and the silylating agent. The vapor of the composition in which the amount of the silylating agent with respect to the total amount of the solvent is 2 to 30% by mass is applied to the surface of the uneven pattern, and the vapor is changed to the liquid state of the composition on the surface of the wafer. A method for surface treatment of a wafer, wherein a water-repellent protective film is formed at least on the surface of the recess by replacing the liquid held in the recess with the liquid of the composition and holding the liquid.
(R 1 ) y (H) 4-xy Si [N (R 2 ) 2 ] x [1]
[In the formula [1], R 1 is independent of each other and has a hydrocarbon group having 1 to 10 carbon atoms and 1 to 8 carbon atoms in which a part or all of the hydrogen element is replaced with a fluorine element. R 2 is a group selected from the hydrocarbon groups of the above, and R 2 is independently selected from a methyl group, an ethyl group, and an acetyl group in which a part or all of the hydrogen element may be substituted with a fluorine element. It is a base. x is an integer of 1 to 3, y is an integer of 1 to 3, and 4-xy is an integer of 0 to 2. ]
C n F 2n + 1 −O−C m H 2m + 1 [2]
Wherein [2], C n F 2n + 1 represents a linear perfluoroalkyl group with carbon number n = 4~5, C m H 2m + 1 are straight-chain or carbon number m = 2 to 6 Represents a branched alkyl group. ]
前記シリル化剤が、(CHSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSiN(CH、C11Si(CHN(CH、C13Si(CHN(CH、C15Si(CHN(CH、C17Si(CHN(CH、C19Si(CHN(CH、C1021Si(CHN(CH 、(CHSi(H)N(CH、CHSi(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CSi(CH)(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CFCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、C11CHCHSi(N(CH、C13CHCHSi(N(CH 、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、C11CHCHSi(CH)(N(CH、C13CHCHSi(CH)(N(CH 、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、C11CHCHSi(CHN(CH、C13CHCHSi(CHN(CH 、CCHCHSi(CH)(H)N(CH、あるいは、前記ジメチルアミノシランのジメチルアミノ基(−N(CH基)が、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CFである化合物からなる群から選ばれる少なくとも1種である、請求項1に記載のウェハの表面処理方法。 The silylating agent is (CH 3 ) 3 SiN (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (CH 3 ) N (CH). 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (CH 3 ) N (CH) 3 ) 2 , (C 3 H 7 ) 3 SiN (CH 3 ) 2 , C 4 H 9 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 H 13 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 H 15 Si (CH 3 ) 2 N (CH 3 ) 2 , C 8 H 17 Si (CH 3 ) 2 N (CH 3 ) 2 , C 9 H 19 Si (CH 3 ) 2 N (CH 3 ) 2 , C 10 H 21 Si (CH 3 ) 2 N (CH 3 ) 2 , ( CH 3 ) 2 Si (H) N (CH 3 ) 2 , CH 3 Si (H) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (H) N (CH 3 ) 2 , C 2 H 5 Si (H) 2 N (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) (H) N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (H) N (CH 3 ) 2 , C 3 H 7 Si (H) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 2 F 5 CH 2 CH 2 Si (N (CH 3 )) 2 ) 3 , C 3 F 7 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 4 F 9 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 5 F 11 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 