JP6962274B2 - Inverter - Google Patents

Inverter Download PDF

Info

Publication number
JP6962274B2
JP6962274B2 JP2018097494A JP2018097494A JP6962274B2 JP 6962274 B2 JP6962274 B2 JP 6962274B2 JP 2018097494 A JP2018097494 A JP 2018097494A JP 2018097494 A JP2018097494 A JP 2018097494A JP 6962274 B2 JP6962274 B2 JP 6962274B2
Authority
JP
Japan
Prior art keywords
axis
phase
gain
command
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097494A
Other languages
Japanese (ja)
Other versions
JP2019205238A (en
Inventor
昌司 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2018097494A priority Critical patent/JP6962274B2/en
Publication of JP2019205238A publication Critical patent/JP2019205238A/en
Application granted granted Critical
Publication of JP6962274B2 publication Critical patent/JP6962274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、 PMモータの位置センサレス制御に係り、特に、電流引込法の振動抑制方法に関する。 The present invention relates to position sensorless control of a PM motor, and more particularly to a vibration suppression method of a current drawing method.

インバータによる電動機の駆動システムにおいて、永久磁石形同期電動機(PMモータ)の磁極位置検出器を使用しないで運転する位置センサレス制御が実用化されている。 In a motor drive system using an inverter, position sensorless control that operates without using a magnetic pole position detector of a permanent magnet type synchronous motor (PM motor) has been put into practical use.

この位置センサレス制御により速度やトルクを制御する方法として、多くの種類の位置センサレス制御方式が開発されている。その中の一手法として、ある程度の大きさの一定振幅の電流を流し、その周波数を徐々に変化させて同期引き込み状態を維持させながら強制的に回転子を電流に追従させて始動する方式が利用されている。ここではこれを電流引込法と呼ぶ。図5に、電流引込法を用いた制御ブロックを示す。電流引込法の先行技術文献としては、例えば、非特許文献1が開示されている。 Many types of position sensorless control methods have been developed as methods for controlling speed and torque by this position sensorless control. As one of the methods, a method is used in which a current of a certain magnitude and a constant amplitude is passed, and the frequency is gradually changed to maintain the synchronous pull-in state while forcibly following the current to start the rotor. Has been done. Here, this is called a current drawing method. FIG. 5 shows a control block using the current drawing method. As a prior art document of the current drawing method, for example, Non-Patent Document 1 is disclosed.

[電流引込法]
図5に示すように、積分器1において、速度指令を積分して位相に変換する。三相/二相変換器2において、この位相を基準にインバータの電流検出値を回転座標上のd軸,q軸電流検出値に変換する。電流制御部ACRは、d軸電流指令として引込電流指令を、q軸電流指令として零を入力する。電流制御部ACRは、d軸,q軸電流指令とd軸,q軸電流検出値の偏差がなくなるようにd軸,q軸電圧指令を出力する。
[Current draw-in method]
As shown in FIG. 5, in the integrator 1, the velocity command is integrated and converted into a phase. In the three-phase / two-phase converter 2, the current detection value of the inverter is converted into the d-axis and q-axis current detection values on the rotational coordinates based on this phase. The current control unit ACR inputs a lead-in current command as a d-axis current command and zero as a q-axis current command. The current control unit ACR outputs the d-axis and q-axis voltage commands so that there is no deviation between the d-axis and q-axis current commands and the d-axis and q-axis current detection values.

二相/三相変換器3は、d軸,q軸電圧指令を積分器1が出力する位相に基づいて二相/三相変換し、U相,V相,W相電圧指令を生成する。PWM制御器PWMは、三角波キャリア信号とU相,V相,W相電圧指令との比較により、インバータ内における各スイッチング素子のゲート信号(オン/オフ指令信号)を生成する。そして、インバータから電圧を出力して電動機(図示省略)に印加する構成となっている。 The two-phase / three-phase converter 3 performs two-phase / three-phase conversion based on the phase output by the integrator 1 for the d-axis and q-axis voltage commands, and generates U-phase, V-phase, and W-phase voltage commands. The PWM controller PWM generates a gate signal (on / off command signal) of each switching element in the inverter by comparing the triangular wave carrier signal with the U-phase, V-phase, and W-phase voltage commands. Then, the voltage is output from the inverter and applied to the motor (not shown).

これにより、引込電流指令通りの電流が電動機に流れ、引込電流を流している位相に回転子の磁極が吸引される。引込電流位相は速度指令を積分した位相に流れていくので、速度指令に応じて電流位相が回転し、この電流位相に磁極を吸引させたままモータを回転させる。 As a result, the current according to the lead-in current command flows to the motor, and the magnetic poles of the rotor are attracted to the phase in which the draw-in current is flowing. Since the lead-in current phase flows to the phase in which the speed command is integrated, the current phase rotates according to the speed command, and the motor is rotated while the magnetic poles are attracted to this current phase.

しかし、電流引込法には、以下の(1),(2)のような問題がある。 However, the current drawing method has the following problems (1) and (2).

(1)電流振幅を一定に保持しても、磁極軸と電流軸の位相差のsin関数としてトルクが変動するため、軸ねじれによりトルクが変化する弾性軸に似た振る舞いをする。そのため、負荷トルク変動などの過渡現象が発生すると、慣性モーメントと共振するような速度振動(軸ねじれ振動)が生じる。 (1) Even if the current amplitude is kept constant, the torque fluctuates as a sine function of the phase difference between the magnetic pole shaft and the current shaft, so that the behavior resembles that of an elastic shaft in which the torque changes due to shaft twisting. Therefore, when a transient phenomenon such as load torque fluctuation occurs, velocity vibration (shaft torsional vibration) that resonates with the moment of inertia occurs.

この軸ねじれ振動が発生してしまうと、ダンパ巻線が無いPMモータでは制動効果が無く振動が継続する問題がある。この軸ねじれ振動は負荷に出力するトルク品質を低下させ、カップリングなど機械系に悪影響を与えるおそれがある。 If this shaft torsional vibration occurs, there is a problem that the PM motor without a damper winding has no braking effect and the vibration continues. This shaft torsional vibration lowers the quality of torque output to the load and may adversely affect the mechanical system such as coupling.

