JP6960840B2 - Soil cement strength judgment method and strength judgment system - Google Patents
Soil cement strength judgment method and strength judgment system Download PDFInfo
- Publication number
- JP6960840B2 JP6960840B2 JP2017239659A JP2017239659A JP6960840B2 JP 6960840 B2 JP6960840 B2 JP 6960840B2 JP 2017239659 A JP2017239659 A JP 2017239659A JP 2017239659 A JP2017239659 A JP 2017239659A JP 6960840 B2 JP6960840 B2 JP 6960840B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- cement
- strength
- mass ratio
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Piles And Underground Anchors (AREA)
Description
本発明は、杭の根固め部などを構成するソイルセメントの強度を早期に判定する強度判定方法および強度判定システムに関するものである。 The present invention relates to a strength determination method and a strength determination system for determining the strength of soil cement constituting a pile root compaction portion at an early stage.
杭の根固め部を構成するソイルセメントの強度推定方法として、本特許出願人は、既に特許文献1〜6に示すような技術を提案している。
The applicant for this patent has already proposed the techniques shown in
このうち特許文献2においては、セメントおよび水の質量比と、試料を固化した後の圧縮強度には相関関係がある一方、0.075mm以下の小粒径の粒子が土質材料に混合していた場合、セメントおよび水の質量比と圧縮強度との相関関係が、上記の相関関係から乖離するため、正確な推定ができないことが問題であった。
Of these, in
この課題を解決するため、上記の特許文献5において、図7に示すような推定フローによる強度推定方法を提案し、より正確な強度推定を可能とした。この推定フローは、0.075mm以下の粒子量を算出する工程を有しており、次の(1)〜(5)の工程からなる。 In order to solve this problem, in the above-mentioned Patent Document 5, a strength estimation method based on the estimation flow as shown in FIG. 7 was proposed, and more accurate strength estimation was made possible. This estimated flow includes a step of calculating the amount of particles of 0.075 mm or less, and comprises the following steps (1) to (5).
(1)ソイルセメントを形成する支持層の構成物からなる試料の密度の測定を行う工程
(2)支持層の構成物からなる試料中の0.075mm以下の小粒径の粒子の質量比を測定する工程
(3)ソイルセメントに含まれる水の質量を測定する工程
(4)乾燥させた前記未固結試料の密度を測定する工程
(5)支持層の構成物からなる試料の密度と、ソイルセメントの密度と、水の質量とから、ソイルセメントに含まれるセメントの質量と掘削土砂の質量とを算出する工程
(1) Step of measuring the density of the sample composed of the constituents of the support layer forming the soil cement (2) The mass ratio of particles having a small particle size of 0.075 mm or less in the sample composed of the constituents of the support layer. Steps to measure (3) Steps to measure the mass of water contained in soil cement (4) Steps to measure the density of the dried unsolidified sample (5) The density of the sample composed of the constituents of the support layer and The process of calculating the mass of cement contained in soil cement and the mass of excavated earth and sand from the density of soil cement and the mass of water.
しかしながら、上記の(1)〜(5)の工程からなる強度推定方法は、現場で実施することが比較的難しい工程を含んでいる。具体的には、図7(1)の実施フロー1においてはステップS105で一度試料を乾燥させる工程が必要であり、図7(2)の実施フロー2においては試料の密度を測定しなければならない。こうした工程を現場で実施することは比較的難しいという問題がある。
However, the strength estimation method including the above steps (1) to (5) includes a step that is relatively difficult to carry out in the field. Specifically, in the
本発明は、上記に鑑みてなされたものであって、現場で実施することが難しい工程を要しないソイルセメントの強度判定方法および強度判定システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a soil cement strength determination method and a strength determination system that do not require steps that are difficult to carry out in the field.
上記した課題を解決し、目的を達成するために、本発明に係るソイルセメントの強度判定方法は、セメントと、水と、土質材料とからなるソイルセメントの強度を判定する方法であって、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得するステップと、ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得するステップと、あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求めるステップと、求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求めるステップとを備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the method for determining the strength of soil cement according to the present invention is a method for determining the strength of soil cement composed of cement, water, and soil material, and soil quality. It is known in advance that the step of obtaining the mass ratio of soil particles having a predetermined particle size or less to the material and the step of obtaining the mass ratio of cement and water contained in the unsolidified sample of soil cement are obtained. , The mass ratio of soil material to soil material is a predetermined value. Strength of solidified sample of soil cement, mass ratio of cement to water, and mass of fine-grained soil particles of less than a predetermined particle size to soil material. By applying the mass ratio of fine-grained soil particles with a predetermined particle size or less to the acquired soil material to the ratio, the strength of the solidified sample of soil cement according to the mass ratio of the soil particles can be determined. The step of finding the relationship between the mass ratio of cement and water, the strength of the obtained solidified sample of soil cement, and the relationship between the mass ratio of cement and water, the cement contained in the obtained unsolidified sample of soil cement. It is characterized by including a step of obtaining the strength of a solidified sample of soil cement according to the mass ratio of soil and water by applying the mass ratio of soil and water.
また、本発明に係る他のソイルセメントの強度判定方法は、上述した発明において、前記所定の値が、0.25であることを特徴とする。 Further, another method for determining the strength of soil cement according to the present invention is characterized in that, in the above-mentioned invention, the predetermined value is 0.25.