6 F 13 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , CF 3 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH) 3 ) (N (CH 3 ) 2 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C F 3 CH 2 CH 2 Si (CH 3 ) 2 N ( CH 3 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH) 3) 2 N (CH 3) 2, C F 3 CH 2 CH 2 Si (CH 3) (H) N (CH 3) 2, or dimethylamino group (-N of the dimethylamino silane (CH 3) 2 group ) Is -N (C 2 H 5 ) 2 , -N (CH 3 ) C (O) CH 3 , and -N (CH 3 ) C (O) CF 3. The wafer surface treatment method according to claim 1. 前記一般式[1]の−N(Rで表される基が、−N(CH基又は−N(C基である、請求項1又は2に記載のウェハの表面処理方法。 Group represented by -N general formula [1] (R 2) 2 is a -N (CH 3) 2 group, or -N (C 2 H 5) 2 group, according to claim 1 or 2 Wafer surface treatment method. 前記シリル化剤が、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミンからなる群から選ばれる少なくとも1種である、請求項1に記載のウェハの表面処理方法。 The wafer surface treatment method according to claim 1, wherein the silylating agent is at least one selected from the group consisting of trimethylsilyldimethylamine and trimethylsilyldiethylamine. 前記含フッ素エーテルが、ノナフルオロ−n−ブチルエチルエーテルである、請求項1〜4のいずれかに記載のウェハの表面処理方法。 The method for surface treating a wafer according to any one of claims 1 to 4, wherein the fluorine-containing ether is nonafluoro-n-butyl ethyl ether. 前記組成物中の、前記シリル化剤と前記含フッ素エーテルの質量比(シリル化剤/含フッ素エーテル)が、1/99〜30/70である、請求項1〜5のいずれかに記載のウェハの表面処理方法。 The invention according to any one of claims 1 to 5, wherein the mass ratio of the silylating agent to the fluorine-containing ether (silylating agent / fluorine-containing ether) in the composition is 1/99 to 30/70. Wafer surface treatment method. 前記組成物が、前記シリル化剤と前記含フッ素エーテルのみからなる、請求項1〜6のいずれかに記載のウェハの表面処理方法。 The method for surface treating a wafer according to any one of claims 1 to 6, wherein the composition comprises only the silylating agent and the fluorine-containing ether. 前記組成物が、さらに酸を含む、請求項1〜6のいずれかに記載のウェハの表面処理方法。 The method for surface treating a wafer according to any one of claims 1 to 6, wherein the composition further contains an acid. 前記組成物が、前記シリル化剤と前記含フッ素エーテルと酸のみからなる、請求項1〜6及び8のいずれかに記載のウェハの表面処理方法。 The method for surface-treating a wafer according to any one of claims 1 to 6, wherein the composition comprises only the silylating agent, the fluorine-containing ether, and an acid. 前記酸が、トリメチルシリルトリフルオロアセテート、トリメチルシリルトリフルオロメタンスルホネート、ジメチルシリルトリフルオロアセテート、ジメチルシリルトリフルオロメタンスルホネート、ブチルジメチルシリルトリフルオロアセテート、ブチルジメチルシリルトリフルオロメタンスルホネート、ヘキシルジメチルシリルトリフルオロアセテート、ヘキシルジメチルシリルトリフルオロメタンスルホネート、オクチルジメチルシリルトリフルオロアセテート、オクチルジメチルシリルトリフルオロメタンスルホネート、デシルジメチルシリルトリフルオロアセテート、及び、デシルジメチルシリルトリフルオロメタンスルホネートからなる群から選ばれる少なくとも1種である、請求項8又は9に記載のウェハの表面処理方法。 The acid is trimethylsilyl trifluoroacetate, trimethylsilyl trifluoromethanesulfonate, dimethylsilyl trifluoroacetate, dimethylsilyltrifluoromethanesulfonate, butyldimethylsilyltrifluoroacetate, butyldimethylsilyltrifluoromethanesulfonate, hexyldimethylsilyltrifluoroacetate, hexyldimethylsilyl. Claim 8 or 9 which is at least one selected from the group consisting of trifluoromethanesulfonate, octyldimethylsilyltrifluoroacetate, octyldimethylsilyltrifluoromethanesulfonate, decyldimethylsilyltrifluoroacetate, and decyldimethylsilyltrifluoromethanesulfonate. The method for surface treatment of a wafer according to. 