(2)上記の軸ねじれ振動が生じると負荷トルクに対してさらに軸ねじれ分のトルク脈動が加算されるため、電流振幅を大きく設定しておかないと最大トルクを超えて脱調が発生するおそれがある。これを防止するためには通常のベクトル制御で必要な電流よりも、1.5〜2倍の大きな電流を流さねばならない。その結果、大きな容量のインバータが必要になる。 (2) When the above-mentioned shaft torsional vibration occurs, the torque pulsation for the shaft torsion is further added to the load torque. Therefore, if the current amplitude is not set large, the maximum torque may be exceeded and step-out may occur. There is. In order to prevent this, it is necessary to pass a current 1.5 to 2 times larger than the current required by normal vector control. As a result, a large capacity inverter is required.

以上のような課題を解決する方法として、図6に示すような軸ねじれ振動が発生した際に、この軸ねじれ振動を抑制する特許文献1が開示されている。 As a method for solving the above problems, Patent Document 1 that suppresses the shaft torsional vibration when the shaft torsional vibration as shown in FIG. 6 occurs is disclosed.

[特許文献1]
図6に特許文献1の制御ブロック図を示す。図5と同様の箇所については同一符号を付し、その説明は省略する。特許文献1(図6)は、図5に振動抑制部14を追加したものである。
[Patent Document 1]
FIG. 6 shows a control block diagram of Patent Document 1. The same parts as those in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted. Patent Document 1 (FIG. 6) is obtained by adding the vibration suppression unit 14 to FIG.

電流制御部ACRが出力するd軸電圧指令をバンドパスフィルタBPF(Band−pass filter)に掛け、軸振動に起因するd軸電圧指令の振動成分のみ抽出する。乗算器4は、バンドパスフィルタBPFで抽出した振動成分にゲインGを乗算する。関数部10は速度指令の符号(極性)を算出する。 The d-axis voltage command output by the current control unit ACR is applied to a bandpass filter BPF (Band-pass filter), and only the vibration component of the d-axis voltage command caused by the shaft vibration is extracted. The multiplier 4 multiplies the vibration component extracted by the bandpass filter BPF by the gain G. The function unit 10 calculates the sign (polarity) of the speed command.

乗算器11は乗算器4の出力に速度指令の符号極性を乗算し、速度指令を補正するための振動抑制信号として出力する。減算器13は、速度指令から振動抑制信号を減算する。これにより、複雑な処理を追加しなくても非常に簡単な方法で軸振動を抑制することが可能となる。 The multiplier 11 multiplies the output of the multiplier 4 by the sign polarity of the speed command, and outputs it as a vibration suppression signal for correcting the speed command. The subtractor 13 subtracts the vibration suppression signal from the speed command. This makes it possible to suppress shaft vibration in a very simple manner without adding complicated processing.

特開2017−85720号公報JP-A-2017-85720

五十嵐 寿勝、劉 江桁「電流引き込み方式によるPMモータの磁極位置合わせにおける引き込み電流値の一検討」、平成29年電気学会全国大会、4−153Toshikatsu Igarashi, Girder Liu Jiang "A study of the pull-in current value in the magnetic pole alignment of PM motors by the current pull-in method", 2017 IEEJ National Convention, 4-153

しかし、特許文献1は、零速度や極低速時に軸振動が生じた場合は、振動を抑制する効果が得られないことがある。特許文献1では、速度指令の極性を用いて振動抑制部14の制御を行っている。一方、零速度や極低速時では、速度指令の極性と実際の電動機の回転速度の極性(つまり回転方向)が一致しないケースが多い。このように両者の極性が一致しない場合では振動抑制部14の制御を適切に行うことができなくなるため、振動抑制ができなくなる。 However, Patent Document 1 may not have the effect of suppressing vibration when shaft vibration occurs at zero speed or extremely low speed. In Patent Document 1, the vibration suppression unit 14 is controlled by using the polarity of the speed command. On the other hand, at zero speed or extremely low speed, the polarity of the speed command and the polarity of the actual rotation speed of the motor (that is, the direction of rotation) often do not match. If the polarities of the two do not match in this way, the vibration suppression unit 14 cannot be properly controlled, so that vibration suppression cannot be performed.

さらにこの場合、電流引き込み時の最初に磁極を引き込む際は周波数ゼロの直流電流を流すので、磁極を引き込んだ際に振動が生じると、電動機の加速開始時に始動トルク分と振動分のトルクが必要になるため、脱調するおそれがある。 Furthermore, in this case, when the magnetic pole is pulled in for the first time when the current is pulled in, a DC current with a frequency of zero flows, so if vibration occurs when the magnetic pole is pulled in, the starting torque and the torque for the vibration are required at the start of acceleration of the motor. Therefore, there is a risk of step-out.