また、本発明に係る他のソイルセメントの強度判定方法は、上述した発明において、前記所定の粒径が、0.075mmであることを特徴とする。 Further, another method for determining the strength of soil cement according to the present invention is characterized in that, in the above-mentioned invention, the predetermined particle size is 0.075 mm.
また、本発明に係るソイルセメントの強度判定システムは、セメントと、水と、土質材料とからなるソイルセメントの強度を判定するシステムであって、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得する手段と、ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得する手段と、あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求める手段と、求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求める手段とを備えることを特徴とする。 Further, the soil cement strength determination system according to the present invention is a system for determining the strength of a soil cement composed of cement, water, and a soil material, and is a system for determining the strength of a soil cement having a particle size equal to or less than a predetermined particle size with respect to the soil material. A means for obtaining the mass ratio of soil particles, a means for obtaining the mass ratio of cement and water contained in an unconsolidated sample of soil cement, and a previously known mass ratio of soil material to soil cement are predetermined. The relationship between the strength of the solidified sample of soil cement, which is the value, the mass ratio of cement and water, and the mass ratio of fine-grained soil particles with a predetermined particle size or less to the soil material, is determined for the acquired soil material. By applying the mass ratio of soil particles of fine particles smaller than the particle size of, the means for obtaining the relationship between the strength of the solidified sample of soil cement according to the mass ratio of the soil particles and the mass ratio of cement and water. By applying the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement to the relationship between the obtained strength of the solidified sample of soil cement and the mass ratio of cement and water, this cement It is characterized by providing a means for determining the strength of a solidified sample of soil cement according to the mass ratio of soil and water.
また、本発明に係る他のソイルセメントの強度判定システムは、上述した発明において、前記所定の値が、0.25であることを特徴とする。 Further, another soil cement strength determination system according to the present invention is characterized in that, in the above-mentioned invention, the predetermined value is 0.25.
また、本発明に係る他のソイルセメントの強度判定システムは、上述した発明において、前記所定の粒径が、0.075mmであることを特徴とする。 Further, another soil cement strength determination system according to the present invention is characterized in that, in the above-mentioned invention, the predetermined particle size is 0.075 mm.
本発明に係るソイルセメントの強度判定方法によれば、セメントと、水と、土質材料とからなるソイルセメントの強度を判定する方法であって、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得するステップと、ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得するステップと、あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求めるステップと、求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求めるステップとを備えるので、現場で実施することが比較的難しい工程を要しないソイルセメントの強度判定方法を提供することができるという効果を奏する。 According to the method for determining the strength of soil cement according to the present invention, it is a method for determining the strength of soil cement composed of cement, water, and soil material, and is a method for determining the strength of fine particles having a predetermined particle size or less with respect to the soil material. The step of acquiring the mass ratio of soil particles, the step of acquiring the mass ratio of cement and water contained in the unconsolidated sample of soil cement, and the step of acquiring the mass ratio of soil material to soil cement, which is known in advance, are predetermined. The relationship between the strength of the solidified sample of soil cement, which is the value, the mass ratio of cement and water, and the mass ratio of fine-grained soil particles with a predetermined particle size or less to the soil material, is determined for the acquired soil material. By applying the mass ratio of soil particles of fine particles smaller than the particle size of, the step of finding the relationship between the strength of the solidified sample of soil cement according to the mass ratio of the soil particles and the mass ratio of cement and water. By applying the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement to the relationship between the obtained strength of the solidified sample of soil cement and the mass ratio of cement and water, this cement It is said that it is possible to provide a method for determining the strength of soil cement, which does not require a relatively difficult process in the field, because it includes a step of determining the strength of the solidified sample of soil cement according to the mass ratio of soil and water. It works.
また、本発明に係る他のソイルセメントの強度判定方法によれば、前記所定の値が、0.25であるので、安全側の判定を行うことができるという効果を奏する。 Further, according to another method for determining the strength of soil cement according to the present invention, since the predetermined value is 0.25, there is an effect that the determination on the safe side can be performed.
また、本発明に係る他のソイルセメントの強度判定方法によれば、前記所定の粒径が、0.075mmであるので、より正確に強度判定することができるという効果を奏する。 Further, according to another method for determining the strength of soil cement according to the present invention, since the predetermined particle size is 0.075 mm, the strength can be determined more accurately.
また、本発明に係るソイルセメントの強度判定システムによれば、セメントと、水と、土質材料とからなるソイルセメントの強度を判定するシステムであって、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得する手段と、ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得する手段と、あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求める手段と、求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求める手段とを備えるので、現場で実施することが比較的難しい工程を要しないソイルセメントの強度判定システムを提供することができるという効果を奏する。 Further, according to the soil cement strength determination system according to the present invention, it is a system for determining the strength of a soil cement composed of cement, water, and a soil material, and fine particles having a predetermined particle size or less with respect to the soil material. The means for obtaining the mass ratio of soil particles to be separated, the means for obtaining the mass ratio of cement and water contained in the unconsolidated sample of soil cement, and the previously known mass ratio of soil material to soil cement are The obtained soil material is related to the relationship between the strength of the solidified sample of soil cement, which is a predetermined value, the mass ratio of cement and water, and the mass ratio of fine-grained soil particles having a predetermined particle size or less to the soil material. By applying the mass ratio of soil particles of fine particles smaller than a predetermined particle size to, the relationship between the strength of the solidified sample of soil cement according to the mass ratio of these soil particles and the mass ratio of cement and water can be obtained. By applying the obtained means, the strength of the obtained solidified sample of soil cement, and the mass ratio of cement and water to the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement, Since the soil cement is provided with a means for determining the strength of the solidified sample of the soil cement according to the mass ratio of the soil and water, it is possible to provide a soil cement strength determination system that does not require a relatively difficult process in the field. It has the effect of being able to do it.
