JP6961942B2 - Transparent film for flexible substrate and flexible circuit board - Google Patents

Transparent film for flexible substrate and flexible circuit board Download PDF

Info

Publication number
JP6961942B2
JP6961942B2 JP2016529486A JP2016529486A JP6961942B2 JP 6961942 B2 JP6961942 B2 JP 6961942B2 JP 2016529486 A JP2016529486 A JP 2016529486A JP 2016529486 A JP2016529486 A JP 2016529486A JP 6961942 B2 JP6961942 B2 JP 6961942B2
Authority
JP
Japan
Prior art keywords
undercoat layer
film
less
transparent film
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016529486A
Other languages
Japanese (ja)
Other versions
JPWO2016167206A1 (en
Inventor
明子 西尾
有記 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2016167206A1 publication Critical patent/JPWO2016167206A1/en
Application granted granted Critical
Publication of JP6961942B2 publication Critical patent/JP6961942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

本発明は、フレキシブル基板用透明フィルムに関する。更に詳しくは、耐熱性に優れ、電子回路製造工程での工程適性に優れるフレキシブル基板用透明フィルムに関する。 The present invention relates to a transparent film for a flexible substrate. More specifically, the present invention relates to a transparent film for a flexible substrate, which has excellent heat resistance and excellent process suitability in an electronic circuit manufacturing process.

近年、電子機器(特にモバイル機器)は軽量化、大画面化が進んでいる。しかし、従来の機器は剛直な筐体で作られているため、持ち運びできるサイズには上限があり、大画面化には限界がある。そこで、画面を小さく収納できる、様々なフレキシブルディスプレイが提案されている。 In recent years, electronic devices (particularly mobile devices) have been made lighter and have larger screens. However, since conventional devices are made of rigid housings, there is an upper limit to the size that can be carried, and there is a limit to the increase in screen size. Therefore, various flexible displays that can store the screen in a small size have been proposed.

フレキシブルディスプレイも通常のディスプレイと同様、基材層、発光層(LED、OLED
)、TFT、カバー層などが積層された構成となっているが、繰り返し一定の状態まで変形
させることが必要であるため、透明かつ繰り返し折り曲げることが可能な基材が求められる。このような基材としては、ポリカーボネートフィルム、ポリエチレンナフタレートフィルムやポリエチレンテレフタレートフィルムなどのポリエステルフィルムの他、ポリメタクリル酸メチルのフィルムなどの光透過性フィルムが提案されており、その中でも剛直であり、線膨張係数の小さいポリエステルフィルムが多く使用されている。
Flexible displays, like ordinary displays, have a base material layer and a light emitting layer (LED, OLED).
), TFT, cover layer, etc. are laminated, but since it is necessary to repeatedly deform to a certain state, a transparent and repeatedly bendable base material is required. As such a base material, polyester films such as polycarbonate film, polyethylene naphthalate film and polyethylene terephthalate film, as well as light-transmitting films such as polymethylmethacrylate film have been proposed, and among them, rigid. Polyester films with a small linear expansion coefficient are often used.

一方、これらの基材に配線を形成するために種々銀ペースト材料が提案されている。特に、工程適性に優れ、低温焼成可能な銀ペーストなどが提案されている(特許文献1)。理由としては、基板のポリエステルフィルムの耐熱温度が120℃くらいまでであり、焼成温度を低くすることが課題であることが述べられている。また一方では、近年の細線化された回路には、基板上にプライマー層を備えることで、滲みなどの無い回路が得られるとされている(特許文献2)。 On the other hand, various silver paste materials have been proposed for forming wiring on these substrates. In particular, a silver paste having excellent process suitability and capable of low-temperature firing has been proposed (Patent Document 1). It is stated that the reason is that the heat resistant temperature of the polyester film of the substrate is up to about 120 ° C., and it is a problem to lower the firing temperature. On the other hand, it is said that a circuit without bleeding can be obtained by providing a primer layer on a substrate in a recent thinned circuit (Patent Document 2).

しかし、これらの技術を組み合わせたとしても、近年の細線化された回路では、銀ペースト材料を硬化させる際のエネルギーにより基材表面に微小な凹凸が発生して、導電性、耐久性などに影響を及ぼす問題となっている。 However, even if these technologies are combined, in recent thinned circuits, the energy generated when the silver paste material is cured causes minute irregularities on the surface of the base material, which affects conductivity and durability. It has become a problem that affects.

特開2015−040319号公報Japanese Unexamined Patent Publication No. 2015-040319 特開2015−032734号公報Japanese Unexamined Patent Publication No. 2015-032734