前記凹部に保持された液体が、非水溶媒である、請求項1〜10のいずれかに記載のウェハの表面処理方法。 The method for surface treating a wafer according to any one of claims 1 to 10, wherein the liquid held in the recess is a non-aqueous solvent. 少なくとも前記凹部表面に撥水性保護膜を形成した後で、該凹部に保持された液体状態の前記組成物を乾燥により除去する、請求項1〜11のいずれかに記載のウェハの表面処理方法。 The method for surface treatment of a wafer according to any one of claims 1 to 11, wherein at least the water-repellent protective film is formed on the surface of the recess and then the composition in a liquid state held in the recess is removed by drying. 少なくとも前記凹部表面に撥水性保護膜を形成した後で、該凹部に保持された液体状態の前記組成物を該組成物とは異なる洗浄液に置換し、該洗浄液を乾燥により除去する、請求項1〜11のいずれかに記載のウェハの表面処理方法。 1. After forming a water-repellent protective film on the surface of the recess, the composition in a liquid state held in the recess is replaced with a cleaning solution different from the composition, and the cleaning solution is removed by drying. The wafer surface treatment method according to any one of 11. 前記乾燥後のウェハ表面に、加熱処理、光照射処理、オゾン曝露処理、プラズマ照射処理、及びコロナ放電処理からなる群から選ばれる少なくとも1つの処理を施して前記撥水性保護膜を除去する、請求項12又は13に記載のウェハの表面処理方法。 The dried wafer surface is subjected to at least one treatment selected from the group consisting of heat treatment, light irradiation treatment, ozone exposure treatment, plasma irradiation treatment, and corona discharge treatment to remove the water-repellent protective film. Item 12. The wafer surface treatment method according to Item 12 or 13. 表面に凹凸パターンを有し、少なくとも該凹部にSi元素を有するウェハの洗浄において、
前記凹凸パターンの少なくとも凹部に液体を保持した状態で、該凹凸パターン表面に蒸気として供され、ウェハ表面にて蒸気から液体状態に状態変化して、前記凹部に保持された液体を置換して該凹部に保持される、
下記一般式[1]で表されるシリル化剤と、
前記シリル化剤の沸点よりも低沸点の下記一般式[2]で表される含フッ素エーテルが、総量100質量%のうち99.8〜100質量%である溶媒とを
含み、前記シリル化剤と溶媒の総量に対する該シリル化剤の量が、2〜30質量%である組成物。
(R(H)4−x−ySi[N(R [1]
[式[1]中、Rは、それぞれ互いに独立して、炭素数が1〜10の炭化水素基、及び、水素元素の一部又は全てがフッ素元素に置換された炭素数が1〜8の炭化水素基から選択される基であり、Rは、それぞれ互いに独立して、水素元素の一部又は全てがフッ素元素に置換されていてもよいメチル基、エチル基、アセチル基から選択される基である。xは1〜3の整数であり、yは1〜3の整数であり、4−x−yは0〜2の整数である。]
2n+1−O−C2m+1 [2]
[式[2]中、C2n+1は、炭素数n=4〜5の直鎖状のパーフルオロアルキル基を表し、C2m+1は、炭素数m=2〜6の直鎖状又は分枝状のアルキル基を表す。]
In cleaning a wafer having a concavo-convex pattern on the surface and at least the Si element in the recesses.
With the liquid held in at least the concave portion of the concave-convex pattern, the liquid is provided as vapor on the surface of the concave-convex pattern, the state changes from steam to a liquid state on the wafer surface, and the liquid held in the concave portion is replaced. Held in the recess,
The silylating agent represented by the following general formula [1] and
The fluorine-containing ether represented by the following general formula [2] having a boiling point lower than the boiling point of the silylating agent contains a solvent in which 99.8 to 100% by mass out of a total amount of 100% by mass is contained, and the silylating agent is contained. And the composition in which the amount of the silylating agent is 2 to 30% by mass with respect to the total amount of the solvent.
(R 1 ) y (H) 4-xy Si [N (R 2 ) 2 ] x [1]
[In the formula [1], R 1 is independent of each other and has a hydrocarbon group having 1 to 10 carbon atoms and 1 to 8 carbon atoms in which a part or all of the hydrogen element is replaced with a fluorine element. R 2 is a group selected from the hydrocarbon groups of the above, and R 2 is independently selected from a methyl group, an ethyl group, and an acetyl group in which a part or all of the hydrogen element may be substituted with a fluorine element. It is a base. x is an integer of 1 to 3, y is an integer of 1 to 3, and 4-xy is an integer of 0 to 2. ]
C n F 2n + 1 −O−C m H 2m + 1 [2]
Wherein [2], C n F 2n + 1 represents a linear perfluoroalkyl group with carbon number n = 4~5, C m H 2m + 1 are straight-chain or carbon number m = 2 to 6 Represents a branched alkyl group. ]
前記シリル化剤が、(CHSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSi(CH)N(CH、(CSiN(CH、CSi(CHN(CH、(CSiN(CH、C11Si(CHN(CH、C13Si(CHN(CH、C15Si(CHN(CH、C17Si(CHN(CH、C19Si(CHN(CH、C1021Si(CHN(CH 、(CHSi(H)N(CH、CHSi(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CSi(CH)(H)N(CH、(CSi(H)N(CH、CSi(H)N(CH、CFCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、CCHCHSi(N(CH、C11CHCHSi(N(CH、C13CHCHSi(N(CH 、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、CCHCHSi(CH)(N(CH、C11CHCHSi(CH)(N(CH、C13CHCHSi(CH)(N(CH 、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、CCHCHSi(CHN(CH、C11CHCHSi(CHN(CH、C13CHCHSi(CHN(CH 、CCHCHSi(CH)(H)N(CH、あるいは、前記ジメチルアミノシランのジメチルアミノ基(−N(CH基)が、−N(C、−N(CH)C(O)CH、−N(CH)C(O)CFである化合物からなる群から選ばれる少なくとも1種である、請求項15に記載の組成物。

The silylating agent is (CH 3 ) 3 SiN (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (CH 3 ) N (CH). 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (CH 3 ) N (CH) 3 ) 2 , (C 3 H 7 ) 3 SiN (CH 3 ) 2 , C 4 H 9 Si (CH 3 ) 2 N (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 H 13 Si (CH 3 ) 2 N (CH 3 ) 2 , C 7 H 15 Si (CH 3 ) 2 N (CH 3 ) 2 , C 8 H 17 Si (CH 3 ) 2 N (CH 3 ) 2 , C 9 H 19 Si (CH 3 ) 2 N (CH 3 ) 2 , C 10 H 21 Si (CH 3 ) 2 N (CH 3 ) 2 , ( CH 3 ) 2 Si (H) N (CH 3 ) 2 , CH 3 Si (H) 2 N (CH 3 ) 2 , (C 2 H 5 ) 2 Si (H) N (CH 3 ) 2 , C 2 H 5 Si (H) 2 N (CH 3 ) 2 , C 2 H 5 Si (CH 3 ) (H) N (CH 3 ) 2 , (C 3 H 7 ) 2 Si (H) N (CH 3 ) 2 , C 3 H 7 Si (H) 2 N (CH 3 ) 2 , CF 3 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 2 F 5 CH 2 CH 2 Si (N (CH 3 )) 2 ) 3 , C 3 F 7 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 4 F 9 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 5 F 11 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , C 6 F 13 CH 2 CH 2 Si (N (CH 3 ) 2 ) 3 , CF 3 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH) 3 ) (N (CH 3 ) 2 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH 3 ) (N (CH 3 ) 2 ) 2 , C F 3 CH 2 CH 2 Si (CH 3 ) 2 N ( CH 3 ) 2 , C 2 F 5 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 3 F 7 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 4 F 9 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 5 F 11 CH 2 CH 2 Si (CH 3 ) 2 N (CH 3 ) 2 , C 6 F 13 CH 2 CH 2 Si (CH) 3) 2 N (CH 3) 2, C F 3 CH 2 CH 2 Si (CH 3) (H) N (CH 3) 2, or dimethylamino group (-N of the dimethylamino silane (CH 3) 2 group ) Is -N (C 2 H 5 ) 2 , -N (CH 3 ) C (O) CH 3 , and -N (CH 3 ) C (O) CF 3. The composition according to claim 15.

前記一般式[1]の−N(Rで表される基が、−N(CH基又は−N(C基である、請求項15又は16に記載の組成物。 Group represented by -N general formula [1] (R 2) 2 is a -N (CH 3) 2 group, or -N (C 2 H 5) 2 group, according to claim 15 or 16 Composition. 前記シリル化剤が、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミンからなる群から選ばれる少なくとも1種である、請求項15に記載の組成物。 The composition according to claim 15, wherein the silylating agent is at least one selected from the group consisting of trimethylsilyldimethylamine and trimethylsilyldiethylamine. 前記含フッ素エーテルが、ノナフルオロ−n−ブチルエチルエーテルである、請求項15〜18のいずれかに記載の組成物。 The composition according to any one of claims 15 to 18, wherein the fluorine-containing ether is nonafluoro-n-butyl ethyl ether. 前記組成物中の、前記シリル化剤と前記含フッ素エーテルの質量比(シリル化剤/含フッ素エーテル)が、1/99〜30/70である、請求項15〜19のいずれかに記載の組成物。 15. Composition. 前記組成物が、前記シリル化剤と前記含フッ素エーテルのみからなる、請求項15〜20のいずれかに記載の組成物。 The composition according to any one of claims 15 to 20, wherein the composition comprises only the silylating agent and the fluorine-containing ether. さらに酸を含む、請求項15〜20のいずれかに記載の組成物。 The composition according to any one of claims 15 to 20, further comprising an acid. 前記シリル化剤と前記含フッ素エーテルと酸のみからなる、請求項15〜20及び22のいずれかに記載の組成物。 The composition according to any one of claims 15 to 20 and 22, which comprises only the silylating agent, the fluorine-containing ether and an acid. 前記酸が、トリメチルシリルトリフルオロアセテート、トリメチルシリルトリフルオロメタンスルホネート、ジメチルシリルトリフルオロアセテート、ジメチルシリルトリフルオロメタンスルホネート、ブチルジメチルシリルトリフルオロアセテート、ブチルジメチルシリルトリフルオロメタンスルホネート、ヘキシルジメチルシリルトリフルオロアセテート、ヘキシルジメチルシリルトリフルオロメタンスルホネート、オクチルジメチルシリルトリフルオロアセテート、オクチルジメチルシリルトリフルオロメタンスルホネート、デシルジメチルシリルトリフルオロアセテート、及び、デシルジメチルシリルトリフルオロメタンスルホネートからなる群から選ばれる少なくとも1種である、請求項22又は23に記載の組成物。
The acid is trimethylsilyl trifluoroacetate, trimethylsilyl trifluoromethanesulfonate, dimethylsilyl trifluoroacetate, dimethylsilyltrifluoromethanesulfonate, butyldimethylsilyltrifluoroacetate, butyldimethylsilyltrifluoromethanesulfonate, hexyldimethylsilyltrifluoroacetate, hexyldimethylsilyl. 22 or 23, which is at least one selected from the group consisting of trifluoromethanesulfonate, octyldimethylsilyltrifluoroacetate, octyldimethylsilyltrifluoromethanesulfonate, decyldimethylsilyltrifluoroacetate, and decyldimethylsilyltrifluoromethanesulfonate. The composition according to.
JP2017081095A 2017-04-17 2017-04-17 Wafer surface treatment method and composition used in the method Active JP6963166B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017081095A JP6963166B2 (en) 2017-04-17 2017-04-17 Wafer surface treatment method and composition used in the method
PCT/JP2018/014353 WO2018193841A1 (en) 2017-04-17 2018-04-04 Wafer surface processing method and composition for use with said method
TW107112874A TWI670767B (en) 2017-04-17 2018-04-16 Wafer surface treatment method and composition for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081095A JP6963166B2 (en) 2017-04-17 2017-04-17 Wafer surface treatment method and composition used in the method

Publications (2)

Publication Number Publication Date
JP2018182112A JP2018182112A (en) 2018-11-15
JP6963166B2 true JP6963166B2 (en) 2021-11-05

Family

ID=63855816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081095A Active JP6963166B2 (en) 2017-04-17 2017-04-17 Wafer surface treatment method and composition used in the method

Country Status (3)

Country Link
JP (1) JP6963166B2 (en)
TW (1) TWI670767B (en)
WO (1) WO2018193841A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397358B2 (en) * 2019-06-21 2023-12-13 セントラル硝子株式会社 Surface treatment agent and method for producing surface treated body
JPWO2021235476A1 (en) * 2020-05-21 2021-11-25
WO2021235479A1 (en) * 2020-05-21 2021-11-25 セントラル硝子株式会社 Surface treatment method for semiconductor substrates, and surface treatment agent composition
WO2023199824A1 (en) * 2022-04-11 2023-10-19 セントラル硝子株式会社 Surface treatment composition and method for producing wafer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129932A (en) * 2008-11-28 2010-06-10 Tokyo Ohka Kogyo Co Ltd Surface treatment method and liquid
JP5254120B2 (en) * 2009-04-22 2013-08-07 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
JP5284918B2 (en) * 2009-09-24 2013-09-11 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP4927158B2 (en) * 2009-12-25 2012-05-09 東京エレクトロン株式会社 Substrate processing method, recording medium storing program for executing substrate processing method, and substrate processing apparatus
JP5708191B2 (en) * 2010-05-19 2015-04-30 セントラル硝子株式会社 Chemical solution for protective film formation
SG186761A1 (en) * 2010-06-28 2013-02-28 Central Glass Co Ltd Water repellent protective film forming agent, liquid chemical for forming water repellent protective film, and wafer cleaning method using liquid chemical
JP5648053B2 (en) * 2010-06-30 2015-01-07 セントラル硝子株式会社 Chemical solution for forming wafer pattern protective film, method for preparing chemical solution, and wafer processing method
JP5974514B2 (en) * 2012-02-01 2016-08-23 セントラル硝子株式会社 Water repellent protective film forming chemical, water repellent protective film forming chemical kit, and wafer cleaning method
JP6191372B2 (en) * 2013-10-04 2017-09-06 セントラル硝子株式会社 Wafer cleaning method
JP6674186B2 (en) * 2014-06-11 2020-04-01 三井・ケマーズ フロロプロダクツ株式会社 Substitution liquid for drying semiconductor pattern and method for drying semiconductor pattern
EP3085749B1 (en) * 2015-04-20 2017-06-28 Shin-Etsu Chemical Co., Ltd. Fluoropolyether-containing polymer-modified silane, surface treating agent, and treated article
JP6681795B2 (en) * 2015-09-24 2020-04-15 東京応化工業株式会社 Surface treatment agent and surface treatment method

Also Published As

Publication number Publication date
JP2018182112A (en) 2018-11-15
WO2018193841A1 (en) 2018-10-25
TW201843731A (en) 2018-12-16
TWI670767B (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6963166B2 (en) Wafer surface treatment method and composition used in the method
KR102391370B1 (en) A method for surface treatment of a wafer and a composition used in the method
WO2012090779A1 (en) Wafer washing method
TWI548730B (en) Protective film forming liquid
JP6191372B2 (en) Wafer cleaning method
JP5630385B2 (en) Chemical solution for forming protective film and cleaning method of wafer surface
JP6966698B2 (en) Chemical solution for forming a water-repellent protective film
JP2012033880A (en) Chemical for forming water repellency protection film
WO2017159447A1 (en) Water-repellent protective film forming agent, liquid chemical for forming water-repellent protective film, and wafer washing method
JP6875630B2 (en) Wafer cleaning method and chemical solution used for the cleaning method
JP6051562B2 (en) Chemical solution for forming water-repellent protective film
TW202302612A (en) Surface treatment composition and method for manufacturing wafer
CN111699546B (en) Water-repellent protective film forming agent and chemical solution for forming water-repellent protective film
JP2017168741A (en) Wafer cleaning method
TWI495715B (en) A liquid for forming a water-repellent protective film, and a method for cleaning the wafer using the same
JP6428802B2 (en) Chemical solution for protective film formation
CN111512418A (en) Surface treatment agent and method for producing surface-treated body
JP5830931B2 (en) Wafer cleaning method
TW202111077A (en) Surface treatment agent and method for manufacturing surface treatment body
WO2017159407A1 (en) Wafer cleaning method
JP2017157863A (en) Cleaning method of wafer
WO2016043128A1 (en) Method for cleaning wafer, and chemical used in such cleaning method
JP2017174870A (en) Wafer cleaning method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6963166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150