また、本発明に係る他のソイルセメントの強度判定システムによれば、前記所定の値が、0.25であるので、安全側の判定を行うことができるという効果を奏する。 Further, according to the other soil cement strength determination system according to the present invention, since the predetermined value is 0.25, it is possible to perform the determination on the safe side.
また、本発明に係る他のソイルセメントの強度判定システムによれば、前記所定の粒径が、0.075mmであるので、より正確に強度判定することができるという効果を奏する。 Further, according to another soil cement strength determination system according to the present invention, since the predetermined particle size is 0.075 mm, the strength can be determined more accurately.
本発明は、現場で実施するには比較的難しい工程を省くための強度判定技術である。以下に、本発明に係るソイルセメントの強度判定方法および強度判定システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The present invention is a strength determination technique for omitting a process that is relatively difficult to carry out in the field. Hereinafter, a method for determining the strength of soil cement and an embodiment of the strength determination system according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
(本発明の基礎となった知見)
まず、本発明の基礎となった知見について説明する。
本発明者が、現場で採取した正常なソイルセメントの未固結試料の材料組成の分析を重ねた結果、未固結試料を構成する材料の重量比は、概ね図1のようになっていることが確認された。
(Knowledge that became the basis of the present invention)
First, the findings underlying the present invention will be described.
As a result of repeated analysis of the material composition of the unconsolidated sample of normal soil cement collected in the field by the present inventor, the weight ratio of the materials constituting the unconsolidated sample is roughly as shown in FIG. It was confirmed that.
図1に示す通り、未固結試料中の土の量の最大値は、正常な未固結試料の場合25%程度であることが確認された。
そのため、土の量を25%としたときに、0.075mm以下の粒子量をパラメータとし、セメント水比と強度の関係式を得て、この関係式を使用すれば、地盤調査で得た支持層材料の粒度分布情報を用いるのみで、簡便かつ実用上安全な評価が可能となる。
As shown in FIG. 1, it was confirmed that the maximum amount of soil in the unconsolidated sample was about 25% in the case of a normal unconsolidated sample.
Therefore, when the amount of soil is 25%, the particle amount of 0.075 mm or less is used as a parameter, and the relational expression between the cement water ratio and the strength is obtained. Simple and practically safe evaluation is possible only by using the particle size distribution information of the layer material.
ここで、土の量を25%としたときの材齢28日の一軸圧縮強さとセメント水比の関係を得るための実験を実施した。支持層模擬材料としては、ともに絶乾状態の密度が2.69g/cm3である砂(S)と、粘土(Ne)を使用した。この支持層模擬材料の粒度分布を図2に示す。使用した粘土(Ne)は図2に示す通り、0.075mm以下の粒径が99.6%のものを使用した。 Here, an experiment was carried out to obtain the relationship between the uniaxial compressive strength at the age of 28 days and the cement water ratio when the amount of soil was 25%. As the support layer simulation material, sand (S) having a density of 2.69 g / cm 3 in the absolute dry state and clay (Ne) were used. The particle size distribution of this support layer simulated material is shown in FIG. As shown in FIG. 2, the clay (Ne) used was 0.075 mm or less and had a particle size of 99.6%.
また、作製した調合を図3に示す。セメントは普通ポルトランドセメント(C)、水は上水道水(W)を使用した。調合は、地盤材料の工学的分類において、粗粒土に分類される比較的広い範囲の支持層材料に適用できるよう、粗粒分(S)が50%以上となるように、細粒分(Ne)を混合し、水セメント比(W/C)が60〜90%となる調合とした。図3中の調合名の表記は、「水セメント比(%)−細粒分の含有量」である。 The prepared formulation is shown in FIG. Portland cement (C) was used as the cement, and tap water (W) was used as the water. The formulation is fine-grained (S) so that the coarse-grained content (S) is 50% or more so that it can be applied to a relatively wide range of support layer materials classified as coarse-grained soil in the engineering classification of ground materials. Ne) was mixed to prepare a mixture having a water-cement ratio (W / C) of 60 to 90%. The notation of the formulation name in FIG. 3 is "water-cement ratio (%) -content of fine particles".