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、耐熱性に優れ、回路細線化に適したフレキシブル基板用透明フィルムを提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a transparent film for a flexible substrate, which has excellent heat resistance and is suitable for circuit thinning.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は以下の構成からなる。
(1) ポリエステルフィルムの少なくとも一方の面に、表面自由エネルギーが20〜40mJ/m、表面粗さRaが10nm以下、膜厚0.3〜3.0μmのアンダーコート
層を有することを特徴とするフレキシブル基板用透明フィルム。
(2) アンダーコート層がメラミン架橋されたアクリル樹脂を含んでなることを特徴とする上記(1)に記載のフレキシブル基板用透明フィルム。
(3) 100℃環境下、アンダーコート層上に、粒径0.5mmの球状ビーズを4点設置し、15g荷重で押し当てた時、アンダーコート層の転写深さが1.5μm以下であることを特徴とする上記(1)又は(2)に記載のフレキシブル基板用透明フィルム。
(4) 上記(1)〜(3)のいずれかに記載のフレキシブル基板用透明フィルム上に、線幅30μm以下の回路が形成されていることを特徴とするフレキシブル回路基板。
As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention. That is, the present invention has the following configuration.
(1) The polyester film is characterized by having an undercoat layer having a surface free energy of 20 to 40 mJ / m 2 , a surface roughness Ra of 10 nm or less, and a film thickness of 0.3 to 3.0 μm on at least one surface of the polyester film. Transparent film for flexible substrates.
(2) The transparent film for a flexible substrate according to (1) above, wherein the undercoat layer contains a melamine crosslinked acrylic resin.
(3) When four spherical beads having a particle size of 0.5 mm are placed on the undercoat layer in an environment of 100 ° C. and pressed against a load of 15 g, the transfer depth of the undercoat layer is 1.5 μm or less. The transparent film for a flexible substrate according to the above (1) or (2).
(4) A flexible circuit board characterized in that a circuit having a line width of 30 μm or less is formed on the transparent film for a flexible substrate according to any one of (1) to (3) above.

従来の技術では回路上に細線を形成後、硬化する際に変形が生じて細線が変形し回路が形成できなかったものを、本発明によれば、その耐熱性の高さにより、回路細線化に適したフレキシブル基板用透明フィルムの提供を可能とした。 According to the present invention, a circuit cannot be formed due to deformation caused by deformation during curing after forming a thin wire on a circuit in the conventional technique. It has become possible to provide a transparent film for a flexible substrate suitable for the above.

以下、本発明について詳述する。
(基材フィルム)
本発明のフレキシブル基板用透明フィルムは、光透透過性基材上にアンダーコート層が積層された構成となっている。本発明のフレキシブル基板用透明フィルムはそのコーティング層上に銀ペースト等で回路形成される用途等に用いられるものであり、前記コーティング層をアンダーコート層と呼ぶことにする。
Hereinafter, the present invention will be described in detail.
(Base film)
The transparent film for a flexible substrate of the present invention has a structure in which an undercoat layer is laminated on a light-transmitting base material. The transparent film for a flexible substrate of the present invention is used for applications such as forming a circuit on the coating layer with a silver paste or the like, and the coating layer is referred to as an undercoat layer.

上記光透過性基材を形成する樹脂としては特に限定されず、例えば、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等が挙げられる。なかでも、安価で機械強度に優れたポリエステル系樹脂が好適に用いられ、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどが好適に用いられる。 The resin forming the light-transmitting base material is not particularly limited, and for example, polyester resin, acetate resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, ( Meta) Acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl alcohol resin, polyallylate resin, polyphenylene sulfide resin and the like can be mentioned. Among them, a polyester resin which is inexpensive and has excellent mechanical strength is preferably used, and polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate and the like are preferably used.

上記光透過性基材の厚さとしては、2μm以上であることが好ましい。2μm以上であると、光透過性基材の機械的強度が不足するおそれが小さく好ましい。より好ましくは25μm以上である。また、光透過性基材の厚さは250μm以下であることが好ましい。250μm以下であると、フィルムの剛性が大き過ぎることがなく、フレキシブル基板としてのハンドリング性が保持され好ましい。より好ましくは188μm以下である。 The thickness of the light-transmitting substrate is preferably 2 μm or more. When it is 2 μm or more, there is little possibility that the mechanical strength of the light-transmitting substrate will be insufficient, which is preferable. More preferably, it is 25 μm or more. The thickness of the light-transmitting substrate is preferably 250 μm or less. When it is 250 μm or less, the rigidity of the film is not too large, and the handleability as a flexible substrate is maintained, which is preferable. More preferably, it is 188 μm or less.

上記光透過性基材は、表面に予めスパッタリング、コロナ放電、プラズマ放電、紫外線照射、電子線照射、化成、酸化等のエッチング処理や下塗り処理等が施されていてもよい。これらの処理が予め施されていることで、上記光透過性基材上に形成されるアンダーコート層との密着性を向上させることができる。また、アンダーコート層や導電層を形成する前に、必要に応じて溶剤洗浄や超音波洗浄等により、光透過性基材表面は、除塵、清浄化されていてもよい。 The surface of the light-transmitting substrate may be subjected to etching treatment such as sputtering, corona discharge, plasma discharge, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, or undercoating treatment in advance. By performing these treatments in advance, it is possible to improve the adhesion to the undercoat layer formed on the light transmissive substrate. Further, before forming the undercoat layer or the conductive layer, the surface of the light-transmitting base material may be dust-removed and cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary.

(アンダーコート層)
アンダーコート層としては、アクリル樹脂を分子内に3以上の反応点を有する架橋材料で架橋した樹脂が好ましい。特にメラミン架橋剤で架橋されてなるアクリル樹脂を代表例とする熱架橋系樹脂が好ましい。
(Undercoat layer)
As the undercoat layer, a resin obtained by cross-linking an acrylic resin with a cross-linking material having 3 or more reaction points in the molecule is preferable. In particular, a heat-crosslinking resin represented by an acrylic resin crosslinked with a melamine crosslinking agent is preferable.

メラミン架橋剤は複数の反応点を持ち、密な架橋構造を取れるため、耐熱性が高く、回路形成時にも変形などが発生しない。また、ポリイソシアネート、化学構造の異なるメラミン、エポキシ、アルミニウムキレート、チタンキレート、紫外線硬化型樹脂など別の架橋剤を混合して使用することもできる。 Since the melamine cross-linking agent has a plurality of reaction points and has a dense cross-linked structure, it has high heat resistance and does not deform even when the circuit is formed. Further, another cross-linking agent such as polyisocyanate, melamine having a different chemical structure, epoxy, aluminum chelate, titanium chelate, and ultraviolet curable resin can be mixed and used.