以上示したようなことから、インバータにおいて、零速度時や極低速時における電動機の回転速度の振動を抑制し、モータの脱調を抑制することが課題となる。 From the above, it is an issue for the inverter to suppress the vibration of the rotational speed of the motor at zero speed or extremely low speed and to suppress the step-out of the motor.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、永久磁石形同期電動機を駆動するインバータにおいて、速度指令から振動抑制信号を減算した値を積分した位相に基づいて電流検出値を三相/二相変換し、d軸,q軸電流検出値を出力する三相/二相変換器と、引込電流指令であるd軸電流指令とq軸電流指令と、前記d軸,q軸電流検出値との偏差に基づいて、前記d軸,q軸電流検出値が前記d軸,q軸電流指令に追従するように、d軸,q軸電圧指令を生成する電流制御部と、前記d軸,q軸電圧指令を前記位相に基づいて三相の電圧指令に変換する二相/三相変換器と、前記三相の電圧指令に基づいて、インバータ内の各スイッチング素子のゲート信号を生成するPWM制御部と、前記d軸電圧指令の軸振動に起因する振動成分にゲインGdを乗算する第1乗算器と、前記q軸電圧指令の軸振動に起因する振動成分に一次遅れを生じさせた値にゲインGqを乗算する第2乗算器と、前記速度指令の絶対値が閾値以上の場合にd軸ゲインを1,q軸ゲインを0とし、前記速度指令の絶対値が閾値よりも小さい場合にd軸ゲインを0,q軸ゲインを1とするゲイン調整部と、前記第1乗算器の出力に前記d軸ゲインおよび前記速度指令の符号極性を乗算した値と、前記第2乗算器の出力に前記q軸ゲインを乗算した値と、を加算し前記振動抑制信号として出力する加算器と、を備えたことを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is based on the phase obtained by integrating the value obtained by subtracting the vibration suppression signal from the speed command in the inverter for driving the permanent magnet type synchronous electric motor. A three-phase / two-phase converter that converts the current detection value into three-phase / two-phase and outputs the d-axis and q-axis current detection values, a d-axis current command and a q-axis current command that are lead-in current commands, and the above. Based on the deviation from the d-axis and q-axis current detection values, the current that generates the d-axis and q-axis voltage commands so that the d-axis and q-axis current detection values follow the d-axis and q-axis current commands. A control unit, a two-phase / three-phase converter that converts the d-axis and q-axis voltage commands into three-phase voltage commands based on the phase, and each switching in the inverter based on the three-phase voltage commands. The PWM control unit that generates the gate signal of the element, the first multiplier that multiplies the gain Gd by the vibration component caused by the shaft vibration of the d-axis voltage command, and the vibration component caused by the shaft vibration of the q-axis voltage command. A second multiplier that multiplies the value that caused the first-order delay by the gain Gq, and when the absolute value of the speed command is equal to or greater than the threshold value, the d-axis gain is set to 1 and the q-axis gain is set to 0, and the absolute value of the speed command is set to 0. A gain adjusting unit that sets the d-axis gain to 0 and the q-axis gain to 1 when the value is smaller than the threshold value, and a value obtained by multiplying the output of the first multiplier by the d-axis gain and the sign polarity of the speed command. The second multiplier is provided with a value obtained by multiplying the output of the second multiplier by the q-axis gain, and an adder that adds and outputs the vibration suppression signal.

また、他の態様として、永久磁石形同期電動機を駆動するインバータにおいて、速度指令から振動抑制信号を減算した値を積分した位相に基づいて電流検出値を三相/二相変換し、d軸,q軸電流検出値を出力する三相/二相変換器と、引込電流指令であるd軸電流指令とq軸電流指令と、前記d軸,q軸電流検出値との偏差に基づいて、前記d軸,q軸電流検出値が前記d軸,q軸電流指令に追従するように、d軸,q軸電圧指令を生成する電流制御部と、前記d軸,q軸電圧指令を前記位相に基づいて三相の電圧指令に変換する二相/三相変換器と、前記三相の電圧指令に基づいて、インバータ内の各スイッチング素子のゲート信号を生成するPWM制御部と、前記q軸電圧指令の軸振動に起因する振動成分に一次遅れを生じさせた値にゲインGqを乗算して前記振動抑制信号を算出する振動抑制部と、を備えたことを特徴とする。 Further, as another embodiment, in the inverter for driving the permanent magnet type synchronous electric motor, the current detection value is converted into three-phase / two-phase based on the phase obtained by subtracting the vibration suppression signal from the speed command, and the d-axis, Based on the deviation between the three-phase / two-phase converter that outputs the q-axis current detection value, the d-axis current command and the q-axis current command that are the lead-in current commands, and the d-axis and q-axis current detection values. The current control unit that generates the d-axis and q-axis voltage commands and the d-axis and q-axis voltage commands are set to the phase so that the d-axis and q-axis current detection values follow the d-axis and q-axis current commands. A two-phase / three-phase converter that converts to a three-phase voltage command based on this, a PWM control unit that generates a gate signal for each switching element in the inverter based on the three-phase voltage command, and the q-axis voltage. It is characterized by including a vibration suppression unit that calculates the vibration suppression signal by multiplying a value that causes a primary delay in the vibration component caused by the command shaft vibration by a gain Gq.

また、他の態様として、永久磁石形同期電動機を駆動するインバータにおいて、速度指令から振動抑制信号を減算した値を積分した位相に基づいて電流検出値を三相/二相変換し、d軸,q軸電流検出値を出力する三相/二相変換器と、引込電流指令であるd軸電流指令とq軸電流指令と、前記d軸,q軸電流検出値との偏差に基づいて、前記d軸,q軸電流検出値が前記d軸,q軸電流指令に追従するように、d軸,q軸電圧指令を生成する電流制御部と、前記d軸,q軸電圧指令を前記位相に基づいて三相の電圧指令に変換する二相/三相変換器と、前記三相の電圧指令に基づいて、インバータ内の各スイッチング素子のゲート信号を生成するPWM制御部と、前記d軸電圧指令の軸振動に起因する振動成分にゲインGdを乗算する第1乗算器と、前記q軸電圧指令の軸振動に起因する振動成分に一次遅れを生じさせた値にゲインGqを乗算する第2乗算器と、前記速度指令の絶対値が第1閾値以下の場合に前記q軸ゲインを1、前記d軸ゲインを0とし、前記速度指令の絶対値が第1閾値よりも大きく第2閾値よりも小さい場合に、前記速度指令の絶対値の増加に応じて、前記q軸ゲインを1から0に徐々に減少させ、前記d軸ゲインを0から1に徐々に増加させ、前記速度指令の絶対値が第2閾値以上の場合に前記d軸ゲインを1,前記q軸ゲインを0とするゲイン調整部と、前記第1乗算器の出力に前記d軸ゲインおよび前記速度指令の符号極性を乗算した値と、前記第2乗算器の出力に前記q軸ゲインを乗算した値と、を加算し前記振動抑制信号として出力する加算器と、を備えたことを特徴とする。 Further, as another embodiment, in the inverter for driving the permanent magnet type synchronous electric motor, the current detection value is converted into three-phase / two-phase based on the phase obtained by subtracting the vibration suppression signal from the speed command, and the d-axis, Based on the deviation between the three-phase / two-phase converter that outputs the q-axis current detection value, the d-axis current command and the q-axis current command that are the lead-in current commands, and the d-axis and q-axis current detection values. The current control unit that generates the d-axis and q-axis current commands and the d-axis and q-axis voltage commands are set to the phase so that the d-axis and q-axis current detection values follow the d-axis and q-axis current commands. A two-phase / three-phase converter that converts to a three-phase voltage command based on this, a PWM control unit that generates a gate signal for each switching element in the inverter based on the three-phase voltage command, and the d-axis voltage. The first multiplier that multiplies the vibration component caused by the shaft vibration of the command by the gain Gd, and the second multiplier that multiplies the value that causes the first-order delay in the vibration component caused by the shaft vibration of the q-axis voltage command by the gain Gq. When the absolute value of the speed command is equal to or less than the first threshold value, the q-axis gain is set to 1, the d-axis gain is set to 0, and the absolute value of the speed command is larger than the first threshold value and larger than the second threshold value. When is also small, the q-axis gain is gradually decreased from 1 to 0 and the d-axis gain is gradually increased from 0 to 1 in accordance with the increase in the absolute value of the speed command. When the value is equal to or greater than the second threshold value, the d-axis gain is set to 1 and the q-axis gain is set to 0. The output of the first multiplier is multiplied by the d-axis gain and the sign polarity of the speed command. It is characterized by including an adder that adds the value obtained by multiplying the output of the second multiplier by the q-axis gain and outputs the vibration suppression signal.

本発明によれば、インバータにおいて、零速度時や極低速時における電動機の回転速度の振動を抑制し、モータの脱調を抑制することが可能となる。 According to the present invention, in the inverter, it is possible to suppress the vibration of the rotational speed of the motor at the time of zero speed or the extremely low speed, and to suppress the step-out of the motor.

実施形態におけるインバータの制御構成を示すブロック図。The block diagram which shows the control composition of the inverter in an embodiment. 実施形態におけるd軸ゲイン,q軸ゲインを示す図。The figure which shows the d-axis gain and the q-axis gain in an embodiment. 特許文献1のシミュレーション結果を示すタイムチャート。A time chart showing a simulation result of Patent Document 1. 実施形態のシミュレーション結果を示すタイムチャート。A time chart showing the simulation results of the embodiment. 従来の電流引込法を用いたインバータの制御構成を示すブロック図。The block diagram which shows the control composition of the inverter which used the conventional current drawing method. 特許文献1のインバータの制御構成を示すブロック図。The block diagram which shows the control structure of the inverter of Patent Document 1. FIG.

以下、本願発明におけるインバータの実施形態1,2を図1〜図4に基づいて詳述する。 Hereinafter, embodiments 1 and 2 of the inverter according to the present invention will be described in detail with reference to FIGS. 1 to 4.

[実施形態1]
図1に本実施形態1におけるインバータの制御ブロック図を示す。積分器1は、速度指令から後述する振動抑制信号を減算した値を積分して位相に変換する。三相/二相変換器2は、この位相を基準にインバータの電流検出値を回転座標に変換したd軸,q軸電流検出値を出力する。
[Embodiment 1]
FIG. 1 shows a control block diagram of the inverter according to the first embodiment. The integrator 1 integrates the value obtained by subtracting the vibration suppression signal described later from the speed command and converts it into a phase. The three-phase / two-phase converter 2 outputs d-axis and q-axis current detection values obtained by converting the current detection value of the inverter into rotational coordinates based on this phase.

電流制御部ACRは、d軸電流指令として引込電流指令を、q軸電流指令として零を入力する。電流制御部ACRは、d軸,q軸電流指令とd軸,q軸電流検出値との偏差に基づいて、d軸,q軸電流検出値がd軸,q軸電流指令に追従するようにd軸,q軸電圧指令を出力する。 The current control unit ACR inputs a lead-in current command as a d-axis current command and zero as a q-axis current command. The current control unit ACR so that the d-axis and q-axis current detection values follow the d-axis and q-axis current commands based on the deviation between the d-axis and q-axis current commands and the d-axis and q-axis current detection values. Outputs d-axis and q-axis voltage commands.

二相/三相変換器3は、d軸,q軸電圧指令を積分器1が出力する位相に基づいて二相/三相変換を行い、U相,V相,W相電圧指令を生成する。PWM制御部PWMは、U相,V相,W相電圧指令と三角波キャリア信号との比較により、インバータ内における各スイッチング素子のゲート信号(オン/オフ指令信号)を生成することで、インバータから電圧を出力して電動機(図示省略)に印加する。 The two-phase / three-phase converter 3 performs two-phase / three-phase conversion based on the phase output by the integrator 1 for the d-axis and q-axis voltage commands, and generates U-phase, V-phase, and W-phase voltage commands. .. The PWM control unit PWM generates a gate signal (on / off command signal) for each switching element in the inverter by comparing the U-phase, V-phase, and W-phase voltage commands with the triangular wave carrier signal, thereby causing a voltage from the inverter. Is output and applied to the electric motor (not shown).

電流制御部ACRが出力するd軸電圧指令を第1バンドパスフィルタBPF1(Band−pass filter)に掛け、軸振動に起因するd軸電圧指令の振動成分のみ抽出する。第1乗算器4は、第1バンドパスフィルタBPF1で抽出した振動成分にゲインGdを乗算する。 The d-axis voltage command output by the current control unit ACR is applied to the first bandpass filter BPF1 (Band-pass filter), and only the vibration component of the d-axis voltage command caused by the shaft vibration is extracted. The first multiplier 4 multiplies the vibration component extracted by the first bandpass filter BPF1 by the gain Gd.

また、電流制御部ACRが出力するq軸電圧指令を第2バンドパスフィルタBPF2に掛け、軸振動に起因するq軸電圧指令の振動成分のみ抽出する。さらに、その振動成分をローパスフィルタLPF(Low−pass filter)に掛けて一次遅れを生じさせる。第2乗算器5は、ローパスフィルタLPFで抽出した振動成分にゲインGqを乗算する。 Further, the q-axis voltage command output by the current control unit ACR is applied to the second bandpass filter BPF2, and only the vibration component of the q-axis voltage command caused by the shaft vibration is extracted. Further, the vibration component is applied to a low-pass filter LPF (Low-pass filter) to cause a first-order delay. The second multiplier 5 multiplies the vibration component extracted by the low-pass filter LPF by the gain Gq.

ゲイン調節部6は、速度指令に応じてd軸ゲインを調節する。速度指令の絶対値が閾値以上の場合にd軸ゲインを1とし、速度指令の絶対値が閾値よりも小さい場合にd軸ゲインを0とする。乗算器7は、乗算器4の出力にd軸ゲインを乗算する。減算器8は、1からd軸ゲインを減算してq軸ゲインを算出する。すなわち、速度指令の絶対値が閾値以上の場合にq軸ゲインを0とし、速度指令の絶対値が閾値よりも小さい場合にq軸ゲインを1とする。乗算器9は、乗算器5の出力にq軸ゲインを乗算する。 The gain adjusting unit 6 adjusts the d-axis gain according to the speed command. When the absolute value of the speed command is equal to or greater than the threshold value, the d-axis gain is set to 1, and when the absolute value of the speed command is smaller than the threshold value, the d-axis gain is set to 0. The multiplier 7 multiplies the output of the multiplier 4 by the d-axis gain. The subtractor 8 subtracts the d-axis gain from 1 to calculate the q-axis gain. That is, when the absolute value of the speed command is equal to or greater than the threshold value, the q-axis gain is set to 0, and when the absolute value of the speed command is smaller than the threshold value, the q-axis gain is set to 1. The multiplier 9 multiplies the output of the multiplier 5 by the q-axis gain.

関数部10は、速度指令の符号極性を算出する。乗算器11は、乗算器7の出力に関数部10から出力された速度指令の符号極性を乗算する。加算器12は、乗算器11の出力に乗算器9の出力を加算し、振動抑制信号として出力する。減算器13は、速度指令から振動抑制信号を減算し、積分器1に出力する。 The function unit 10 calculates the sign polarity of the speed command. The multiplier 11 multiplies the output of the multiplier 7 by the sign polarity of the speed command output from the function unit 10. The adder 12 adds the output of the multiplier 9 to the output of the multiplier 11 and outputs it as a vibration suppression signal. The subtractor 13 subtracts the vibration suppression signal from the speed command and outputs it to the integrator 1.

PMモータは回転すると回転子の磁石による磁束により速度起電力が発生する。この速度起電力はq軸方向に発生するため、速度が変動するとq軸電圧に変動が生じる。つまり、軸振動によって発生する電圧成分はq軸電圧に重畳される。 When the PM motor rotates, velocity electromotive force is generated by the magnetic flux generated by the magnet of the rotor. Since this velocity electromotive force is generated in the q-axis direction, the q-axis voltage fluctuates when the velocity fluctuates. That is, the voltage component generated by the shaft vibration is superimposed on the q-axis voltage.

そこで、電流制御部ACRが出力するq軸電圧指令をd軸電圧指令と同様に第2バンドパスフィルタBPF2に掛け、軸振動に起因するq軸電圧指令の振動成分のみ抽出する。 Therefore, the q-axis voltage command output by the current control unit ACR is applied to the second bandpass filter BPF2 in the same manner as the d-axis voltage command, and only the vibration component of the q-axis voltage command caused by the shaft vibration is extracted.

さらに、その振動成分をローパスフィルタLPFに掛けて一次遅れを生じさせる。なお、第2バンドパスフィルタBPF2とローパスフィルタLPFを分けて記載したが、一括にしてもよい。ローパスフィルタLPFを追加するのはq軸電圧の振動と速度の振動がほぼ同相で生じるため、位相遅れ(理想はπ/2)を生じさせた方が、振動抑制効果が得られるためである。 Further, the vibration component is applied to the low-pass filter LPF to cause a first-order delay. Although the second bandpass filter BPF2 and the lowpass filter LPF are described separately, they may be grouped together. The reason why the low-pass filter LPF is added is that the vibration of the q-axis voltage and the vibration of the velocity occur in substantially the same phase, and therefore, the vibration suppression effect can be obtained by causing the phase delay (ideally π / 2).

ローパスフィルタLPFに掛けたq軸電圧指令の振動成分にゲインGqをかけ、q軸電圧指令に基づく振動抑制信号を求める。ここで求めたq軸電圧指令に基づく振動抑制信号は零速度から極低速域にまでしか適用しない。特許文献1におけるd軸電圧指令に基づく振動抑制信号が有効になる速度になったら、d軸電圧指令に基づく振動抑制信号に切り替えるようにする。 Gain Gq is applied to the vibration component of the q-axis voltage command applied to the low-pass filter LPF to obtain the vibration suppression signal based on the q-axis voltage command. The vibration suppression signal based on the q-axis voltage command obtained here is applied only to the zero speed to the extremely low speed range. When the speed at which the vibration suppression signal based on the d-axis voltage command in Patent Document 1 becomes effective, the vibration suppression signal based on the d-axis voltage command is switched to.

この切り替えには、以下に説明するd軸ゲインとq軸ゲインを用いる。速度指令の絶対値が閾値以上の場合にd軸ゲインを1,q軸ゲインを0とし、速度指令の絶対値が閾値よりも小さい場合にd軸ゲインを0,q軸ゲインを1とする。d軸電圧指令に基づく振動抑制信号にd軸ゲインおよび速度指令の符号極性を乗算した値と、q軸電圧指令に基づく振動抑制信号にq軸ゲインを乗算した値と、を加算し振動抑制信号として出力すれば良い。 For this switching, the d-axis gain and the q-axis gain described below are used. When the absolute value of the speed command is equal to or greater than the threshold value, the d-axis gain is set to 1, the q-axis gain is set to 0, and when the absolute value of the speed command is smaller than the threshold value, the d-axis gain is set to 0 and the q-axis gain is set to 1. The vibration suppression signal is obtained by adding the value obtained by multiplying the vibration suppression signal based on the d-axis voltage command by the sign polarity of the d-axis gain and the speed command and the value obtained by multiplying the vibration suppression signal based on the q-axis voltage command by the q-axis gain. It should be output as.

以上示したように、本実施形態1によれば、零速度や極低速時における電動機の回転速度の振動を抑制することができる。これにより、電動機の速度変動や脱調を低減できるため、電動機駆動システムの信頼性を向上できる。 As shown above, according to the first embodiment, it is possible to suppress the vibration of the rotational speed of the motor at zero speed or extremely low speed. As a result, the speed fluctuation and step-out of the motor can be reduced, so that the reliability of the motor drive system can be improved.

[実施形態2]
本実施形態2では、d軸,q軸電圧指令でそれぞれ求めた振動抑制信号を図2に示すようなd軸ゲイン,q軸ゲインをそれぞれ掛けたものを加算し、徐々にq軸電圧指令に基づく振動抑制信号からd軸電圧指令に基づく振動抑制信号に切り換えていくようにしている(図2の速度指令2→3%のゲインを参照)。こうすることでゲイン切替時の振動抑制信号が急変しないようにしている。
[Embodiment 2]
In the second embodiment, the vibration suppression signals obtained by the d-axis and q-axis voltage commands are multiplied by the d-axis gain and the q-axis gain as shown in FIG. 2, respectively, and added to the q-axis voltage command gradually. The vibration suppression signal based on the vibration suppression signal is switched to the vibration suppression signal based on the d-axis voltage command (see the speed command 2 → 3% gain in FIG. 2). By doing so, the vibration suppression signal at the time of gain switching is prevented from suddenly changing.

図2(a)に示すように、d軸ゲインは速度指令の絶対値が第1閾値2%以下の時は零、速度指令の絶対値が第1閾値2%よりも大きい時は速度指令の絶対値が第2閾値3%で1となるような変化率で速度指令の絶対値の増加に応じてd軸ゲインを増加させる。速度指令の絶対値が第2閾値3%以上の時、d軸ゲインは1となる。 As shown in FIG. 2A, the d-axis gain is zero when the absolute value of the speed command is 2% or less of the first threshold value, and is the speed command when the absolute value of the speed command is larger than the first threshold value of 2%. The d-axis gain is increased according to the increase in the absolute value of the speed command at a rate of change such that the absolute value becomes 1 at the second threshold value of 3%. When the absolute value of the speed command is 3% or more of the second threshold value, the d-axis gain becomes 1.

図2(b)に示すように、q軸ゲインは速度指令の絶対値が第1閾値2%以下の時は1,速度指令の絶対値が第1閾値2%よりも大きい時は速度指令の絶対値が第2閾値3%で零になるような変化率で速度指令の絶対値の増加に応じてq軸ゲインを減少させる。速度指令の絶対値が第2閾値3%以上の時はq軸ゲインは0となる。 As shown in FIG. 2B, the q-axis gain is 1 when the absolute value of the speed command is 2% or less of the first threshold value, and 1 when the absolute value of the speed command is larger than the first threshold value of 2%. The q-axis gain is reduced as the absolute value of the speed command increases at a rate of change such that the absolute value becomes zero at the second threshold value of 3%. When the absolute value of the speed command is 3% or more of the second threshold value, the q-axis gain becomes 0.

図3、図4に、特許文献1と本実施形態2において同条件で実施したシミュレーション結果を示す。運転開始時においてd軸電流を流す電流位相(制御位相)と実際のPMモータの磁極位置を4/5πずらした状態からスタートさせている。磁極を引き込むための零速度指令の時間は0.5secとし、そこから0.1puまで速度指令を0.1secで変化させている。 3 and 4 show the results of simulations carried out under the same conditions in Patent Document 1 and the second embodiment. At the start of operation, the current phase (control phase) through which the d-axis current flows and the actual magnetic pole position of the PM motor are shifted by 4 / 5π. The time of the zero velocity command for pulling in the magnetic pole is 0.5 sec, and the velocity command is changed from there to 0.1 pu in 0.1 sec.

図3に示す特許文献1のシミュレーション結果では、運転開始時においてd軸電流を流す電流位相と磁極位置の位置がずれている。そのため、磁極が電流位相に吸引されるが、その際に軸振動が生じて零速度指令の間は振動が継続してしまい、モータ速度が正負に振れている(0〜0.6s期間)。速度指令が上昇してくると、振動抑制の効果が得られはじめて振動が収束している。 In the simulation result of Patent Document 1 shown in FIG. 3, the current phase through which the d-axis current flows and the position of the magnetic pole position deviate from each other at the start of operation. Therefore, the magnetic poles are attracted to the current phase, but at that time, shaft vibration occurs and the vibration continues during the zero speed command, and the motor speed swings positively or negatively (0 to 0.6 s period). When the speed command rises, the vibration is converged only after the effect of suppressing the vibration is obtained.

一方、図4に示す本実施形態2の制御方法を用いたシミュレーション結果では、運転開始時は磁極が電流位相に吸引され、振動が生じ始めるが、運転開始から0.3sec後にはほぼ振動は収まっている。 On the other hand, in the simulation result using the control method of the second embodiment shown in FIG. 4, the magnetic poles are attracted to the current phase at the start of operation and vibration starts to occur, but the vibration almost disappears 0.3 sec after the start of operation. ing.

また、0.5〜0.6sでq軸電圧指令を使用した振動抑制信号からd軸電圧指令を使用した振動抑制信号に切り替えているが、切替時に速度や電流に急変等生じさせることなく、切り替わっている。 Further, in 0.5 to 0.6 s, the vibration suppression signal using the q-axis voltage command is switched to the vibration suppression signal using the d-axis voltage command, but the speed and current do not suddenly change at the time of switching. It is switching.

以上示したように、本実施形態2によれば、実施形態1と同様の作用効果を奏する。また、徐々に、q軸電圧指令を使用した振動抑制信号からd軸電圧指令を使用した振動抑制信号に切り替えているため、切替時に速度や電流に急変等が生じることを抑制することができる。 As shown above, according to the second embodiment, the same effects as those of the first embodiment are obtained. Further, since the vibration suppression signal using the q-axis voltage command is gradually switched to the vibration suppression signal using the d-axis voltage command, it is possible to suppress a sudden change in speed or current at the time of switching.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only with respect to the specific examples described in the present invention, it is clear to those skilled in the art that various modifications and modifications can be made within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of the claims.

なお、図1に示すゲイン調節部6において、(a)d軸側を常時0、(b)q軸側を常時1にすることで、d軸電圧指令への切り替えを行わない構成をとってもよい。この場合、乗算器5の出力が振動抑制信号となる。 The gain adjusting unit 6 shown in FIG. 1 may have a configuration in which (a) the d-axis side is always 0 and (b) the q-axis side is always 1, so that switching to the d-axis voltage command is not performed. .. In this case, the output of the multiplier 5 becomes a vibration suppression signal.

1…積分器
2…三相/二相変換器
ACR…電流制御部
3…二相/三相変換器
PWM…PWM制御部
BPF1,BPF2…第1,第2バンドパスフィルタ
4…第1乗算器
LPF…ローパスフィルタ
5…第2乗算器
6…ゲイン調整部
7…乗算器
8…減算器
9…乗算器
10…関数部
11…乗算器
12…加算器
13…減算器
14…振動抑制部
1 ... Integrator 2 ... Three-phase / two-phase converter ACR ... Current control unit 3 ... Two-phase / three-phase converter PWM ... PWM control unit BPF1, BPF2 ... 1st and 2nd bandpass filters 4 ... 1st multiplier LPF ... Low-pass filter 5 ... Second multiplier 6 ... Gain adjustment unit 7 ... Multiplier 8 ... Subtractor 9 ... Multiplier 10 ... Function unit 11 ... Multiplier 12 ... Adder 13 ... Subtractor 14 ... Vibration suppression unit

Claims (3)

永久磁石形同期電動機を駆動するインバータにおいて、
速度指令から振動抑制信号を減算した値を積分した位相に基づいて電流検出値を三相/二相変換し、d軸,q軸電流検出値を出力する三相/二相変換器と、
引込電流指令であるd軸電流指令とq軸電流指令と、前記d軸,q軸電流検出値との偏差に基づいて、前記d軸,q軸電流検出値が前記d軸,q軸電流指令に追従するように、d軸,q軸電圧指令を生成する電流制御部と、
前記d軸,q軸電圧指令を前記位相に基づいて三相の電圧指令に変換する二相/三相変換器と、
前記三相の電圧指令に基づいて、インバータ内の各スイッチング素子のゲート信号を生成するPWM制御部と、
前記d軸電圧指令の軸振動に起因する振動成分にゲインGdを乗算する第1乗算器と、
前記q軸電圧指令の軸振動に起因する振動成分に一次遅れを生じさせた値にゲインGqを乗算する第2乗算器と、
前記速度指令の絶対値が閾値以上の場合にd軸ゲインを1,q軸ゲインを0とし、前記速度指令の絶対値が閾値よりも小さい場合にd軸ゲインを0,q軸ゲインを1とするゲイン調整部と、
前記第1乗算器の出力に前記d軸ゲインおよび前記速度指令の符号極性を乗算した値と、前記第2乗算器の出力に前記q軸ゲインを乗算した値と、を加算し前記振動抑制信号として出力する加算器と、
を備えたことを特徴とするインバータ。
In the inverter that drives the permanent magnet type synchronous motor
A three-phase / two-phase converter that converts the current detection value into three-phase / two-phase and outputs the d-axis and q-axis current detection values based on the phase obtained by integrating the value obtained by subtracting the vibration suppression signal from the speed command.
Based on the deviation between the d-axis current command and the q-axis current command, which are the lead-in current commands, and the d-axis and q-axis current detection values, the d-axis and q-axis current detection values are the d-axis and q-axis current commands. A current control unit that generates d-axis and q-axis voltage commands so as to follow
A two-phase / three-phase converter that converts the d-axis and q-axis voltage commands into three-phase voltage commands based on the phase.
A PWM control unit that generates a gate signal for each switching element in the inverter based on the three-phase voltage command.
A first multiplier that multiplies the gain Gd by the vibration component caused by the shaft vibration of the d-axis voltage command.
A second multiplier that multiplies the gain Gq by the value that caused the first-order delay in the vibration component caused by the shaft vibration of the q-axis voltage command.
When the absolute value of the speed command is equal to or greater than the threshold value, the d-axis gain is set to 1, the q-axis gain is set to 0, and when the absolute value of the speed command is smaller than the threshold value, the d-axis gain is set to 0 and the q-axis gain is set to 1. Gain adjustment unit and
The vibration suppression signal is obtained by adding the value obtained by multiplying the output of the first multiplier by the d-axis gain and the sign polarity of the speed command and the value obtained by multiplying the output of the second multiplier by the q-axis gain. With an adder that outputs as
An inverter characterized by being equipped with.
永久磁石形同期電動機を駆動するインバータにおいて、
速度指令から振動抑制信号を減算した値を積分した位相に基づいて電流検出値を三相/二相変換し、d軸,q軸電流検出値を出力する三相/二相変換器と、
引込電流指令であるd軸電流指令とq軸電流指令と、前記d軸,q軸電流検出値との偏差に基づいて、前記d軸,q軸電流検出値が前記d軸,q軸電流指令に追従するように、d軸,q軸電圧指令を生成する電流制御部と、
前記d軸,q軸電圧指令を前記位相に基づいて三相の電圧指令に変換する二相/三相変換器と、
前記三相の電圧指令に基づいて、インバータ内の各スイッチング素子のゲート信号を生成するPWM制御部と、
前記q軸電圧指令の軸振動に起因する振動成分に一次遅れを生じさせた値にゲインGqを乗算した値を前記振動抑制信号として算出する振動抑制部と、
を備えたことを特徴とするインバータ。
In the inverter that drives the permanent magnet type synchronous motor
A three-phase / two-phase converter that converts the current detection value into three-phase / two-phase and outputs the d-axis and q-axis current detection values based on the phase obtained by integrating the value obtained by subtracting the vibration suppression signal from the speed command.
Based on the deviation between the d-axis current command and the q-axis current command, which are the lead-in current commands, and the d-axis and q-axis current detection values, the d-axis and q-axis current detection values are the d-axis and q-axis current commands. A current control unit that generates d-axis and q-axis voltage commands so as to follow
A two-phase / three-phase converter that converts the d-axis and q-axis voltage commands into three-phase voltage commands based on the phase.
A PWM control unit that generates a gate signal for each switching element in the inverter based on the three-phase voltage command.
A vibration suppression unit that calculates as the vibration suppression signal the value obtained by multiplying the value that caused the primary delay in the vibration component caused by the shaft vibration of the q-axis voltage command by the gain Gq.
An inverter characterized by being equipped with.
永久磁石形同期電動機を駆動するインバータにおいて、
速度指令から振動抑制信号を減算した値を積分した位相に基づいて電流検出値を三相/二相変換し、d軸,q軸電流検出値を出力する三相/二相変換器と、
引込電流指令であるd軸電流指令とq軸電流指令と、前記d軸,q軸電流検出値との偏差に基づいて、前記d軸,q軸電流検出値が前記d軸,q軸電流指令に追従するように、d軸,q軸電圧指令を生成する電流制御部と、
前記d軸,q軸電圧指令を前記位相に基づいて三相の電圧指令に変換する二相/三相変換器と、
前記三相の電圧指令に基づいて、インバータ内の各スイッチング素子のゲート信号を生成するPWM制御部と、
前記d軸電圧指令の軸振動に起因する振動成分にゲインGdを乗算する第1乗算器と、
前記q軸電圧指令の軸振動に起因する振動成分に一次遅れを生じさせた値にゲインGqを乗算する第2乗算器と、
前記速度指令の絶対値が第1閾値以下の場合に前記q軸ゲインを1、前記d軸ゲインを0とし、前記速度指令の絶対値が第1閾値よりも大きく第2閾値よりも小さい場合に、前記速度指令の絶対値の増加に応じて、前記q軸ゲインを1から0に徐々に減少させ、前記d軸ゲインを0から1に徐々に増加させ、前記速度指令の絶対値が第2閾値以上の場合に前記d軸ゲインを1,前記q軸ゲインを0とするゲイン調整部と、
前記第1乗算器の出力に前記d軸ゲインおよび前記速度指令の符号極性を乗算した値と、前記第2乗算器の出力に前記q軸ゲインを乗算した値と、を加算し前記振動抑制信号として出力する加算器と、
を備えたことを特徴とするインバータ。
In the inverter that drives the permanent magnet type synchronous motor
A three-phase / two-phase converter that converts the current detection value into three-phase / two-phase and outputs the d-axis and q-axis current detection values based on the phase obtained by integrating the value obtained by subtracting the vibration suppression signal from the speed command.
Based on the deviation between the d-axis current command and the q-axis current command, which are the lead-in current commands, and the d-axis and q-axis current detection values, the d-axis and q-axis current detection values are the d-axis and q-axis current commands. A current control unit that generates d-axis and q-axis voltage commands so as to follow
A two-phase / three-phase converter that converts the d-axis and q-axis voltage commands into three-phase voltage commands based on the phase.
A PWM control unit that generates a gate signal for each switching element in the inverter based on the three-phase voltage command.
A first multiplier that multiplies the gain Gd by the vibration component caused by the shaft vibration of the d-axis voltage command.
A second multiplier that multiplies the gain Gq by the value that caused the first-order delay in the vibration component caused by the shaft vibration of the q-axis voltage command.
When the absolute value of the speed command is equal to or less than the first threshold value, the q-axis gain is set to 1, the d-axis gain is set to 0, and the absolute value of the speed command is larger than the first threshold value and smaller than the second threshold value. As the absolute value of the speed command increases, the q-axis gain is gradually decreased from 1 to 0, the d-axis gain is gradually increased from 0 to 1, and the absolute value of the speed command is the second. A gain adjusting unit that sets the d-axis gain to 1 and the q-axis gain to 0 when the value is equal to or higher than the threshold value.
The vibration suppression signal is obtained by adding the value obtained by multiplying the output of the first multiplier by the d-axis gain and the sign polarity of the speed command and the value obtained by multiplying the output of the second multiplier by the q-axis gain. With an adder that outputs as
An inverter characterized by being equipped with.
JP2018097494A 2018-05-22 2018-05-22 Inverter Active JP6962274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097494A JP6962274B2 (en) 2018-05-22 2018-05-22 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097494A JP6962274B2 (en) 2018-05-22 2018-05-22 Inverter

Publications (2)

Publication Number Publication Date
JP2019205238A JP2019205238A (en) 2019-11-28
JP6962274B2 true JP6962274B2 (en) 2021-11-05

Family

ID=68727512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097494A Active JP6962274B2 (en) 2018-05-22 2018-05-22 Inverter

Country Status (1)

Country Link
JP (1) JP6962274B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957953B (en) * 2018-09-25 2022-12-20 欧姆龙(上海)有限公司 Control device and control method for alternating current motor

Also Published As

Publication number Publication date
JP2019205238A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP4958431B2 (en) Electric motor control device
Park et al. Sensorless control method for PMSM based on frequency-adaptive disturbance observer
JP5534935B2 (en) Rotation sensorless control device
US9621093B2 (en) Motor control device
US20090261775A1 (en) Permanent magnet motor start-up
JP2008167566A (en) High-response control device of permanent magnet motor
JP6015486B2 (en) Variable speed controller for synchronous motor
JP2007189766A (en) Motor drive controller and motor drive system
JP2016021800A (en) Position estimation device, motor drive control device, and position estimation method
JP2010063208A (en) Drive system for synchronous motor, and controller used for this
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP2008220100A (en) Motor controller
JP3684793B2 (en) Inverter device
JP2009124871A (en) V/f control system of synchronous electric motor
JP5466478B2 (en) Motor control device and motor control system
JP6962274B2 (en) Inverter
JP5920067B2 (en) Motor control device
JP5361452B2 (en) Sensorless control device for synchronous motor
KR20200046692A (en) Sensorless control method for motor
Wang et al. Comparative study of low-pass filter and phase-locked loop type speed filters for sensorless control of AC drives
CN111082724A (en) Estimation device and estimation method for rotor position of motor
JP6590602B2 (en) Motor drive device, air conditioner and program
JP2015122858A (en) Motor drive control device
JP3814826B2 (en) Vector control method for synchronous motor
JP2017085720A (en) Position sensorless control device for permanent magnet synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6962274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150