実験結果を図4に示す。材齢28日の一軸圧縮強さ(y)とセメント水比(C/W:x)の関係を表す近似直線としては、細粒分の含有量毎に得られる回帰直線を参考にして、細粒分の含有量(50%、30%、0%)間で傾きが同じとなるような直線を設定した(図の例では、y=33.2x−25.7、y=33.2x−27.2、y=33.2x−27.9という直線)。この図から、細粒分の混合により、近似直線の切片が増加していることが確認できる。 The experimental results are shown in FIG. As an approximate straight line representing the relationship between the uniaxial compressive strength (y) and the cement water ratio (C / W: x) at the age of 28 days, it is fine with reference to the regression line obtained for each fine grain content. A straight line was set so that the slopes were the same among the grain contents (50%, 30%, 0%) (in the example of the figure, y = 33.2x-25.7, y = 33.2x-. 27.2, y = 33.2x-27.9). From this figure, it can be confirmed that the intercept of the approximate straight line is increased by mixing the fine particles.
ここで、細粒分の含有量0%を基準としたときに、他水準の切片の増加量をΔbとする。また、0.075mm以下の土粒子の含有量とΔbの値の関係を図5に示す。この図に示すように、0.075mm以下の土粒子の含有量(x)が0〜50%以下の粗粒土のとき、Δb(y)は二次曲線で回帰できる(図の例では、y=1.03×10−3x2−7.96×10−3xという二次曲線)。実務的には、この曲線を使用し、例えば事前のボーリング調査などによる地盤調査報告書に示される支持層材料の粒度情報のうち、細粒分が20%だった場合、この曲線から0%に対する切片の増加量Δbを概算することで、材齢28日の一軸圧縮強さとセメント水比の関係式(近似直線式)を算出することができる。 Here, when the content of fine particles is 0% as a reference, the amount of increase in sections at other levels is defined as Δb. Further, FIG. 5 shows the relationship between the content of soil particles of 0.075 mm or less and the value of Δb. As shown in this figure, when the content (x) of soil particles of 0.075 mm or less is coarse-grained soil of 0 to 50% or less, Δb (y) can be regressed by a quadratic curve (in the example of the figure, quadratic curve that y = 1.03 × 10 -3 x 2 -7.96 × 10 -3 x). In practice, this curve is used, and if the particle size information of the support layer material shown in the ground survey report by, for example, a preliminary boring survey, the fine grain content is 20%, this curve is used for 0%. By estimating the increase amount Δb of the intercept, the relational expression (approximate linear expression) between the uniaxial compressive strength and the cement water ratio at the age of 28 days can be calculated.
(本発明の実施の形態)
次に、上記の知見に基づいて考案された本発明の実施の形態について説明する。
(Embodiment of the present invention)
Next, an embodiment of the present invention devised based on the above findings will be described.
[ソイルセメントの強度判定方法]
まず、本実施の形態に係るソイルセメントの強度判定方法について、杭の根固め部を構成するソイルセメントの強度判定に適用する場合を例にとり説明する。
[Method of determining the strength of soil cement]
First, the method for determining the strength of soil cement according to the present embodiment will be described by taking as an example the case where it is applied to the determination of the strength of soil cement constituting the root consolidation portion of a pile.
事前に、ソイルセメントに対する支持層材料(土質材料)の質量比が所定の値(例えば質量比0.25)であるソイルセメントの固結試料の一軸圧縮強さと、セメントと水の質量比(セメント水比:C/W)と、支持層材料に対する所定の粒径以下(例えば粒径0.075mm以下)の細粒分の土粒子の質量比との関係(例えば図4、図5に例示される関係)が、上記の実験等を通じてあらかじめ把握されているものとする。 In advance, the uniaxial compressive strength of the solidified sample of soil cement in which the mass ratio of the support layer material (soil material) to the soil cement is a predetermined value (for example, mass ratio 0.25) and the mass ratio of cement to water (cement). Water ratio: C / W) and the relationship between the mass ratio of fine-grained soil particles having a predetermined particle size or less (for example, a particle size of 0.075 mm or less) with respect to the support layer material (for example, FIGS. 4 and 5). It is assumed that the relationship) has been grasped in advance through the above experiments and the like.
図6に示すように、まず、支持層材料における0.075mm以下の土粒子の含有量(質量比)を把握する(ステップS1)。これは、例えば施工前に得られた地盤調査報告書に示される支持層材料の粒度情報を参照することで、容易に把握することができる。 As shown in FIG. 6, first, the content (mass ratio) of soil particles of 0.075 mm or less in the support layer material is grasped (step S1). This can be easily grasped by referring to, for example, the particle size information of the support layer material shown in the ground survey report obtained before construction.
次に、地中に施工された根固め部より、強度判定対象のソイルセメントの未固結試料を採取する(ステップS2)。この場合、例えば、掘削ロッドの先端に取り付けた試料採取器を使用して、根固め部のソイルセメントの未固結試料を採取することができる。 Next, an unconsolidated sample of soil cement to be determined for strength is collected from the root consolidation portion constructed in the ground (step S2). In this case, for example, an unconsolidated sample of soil cement at the root consolidation portion can be collected by using a sampling device attached to the tip of the excavation rod.