メラミン架橋剤としては、アルコキシメチロールメラミン等を使用することができる。 As the melamine cross-linking agent, alkoxymethylol melamine or the like can be used.

アンダーコート層の樹脂としては、アクリル樹脂の他、アクリルポリオール、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂など、分子内に水酸基を有する樹脂であれば特に限定なく使用あるいは併用できるが、架橋密度の制御(水酸基導入量)やガラス転移温度の制御などの点から、アクリル樹脂を含めることが好ましい。 As the resin of the undercoat layer, in addition to the acrylic resin, any resin having a hydroxyl group in the molecule such as an acrylic polyol, a polyester resin, an epoxy resin, and a polyether resin can be used or used together without particular limitation, but the crosslink density is controlled. It is preferable to include an acrylic resin from the viewpoints of (amount of hydroxyl group introduced) and control of glass transition temperature.

アクリル樹脂は、2以上の(メタ)アクリル酸エステルから共重合した共重合ポリマーであり、水酸基を有する(メタ)アクリル酸エステルを少なくとも1種類共重合しなくてはならない。水酸基を有する(メタ)アクリル酸エステルとしては、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート等が挙げられるが、これに限定されるものではない。 The acrylic resin is a copolymerized polymer copolymerized from two or more (meth) acrylic acid esters, and at least one kind of (meth) acrylic acid ester having a hydroxyl group must be copolymerized. Examples of the (meth) acrylic acid ester having a hydroxyl group include, but are not limited to, hydroxyethyl acrylate, hydroxypropyl acrylate, and hydroxybutyl acrylate.

水酸基を有する(メタ)アクリル酸エステルと共重合する(メタ)アクリル酸エステルとしては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、n−ブチルアクリレート、n−ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、n−ヘキシルアクリレート、n−ヘキシルメタクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタクリレート、ラウリルアクリレート、ラウリルメタクリレート、ステアリルアクリレート、ステアリルメタクリレート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the (meth) acrylic acid ester that copolymerizes with the (meth) acrylic acid ester having a hydroxyl group include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, and n-butyl acrylate. , N-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, stearyl methacrylate and the like. One of these may be used alone, or two or more thereof may be used in combination.

アクリル樹脂の分子量は5000〜20万であることが好ましく、1万〜10万であることがより好ましい。分子量が5000以上であると塗膜の耐熱性が低下するおそれがなく好ましい。一方、分子量が20万以下であると、粘度が高くなり過ぎず、塗工適性が保持され好ましい。 The molecular weight of the acrylic resin is preferably 5,000 to 200,000, more preferably 10,000 to 100,000. When the molecular weight is 5000 or more, the heat resistance of the coating film is not likely to decrease, which is preferable. On the other hand, when the molecular weight is 200,000 or less, the viscosity does not become too high and the coating suitability is maintained, which is preferable.

基材フィルム表面にアンダーコート層を積層する方法としては、グラビアロールコーティング法、リバースロールコーティング法、ナイフコータ法、ディップコート法、スピンコート法などがあるが、後で銀ペースト等の導電性組成物を積層する上で適したアンダーコート層のコート法は特に制限されない。また、フィルムの製造工程で塗布層を設けるインラインコート方式、フィルム製造後に塗布層を設けるオフラインコート方式により設けることができる。 Examples of the method of laminating the undercoat layer on the surface of the base film include a gravure roll coating method, a reverse roll coating method, a knife coater method, a dip coating method, a spin coating method, and the like. The coating method of the undercoat layer suitable for laminating is not particularly limited. Further, it can be provided by an in-line coating method in which a coating layer is provided in the film manufacturing process, or an offline coating method in which a coating layer is provided after film production.

アンダーコート層を形成する乾燥温度としては、通常60℃以上が、好ましく、より好ましくは90℃以上である。乾燥温度が60℃以上であることは生産性の上で好ましい。一方、乾燥温度170℃以下であることが好ましく、より好ましくは150℃以下である。乾燥温度が170以下であると、フィルムの平面性が保持され好ましい。 The drying temperature for forming the undercoat layer is usually preferably 60 ° C. or higher, more preferably 90 ° C. or higher. A drying temperature of 60 ° C. or higher is preferable in terms of productivity. On the other hand, the drying temperature is preferably 170 ° C. or lower, more preferably 150 ° C. or lower. When the drying temperature is 170 or less, the flatness of the film is maintained, which is preferable.

アンダーコート層の膜厚は、乾燥後膜厚として、好ましくは0.3μm以上であることが好ましく、より好ましくは0.5μm以上である。膜厚が0.3μm以上であると、耐熱性の点から好ましい。一方、膜厚は乾燥後膜厚として3μm以下であることが好ましく、より好ましくは2μm以下である。膜厚が3μm以下であると、フィルムがカールする問題を生じるおそれがなく好ましい。ここで、カール量は後述の測定方法による評価において10mm以下であることが好ましい。 The film thickness of the undercoat layer is preferably 0.3 μm or more, and more preferably 0.5 μm or more as the film thickness after drying. A film thickness of 0.3 μm or more is preferable from the viewpoint of heat resistance. On the other hand, the film thickness after drying is preferably 3 μm or less, more preferably 2 μm or less. When the film thickness is 3 μm or less, there is no possibility of causing a problem of curling of the film, which is preferable. Here, the curl amount is preferably 10 mm or less in the evaluation by the measurement method described later.