続いて、採取した未固結試料に含まれる水の質量を測定し(ステップS3)、さらにセメントの質量を測定する(ステップS4)。ここで、未固結試料に含まれる水、セメントの質量は、上記の特許文献5等に示される周知の方法により測定することができる。例えば、未固結試料に含まれる水の質量は、電子レンジで水分を蒸発させる方法や赤外線水分計を使用して測定することができる。また、未固結試料に含まれるセメントの質量は、例えば、水の質量を測定した後の試料を所定量の塩酸に溶解させて水酸化ナトリウムで滴定を行う方法や、酸に溶解させた際の溶解熱の算出により求める方法などを使用して測定することができる。こうして測定された水の質量(W)、セメントの質量(C)から、未固結試料のセメント水比(C/W)を求める。 Subsequently, the mass of water contained in the collected unconsolidated sample is measured (step S3), and the mass of cement is further measured (step S4). Here, the masses of water and cement contained in the unconsolidated sample can be measured by a well-known method shown in Patent Document 5 and the like. For example, the mass of water contained in an unconsolidated sample can be measured by a method of evaporating water in a microwave oven or using an infrared moisture meter. The mass of cement contained in the unconsolidated sample is, for example, when the sample after measuring the mass of water is dissolved in a predetermined amount of hydrochloric acid and titrated with sodium hydroxide, or when dissolved in acid. It can be measured by using a method or the like obtained by calculating the heat of dissolution of. From the mass of water (W) and the mass of cement (C) measured in this way, the cement water ratio (C / W) of the unconsolidated sample is obtained.
次に、上記のステップS1で把握した土粒子の含有量から、強度評価式を算定する(ステップS5)。この場合、例えば図5の近似曲線から土粒子の含有量に対応する切片の増加量Δbを求める。そして、この切片の増加量Δbを、例えば図4の土粒子の含有量が0%である基準の近似直線式の切片に加算することにより、強度評価式を算定する。次に、この強度評価式を用いてソイルセメントの強度(材齢28日の一軸圧縮強さ)を推定(判定)する(ステップS6)。 Next, the strength evaluation formula is calculated from the content of soil particles grasped in step S1 above (step S5). In this case, for example, the increase amount Δb of the intercept corresponding to the content of soil particles is obtained from the approximate curve of FIG. Then, the strength evaluation formula is calculated by adding the increase amount Δb of this intercept to, for example, the approximate linear intercept of the reference in which the content of soil particles in FIG. 4 is 0%. Next, the strength of the soil cement (uniaxial compressive strength at 28 days of age) is estimated (determined) using this strength evaluation formula (step S6).
このように、図4、図5の関係および地盤調査報告書等に示される支持層材料の粒度情報を用いることで、未固結試料を乾燥させる工程や、試料の密度を測定する工程などの現場で実施することが比較的難しい工程を省くことが可能となり、上記の従来の方法よりも容易に強度推定を実施することができる。 In this way, by using the relationship between FIGS. 4 and 5 and the particle size information of the support layer material shown in the ground survey report, etc., the step of drying the unconsolidated sample, the step of measuring the density of the sample, etc. It is possible to omit steps that are relatively difficult to carry out in the field, and it is possible to carry out strength estimation more easily than the above-mentioned conventional method.
次に、推定されたソイルセメントの強度が設計基準強度を満たしているかを判定する(ステップS7)。設計基準強度を満たす場合(ステップS7でYes)、判定処理を終了する。設計基準強度を満たさない場合(ステップS7でNo)、ソイルセメントより作製された供試体の材齢X日強度もしくは、根固め部のコア強度を測定する(ステップS8)。そして、測定された強度が設計基準強度を満たしているかを判定する(ステップS9)。設計基準強度を満たす場合、判定処理を終了する(ステップS9でYes)。一方、設計基準強度を満たさない場合(ステップS9でNo)、根固め部の再施工を行い(ステップS10)、ステップS1に戻る。 Next, it is determined whether the estimated strength of the soil cement satisfies the design standard strength (step S7). When the design standard strength is satisfied (Yes in step S7), the determination process is terminated. When the design standard strength is not satisfied (No in step S7), the material age X-day strength of the specimen prepared from soil cement or the core strength of the root compaction portion is measured (step S8). Then, it is determined whether the measured strength satisfies the design reference strength (step S9). When the design standard strength is satisfied, the determination process ends (Yes in step S9). On the other hand, if the design standard strength is not satisfied (No in step S9), the root consolidation portion is reconstructed (step S10), and the process returns to step S1.
このようにすることで、根固め部を構成するソイルセメントの強度を早期に判定することができる。なお、実際のところ、未固結試料を採取後(試料が試験開始できる状態から)は1時間程度で判定可能である。また、この判定の結果、ソイルセメントが所定の設計基準強度を満たさないことが予想される場合は、再施工などの対策を早急に実施することができる。 By doing so, the strength of the soil cement constituting the root compaction portion can be determined at an early stage. As a matter of fact, it can be determined in about 1 hour after collecting the unconsolidated sample (from the state where the sample can start the test). Further, as a result of this determination, if it is expected that the soil cement does not satisfy the predetermined design standard strength, measures such as re-construction can be implemented immediately.
[ソイルセメントの強度判定システム]
次に、本実施の形態に係るソイルセメントの強度判定システムについて説明する。
[Soil cement strength determination system]
Next, the soil cement strength determination system according to the present embodiment will be described.