(表面自由エネルギー)
アンダーコート層の表面自由エネルギーは20mJ/m以上であることが好ましい。アンダーコート層の表面自由エネルギーが20mJ/m以上であると、回路形成材料のスラリーがハジキ状になるおそれがなく、均一な線幅が形成できて好ましい。一方、アンダーコート層の表面自由エネルギーは40mJ/m以下であることが好ましく、より好ましくは35mJ/m以下である。アンダーコート層の表面自由エネルギーが40mJ/m以下であると、回路形成材料のスラリーが濡れ広がるおそれがなく、均一な線幅が形成できて好ましい。
(Surface free energy)
The surface free energy of the undercoat layer is preferably 20 mJ / m 2 or more. When the surface free energy of the undercoat layer is 20 mJ / m 2 or more, there is no possibility that the slurry of the circuit forming material becomes repellent, and a uniform line width can be formed, which is preferable. On the other hand, the surface free energy of the undercoat layer is preferably not more than 40 mJ / m 2, more preferably not more than 35 mJ / m 2. When the surface free energy of the undercoat layer is 40 mJ / m 2 or less, there is no possibility that the slurry of the circuit forming material will get wet and spread, and a uniform line width can be formed, which is preferable.

(表面粗さ)
アンダーコート層の表面粗さRaは、好ましくは10nm以下であり、より好ましくは8nm以下である。表面粗さRaが10nm以下であると、均一な線幅を形成し易く、断線が生じ難くなり好ましい。一方、アンダーコート層の表面粗さRaは0.05nm以上であって構わず、0.1nm以上であっても本発明において構わない。
(Surface roughness)
The surface roughness Ra of the undercoat layer is preferably 10 nm or less, more preferably 8 nm or less. When the surface roughness Ra is 10 nm or less, a uniform line width is easily formed and disconnection is less likely to occur, which is preferable. On the other hand, the surface roughness Ra of the undercoat layer may be 0.05 nm or more, and may be 0.1 nm or more in the present invention.

本発明のフレキシブル基板用透明フィルムは、100℃環境下、前記記載のアンダーコート層上に、粒径0.5mmの球状ビーズを4点設置し、15gガラス板の荷重で押し当てた時、アンダーコート層の転写深さが1.5μm以下であることが好ましい。より好ましくは1.2μm以下である。前記アンダーコート層の転写深さが1.5μm以下であれば、アンダーコート層上に回路を形成する場合の耐熱性が十分であり、回路形成時以降の種々工程や環境での熱に対して変形しづらいため、細い回路の線幅を美麗に形成、維持できるので好ましい。また、前記アンダーコート層の転写深さは小さいことが好ましいが、0.1μm以上であっても構わず、0.2μm以上であっても構わない。 The transparent film for a flexible substrate of the present invention is undercoated when four spherical beads having a particle size of 0.5 mm are placed on the undercoat layer described above in an environment of 100 ° C. and pressed against a load of a 15 g glass plate. The transfer depth of the coat layer is preferably 1.5 μm or less. More preferably, it is 1.2 μm or less. When the transfer depth of the undercoat layer is 1.5 μm or less, the heat resistance when forming a circuit on the undercoat layer is sufficient, and it is resistant to heat in various processes and environments after the circuit is formed. Since it is difficult to deform, it is preferable because the line width of a thin circuit can be beautifully formed and maintained. Further, the transfer depth of the undercoat layer is preferably small, but it may be 0.1 μm or more, or 0.2 μm or more.

(回路形成材料)
本発明のフレキシブル基板用透明フィルムのアンダーコート層上に積層される回路形成材料としては特に限定はないが、好ましくは導電性に優れた金属のナノ分散体であり、銀や銅の分散体が特に好ましく使用される。また、これらのフィラーの平均粒径は100nm以
下が好ましく、さらに好ましくは30nm以下が好ましい。フィラーの平均粒径が100nm以下
であると、細い回路印刷の際、目詰まりなどを起こさず、焼成するための熱量も少なくて好ましい。
(Circuit forming material)
The circuit-forming material laminated on the undercoat layer of the transparent film for a flexible substrate of the present invention is not particularly limited, but is preferably a nanodisperse of a metal having excellent conductivity, and a dispersion of silver or copper. Especially preferably used. The average particle size of these fillers is preferably 100 nm or less, more preferably 30 nm or less. When the average particle size of the filler is 100 nm or less, clogging does not occur during thin circuit printing, and the amount of heat for firing is small, which is preferable.

(印刷方法)
本発明のフレキシブル基板用透明フィルムのアンダーコート層上に、回路を印刷する方法として特に限定はないが、好ましくはスクリーン印刷やメタルマスクなどの手法を使用することができる。
(Printing method)
The method for printing the circuit on the undercoat layer of the transparent film for a flexible substrate of the present invention is not particularly limited, but a method such as screen printing or a metal mask can be preferably used.

(硬化方法)
本発明のフレキシブル基板用透明フィルムのアンダーコート層上に、印刷された後の回路を硬化する方法としては、熱硬化、紫外線硬化、電子線硬化など特に限定なく、任意の方法で硬化することができる。特に、熱硬化、紫外線硬化などが好ましい。
(Curing method)
The method for curing the circuit after printing on the undercoat layer of the transparent film for a flexible substrate of the present invention is not particularly limited to thermosetting, ultraviolet curing, electron beam curing, etc., and can be cured by any method. can. In particular, thermosetting, ultraviolet curing and the like are preferable.