本実施の形態に係るソイルセメントの強度判定システムは、上述したソイルセメントの強度判定方法をシステムして具現化したものであり、例えば入力部、記憶部、演算部、出力部とからなる。この強度判定システムは、例えばCPUを有するコンピュータ、メモリ、ディスプレイ、キーボード等のハードウェア、これらハードウェアを用いて実行されるコンピュータプログラム等のソフトウェアにより構成することができる。 The soil cement strength determination system according to the present embodiment is a system embodied of the above-mentioned soil cement strength determination method, and includes, for example, an input unit, a storage unit, a calculation unit, and an output unit. This strength determination system can be configured by, for example, hardware such as a computer having a CPU, a memory, a display, and a keyboard, and software such as a computer program executed by using these hardware.
入力部は、支持層材料に対する0.075mm以下の土粒子の含有量(質量比)、ソイルセメントの未固結試料のセメント水比(C/W)を入力するためのものであり、例えばキーボードなどで構成することができる。土粒子の含有量、セメント水比は、上述したソイルセメントの強度判定方法で説明した方法で取得する。 The input unit is for inputting the content (mass ratio) of soil particles of 0.075 mm or less with respect to the support layer material and the cement water ratio (C / W) of the unconsolidated sample of soil cement. For example, a keyboard. It can be configured with. The soil particle content and the cement-water ratio are obtained by the method described in the above-mentioned soil cement strength determination method.
記憶部は、ソイルセメントに対する支持層材料の質量比が0.25であるソイルセメントの材齢28日の一軸圧縮強さと、セメント水比(C/W)と、支持層材料に対する0.075mm以下の土粒子の含有量との関係(例えば、図4、図5の関係)を記憶するものである。記憶部は、例えばメモリなどの記憶媒体で構成することができる。なお、記憶部は、地盤調査報告書等に示される支持層材料の粒度情報を記憶しておき、演算部または入力部は、この粒度情報から0.075mm以下の土粒子の含有量を取得するようにしてもよい。 The storage unit has a 28-day uniaxial compressive strength of soil cement in which the mass ratio of the support layer material to the soil cement is 0.25, the cement water ratio (C / W), and 0.075 mm or less to the support layer material. The relationship with the content of soil particles (for example, the relationship of FIGS. 4 and 5) is memorized. The storage unit can be composed of a storage medium such as a memory. The storage unit stores the particle size information of the support layer material shown in the ground investigation report, etc., and the calculation unit or the input unit acquires the content of soil particles of 0.075 mm or less from this particle size information. You may do so.
演算部は、第1演算部と第2演算部とからなり、例えばコンピュータとソフトウェアなどで構成することができる。
第1演算部は、記憶部に記憶された上記の関係に、入力部により入力された0.075mm以下の土粒子の含有量を当てはめることで、この土粒子の含有量に応じたソイルセメントの材齢28日の一軸圧縮強さと、セメント水比(C/W)との関係を求めるものである。
The arithmetic unit includes a first arithmetic unit and a second arithmetic unit, and can be composed of, for example, a computer and software.
The first calculation unit applies the content of soil particles of 0.075 mm or less input by the input unit to the above relationship stored in the storage unit, so that the soil cement according to the content of the soil particles can be used. The relationship between the uniaxial compressive strength at the age of 28 days and the cement water ratio (C / W) is obtained.
第2演算部は、第1演算部で求めたソイルセメントの材齢28日の一軸圧縮強さと、セメント水比(C/W)との関係に、入力部により入力されたセメント水比(C/W)を当てはめることで、このセメント水比(C/W)に応じたソイルセメントの材齢28日の一軸圧縮強さを求めるものである。 The second calculation unit is the cement water ratio (C) input by the input unit in relation to the relationship between the 28-day uniaxial compressive strength of the soil cement obtained by the first calculation unit and the cement water ratio (C / W). By applying / W), the uniaxial compressive strength of the soil cement having a material age of 28 days according to the cement water ratio (C / W) is obtained.
出力部は、演算部による演算処理結果を出力するものである。出力部は、例えばディスプレイやプリンタなどで構成することができる。 The output unit outputs the calculation processing result by the calculation unit. The output unit can be configured by, for example, a display or a printer.
このように構成したソイルセメントの強度判定システムによれば、図4、図5の関係および地盤調査報告書等に示される支持層材料の粒度情報を用いることで、未固結試料を乾燥させる工程や、試料の密度を測定する工程などの現場で実施することが比較的難しい工程を省くことが可能となり、上記の従来の方法よりも容易に強度推定を実施することができる。 According to the soil cement strength determination system configured in this way, the step of drying the unconsolidated sample by using the relationship between FIGS. 4 and 5 and the particle size information of the support layer material shown in the ground survey report and the like. In addition, it is possible to omit steps that are relatively difficult to carry out in the field, such as a step of measuring the density of a sample, and it is possible to carry out strength estimation more easily than the above-mentioned conventional method.
以上説明したように、本発明に係るソイルセメントの強度判定方法によれば、セメントと、水と、土質材料とからなるソイルセメントの強度を判定する方法であって、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得するステップと、ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得するステップと、あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求めるステップと、求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求めるステップとを備えるので、現場で実施することが比較的難しい工程を要しないソイルセメントの強度判定方法を提供することができる。 As described above, according to the method for determining the strength of soil cement according to the present invention, it is a method for determining the strength of soil cement composed of cement, water, and soil material, and has a predetermined particle size with respect to the soil material. The steps to obtain the mass ratio of the following fine-grained soil particles, the step to obtain the mass ratio of cement and water contained in the unconsolidated sample of soil cement, and the previously known soil material to soil cement. The relationship between the strength of the solidified sample of soil cement in which the mass ratio of is a predetermined value, the mass ratio of cement and water, and the mass ratio of fine-grained soil particles having a predetermined particle size or less with respect to the soil material, By applying the mass ratio of fine-grained soil particles with a predetermined particle size or less to the acquired soil material, the strength of the solidified sample of soil cement according to the mass ratio of these soil particles and the mass ratio of cement and water For the relationship between the step to find the relationship with, the obtained strength of the solidified sample of soil cement, and the mass ratio of cement and water, the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement was calculated. By applying, it is provided with a step to obtain the strength of the solidified sample of soil cement according to the mass ratio of this cement and water, so a method for determining the strength of soil cement that does not require a relatively difficult process in the field can be obtained. Can be provided.
また、本発明に係る他のソイルセメントの強度判定方法によれば、前記所定の値が、0.25であるので、安全側の判定を行うことができる。 Further, according to another method for determining the strength of soil cement according to the present invention, the predetermined value is 0.25, so that the determination on the safe side can be performed.
また、本発明に係る他のソイルセメントの強度判定方法によれば、前記所定の粒径が、0.075mmであるので、より正確に強度判定することができる。 Further, according to another method for determining the strength of soil cement according to the present invention, since the predetermined particle size is 0.075 mm, the strength can be determined more accurately.
また、本発明に係るソイルセメントの強度判定システムによれば、セメントと、水と、土質材料とからなるソイルセメントの強度を判定するシステムであって、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得する手段と、ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得する手段と、あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求める手段と、求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求める手段とを備えるので、現場で実施することが比較的難しい工程を要しないソイルセメントの強度判定システムを提供することができる。 Further, according to the soil cement strength determination system according to the present invention, it is a system for determining the strength of a soil cement composed of cement, water, and a soil material, and fine particles having a predetermined particle size or less with respect to the soil material. The means for obtaining the mass ratio of soil particles to be separated, the means for obtaining the mass ratio of cement and water contained in the unconsolidated sample of soil cement, and the previously known mass ratio of soil material to soil cement are The obtained soil material is related to the relationship between the strength of the solidified sample of soil cement, which is a predetermined value, the mass ratio of cement and water, and the mass ratio of fine-grained soil particles having a predetermined particle size or less to the soil material. By applying the mass ratio of soil particles of fine particles smaller than a predetermined particle size to, the relationship between the strength of the solidified sample of soil cement according to the mass ratio of these soil particles and the mass ratio of cement and water can be obtained. By applying the obtained means, the strength of the obtained solidified sample of soil cement, and the mass ratio of cement and water to the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement, Since the soil cement is provided with a means for determining the strength of the solidified sample of the soil cement according to the mass ratio of the soil and water, it is possible to provide a soil cement strength determination system that does not require a relatively difficult process in the field. can.
また、本発明に係る他のソイルセメントの強度判定システムによれば、前記所定の値が、0.25であるので、安全側の判定を行うことができる。 Further, according to another soil cement strength determination system according to the present invention, the predetermined value is 0.25, so that the determination on the safe side can be performed.
また、本発明に係る他のソイルセメントの強度判定システムによれば、前記所定の粒径が、0.075mmであるので、より正確に強度判定することができる。 Further, according to another soil cement strength determination system according to the present invention, since the predetermined particle size is 0.075 mm, the strength can be determined more accurately.
以上のように、本発明に係るソイルセメントの強度判定方法および強度判定システムは、杭の根固め部などを構成するソイルセメントの強度を早期に判定するのに有用であり、特に、現場で実施することが難しい工程を省略して強度を判定するのに適している。 As described above, the soil cement strength determination method and the strength determination system according to the present invention are useful for determining the strength of the soil cement constituting the root consolidation portion of the pile at an early stage, and are particularly useful in the field. It is suitable for determining the strength by omitting the difficult steps.
Claims (6)
土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得するステップと、
ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得するステップと、
あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求めるステップと、
求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求めるステップとを備えることを特徴とするソイルセメントの強度判定方法。 It is a method of determining the strength of soil cement composed of cement, water, and soil material.
The step of obtaining the mass ratio of fine-grained soil particles of a predetermined particle size or less to the soil material, and
Steps to obtain the mass ratio of cement and water contained in the unconsolidated sample of soil cement,
The strength of the solidified sample of soil cement in which the mass ratio of the soil material to the soil material is a predetermined value, the mass ratio of cement to water, and the fine particles of the specified particle size or less with respect to the soil material, which are known in advance. By applying the mass ratio of fine-grained soil particles with a predetermined particle size or less to the acquired soil material, the soil cement is solidified according to the mass ratio of the soil particles. Steps to find the relationship between sample strength and the mass ratio of soil to water,
By applying the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement to the relationship between the obtained strength of the solidified sample of soil cement and the mass ratio of cement and water, this cement and water A method for determining the strength of soil cement, which comprises a step of obtaining the strength of a solidified sample of soil cement according to the mass ratio of the soil cement.