例えば、熱硬化の温度としては、150℃以下が好ましく、130℃以下がさらに好ましい。150℃以下であると、フィルムの変形や変色のおそれがなく、フレキシブル基板用途に好ましく使用されることができる。 For example, the thermosetting temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower. When the temperature is 150 ° C. or lower, there is no risk of film deformation or discoloration, and the film can be preferably used for flexible substrate applications.

紫外線硬化としてのUV架橋としては、光量2000mJ/cm以下が好ましく、1000mJ/cm以下がさらに好ましい。2000mJ/cm以下光量を照射した場合、UVによる熱やUV光によるフィルム基材の劣化のおそれがなく好ましい。The UV crosslinking of the ultraviolet curing, preferably the amount of light 2000 mJ / cm 2 or less, more preferably 1000 mJ / cm 2 or less. When irradiated with a light amount of 2000 mJ / cm 2 or less, there is no risk of deterioration of the film substrate due to heat due to UV or UV light, which is preferable.

本発明のフレキシブル基板用透明フィルム上に形成された回路は、その線幅が30μm以下であることが好ましい。本発明のフレキシブル基板用透明フィルムは、そのアンダーコート層が適度な表面自由エネルギーや耐熱性等の優れた特性を有するため、30μm以下といった細い線幅の回路であっても、美麗に形成できるものである。 The circuit formed on the transparent film for a flexible substrate of the present invention preferably has a line width of 30 μm or less. Since the undercoat layer of the transparent film for a flexible substrate of the present invention has excellent properties such as appropriate surface free energy and heat resistance, even a circuit having a thin line width of 30 μm or less can be beautifully formed. Is.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。まず、本発明において実施した測定方法、評価方法を説明する。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples. First, the measurement method and the evaluation method carried out in the present invention will be described.

(表面自由エネルギー)
接触角計(協和界面科学社製の「FACE接触角計CA−X」)を用いて、22℃、60%RHの条件下で、離型面に水を1.8μl滴下し、着滴の60秒後の接触角をθwとし、離型面にヨウ化メチレンを0.9μl滴下し、着滴の30秒後の接触角をθyとした。これらの測定値から、Journal of Applied Polymer Science,vol.13,p1741−1747(1969)に記載された方法に従って、γsh(水素結合力成分項)とγsd(水素分散力成分項)を算出し、各成分の和を表面自由エネルギーγsとして算出した。
(Surface free energy)
Using a contact angle meter (“FACE contact angle meter CA-X” manufactured by Kyowa Interface Science Co., Ltd.), 1.8 μl of water was dropped on the release surface under the conditions of 22 ° C. and 60% RH, and the drops were formed. The contact angle after 60 seconds was set to θw, 0.9 μl of methylene iodide was dropped on the release surface, and the contact angle after 30 seconds of drip was set to θy. From these measured values, γsh (hydrogen bonding force component term) and γsd (hydrogen dispersion force component term) were calculated according to the method described in Journal of Applied Polymer Science, vol.13, p1741-1747 (1969). The sum of each component was calculated as the surface free energy γs.

(表面粗さRa)
レーザー顕微鏡(キーエンス社製、製品名:VK−X110)を用いて、倍率50倍にてアンダーコート層表面形状の表面粗さRaを測定した。
(Surface roughness Ra)
Using a laser microscope (manufactured by KEYENCE CORPORATION, product name: VK-X110), the surface roughness Ra of the surface shape of the undercoat layer was measured at a magnification of 50 times.

(カール量)
100mm×100mmのサンプルを、四つ角が自由に動く状態で150℃のオーブンで60分間吊るして加熱し、室温まで冷却後、平置きしたときにカールして浮き上がった四つ角の高さのうち、最も大きかった値をカール量(mm)とした。
(Curl amount)
A 100 mm x 100 mm sample is hung in an oven at 150 ° C for 60 minutes with the four corners moving freely, cooled to room temperature, and then curled and raised when placed flat. The value was taken as the curl amount (mm).

(形成回路の初期外観評価)
回路形成用銀ペースト(東洋紡社製、製品名:DX−152H−75)を用いて、フレキシブル基板用透明フィルムのアンダーコート層上にスクリーン印刷し、130℃、30分焼成して線幅20μmの回路を形成した。形成された回路を目視で判定し、表1にハジキ、滲みなどがなく良好なものを○、ハジキ、滲みなどが見られるものを×と表示した。
(Initial appearance evaluation of forming circuit)
Using silver paste for circuit formation (manufactured by Toyobo Co., Ltd., product name: DX-152H-75), screen printing is performed on the undercoat layer of a transparent film for flexible substrates, and the film is baked at 130 ° C. for 30 minutes to have a line width of 20 μm. A circuit was formed. The formed circuit was visually judged, and in Table 1, good ones without cissing and bleeding were marked with ◯, and those with bleeding and bleeding were marked with x.

(耐熱性:加熱転写深さ)
100℃環境下、サンプルのアンダーコート層上に球状ジルコニアビーズ(東ソー社製、商品名:YTZ、粒径0.5mm)4個を載せ、その上に15gの重りを置き、3分放置した。その後、重りを取り、サンプルを室温まで冷却後、レーザー顕微鏡(キーエンス社製、商品名:VK−X110、10倍観察)を用いてフィルムの変形部を観察し、球状ジルコニアビーズの転写深さ(μm)を計測した。4点の平均値を測定値とした。
(Heat resistance: heat transfer depth)
In an environment of 100 ° C., four spherical zirconia beads (manufactured by Tosoh Corporation, trade name: YTZ, particle size 0.5 mm) were placed on the undercoat layer of the sample, and a 15 g weight was placed on the beads and left for 3 minutes. Then, after removing the weight and cooling the sample to room temperature, the deformed part of the film was observed using a laser microscope (manufactured by KEYENCE, trade name: VK-X110, 10 times observation), and the transfer depth of the spherical zirconia beads (transfer depth of spherical zirconia beads). μm) was measured. The average value of 4 points was used as the measured value.

(実施例1)
メラミン架橋剤とステアリル変性アクリル樹脂の混合物(日立化成ポリマー社製、商品名:テスファイン(登録商標)322、固形分:40質量%)100質量部に対して、酸触媒としてp-トルエンスルホン酸(日立化成ポリマー社製、商品名:ドライヤー900、固形分:50質量%)1質量部を混合し、トルエン、MEKの混合溶媒(配合比1:1)で希釈し、固形分濃度2質量%の塗布溶液を調製した。次いで片面易接着コート付二軸延伸ポリエチレンテレフタレートフィルム(東洋紡社製、コスモシャイン(登録商標)A4100、膜厚125μm)の易接着コート反対面(表面粗さ:8nm)に乾燥後の膜厚が0.4μmとなるようにマイヤーバーを用いて塗布し、温度160℃、30秒で溶剤乾燥、熱硬化させて、アンダーコート層を得た。得られたフレキシブル基板用透明フィルムの特性を表1に示す。
(Example 1)
A mixture of a melamine cross-linking agent and a stearyl-modified acrylic resin (manufactured by Hitachi Chemical Co., Ltd., trade name: Tessfine (registered trademark) 322, solid content: 40% by mass), p-toluenesulfonic acid as an acid catalyst with respect to 100 parts by mass. (Manufactured by Hitachi Kasei Polymer Co., Ltd., trade name: dryer 900, solid content: 50% by mass) 1 part by mass is mixed, diluted with a mixed solvent of toluene and MEK (blending ratio 1: 1), and the solid content concentration is 2% by mass. The coating solution of was prepared. Next, the film thickness after drying is 0 on the opposite surface (surface roughness: 8 nm) of the biaxially stretched polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., Cosmo Shine (registered trademark) A4100, film thickness 125 μm) with a single-sided easy-adhesive coat. The film was applied using a Meyer bar so as to have a thickness of .4 μm, dried in a solvent at a temperature of 160 ° C. for 30 seconds, and heat-cured to obtain an undercoat layer. Table 1 shows the characteristics of the obtained transparent film for flexible substrates.

(実施例2)
実施例1において乾燥後の膜厚を2.0μmにすること以外は実施例1と同様にした。
(Example 2)
The same as in Example 1 except that the film thickness after drying was set to 2.0 μm in Example 1.

(実施例3)
実施例1において、メラミン架橋剤とステアリル変性アクリル樹脂の混合物(日立化成ポリマー社製、商品名:テスファイン(登録商標)322、固形分:40質量%)100質量部に対して、長鎖アクリル変性樹脂(一方社油脂工業社製、ピーロイル(登録商標)1050、固形分:10質量%)400質量部、酸触媒としてp-トルエンスルホン酸(日立化成ポリマー社製、商品名:ドライヤー900、固形分:50質量%)1質量部を混合し、トルエン、MEKの混合溶媒(配合比1:1)で希釈し、固形分濃度2質量%の塗布溶液を調製した他は実施例1と同様にして、フレキシブル基板用透明フィルムを得た。
(Example 3)
In Example 1, a long-chain acrylic was added to 100 parts by mass of a mixture of a melamine cross-linking agent and a stearyl-modified acrylic resin (manufactured by Hitachi Chemical Co., Ltd., trade name: Tessfine (registered trademark) 322, solid content: 40% by mass). Modified resin (manufactured by Yushi Kogyo Co., Ltd., Piroyl (registered trademark) 1050, solid content: 10% by mass) 400 parts by mass, p-toluenesulfonic acid as an acid catalyst (manufactured by Hitachi Chemical Polymer Co., Ltd., trade name: dryer 900, solid) Minutes: 50% by mass) 1 part by mass was mixed, diluted with a mixed solvent of toluene and MEK (blending ratio 1: 1), and a coating solution having a solid content concentration of 2% by mass was prepared in the same manner as in Example 1. A transparent film for a flexible substrate was obtained.

(実施例4)
ステアリルアクリレート95質量部に対してヒドロキシエチルアクリレート5質量部をMEK中で共重合して得られた分子量3万の共重合体(固形分濃度:35質量%)100質量部に対し、トルエンジイソシアネート(東ソー社製、商品名:コロネート(登録商標)L、固形分濃度:75質量%)3.2質量部、ウレタン化触媒としてジオクチル錫(日東化成社製、商品名:ネオスタン(登録商標)U−860)0.03質量部を添加し、トルエン、MEKの混合溶媒(配合比1:1)で希釈し、固形分濃度2質量%の塗布溶液を調製した。次いで、片面易接着コート付二軸延伸ポリエチレンテレフタレートフィルム(東洋紡社製、コスモシャイン(登録商標)A4100、膜厚125μm)の易接着コート反対面(表面粗さ:8.0nm)に乾燥後の膜厚が0.5μmになるようにマイヤーバーを用いて塗布し、温度160℃、30秒で溶剤乾燥、熱硬化させ、アンダーコート層を積層した。得られたフレキシブル基板用透明フィルムの特性を表1に示す。
(Example 4)
Toluene diisocyanate (solid content concentration: 35% by mass) with respect to 100 parts by mass of a copolymer (solid content concentration: 35% by mass) having a molecular weight of 30,000 obtained by copolymerizing 5 parts by mass of hydroxyethyl acrylate in MEK with respect to 95 parts by mass of stearyl acrylate. Made by Toso Co., Ltd., trade name: Coronate (registered trademark) L, solid content concentration: 75% by mass) 3.2 parts by mass, dioctyl tin as a urethanization catalyst (manufactured by Nitto Kasei Co., Ltd., trade name: Neostan (registered trademark) U- 860) 0.03 parts by mass was added and diluted with a mixed solvent of toluene and MEK (blending ratio 1: 1) to prepare a coating solution having a solid content concentration of 2% by mass. Next, a film after drying on the opposite surface (surface roughness: 8.0 nm) of the biaxially stretched polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., Cosmo Shine (registered trademark) A4100, film thickness 125 μm) with a single-sided easy-adhesive coating. The film was applied using a Meyer bar so as to have a thickness of 0.5 μm, dried in a solvent at a temperature of 160 ° C. for 30 seconds, and heat-cured, and an undercoat layer was laminated. Table 1 shows the characteristics of the obtained transparent film for flexible substrates.

(比較例1)
実施例1において乾燥後の膜厚を0.2μmに変更したこと以外は実施例1と同様にしてコートフィルムを得た。評価結果を表1に示す。
(Comparative Example 1)
A coated film was obtained in the same manner as in Example 1 except that the film thickness after drying was changed to 0.2 μm in Example 1. The evaluation results are shown in Table 1.

(比較例2)
実施例1において乾燥後の膜厚を0.5μmに変更し、アンドーコート層を塗布する基材フィルムをポリエステルフィルム(東洋紡社製、商品名:E5100、膜厚100μm、表面粗さ:36.0nm)に変更したこと以外は実施例1と同様にしてコートフィルムを得た。評価結果を表1に示す。
(Comparative Example 2)
In Example 1, the film thickness after drying was changed to 0.5 μm, and the base film to which the Andocoat layer was applied was a polyester film (manufactured by Toyobo Co., Ltd., trade name: E5100, film thickness 100 μm, surface roughness: 36.0 nm). ) Was changed, and a coated film was obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例3)
実施例1において乾燥後の膜厚を3.5μmにすること以外は実施例1と同様にしてコートフィルムを得た。評価結果を表1に示す。
(Comparative Example 3)
A coat film was obtained in the same manner as in Example 1 except that the film thickness after drying was 3.5 μm in Example 1. The evaluation results are shown in Table 1.

(比較例4)
実施例1において、メラミン架橋剤とステアリル変性アクリル樹脂の混合物(日立化成ポリマー社製、商品名:テスファイン(登録商標)322、固形分:40質量%)100質量部に対して、シリコーンオイル(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、TSF4446、固形分:100質量%)20質量部、酸触媒としてp-トルエンスルホン酸(日立化成ポリマー社製、商品名:ドライヤー900、固形分:50質量%)1質量部を混合し、トルエン、MEKの混合溶媒(配合比1:1)で希釈し、固形分濃度2質量%の塗布溶液を調製した他は実施例1と同様にして、コートフィルムを得た。評価結果を表1に示す。
(Comparative Example 4)
In Example 1, a mixture of a melamine cross-linking agent and a stearyl-modified acrylic resin (manufactured by Hitachi Chemical Co., Ltd., trade name: Tessfine (registered trademark) 322, solid content: 40% by mass), silicone oil (manufactured by Hitachi Kasei Polymer Co., Ltd., solid content: 40% by mass), silicone oil (manufactured by Hitachi Chemical Co., Ltd.) Momentive Performance Materials Japan Co., Ltd., TSF4446, solid content: 100% by mass) 20 parts by mass, p-toluenesulfonic acid as an acid catalyst (Hitachi Kasei Polymer Co., Ltd., trade name: dryer 900, solid content: 50 mass) %) 1 part by mass was mixed and diluted with a mixed solvent of toluene and MEK (blending ratio 1: 1) to prepare a coating solution having a solid content concentration of 2% by mass. Got The evaluation results are shown in Table 1.

Figure 0006961942
Figure 0006961942

本発明のフレキシブル基板用透明フィルムを使用することにより、より精度の高い印刷が可能となり、容易に細線化された回路形成することができ、フレキシブル回路形成も非常に容易になることからも、産業界に大きく寄与するものである。
By using the transparent film for a flexible substrate of the present invention, it is possible to print with higher accuracy, it is possible to easily form a thin line circuit, and it is also very easy to form a flexible circuit. It greatly contributes to the world.

Claims (6)

ポリエステルフィルムの少なくとも一方の面に、表面自由エネルギーが20mJ/m以上35mJ/m未満、表面粗さRaが10nm以下、膜厚0.3〜3.0μmのアンダーコート層を有することを特徴とするフレキシブル基板用透明フィルム。 Wherein at least one surface of the polyester film, the surface free energy of 20 mJ / m 2 or more 35 mJ / m less than 2, the surface roughness Ra of 10nm or less, to have an undercoat layer having a thickness of 0.3~3.0μm A transparent film for flexible substrates. アンダーコート層がメラミン架橋されたアクリル樹脂を含んでなることを特徴とする請求項1に記載のフレキシブル基板用透明フィルム。 The transparent film for a flexible substrate according to claim 1, wherein the undercoat layer contains a melamine-crosslinked acrylic resin. 100℃環境下、アンダーコート層上に、粒径0.5mmの球状ビーズを4点設置し、15g荷重で押し当てた時、アンダーコート層の転写深さが1.5μm以下であることを特徴とする請求項1又は2に記載のフレキシブル基板用透明フィルム。 When four spherical beads having a particle size of 0.5 mm are placed on the undercoat layer in an environment of 100 ° C. and pressed against a load of 15 g, the transfer depth of the undercoat layer is 1.5 μm or less. The transparent film for a flexible substrate according to claim 1 or 2. 前記アンダーコート層の表面自由エネルギーが20mJ/m以上32mJ/m以下である、請求項1〜3のいずれかに記載のフレキシブル基板用透明フィルム。 The surface free energy of the undercoat layer is 20 mJ / m 2 or more 32 mJ / m 2 or less, the transparent flexible substrate according to any one of claims 1 to 3 film. 前記アクリル樹脂は、少なくとも、水酸基を有する(メタ)アクリル酸エステルと、ステアリルアクリレート及びステアリルメタクリレートからなる群から選択される1種以上の(メタ)アクリル酸エステルとを共重合した共重合ポリマーである、請求項2に記載のフレキシブル基板用透明フィルム。 The acrylic resin is a copolymerized polymer obtained by copolymerizing at least a (meth) acrylic acid ester having a hydroxyl group and one or more (meth) acrylic acid esters selected from the group consisting of stearyl acrylate and stearyl methacrylate. , The transparent film for a flexible substrate according to claim 2. 請求項1〜5のいずれかに記載のフレキシブル基板用透明フィルム上に、線幅30μm以下の回路が形成されていることを特徴とするフレキシブル回路基板。 A flexible circuit board characterized in that a circuit having a line width of 30 μm or less is formed on the transparent film for a flexible substrate according to any one of claims 1 to 5.
JP2016529486A 2015-04-16 2016-04-11 Transparent film for flexible substrate and flexible circuit board Active JP6961942B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015084089 2015-04-16
JP2015084089 2015-04-16
PCT/JP2016/061652 WO2016167206A1 (en) 2015-04-16 2016-04-11 Transparent film for flexible board, and flexible circuit board

Publications (2)

Publication Number Publication Date
JPWO2016167206A1 JPWO2016167206A1 (en) 2018-02-08
JP6961942B2 true JP6961942B2 (en) 2021-11-05

Family

ID=57126636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529486A Active JP6961942B2 (en) 2015-04-16 2016-04-11 Transparent film for flexible substrate and flexible circuit board

Country Status (2)

Country Link
JP (1) JP6961942B2 (en)
WO (1) WO2016167206A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364716B2 (en) * 2004-05-06 2009-11-18 帝人化成株式会社 Power adapter housing
JP2007168376A (en) * 2005-12-26 2007-07-05 Hitachi Metals Ltd Laminated substrate
JP2009283667A (en) * 2008-05-22 2009-12-03 Kuraray Co Ltd Method for manufacturing conductive circuit board
JP5540984B2 (en) * 2010-08-11 2014-07-02 味の素株式会社 Laminate production method
JP5696825B2 (en) * 2013-01-23 2015-04-08 Dic株式会社 LAMINATE, CONDUCTIVE PATTERN, ELECTRIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD

Also Published As

Publication number Publication date
JPWO2016167206A1 (en) 2018-02-08
WO2016167206A1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
KR101997311B1 (en) Parting film for step for producing ceramic green sheet
TWI677432B (en) Adhesive sheet, manufacturing method thereof, and viscoelastic layer
JP7424451B2 (en) Conductive films, touch panels, and image display devices
WO2013133451A1 (en) Laminate for transparent electroconductive film base material
JP6291679B2 (en) Method for producing surface protective film for transparent conductive substrate, surface protective film for transparent conductive substrate, and laminate
JP6787584B2 (en) Film for laminating transparent conductive layer, its manufacturing method, and transparent conductive film
JP2010143037A (en) Release film
WO2011105594A1 (en) Hard coat film and process for producing same
JP2022172161A (en) laminate
JP7006710B2 (en) Release film for manufacturing ceramic green sheets
JP2023038265A (en) Transparent electroconductive film
JP2012128157A (en) Hard coat film and method for manufacturing the same
JP6961942B2 (en) Transparent film for flexible substrate and flexible circuit board
JP6984352B2 (en) Laminate manufacturing method and laminate
TWI621530B (en) Heat-resistant laminated sheet and manufacturing method thereof
JP7056886B2 (en) Adhesive sheet and manufacturing method of adhesive sheet
TW201539020A (en) Protection film, method of using the same, and transparent conductive substrate having the same
TWI660840B (en) Adhesive sheet
WO2018180961A1 (en) Transparent conductive laminate and production method therefor
JP5713302B2 (en) Release film
JP2011177938A (en) Hard coat film
JP2022153410A (en) Release film for ceramic green sheet manufacturing process
JP2016060128A (en) Transfer film, production method of resin/glass laminate using the same, and resin/glass laminate
JP6262682B2 (en) Conductive film for touch panel, touch panel and display device
JP2019072849A (en) Release film for ceramic green sheet production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R151 Written notification of patent or utility model registration

Ref document number: 6961942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350