土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を取得する手段と、
ソイルセメントの未固結試料に含まれるセメントと水の質量比を取得する手段と、
あらかじめ把握されている、ソイルセメントに対する土質材料の質量比が所定の値であるソイルセメントの固結試料の強度と、セメントと水の質量比と、土質材料に対する所定の粒径以下の細粒分の土粒子の質量比との関係に、取得した土質材料に対する所定の粒径以下の細粒分の土粒子の質量比を当てはめることで、この土粒子の質量比に応じたソイルセメントの固結試料の強度と、セメントと水の質量比との関係を求める手段と、
求めたソイルセメントの固結試料の強度と、セメントと水の質量比との関係に、取得したソイルセメントの未固結試料に含まれるセメントと水の質量比を当てはめることで、このセメントと水の質量比に応じたソイルセメントの固結試料の強度を求める手段とを備えることを特徴とするソイルセメントの強度判定システム。 A system that determines the strength of soil cement, which consists of cement, water, and soil materials.
A means for obtaining the mass ratio of fine-grained soil particles having a predetermined particle size or less with respect to the soil material, and
A means to obtain the mass ratio of cement and water contained in an unconsolidated sample of soil cement,
The strength of the solidified sample of soil cement in which the mass ratio of the soil material to the soil material is a predetermined value, the mass ratio of cement to water, and the fine particles of the specified particle size or less with respect to the soil material, which are known in advance. By applying the mass ratio of fine-grained soil particles with a predetermined particle size or less to the acquired soil material, the soil cement is solidified according to the mass ratio of the soil particles. A means to determine the relationship between the strength of the sample and the mass ratio of soil and water,
By applying the mass ratio of cement and water contained in the obtained unsolidified sample of soil cement to the relationship between the obtained strength of the solidified sample of soil cement and the mass ratio of cement and water, this cement and water A soil cement strength determination system comprising a means for determining the strength of a solidified sample of soil cement according to the mass ratio of the soil cement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017239659A JP6960840B2 (en) | 2017-12-14 | 2017-12-14 | Soil cement strength judgment method and strength judgment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017239659A JP6960840B2 (en) | 2017-12-14 | 2017-12-14 | Soil cement strength judgment method and strength judgment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019105118A JP2019105118A (en) | 2019-06-27 |
JP6960840B2 true JP6960840B2 (en) | 2021-11-05 |
Family
ID=67062342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017239659A Active JP6960840B2 (en) | 2017-12-14 | 2017-12-14 | Soil cement strength judgment method and strength judgment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6960840B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623753B2 (en) * | 1987-03-03 | 1994-03-30 | 株式会社竹中工務店 | Soil column strength determination device |
JP3406121B2 (en) * | 1994-11-30 | 2003-05-12 | クニミネ工業株式会社 | Strength prediction method for soil cement |
JP2002180449A (en) * | 2000-12-12 | 2002-06-26 | Tsunetaro Iwabuchi | Method of manufacturing wet foundation improving soil |
JP3886980B2 (en) * | 2004-03-26 | 2007-02-28 | 鹿島建設株式会社 | Improved soil formulation design method |
JP5728845B2 (en) * | 2010-07-30 | 2015-06-03 | Jfeスチール株式会社 | Method for estimating strength of modified dredged soil and method for modifying dredged soil |
-
2017
- 2017-12-14 JP JP2017239659A patent/JP6960840B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019105118A (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhuang et al. | A comparative study on unfilled and filled crack propagation for rock-like brittle material | |
Consoli | A method proposed for the assessment of failure envelopes of cemented sandy soils | |
Kang et al. | Engineering behavior of cement-treated marine dredged clay during early and later stages of curing | |
Chang et al. | Maximum and minimum void ratios for sand-silt mixtures | |
Porcino et al. | The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures | |
Burton et al. | Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying | |
Garboczi et al. | Shape analysis of a reference cement | |
Liu et al. | Effects of sand and water contents on the small-strain shear modulus of loess | |
Moon et al. | Effect of fine particles on strength and stiffness of cement treated sand | |
Yio et al. | Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes | |
Kang et al. | Strength mobilization of cement-treated dredged clay during the early stages of curing | |
Liu et al. | Numerical investigation of the effects of freezing on micro-internal damage and macro-mechanical properties of cement pastes | |
Xu et al. | Microstructural characterization of fresh cement paste via random packing of ellipsoidal cement particles | |
Barnaure et al. | Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods | |
Dartois et al. | An iterative micromechanical modeling to estimate the thermal and mechanical properties of polydisperse composites with platy particles: application to anisotropic hemp and lime concretes | |
Mousavi et al. | Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength | |
JP2015059325A (en) | Compressive strength estimation method for soil-cement | |
Yang et al. | Constitutive modelling of Otaniemi soft clay in both natural and reconstituted states | |
Bellato et al. | Microstructural analyses of a stabilized sand by a deep-mixing method | |
Li et al. | Simulation of the influence of intrinsic CSH aging on time-dependent relaxation of hydrating cement paste | |
JP6804739B2 (en) | Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device | |
Liu et al. | Compaction density evaluation of Soil-Rock mixtures by the additive mass method | |
Gao et al. | A novel relationship between elastic modulus and void ratio associated with principal stress for coral calcareous sand | |
Yu et al. | A new model for response of laterally loaded piles in soil-rock mixtures | |
JP6960840B2 (en) | Soil cement strength judgment method and strength judgment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6960840 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |