JP6960241B2 - Cooling control device and cooling control method for reducing agent injection valve - Google Patents

Cooling control device and cooling control method for reducing agent injection valve Download PDF

Info

Publication number
JP6960241B2
JP6960241B2 JP2017099372A JP2017099372A JP6960241B2 JP 6960241 B2 JP6960241 B2 JP 6960241B2 JP 2017099372 A JP2017099372 A JP 2017099372A JP 2017099372 A JP2017099372 A JP 2017099372A JP 6960241 B2 JP6960241 B2 JP 6960241B2
Authority
JP
Japan
Prior art keywords
reducing agent
injection valve
agent injection
amount
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017099372A
Other languages
Japanese (ja)
Other versions
JP2018193942A (en
Inventor
旭 國島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to JP2017099372A priority Critical patent/JP6960241B2/en
Publication of JP2018193942A publication Critical patent/JP2018193942A/en
Application granted granted Critical
Publication of JP6960241B2 publication Critical patent/JP6960241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気管内に尿素水を噴射する還元剤噴射弁の冷却制御装置及び冷却制御方法に関する。 The present invention relates to a cooling control device and a cooling control method for a reducing agent injection valve that injects urea water into an exhaust pipe of an internal combustion engine.

ディーゼルエンジン等の内燃機関の排気中に粒子状物質(以下、「PM(Particulate matter)」ともいう)及びNOX(窒素酸化物)が含まれる場合がある。排気中のPMを除去するために、排気通路には粒子状物質を捕集するパティキュレートフィルタが備えられる。排気中のNOXを除去するために、NOXを還元して浄化する還元触媒を含む尿素SCR(Selective Catalytic Reduction)システムが備えられる。尿素SCRシステムは、還元剤として尿素水を用いて、尿素水から生成されるアンモニアを排気中のNOXと反応させることによってNOXを分解する。 Particulate matter (hereinafter, also referred to as “PM (Particulate matter)”) and NO X (nitrogen oxide) may be contained in the exhaust of an internal combustion engine such as a diesel engine. In order to remove PM in the exhaust, the exhaust passage is provided with a particulate filter that collects particulate matter. In order to remove NO X in the exhaust gas, a urea SCR (Selective Catalytic Reduction) system including a reduction catalyst that reduces and purifies NO X is provided. The urea SCR system decomposes NO X by reacting ammonia produced from the urea water with NO X in the exhaust gas using urea water as a reducing agent.

尿素水は、還元触媒の上流側の排気管に設けられた還元剤噴射弁により排気通路内に供給される。還元剤噴射弁が高温の排気に晒されると、アクチュエータである電磁コイルの溶損等、熱による損傷を生じる場合がある。これに対して、高温の排気に晒される尿素添加弁(還元剤噴射弁)の温度を温度補償範囲における上限温度未満に抑えるために目標瞬時供給量を加算して尿素水を噴射させることにより還元剤噴射弁を冷却する技術が開示されている。 Urea water is supplied into the exhaust passage by a reducing agent injection valve provided in the exhaust pipe on the upstream side of the reduction catalyst. When the reducing agent injection valve is exposed to high-temperature exhaust gas, it may be damaged by heat such as melting of the electromagnetic coil which is an actuator. On the other hand, in order to keep the temperature of the urea addition valve (reducing agent injection valve) exposed to high temperature exhaust below the upper limit temperature in the temperature compensation range, the target instantaneous supply amount is added and urea water is injected to reduce the temperature. A technique for cooling an agent injection valve is disclosed.

特開2017−14912号公報Japanese Unexamined Patent Publication No. 2017-14912

特許文献1に記載の排気浄化装置は、内燃機関から排出される排気の流量が多いほど、あるいは、排気の温度が高いほど、排気から還元剤噴射弁に与えられる熱量が大きくなることに鑑みて、アクセル操作量や機関回転数(内燃機関の回転数)に応じて目標瞬時供給量を設定している。しかしながら、排気通路における還元剤噴射弁の取付位置よりも上流側にパティキュレートフィルタが備えられている場合、パティキュレートフィルタも熱源となり得る。具体的には、パティキュレートフィルタにおけるPMの捕集量が増えた場合等に、捕集されているPMを燃焼させる再生制御が実行される。PMの燃焼時には排気の温度が上昇するだけでなく、燃焼ガスが発生することによって還元剤噴射弁の取付位置を流れるガス量が増加する。したがって、内燃機関から排出される排気の流量及び温度に応じて還元剤噴射弁を冷却するための噴射を行うのみでは十分とは言えない。 In the exhaust gas purification device described in Patent Document 1, the amount of heat given to the reducing agent injection valve from the exhaust increases as the flow rate of the exhaust gas discharged from the internal combustion engine increases or the temperature of the exhaust gas increases. , The target instantaneous supply amount is set according to the accelerator operation amount and the engine rotation speed (internal combustion engine rotation speed). However, when the particulate filter is provided on the upstream side of the mounting position of the reducing agent injection valve in the exhaust passage, the particulate filter can also be a heat source. Specifically, when the amount of PM collected by the particulate filter increases, regeneration control for burning the collected PM is executed. When the PM is burned, not only the temperature of the exhaust gas rises, but also the amount of gas flowing through the mounting position of the reducing agent injection valve increases due to the generation of combustion gas. Therefore, it cannot be said that it is sufficient to perform injection for cooling the reducing agent injection valve according to the flow rate and temperature of the exhaust gas discharged from the internal combustion engine.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、内燃機関から排出される排気の熱量と併せて、パティキュレートフィルタを熱源として生じる熱量を考慮して還元剤噴射弁の冷却制御を実行可能な、還元剤噴射弁の冷却制御装置及び冷却制御方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to reduce the amount of heat generated by using a particulate filter as a heat source in addition to the amount of heat of exhaust discharged from an internal combustion engine. It is an object of the present invention to provide a cooling control device for a reducing agent injection valve and a cooling control method capable of executing cooling control of the agent injection valve.

上記課題を解決するために、本発明のある観点によれば、内燃機関の排気中の粒子状物質を捕集するパティキュレートフィルタの下流側、かつ、排気中のNOを還元して浄化する還元触媒の上流側の排気管に設けられた還元剤噴射弁を冷却するための冷却制御装置において、排気から還元剤噴射弁への受熱量に応じた状態値、及び、還元剤噴射弁から還元剤への放熱量に応じた状態値に基づいて還元剤噴射弁の先端温度を推定する先端温度推定部と、先端温度が閾値を超えるときに、還元剤噴射弁から噴射する還元剤の噴射量を増大させる冷却噴射制御部と、を備え、受熱量に応じた状態値は、少なくとも排気流量の値を含み、先端温度推定部は、パティキュレートフィルタの再生中に、内燃機関から排出される排気流量を、パティキュレートフィルタの再生による燃焼ガスの発生に応じて増大補正して先端温度を推定する、還元剤噴射弁の冷却制御装置が提供される。 In order to solve the above problems, according to a certain viewpoint of the present invention, NO X in the exhaust gas is reduced and purified on the downstream side of the particulate filter that collects the particulate matter in the exhaust gas of the internal combustion engine. In the cooling control device for cooling the reducing agent injection valve provided in the exhaust pipe on the upstream side of the reduction catalyst, the state value according to the amount of heat received from the exhaust to the reducing agent injection valve and the reduction from the reducing agent injection valve. The tip temperature estimation unit that estimates the tip temperature of the reducing agent injection valve based on the state value according to the amount of heat released to the agent, and the injection amount of the reducing agent that is injected from the reducing agent injection valve when the tip temperature exceeds the threshold. The state value according to the amount of heat received includes at least the value of the exhaust flow rate, and the tip temperature estimation unit is the exhaust gas discharged from the internal combustion engine during the regeneration of the particulate filter. Provided is a cooling control device for a reducing agent injection valve, which estimates the tip temperature by increasing and correcting the flow rate according to the generation of combustion gas due to the regeneration of the particulate filter.

また、上記課題を解決するために、本発明の別の観点によれば、内燃機関の排気中の粒子状物質を捕集するパティキュレートフィルタの下流側、かつ、排気中のNOを還元して浄化する還元触媒の上流側の排気管に設けられた還元剤噴射弁を冷却するための冷却制御方法において、排気から還元剤噴射弁への受熱量に応じた状態値、及び、還元剤噴射弁から還元剤への放熱量に応じた状態値に基づいて還元剤噴射弁の先端温度を推定するステップと、先端温度が閾値を超えるときに、還元剤噴射弁から噴射する還元剤の噴射量を増大させるステップと、を備え、排気から還元剤噴射弁への受熱量に応じた状態値は、少なくとも排気流量の値を含み、パティキュレートフィルタの再生中に、内燃機関から排出される排気流量を、パティキュレートフィルタの再生による燃焼ガスの発生に応じて増大補正して先端温度を推定する、還元剤噴射弁の冷却制御方法が提供される。 Further, in order to solve the above problems, according to another viewpoint of the present invention, NO X on the downstream side of the particulate filter that collects particulate matter in the exhaust gas of the internal combustion engine and in the exhaust gas is reduced. In the cooling control method for cooling the reducing agent injection valve provided in the exhaust pipe on the upstream side of the reducing agent to be purified, the state value according to the amount of heat received from the exhaust to the reducing agent injection valve and the reducing agent injection. The step of estimating the tip temperature of the reducing agent injection valve based on the state value according to the amount of heat released from the valve to the reducing agent, and the injection amount of the reducing agent injected from the reducing agent injection valve when the tip temperature exceeds the threshold value. The state value according to the amount of heat received from the exhaust to the reducing agent injection valve includes at least the value of the exhaust flow rate, and the exhaust flow rate discharged from the internal combustion engine during regeneration of the particulate filter. Is provided, a cooling control method for a reducing agent injection valve is provided, in which the tip temperature is estimated by increasing and compensating according to the generation of combustion gas due to the regeneration of the particulate filter.

以上説明したように本発明によれば、内燃機関から排出される排気の熱量と併せて、パティキュレートフィルタを熱源として生じる熱量を考慮して還元剤噴射弁の冷却制御を実行することができる。 As described above, according to the present invention, it is possible to execute the cooling control of the reducing agent injection valve in consideration of the amount of heat generated by the particulate filter as a heat source in addition to the amount of heat of the exhaust gas discharged from the internal combustion engine.

本発明の実施の形態に係る還元剤噴射弁の冷却制御装置が適用される排気浄化システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the exhaust gas purification system to which the cooling control device of the reducing agent injection valve which concerns on embodiment of this invention is applied. 同実施形態に係る還元剤噴射弁の冷却制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the cooling control device of the reducing agent injection valve which concerns on the same embodiment. 同実施形態に係る還元剤噴射弁の冷却制御方法の例を示すフローチャートである。It is a flowchart which shows the example of the cooling control method of the reducing agent injection valve which concerns on the same embodiment. 還元剤噴射弁の先端温度の推定方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of estimating the tip temperature of a reducing agent injection valve.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

<1.車両の排気浄化システムの全体構成>
本実施形態に係る車両の制御装置が適用され得る車両に搭載される排気浄化システムの構成例について説明する。図1は、排気浄化システム10の構成例を示す模式図である。
<1. Overall configuration of vehicle exhaust purification system>
A configuration example of an exhaust gas purification system mounted on a vehicle to which the vehicle control device according to the present embodiment can be applied will be described. FIG. 1 is a schematic view showing a configuration example of the exhaust gas purification system 10.

排気浄化システム10は、ディーゼルエンジン又はガソリンエンジンに代表される内燃機関5の排気系に備えられる。本実施形態において、内燃機関5がディーゼルエンジンである例を説明する。排気浄化システム10は、内燃機関5の排気管11に配設された酸化触媒19と、パティキュレートフィルタ17と、還元触媒13と、アンモニアスリップ触媒15とを備える。酸化触媒19、パティキュレートフィルタ17、還元触媒13及びアンモニアスリップ触媒15は、排気の流れの上流側からこの順に排気管11に配設されている。排気浄化システム10は、還元触媒13の上流で排気管11内に尿素水を供給する還元剤供給装置30を備える。 The exhaust purification system 10 is provided in the exhaust system of the internal combustion engine 5 represented by a diesel engine or a gasoline engine. In this embodiment, an example in which the internal combustion engine 5 is a diesel engine will be described. The exhaust purification system 10 includes an oxidation catalyst 19 arranged in an exhaust pipe 11 of an internal combustion engine 5, a particulate filter 17, a reduction catalyst 13, and an ammonia slip catalyst 15. The oxidation catalyst 19, the particulate filter 17, the reduction catalyst 13, and the ammonia slip catalyst 15 are arranged in the exhaust pipe 11 in this order from the upstream side of the exhaust flow. The exhaust purification system 10 includes a reducing agent supply device 30 that supplies urea water into the exhaust pipe 11 upstream of the reduction catalyst 13.

酸化触媒19は、排気中に含まれる未燃の炭化水素(HC:Hydrocarbon)又は一酸化窒素(NO)等を酸化する触媒である。パティキュレートフィルタ17は、排気中のPMを捕集するフィルタである。パティキュレートフィルタ17に捕集されたPMは、適宜の時期に実行される再生制御により燃焼させられる。再生制御では、例えば内燃機関5の排気中に含まれる未燃のHCが増加され、酸化触媒19で当該HCが酸化する際に生じる酸化熱により排気温度を上昇させて、パティキュレートフィルタ17に捕集されたPMが燃焼させられる。なお、パティキュレートフィルタ17を再生する方法は、上記の例に限られない。 The oxidation catalyst 19 is a catalyst that oxidizes unburned hydrocarbons (HC: Hydrogen), nitric oxide (NO), and the like contained in the exhaust gas. The particulate filter 17 is a filter that collects PM in the exhaust gas. The PM collected by the particulate filter 17 is burned by the regeneration control executed at an appropriate time. In the regeneration control, for example, the unburned HC contained in the exhaust of the internal combustion engine 5 is increased, and the exhaust temperature is raised by the heat of oxidation generated when the HC is oxidized by the oxidation catalyst 19, and is captured by the particulate filter 17. The collected PM is burned. The method of regenerating the particulate filter 17 is not limited to the above example.

還元触媒13は、内燃機関5の排気中に含まれるNOXを還元する触媒である。還元触媒13は、還元剤供給装置30により供給される尿素水から生成されるアンモニア(NH3)を吸着し、還元触媒13に流入する排気中のNOXとNH3とを還元反応させることによってNOXを水(H2O)や窒素(N2)に分解する。還元触媒13は、触媒温度が高いほどNH3の吸着可能量が減少する特性を有する。還元触媒13は、NH3吸着量が多いほどNOXの還元効率が高くなる特性を有する。 The reduction catalyst 13 is a catalyst that reduces NO X contained in the exhaust gas of the internal combustion engine 5. The reduction catalyst 13 adsorbs ammonia (NH 3 ) generated from urea water supplied by the reducing agent supply device 30, and causes a reduction reaction between NO X and NH 3 in the exhaust flowing into the reduction catalyst 13. NO X is decomposed into water (H 2 O) and nitrogen (N 2). The reduction catalyst 13 has a characteristic that the adsorbable amount of NH 3 decreases as the catalyst temperature increases. The reduction catalyst 13 has a characteristic that the reduction efficiency of NO X increases as the amount of NH 3 adsorbed increases.

アンモニアスリップ触媒15は、排気中に含まれるNH3を分解する触媒である。アンモニアスリップ触媒15は、還元触媒13の下流側に流出(アンモニアスリップ)したNH3を酸化し分解することにより、大気中へのNH3の放出を抑制する。 The ammonia slip catalyst 15 is a catalyst that decomposes NH 3 contained in the exhaust gas. The ammonia slip catalyst 15 oxidizes and decomposes NH 3 that has flowed out (ammonia slip) to the downstream side of the reduction catalyst 13 to suppress the release of NH 3 into the atmosphere.

還元剤供給装置30は、還元触媒13よりも上流の排気管11に固定された還元剤噴射弁31と、尿素水を圧送するポンプ41とを備える。ポンプ41及び還元剤噴射弁31の駆動は、還元剤噴射制御装置100によって制御される。尿素水としては、例えば凍結温度が最も低い、約32.5%濃度の尿素水が用いられる。尿素水は、貯蔵タンク50に収容されている。貯蔵タンク50には、尿素水の温度を検出するタンク温度センサ51が備えられている。タンク温度センサ51から出力される信号は、還元剤噴射制御装置100に送信される。尿素水の供給量は、排気中に含まれるNOXの濃度や、還元触媒13の温度、還元触媒13におけるNH3の吸着量等に基づいて設定され、還元触媒13の下流側へのNOXあるいはNH3の流出量が許容値を超えないように制御される。 The reducing agent supply device 30 includes a reducing agent injection valve 31 fixed to an exhaust pipe 11 upstream of the reducing catalyst 13 and a pump 41 for pumping urea water. The drive of the pump 41 and the reducing agent injection valve 31 is controlled by the reducing agent injection control device 100. As the urea water, for example, urea water having the lowest freezing temperature and a concentration of about 32.5% is used. Urea water is stored in the storage tank 50. The storage tank 50 is provided with a tank temperature sensor 51 that detects the temperature of urea water. The signal output from the tank temperature sensor 51 is transmitted to the reducing agent injection control device 100. The amount of urea water supplied is set based on the concentration of NO X contained in the exhaust gas, the temperature of the reduction catalyst 13, the amount of NH 3 adsorbed by the reduction catalyst 13, and the amount of NO X adsorbed to the downstream side of the reduction catalyst 13. Alternatively, the outflow of NH 3 is controlled so as not to exceed the permissible value.

ポンプ41としては、例えば電動式のダイヤフラムポンプや電動式のギヤポンプが用いられる。本実施形態においては、還元剤供給装置30は、ポンプ41から還元剤噴射弁31に供給される尿素水の圧力を検出するための圧力センサ43を備える。圧力センサ43から出力される信号は、還元剤噴射制御装置100に送信される。還元剤噴射制御装置100は、圧力センサ43のセンサ信号に基づいて、還元剤噴射弁31に供給される尿素水の圧力が所定の目標値で維持されるようにポンプ41の出力をフィードバック制御する。 As the pump 41, for example, an electric diaphragm pump or an electric gear pump is used. In the present embodiment, the reducing agent supply device 30 includes a pressure sensor 43 for detecting the pressure of urea water supplied from the pump 41 to the reducing agent injection valve 31. The signal output from the pressure sensor 43 is transmitted to the reducing agent injection control device 100. The reducing agent injection control device 100 feedback-controls the output of the pump 41 based on the sensor signal of the pressure sensor 43 so that the pressure of the urea water supplied to the reducing agent injection valve 31 is maintained at a predetermined target value. ..

還元剤噴射弁31としては、例えば通電のオンオフにより開弁及び閉弁が切り替えられる電磁駆動式の還元剤噴射弁が用いられる。電磁駆動式の還元剤噴射弁31は、アクチュエータとしての電磁コイルを備え、電磁コイルへの通電時にピストンが移動して開弁する。本実施形態において、還元剤噴射弁31に供給される尿素水の圧力が所定の目標値となるように制御されており、還元剤噴射制御装置100は、尿素水の指示噴射量に応じて噴射時間を制御する。 As the reducing agent injection valve 31, for example, an electromagnetically driven reducing agent injection valve whose opening and closing can be switched by turning on / off the energization is used. The electromagnetically driven reducing agent injection valve 31 includes an electromagnetic coil as an actuator, and the piston moves to open the valve when the electromagnetic coil is energized. In the present embodiment, the pressure of the urea water supplied to the reducing agent injection valve 31 is controlled to be a predetermined target value, and the reducing agent injection control device 100 injects the urea water according to the indicated injection amount of the urea water. Control the time.

排気浄化システム10は、排気温度センサ21、差圧センサ27及び下流側NOX濃度センサ23を備える。排気温度センサ21は、還元触媒13よりも上流の排気管11に設けられ、排気温度を検出する。差圧センサ27は、パティキュレートフィルタ17の上流と下流との圧力差を検出する。下流側NOX濃度センサ23は、還元触媒13よりも下流の排気管11に設けられ、主として還元触媒13の下流側のNOX濃度(下流側NOX濃度)を検出する。これらのセンサから出力される信号は、還元剤噴射制御装置100に送信される。 The exhaust gas purification system 10 includes an exhaust temperature sensor 21, a differential pressure sensor 27, and a downstream NO X concentration sensor 23. The exhaust temperature sensor 21 is provided in the exhaust pipe 11 upstream of the reduction catalyst 13 and detects the exhaust temperature. The differential pressure sensor 27 detects the pressure difference between the upstream and downstream of the particulate filter 17. The downstream NO X concentration sensor 23 is provided in the exhaust pipe 11 downstream of the reduction catalyst 13, and mainly detects the NO X concentration on the downstream side of the reduction catalyst 13 (downstream NO X concentration). The signals output from these sensors are transmitted to the reducing agent injection control device 100.

<2.冷却制御装置の構成例>
次に、本実施形態に係る還元剤噴射制御装置100の構成例について説明する。本実施形態において、還元剤噴射制御装置100が還元剤噴射弁31の冷却制御装置として機能する。図2は、本実施形態に係る還元剤噴射制御装置100の構成例を説明するためのブロック図である。
<2. Configuration example of cooling control device>
Next, a configuration example of the reducing agent injection control device 100 according to the present embodiment will be described. In the present embodiment, the reducing agent injection control device 100 functions as a cooling control device for the reducing agent injection valve 31. FIG. 2 is a block diagram for explaining a configuration example of the reducing agent injection control device 100 according to the present embodiment.

還元剤噴射制御装置100は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサと電気回路等を備えて構成され、プロセッサがコンピュータプログラムを実行することにより種々の機能が実現される装置である。なお、還元剤噴射制御装置100の一部又は全部は、例えば、マイコン、マイクロプロセッサユニット等で構成されていてもよく、また、ファームウェア等の更新可能なもので構成されていてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。 The reducing agent injection control device 100 is configured to include a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), an electric circuit, and the like, and various functions are realized by the processor executing a computer program. It is a device. A part or all of the reducing agent injection control device 100 may be composed of, for example, a microcomputer, a microprocessor unit, or the like, or may be composed of an updatable device such as firmware. It may be a program module or the like executed by a command from a CPU or the like.

還元剤噴射制御装置100は、冷却噴射制御部112と、先端温度推定部114と、噴射量算出部118と、噴射弁駆動制御部120と、ポンプ駆動制御部122と、記憶部124とを備える。還元剤噴射制御装置100は、排気温度センサ21のセンサ信号S_tg、差圧センサ27のセンサ信号S_dp、下流側NOX濃度センサ23のセンサ信号S_nd、タンク温度センサ51のセンサ信号S_tu、及び圧力センサ43のセンサ信号S_puを取得する。還元剤噴射制御装置100は、例えばCAN(Controller Area Network)等の通信手段を介して、内燃機関5の回転数Neや燃料噴射量Q等の内燃機関5の運転状態の情報を取得可能になっている。 The reducing agent injection control device 100 includes a cooling injection control unit 112, a tip temperature estimation unit 114, an injection amount calculation unit 118, an injection valve drive control unit 120, a pump drive control unit 122, and a storage unit 124. .. The reducing agent injection control device 100 includes a sensor signal S_tg of the exhaust temperature sensor 21, a sensor signal S_dp of the differential pressure sensor 27, a sensor signal S_nd of the downstream NO X concentration sensor 23, a sensor signal S_tu of the tank temperature sensor 51, and a pressure sensor. Acquires 43 sensor signals S_pu. The reducing agent injection control device 100 can acquire information on the operating state of the internal combustion engine 5 such as the rotation speed Ne of the internal combustion engine 5 and the fuel injection amount Q via a communication means such as CAN (Controller Area Network). ing.

(2−1.記憶部)
記憶部124は、RAM(Random Access Memory)又はROM(Read Only Memory)等の一つ又は複数の記憶素子を有する。記憶部124は、プロセッサにより実行されるコンピュータプログラム、演算に用いられる制御パラメータ、プロセッサによる演算結果、及び取得したセンサ値等を記憶する。記憶部124は、HDD(Hard Disk Drive)やストレージ装置等の他の記憶装置であってもよい。
(2-1. Memory unit)
The storage unit 124 has one or more storage elements such as a RAM (Random Access Memory) or a ROM (Read Only Memory). The storage unit 124 stores a computer program executed by the processor, control parameters used in the calculation, a calculation result by the processor, an acquired sensor value, and the like. The storage unit 124 may be another storage device such as an HDD (Hard Disk Drive) or a storage device.

(2−2.ポンプ駆動制御部)
ポンプ駆動制御部122は、プロセッサ及び電気回路により構成され、ポンプ41の駆動を制御する。本実施形態において、ポンプ駆動制御部122は、圧力センサ43により検出される尿素水の圧力Puと、あらかじめ設定した目標圧力との差分に基づいてポンプ41の出力をフィードバック制御する。これにより、還元剤噴射弁31に供給される尿素水の圧力Puが目標圧力の近傍の値で維持される。
(2-2. Pump drive control unit)
The pump drive control unit 122 is composed of a processor and an electric circuit, and controls the drive of the pump 41. In the present embodiment, the pump drive control unit 122 feedback-controls the output of the pump 41 based on the difference between the pressure Pu of urea water detected by the pressure sensor 43 and the preset target pressure. As a result, the pressure Pu of the urea water supplied to the reducing agent injection valve 31 is maintained at a value near the target pressure.

(2−3.噴射量算出部)
噴射量算出部118は、プロセッサ及び電気回路により構成され、尿素水の指示噴射量Q_ureaを算出する。尿素水溶液の指示噴射量Q_ureaは、内燃機関5から排出される排気中のNOXを浄化するために必要なNH3量と、還元触媒13の目標NH3吸着量に対する過不足のNH3量との和に応じて設定される。排気中のNOXを浄化するために必要なNH3量は、還元触媒13の上流側のNOX流量に基づいて算出することができる。還元触媒13の上流側のNOX流量は、内燃機関5の運転状態に基づいて算出される排気中のNOX濃度NOX_usと排気流量F_gasとを掛けて求めることができる。噴射量算出部118は、一噴射サイクルに相当する単位時間当たりのNOX流量を求め、噴射サイクルごとに排気中のNOXを浄化するために必要なNH3量を算出する。
(2-3. Injection amount calculation unit)
The injection amount calculation unit 118 is composed of a processor and an electric circuit, and calculates the indicated injection amount Q_urea of urea water. The indicated injection amount Q_urea of the urea aqueous solution is the amount of NH 3 required to purify the NO X in the exhaust gas discharged from the internal combustion engine 5, and the amount of NH 3 in excess or deficiency with respect to the target NH 3 adsorption amount of the reduction catalyst 13. It is set according to the sum of. The amount of NH 3 required to purify NO X in the exhaust gas can be calculated based on the NO X flow rate on the upstream side of the reduction catalyst 13. The NO X flow rate on the upstream side of the reduction catalyst 13 can be obtained by multiplying the NO X concentration NO X _us in the exhaust gas calculated based on the operating state of the internal combustion engine 5 by the exhaust gas flow rate F_gas. The injection amount calculation unit 118 obtains the NO X flow rate per unit time corresponding to one injection cycle, and calculates the NH 3 amount required to purify the NO X in the exhaust gas for each injection cycle.

目標NH3吸着量に対する過不足のNH3量は、還元触媒13の目標NH3吸着量から現在のNH3吸着量を引くことにより算出することができる。目標NH3吸着量は、触媒温度T_cat及び排気流量F_gasに基づいて算出することができる。現在のNH3吸着量は、例えばNH3吸着量がゼロの未使用時から継続的に、尿素水の指示噴射量Q_ureaに対応するNH3量(正の値)と、NOXの浄化に用いられたNH3量(負の値)とを積算し続けることにより算出することができる。還元剤噴射弁31の冷却のために尿素水の指示噴射量Q_ureaを増量した場合においては、還元触媒13の下流側に流出するNH3(負の値)が加算されてもよい。なお、還元触媒13におけるNH3の吸着可能量は触媒温度T_catに応じて変化するため、目標NH3吸着量に対する過不足のNH3量は正負いずれの値にもなり得る。 NH 3 amount of excess or deficiency with respect to the target adsorbed NH 3 amount can be calculated by subtracting the current adsorbed NH 3 amount from the target NH 3 adsorption amount of the reduction catalyst 13. The target NH 3 adsorption amount can be calculated based on the catalyst temperature T_cat and the exhaust flow rate F_gas. The current NH 3 adsorption amount is, for example, continuously used for purifying NO X and the NH 3 amount (positive value) corresponding to the indicated injection amount Q_urea of urea water continuously from the time when the NH 3 adsorption amount is zero when not in use. It can be calculated by continuing to integrate the amount of NH 3 (negative value). When the indicated injection amount Q_urea of urea water is increased for cooling the reducing agent injection valve 31, NH 3 (negative value) flowing out to the downstream side of the reduction catalyst 13 may be added. Since the adsorbable amount of NH 3 in the reduction catalyst 13 changes according to the catalyst temperature T_cat, the excess or deficiency of the NH 3 amount with respect to the target NH 3 adsorption amount can be either positive or negative.

噴射量算出部118は、排気中のNOXを浄化するために必要なNH3量と目標NH3吸着量に対する過不足のNH3量とを合わせたNH3量を生成可能な尿素水の量を、一噴射サイクルの指示噴射量Q_ureaとして設定する。 Injection amount calculation unit 118, the amount of the NH 3 amount and the target NH 3 NH 3 amount capable of producing urea water combined with NH 3 amount of excess or deficiency relative adsorbed amount needed to purify NO X in the exhaust gas Is set as the indicated injection amount Q_urea of one injection cycle.

(2−4.噴射弁駆動制御部)
噴射弁駆動制御部120は、プロセッサ及び電気回路により構成され、還元剤噴射弁31の駆動を制御する。噴射弁駆動制御部120は、噴射量算出部118で算出された指示噴射量Q_ureaに基づいて還元剤噴射弁31の通電制御を行う。本実施形態において、還元剤噴射弁31に供給される尿素水の圧力Puは目標圧力の近傍の値で維持されており、噴射弁駆動制御部120は、指示噴射量Q_ureaに応じて還元剤噴射弁31の駆動デューティ比を設定して、還元剤噴射弁31の通電制御を行う。具体的に、噴射弁駆動制御部120は、あらかじめ所定の時間間隔で噴射開始時期が設定された一噴射サイクルごとに、全体の時間に対する通電時間の比である駆動デューティ比を設定して、通電制御を行う。
(2-4. Injection valve drive control unit)
The injection valve drive control unit 120 is composed of a processor and an electric circuit, and controls the drive of the reducing agent injection valve 31. The injection valve drive control unit 120 controls the energization of the reducing agent injection valve 31 based on the indicated injection amount Q_urea calculated by the injection amount calculation unit 118. In the present embodiment, the pressure Pu of the urea water supplied to the reducing agent injection valve 31 is maintained at a value near the target pressure, and the injection valve drive control unit 120 injects the reducing agent according to the indicated injection amount Q_urea. The drive duty ratio of the valve 31 is set to control the energization of the reducing agent injection valve 31. Specifically, the injection valve drive control unit 120 sets the drive duty ratio, which is the ratio of the energization time to the total time, for each injection cycle in which the injection start time is set in advance at predetermined time intervals, and energizes. Take control.

(2−5.先端温度推定部)
先端温度推定部114は、排気から還元剤噴射弁31への受熱量に応じた状態値、及び、還元剤噴射弁31から尿素水への放熱量に応じた状態値に基づいて還元剤噴射弁31の先端温度T_tipを推定する。本実施形態において、先端温度推定部114は、還元剤噴射弁31の電磁コイル部分の温度T_coilを推定するとともに、電磁コイル部分の温度T_coilに対して、排気から還元剤噴射弁31への受熱により上昇する温度T1を加算するとともに、還元剤噴射弁31から尿素水への放熱により低下する温度T2を減算して先端温度T_tipを算出する。
(2-5. Tip temperature estimation unit)
The tip temperature estimation unit 114 is a reducing agent injection valve based on a state value according to the amount of heat received from the exhaust to the reducing agent injection valve 31 and a state value according to the amount of heat radiated from the reducing agent injection valve 31 to urea water. The tip temperature T_tip of 31 is estimated. In the present embodiment, the tip temperature estimation unit 114 estimates the temperature T_coil of the electromagnetic coil portion of the reducing agent injection valve 31, and receives heat from the exhaust to the reducing agent injection valve 31 with respect to the temperature T_coil of the electromagnetic coil portion. The tip temperature T_tip is calculated by adding the rising temperature T1 and subtracting the temperature T2 that falls due to heat dissipation from the reducing agent injection valve 31 to the urea water.

電磁コイル部分の温度T_coilは、還元剤噴射弁31の電源電圧Vと、還元剤噴射弁31への電流供給回路の抵抗値Rと、還元剤噴射弁31への供給電流値Iとに基づいて推定することができる。排気から還元剤噴射弁31への受熱により上昇する温度T1は、受熱量に応じた状態値である排気流量F_gas及び排気温度T_gasに基づいて算出することができる。還元剤噴射弁31から尿素水への放熱により低下する温度T2は、放熱量に応じた状態値である尿素水の指示噴射量Q_urea及び温度T_ureaに基づいて算出することができる。 The temperature T_coil of the electromagnetic coil portion is based on the power supply voltage V of the reducing agent injection valve 31, the resistance value R of the current supply circuit to the reducing agent injection valve 31, and the supply current value I to the reducing agent injection valve 31. Can be estimated. The temperature T1 that rises due to heat reception from the exhaust to the reducing agent injection valve 31 can be calculated based on the exhaust flow rate F_gas and the exhaust temperature T_gas, which are state values according to the amount of heat received. The temperature T2, which decreases due to heat radiation from the reducing agent injection valve 31 to urea water, can be calculated based on the indicated injection amount Q_urea of urea water and the temperature T_urea, which are state values according to the heat radiation amount.

また、先端温度推定部114は、パティキュレートフィルタ17の再生中には、受熱量に応じた状態値である排気流量F_gas又は排気温度T_gasの少なくとも一方を増大して先端温度T_tipを推定する。パティキュレートフィルタ17の再生中にはパティキュレートフィルタ17に捕集されていたPMが燃焼するため、パティキュレートフィルタ17の再生制御を行わない場合に比べて、パティキュレートフィルタ17の下流側の排気温度T_gasが上昇する。また、パティキュレートフィルタ17の再生中にはPMの燃焼により燃焼ガスが発生するため、パティキュレートフィルタ17の再生制御を行わない場合に比べて、パティキュレートフィルタ17の下流側の排気流量F_gasが増大する。 Further, the tip temperature estimation unit 114 estimates the tip temperature T_tip by increasing at least one of the exhaust flow rate F_gas and the exhaust temperature T_gas, which are state values according to the amount of heat received, during the regeneration of the particulate filter 17. Since the PM collected in the particulate filter 17 burns during the regeneration of the particulate filter 17, the exhaust temperature on the downstream side of the particulate filter 17 is higher than that in the case where the regeneration control of the particulate filter 17 is not performed. T_gas rises. Further, since combustion gas is generated by combustion of PM during regeneration of the particulate filter 17, the exhaust flow rate F_gas on the downstream side of the particulate filter 17 increases as compared with the case where the regeneration control of the particulate filter 17 is not performed. do.

このため、先端温度推定部114は、パティキュレートフィルタ17の再生中に、熱源としてのパティキュレートフィルタ17から発生した熱量の影響を考慮して先端温度T_tipを推定するために、排気流量F_gas又は排気温度T_gasの少なくとも一方を増大補正する。例えば先端温度推定部114は、PMの燃焼により発生する燃焼ガスの流量F_gas_regを排気流量F_gasに加算してもよい。また、先端温度推定部114は、PMの燃焼に起因する上昇温度T_regを排気温度T_gasに加算してもよい。この場合の上昇温度T_regは、排気温度T_gasの上昇分だけでなく、パティキュレートフィルタ17から排気管11を介して還元剤噴射弁31に伝達される熱量を考慮した温度の上昇分を含んでもよい。 Therefore, the tip temperature estimation unit 114 estimates the tip temperature T_tip in consideration of the influence of the amount of heat generated from the particulate filter 17 as a heat source during the regeneration of the particulate filter 17, so that the exhaust flow rate F_gas or the exhaust can be exhausted. Increase and correct at least one of the temperatures T_gas. For example, the tip temperature estimation unit 114 may add the flow rate F_gas_reg of the combustion gas generated by the combustion of PM to the exhaust flow rate F_gas. Further, the tip temperature estimation unit 114 may add the rising temperature T_reg due to the combustion of PM to the exhaust temperature T_gas. The rise temperature T_reg in this case may include not only the rise in the exhaust temperature T_gas but also the rise in the temperature considering the amount of heat transferred from the particulate filter 17 to the reducing agent injection valve 31 via the exhaust pipe 11. ..

(2−6.冷却噴射制御部)
冷却噴射制御部112は、先端温度推定部114により推定された先端温度T_tipが閾値T_tip0を超えるときに、還元剤噴射弁31から噴射する尿素水の噴射量を増大させる。例えば冷却噴射制御部112は、尿素水を増大させる制御(以下、「冷却制御」ともいう。)を実行することで、噴射量算出部118では、算出された指示噴射量Q_ureaに対して所定量が加算され、あるいは、所定の係数が掛けられ、指示噴射量Q_ureaが増量補正される。これにより、還元剤噴射弁31から尿素水への放熱量を増大させて、還元剤噴射弁31の冷却効率を向上する。
(2-6. Cooling injection control unit)
The cooling injection control unit 112 increases the injection amount of urea water injected from the reducing agent injection valve 31 when the tip temperature T_tip estimated by the tip temperature estimation unit 114 exceeds the threshold value T_tip0. For example, the cooling injection control unit 112 executes a control for increasing urea water (hereinafter, also referred to as “cooling control”), so that the injection amount calculation unit 118 performs a predetermined amount with respect to the calculated indicated injection amount Q_urea. Is added or a predetermined coefficient is multiplied, and the indicated injection amount Q_urea is increased and corrected. As a result, the amount of heat radiated from the reducing agent injection valve 31 to the urea water is increased, and the cooling efficiency of the reducing agent injection valve 31 is improved.

<3.還元剤噴射制御装置の動作例>
次に、本実施形態に係る還元剤噴射弁の冷却制御装置としての還元剤噴射制御装置100の動作例について説明する。図3は、還元剤噴射制御装置100による冷却噴射制御処理の一例を示すフローチャートである。
<3. Operation example of reducing agent injection control device>
Next, an operation example of the reducing agent injection control device 100 as the cooling control device for the reducing agent injection valve according to the present embodiment will be described. FIG. 3 is a flowchart showing an example of the cooling injection control process by the reducing agent injection control device 100.

まず、還元剤噴射制御装置100の冷却噴射制御部112は、パティキュレートフィルタ17の再生中であるか否かを判別する(ステップS11)。判別方法は特に限定されない。例えばパティキュレートフィルタ17の再生制御の実行中であることを示すフラグが立てられ、あるいは、実行信号が入力されている場合に、冷却噴射制御部112はパティキュレートフィルタ17の再生中であると判定してもよい。 First, the cooling injection control unit 112 of the reducing agent injection control device 100 determines whether or not the particulate filter 17 is being regenerated (step S11). The discrimination method is not particularly limited. For example, when a flag indicating that the regeneration control of the particulate filter 17 is being executed is set or an execution signal is input, the cooling injection control unit 112 determines that the particulate filter 17 is being regenerated. You may.

パティキュレートフィルタ17の再生中である場合(S11/Yes)、還元剤噴射制御装置100の先端温度推定部114は、還元剤噴射弁31の先端温度T_tipの推定に用いる補正量を算出する(ステップS13)。例えば先端温度推定部114は、増大補正に用いる排気の流量F_gas_reg及び上昇温度T_regを算出する。一方、パティキュレートフィルタ17の再生中でない場合(S11/No)、先端温度推定部114は、還元剤噴射弁31の先端温度T_tipの推定に用いる補正量をゼロに設定する(ステップS15)。先端温度推定部114は、ステップS13又はステップS15において補正量を設定した後、先端温度T_tipを推定する(ステップS17)。 When the particulate filter 17 is being regenerated (S11 / Yes), the tip temperature estimation unit 114 of the reducing agent injection control device 100 calculates a correction amount used for estimating the tip temperature T_tip of the reducing agent injection valve 31 (step). S13). For example, the tip temperature estimation unit 114 calculates the exhaust flow rate F_gas_reg and the rise temperature T_reg used for the increase correction. On the other hand, when the particulate filter 17 is not being regenerated (S11 / No), the tip temperature estimation unit 114 sets the correction amount used for estimating the tip temperature T_tip of the reducing agent injection valve 31 to zero (step S15). The tip temperature estimation unit 114 estimates the tip temperature T_tip after setting the correction amount in step S13 or step S15 (step S17).

図4は、先端温度T_tipを推定する演算処理の一例を示す説明図である。図4に示した先端温度T_tipの推定方法の例では、還元剤噴射弁31の電磁コイルの温度T_coilに対して、還元剤噴射弁31が排気あるいは排気管から受熱して上昇する温度T1を加算するとともに、尿素水の噴射により低下する温度T2を減算した値に基づいて先端温度T_tipを算出する。 FIG. 4 is an explanatory diagram showing an example of arithmetic processing for estimating the tip temperature T_tip. In the example of the tip temperature T_tip estimation method shown in FIG. 4, the temperature T1 at which the reducing agent injection valve 31 receives heat from the exhaust or the exhaust pipe and rises is added to the temperature T_coil of the electromagnetic coil of the reducing agent injection valve 31. At the same time, the tip temperature T_tip is calculated based on the value obtained by subtracting the temperature T2 that decreases due to the injection of urea water.

先端温度推定部114は、受熱量の状態値である排気温度T_gas及び排気流量F_gasに基づいて、還元剤噴射弁31が排気あるいは排気管から受ける熱量により上昇する温度T1を算出する。本実施形態では、排気温度T_gasは、排気温度センサ21により検出される。また、排気流量F_gasは、内燃機関5の運転状態に基づいて推定される。先端温度推定部114は、あらかじめ設定される排気あるいは排気管11から還元剤噴射弁31への熱伝達係数、又は排気温度T_gasあるいは排気流量F_gasの測定時刻からの遅れ時間に関連する係数のうちの少なくとも一つの係数を用いて、排気温度T_gas及び排気流量F_gasに基づき受熱により上昇する温度T_tipを算出してもよい。 The tip temperature estimation unit 114 calculates the temperature T1 that rises due to the amount of heat received by the reducing agent injection valve 31 from the exhaust or the exhaust pipe, based on the exhaust temperature T_gas and the exhaust flow rate F_gas, which are the state values of the amount of heat received. In this embodiment, the exhaust temperature T_gas is detected by the exhaust temperature sensor 21. Further, the exhaust flow rate F_gas is estimated based on the operating state of the internal combustion engine 5. The tip temperature estimation unit 114 has a preset heat transfer coefficient from the exhaust or exhaust pipe 11 to the reducing agent injection valve 31, or a coefficient related to a delay time from the measurement time of the exhaust temperature T_gas or the exhaust flow rate F_gas. At least one coefficient may be used to calculate the temperature T_tip that rises due to heat reception based on the exhaust temperature T_gas and the exhaust flow rate F_gas.

また、先端温度推定部114は、パティキュレートフィルタ17の再生中には、再生制御実行信号S_reg、パティキュレートフィルタ17の上流と下流との圧力差dP_dpf、又はパティキュレートフィルタ17の上流と下流との温度差dT_dpfのうちの少なくとも一つの情報に基づいて受熱量に応じた状態値の補正量を算出する。本実施形態では、圧力差dP_dpfは、差圧センサ27により検出することができる。下流側の排気温度T_gasは、排気温度センサ21により検出することができる。上流側の排気温度T_gasは、内燃機関5の運転状態に基づいて推定することができる。 Further, the tip temperature estimation unit 114 may use the regeneration control execution signal S_reg, the pressure difference dP_dpf between the upstream and downstream of the particulate filter 17, or the upstream and downstream of the particulate filter 17 during regeneration of the particulate filter 17. The correction amount of the state value according to the heat receiving amount is calculated based on at least one information of the temperature difference dT_dpf. In the present embodiment, the pressure difference dP_dpf can be detected by the differential pressure sensor 27. The exhaust temperature T_gas on the downstream side can be detected by the exhaust temperature sensor 21. The exhaust temperature T_gas on the upstream side can be estimated based on the operating state of the internal combustion engine 5.

補正量は、例えば排気流量F_gasに加算するPMの燃焼により発生する燃焼ガスの流量F_reg、又は、PMの燃焼に起因する上昇温度T_regのうちの少なくとも一方であってもよい。燃焼ガスの流量F_regは、排気流量F_gasに加算される補正量として用いられる。上昇温度T_regは、還元剤噴射弁31が排気あるいは排気管から受ける熱量に応じた温度に加算される補正量として用いられる。なお、図3に示したフローチャートのステップS15では、これらの補正量がゼロに設定される。 The correction amount may be at least one of, for example, the flow rate F_reg of the combustion gas generated by the combustion of PM added to the exhaust flow rate F_gas, or the rising temperature T_reg caused by the combustion of PM. The combustion gas flow rate F_reg is used as a correction amount to be added to the exhaust gas flow rate F_gas. The rising temperature T_reg is used as a correction amount to be added to the temperature according to the amount of heat received by the reducing agent injection valve 31 from the exhaust gas or the exhaust pipe. In step S15 of the flowchart shown in FIG. 3, these correction amounts are set to zero.

例えばパティキュレートフィルタ17の再生中でない場合の補正量がゼロであり、パティキュレートフィルタ17の再生制御実行信号S_regが入力されている場合の補正量が定数であってもよい。例えば、パティキュレートフィルタ17の再生制御実行信号S_regが入力されている場合において、還元剤噴射弁31が排気あるいは排気管から受ける熱量に応じた温度T1の演算処理に用いられる排気流量F_gasが一定量増大補正されてもよい。あるいは、パティキュレートフィルタ17の再生制御実行信号S_regが入力されている場合において、排気流量F_gas及び排気温度T_gasに基づいて算出される還元剤噴射弁31が受け得る熱量に応じた温度が一定量増大補正されてもよい。この場合、補正量(定数)は、あらかじめ実測あるいはシミュレーション等により取得した値に基づいて設定されてもよい。 For example, the correction amount when the particulate filter 17 is not being reproduced may be zero, and the correction amount when the reproduction control execution signal S_reg of the particulate filter 17 is input may be a constant. For example, when the regeneration control execution signal S_reg of the particulate filter 17 is input, the exhaust flow rate F_gas used for calculating the temperature T1 according to the amount of heat received by the reducing agent injection valve 31 from the exhaust or the exhaust pipe is a constant amount. It may be augmented and corrected. Alternatively, when the regeneration control execution signal S_reg of the particulate filter 17 is input, the temperature corresponding to the amount of heat that can be received by the reducing agent injection valve 31 calculated based on the exhaust flow rate F_gas and the exhaust temperature T_gas increases by a certain amount. It may be corrected. In this case, the correction amount (constant) may be set based on a value acquired in advance by actual measurement or simulation.

あるいは、パティキュレートフィルタ17の再生中の補正量が、パティキュレートフィルタ17の上流と下流との圧力差dP_dpf及びパティキュレートフィルタ17の上流と下流との温度差dT_dpfに基づいて設定されてもよい。パティキュレートフィルタ17の再生中、PMの燃焼が進行するにつれて圧力差dP_dpfが小さくなる。このため、圧力差dP_dpfの低下量に基づいて燃焼ガスの流量F_reg及び上昇温度T_regを推定することができる。また、パティキュレートフィルタ17の再生中にはPMの燃焼によりパティキュレートフィルタ17の下流側の排気温度T_gasが上昇し、上流と下流との温度差dT_dpfが大きくなる。このため、温度差dT_dpfの変化に基づいて燃焼ガスの流量F_reg及び上昇温度T_regを推定することができる。例えば先端温度推定部114は、あらかじめ記憶部124に記憶された圧力差dP_dpfと、温度差dT_dpfと、燃焼ガスの流量F_reg及び上昇温度T_regとの関係を示す特性線あるいはマップの情報を参照して、状態値の補正量を求めてもよい。 Alternatively, the correction amount during regeneration of the particulate filter 17 may be set based on the pressure difference dP_dpf between the upstream and downstream of the particulate filter 17 and the temperature difference dT_dpf between the upstream and downstream of the particulate filter 17. During the regeneration of the particulate filter 17, the pressure difference dP_dpf becomes smaller as the combustion of PM progresses. Therefore, the flow rate F_reg and the rising temperature T_reg of the combustion gas can be estimated based on the amount of decrease in the pressure difference dP_dpf. Further, during the regeneration of the particulate filter 17, the exhaust temperature T_gas on the downstream side of the particulate filter 17 rises due to the combustion of PM, and the temperature difference dT_dpf between the upstream and the downstream becomes large. Therefore, the flow rate F_reg of the combustion gas and the rising temperature T_reg can be estimated based on the change in the temperature difference dT_dpf. For example, the tip temperature estimation unit 114 refers to the characteristic line or map information showing the relationship between the pressure difference dP_dpf, the temperature difference dT_dpf, the flow rate F_reg of the combustion gas, and the rising temperature T_reg stored in the storage unit 124 in advance. , The correction amount of the state value may be obtained.

また、先端温度推定部114は、放熱量の状態値である尿素水の温度Tu_tankと、尿素水の指示噴射量Q_ureaとに基づいて、尿素水の噴射により低下する温度T2を算出する。本実施形態では、尿素水の指示噴射量Q_ureaに応じた値として還元剤噴射弁31の通電時間Ti_dos及び噴射間隔Int_dosの情報が用いられる。本実施形態では、尿素水の温度Tu_tankは、貯蔵タンク50に備えられたタンク温度センサ51により検出される。また、還元剤噴射弁31の通電時間Ti_dos及び噴射間隔Int_dosは、噴射弁駆動制御部120により設定される値である。例えば先端温度推定部114は、電磁コイルの温度T_coilに温度T1を加算した値から尿素水の温度Tu_tankを減算し、還元剤噴射弁31の噴射状態に応じたデューティ比係数を掛けて、放熱により低下する温度T2を算出する。尿素水の噴射量が多いほど、通電時間Ti_dosは長く、あるいは、噴射間隔Int_dosが短くなり、これに伴ってデューティ比係数が大きくなるように設定されている。したがって、尿素水の噴射量が多いほど放熱により低下する温度T2は大きくなる。 Further, the tip temperature estimation unit 114 calculates the temperature T2 that is lowered by the injection of urea water based on the temperature Tu_tank of urea water, which is the state value of the amount of heat radiation, and the indicated injection amount Q_urea of urea water. In this embodiment, information on the energization time Ti_dos and the injection interval Int_dos of the reducing agent injection valve 31 is used as values according to the indicated injection amount Q_urea of urea water. In the present embodiment, the temperature Tu_tank of urea water is detected by the tank temperature sensor 51 provided in the storage tank 50. Further, the energizing time Ti_dos and the injection interval Int_dos of the reducing agent injection valve 31 are values set by the injection valve drive control unit 120. For example, the tip temperature estimation unit 114 subtracts the temperature Tu_tank of urea water from the value obtained by adding the temperature T1 to the temperature T_coil of the electromagnetic coil, multiplies it by the duty ratio coefficient according to the injection state of the reducing agent injection valve 31, and dissipates heat. Calculate the decreasing temperature T2. The larger the amount of urea water injected, the longer the energization time Ti_dos or the shorter the injection interval Int_dos, and the duty ratio coefficient is set to increase accordingly. Therefore, the larger the amount of urea water injected, the larger the temperature T2 that drops due to heat dissipation.

先端温度推定部114は、電磁コイルの温度T_coilに、排気あるいは排気管からの受熱量に応じた温度T1を加算し、尿素水への放熱により低下する温度T2を減算した値に対して、さらに演算処理の遅れ時間に関連する係数を掛けて、先端温度T_tipを算出してもよい。 The tip temperature estimation unit 114 further adds the temperature T1 according to the amount of heat received from the exhaust or the exhaust pipe to the temperature T_coil of the electromagnetic coil, and subtracts the temperature T2 that decreases due to heat dissipation to urea water. The tip temperature T_tip may be calculated by multiplying by a coefficient related to the delay time of arithmetic processing.

図3に戻り、ステップS17において先端温度T_tipが推定された後、冷却噴射制御部112は、先端温度T_tipが閾値T_threを超えているか否かを判別する(ステップS19)。閾値T_threは、還元剤噴射弁31の耐熱温度を考慮して、還元剤噴射弁31の熱損傷を生じないように耐熱温度よりも小さい適切な値に設定される。先端温度T_tipが閾値T_thre以下の場合(S21/No)、還元剤噴射弁31の冷却噴射を実行する必要がないため、還元剤噴射制御装置100はステップS11に戻って処理を繰り返す。 Returning to FIG. 3, after the tip temperature T_tip is estimated in step S17, the cooling injection control unit 112 determines whether or not the tip temperature T_tip exceeds the threshold value T_thre (step S19). The threshold value T_thre is set to an appropriate value smaller than the heat-resistant temperature so as not to cause thermal damage to the reducing agent injection valve 31 in consideration of the heat-resistant temperature of the reducing agent injection valve 31. When the tip temperature T_tip is equal to or less than the threshold value T_thre (S21 / No), it is not necessary to execute the cooling injection of the reducing agent injection valve 31, so the reducing agent injection control device 100 returns to step S11 and repeats the process.

一方、先端温度T_tipが閾値T_threを超えている場合(S19/Yes)、冷却噴射制御部112は、還元剤噴射弁31の冷却噴射を実行させる(ステップS21)。還元剤噴射弁31の冷却噴射の実行時に、還元剤噴射制御装置100の噴射量算出部118は、排気中のNOXを浄化するために必要なNH3量と目標NH3吸着量に対する過不足のNH3量とを合わせたNH3量を生成可能な尿素水の指示噴射量Q_ureaに所定量を加算し、あるいは、所定の係数を掛けて、指示噴射量Q_ureaを増量補正する。例えば噴射量算出部118は、推定された先端温度T_tipと閾値T_threとの差分に応じて尿素水の加算量あるいは係数を求め、指示噴射量Q_ureaを補正してもよい。これにより、還元剤噴射弁31が受ける熱量に応じて還元剤噴射弁31から尿素水への放熱量を増大させ、還元剤噴射弁31を適切に冷却することができる。なお、尿素水の噴射量が増量され、還元触媒13の下流側にNH3が流出した場合であっても、NH3はアンモニアスリップ触媒15により酸化されて分解される。 On the other hand, when the tip temperature T_tip exceeds the threshold value T_thre (S19 / Yes), the cooling injection control unit 112 executes the cooling injection of the reducing agent injection valve 31 (step S21). When executing the cooling injection of the reducing agent injection valve 31, the injection amount calculation unit 118 of the reducing agent injection control device 100 is excessive or insufficient with respect to the amount of NH 3 required to purify NO X in the exhaust and the target amount of NH 3 adsorbed. adding a predetermined amount to an instruction injection amount Q_urea of NH 3 amount and can generate NH 3 amount of combined urea water, or, by multiplying a predetermined coefficient, to increase correction of the instructed injection amount Q_urea. For example, the injection amount calculation unit 118 may obtain the addition amount or coefficient of urea water according to the difference between the estimated tip temperature T_tip and the threshold value T_thre, and correct the indicated injection amount Q_urea. As a result, the amount of heat radiated from the reducing agent injection valve 31 to the urea water can be increased according to the amount of heat received by the reducing agent injection valve 31, and the reducing agent injection valve 31 can be appropriately cooled. Even when the amount of urea water injected is increased and NH 3 flows out to the downstream side of the reduction catalyst 13, NH 3 is oxidized and decomposed by the ammonia slip catalyst 15.

以上説明したように、本実施形態に係る還元剤噴射制御装置100は、パティキュレートフィルタ17の再生中に、PMの燃焼により増大する燃焼ガスの流量F_reg及び上昇温度T_regに基づいて、還元剤噴射弁31の受熱量に応じた状態値である排気流量F_gas又は排気温度T_gasのいずれか一方を増大補正する。これにより、還元剤噴射弁31の実際の先端温度と、推定される先端温度T_tipとの乖離を小さくすることができる。このため、先端温度T_tipが低く推定されることにより冷却用の尿素水の噴射量が抑制された場合に生じ得る先端温度の過昇温による電磁コイルの溶損等の熱損傷を抑制することができる。あるいは、還元剤噴射弁31の熱損傷を防ぐために必要以上に尿素水の指示噴射量Q_ureaを増大させた場合に生じ得る尿素水の消費量の増大あるいは還元触媒13の下流側へのNH3の流出を抑制することができる。 As described above, the reducing agent injection control device 100 according to the present embodiment injects the reducing agent based on the flow rate F_reg of the combustion gas and the rising temperature T_reg, which increase due to the combustion of PM, during the regeneration of the particulate filter 17. Either the exhaust flow rate F_gas or the exhaust temperature T_gas, which is a state value according to the amount of heat received by the valve 31, is increased and corrected. As a result, the discrepancy between the actual tip temperature of the reducing agent injection valve 31 and the estimated tip temperature T_tip can be reduced. Therefore, it is possible to suppress thermal damage such as melting of the electromagnetic coil due to excessive temperature rise of the tip temperature, which may occur when the injection amount of urea water for cooling is suppressed by estimating the tip temperature T_tip to be low. can. Alternatively, an increase in the consumption of urea water that may occur when the indicated injection amount Q_urea of urea water is increased more than necessary in order to prevent thermal damage to the reducing agent injection valve 31, or NH 3 to the downstream side of the reducing catalyst 13 The outflow can be suppressed.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

例えば上記実施形態ではパティキュレートフィルタ17の再生中か否かにより排気流量F_gas及び排気温度T_gasの補正を行うか否かを決定していたが、本発明はかかる例に限定されない。排気流量F_gasの補正を行う期間と、排気温度T_gasの補正を行う期間とが異なってもよい。具体的には、パティキュレートフィルタ17の再生制御が終了すると、排気流量F_gasの増大は比較的速やかに解消される一方、排気温度T_gasの増大は時間を掛けて解消される。したがって、排気温度T_gasの増大補正の終了時期を、パティキュレートフィルタ17の再生制御の終了時期から所定時間遅らせてもよい。これにより、還元剤噴射弁31の先端温度T_tipの推定精度をより高めることができる。 For example, in the above embodiment, it is determined whether or not the exhaust flow rate F_gas and the exhaust temperature T_gas are corrected depending on whether or not the particulate filter 17 is being regenerated, but the present invention is not limited to such an example. The period for correcting the exhaust flow rate F_gas and the period for correcting the exhaust temperature T_gas may be different. Specifically, when the regeneration control of the particulate filter 17 is completed, the increase in the exhaust flow rate F_gas is eliminated relatively quickly, while the increase in the exhaust temperature T_gas is eliminated over time. Therefore, the end time of the increase correction of the exhaust temperature T_gas may be delayed by a predetermined time from the end time of the regeneration control of the particulate filter 17. As a result, the estimation accuracy of the tip temperature T_tip of the reducing agent injection valve 31 can be further improved.

また、上記実施形態では還元剤噴射弁31の受熱量に応じた状態値として、排気流量及び排気温度が用いられているが、本発明はかかる例に限定されない。先端温度制定部114は、他の状態量を用いて還元剤噴射弁31の先端温度T_tipを推定してもよい。 Further, in the above embodiment, the exhaust flow rate and the exhaust temperature are used as the state values according to the amount of heat received by the reducing agent injection valve 31, but the present invention is not limited to such an example. The tip temperature setting unit 114 may estimate the tip temperature T_tip of the reducing agent injection valve 31 using other state quantities.

また、上記実施形態ではパティキュレートフィルタ17の再生制御の実行フラグあるいは実行指示信号に基づいてパティキュレートフィルタ17の再生中か否かを判別していたが、本発明はかかる例に限定されない。例えばパティキュレートフィルタ17の上流と下流との圧力差dP_dpfが継続的に低下し始めたとき、あるいは、パティキュレートフィルタ17の上流と下流との温度差dT_dpfが継続的に上昇したときに、パティキュレートフィル17の再生が開始されたと判定してもよい。 Further, in the above embodiment, it is determined whether or not the particulate filter 17 is being reproduced based on the execution flag of the reproduction control of the particulate filter 17 or the execution instruction signal, but the present invention is not limited to such an example. For example, when the pressure difference dP_dpf between the upstream and downstream of the particulate filter 17 begins to decrease continuously, or when the temperature difference dT_dpf between the upstream and downstream of the particulate filter 17 continuously increases, the particulate filter It may be determined that the regeneration of the fill 17 has started.

5 内燃機関
10 排気浄化システム
11 排気管
13 還元触媒
15 アンモニアスリップ触媒
17 パティキュレートフィルタ
21 排気温度センサ
23 下流側NOX濃度センサ
27 差圧センサ
30 還元剤供給装置
31 還元剤噴射弁
100 還元剤噴射制御装置(冷却制御装置)
112 冷却噴射制御部
114 先端温度推定部
118 噴射量算出部
120 噴射弁駆動制御部
5 Internal combustion engine 10 Exhaust purification system 11 Exhaust pipe 13 Reduction catalyst 15 Ammonia slip catalyst 17 Particulate filter 21 Exhaust temperature sensor 23 Downstream NO X concentration sensor 27 Differential pressure sensor 30 Reduction agent supply device 31 Reduction agent injection valve 100 Reduction agent injection Control device (cooling control device)
112 Cooling injection control unit 114 Tip temperature estimation unit 118 Injection amount calculation unit 120 Injection valve drive control unit

Claims (5)

内燃機関の排気中の粒子状物質を捕集するパティキュレートフィルタの下流側、かつ、前記排気中のNOを還元して浄化する還元触媒の上流側の排気管に設けられた還元剤噴射弁を冷却するための冷却制御装置において、
前記排気から前記還元剤噴射弁への受熱量に応じた状態値、及び、前記還元剤噴射弁から還元剤への放熱量に応じた状態値に基づいて前記還元剤噴射弁の先端温度を推定する先端温度推定部と、
前記先端温度が閾値を超えるときに、前記還元剤噴射弁から噴射する前記還元剤の噴射量を増大させる冷却噴射制御部と、を備え、
前記受熱量に応じた状態値は、少なくとも排気流量の値を含み、
前記先端温度推定部は、前記パティキュレートフィルタの再生中に、前記内燃機関から排出される排気流量を、前記パティキュレートフィルタの再生による燃焼ガスの発生に応じて増大補正して先端温度を推定する、還元剤噴射弁の冷却制御装置。
A reducing agent injection valve provided on the downstream side of the particulate filter that collects particulate matter in the exhaust gas of the internal combustion engine and on the upstream side of the reducing catalyst that reduces and purifies NO X in the exhaust gas. In the cooling control device for cooling
The tip temperature of the reducing agent injection valve is estimated based on the state value according to the amount of heat received from the exhaust to the reducing agent injection valve and the state value according to the amount of heat radiated from the reducing agent injection valve to the reducing agent. Tip temperature estimation unit and
A cooling injection control unit that increases the injection amount of the reducing agent injected from the reducing agent injection valve when the tip temperature exceeds a threshold value is provided.
The state value according to the amount of heat received includes at least the value of the exhaust flow rate.
The tip temperature estimation unit estimates the tip temperature by increasing and correcting the exhaust gas discharged from the internal combustion engine during the regeneration of the particulate filter according to the generation of combustion gas due to the regeneration of the particulate filter. , Reducing agent injection valve cooling control device.
前記先端温度推定部は、前記パティキュレートフィルタの上流と下流との圧力差、又は前記パティキュレートフィルタの上流と下流との温度差のうちの少なくとも一つに基づいて前記排気流量を増大する補正量を設定する、請求項1に記載の還元剤噴射弁の冷却制御装置。 The tip temperature estimation unit is a correction amount that increases the exhaust flow rate based on at least one of the pressure difference between the upstream and downstream of the particulate filter or the temperature difference between the upstream and downstream of the particulate filter. The cooling control device for the reducing agent injection valve according to claim 1. 前記先端温度推定部は、前記パティキュレートフィルタの再生中に、前記排気流量を、あらかじめ設定した一定量増大補正する、請求項1に記載の還元剤噴射弁の冷却制御装置。 The cooling control device for a reducing agent injection valve according to claim 1, wherein the tip temperature estimation unit corrects the exhaust flow rate by a preset constant amount during regeneration of the particulate filter. 前記先端温度推定部は、前記放熱量に応じた状態値として前記還元剤の噴射量及び温度を用いる、請求項1〜3のいずれか1項に記載の還元剤噴射弁の冷却制御装置。 The cooling control device for a reducing agent injection valve according to any one of claims 1 to 3, wherein the tip temperature estimation unit uses the injection amount and temperature of the reducing agent as state values according to the heat dissipation amount. 内燃機関の排気中の粒子状物質を捕集するパティキュレートフィルタの下流側、かつ、前記排気中のNOを還元して浄化する還元触媒の上流側の排気管に設けられた還元剤噴射弁を冷却するための冷却制御方法において、
前記排気から前記還元剤噴射弁への受熱量に応じた状態値、及び、前記還元剤噴射弁から還元剤への放熱量に応じた状態値に基づいて前記還元剤噴射弁の先端温度を推定するステップと、
前記先端温度が閾値を超えるときに、前記還元剤噴射弁から噴射する前記還元剤の噴射量を増大させるステップと、を備え、
前記排気から前記還元剤噴射弁への受熱量に応じた状態値は、少なくとも排気流量の値を含み、
前記パティキュレートフィルタの再生中に、前記内燃機関から排出される排気流量を、前記パティキュレートフィルタの再生による燃焼ガスの発生に応じて増大補正して先端温度を推定する、還元剤噴射弁の冷却制御方法。
A reducing agent injection valve provided on the downstream side of the particulate filter that collects particulate matter in the exhaust gas of the internal combustion engine and on the upstream side of the reducing catalyst that reduces and purifies NO X in the exhaust gas. In the cooling control method for cooling
The tip temperature of the reducing agent injection valve is estimated based on the state value according to the amount of heat received from the exhaust to the reducing agent injection valve and the state value according to the amount of heat released from the reducing agent injection valve to the reducing agent. Steps to do and
A step of increasing the injection amount of the reducing agent injected from the reducing agent injection valve when the tip temperature exceeds a threshold value is provided.
The state value according to the amount of heat received from the exhaust to the reducing agent injection valve includes at least the value of the exhaust flow rate.
Cooling of the reducing agent injection valve that estimates the tip temperature by increasing and correcting the exhaust flow rate discharged from the internal combustion engine during the regeneration of the particulate filter according to the generation of combustion gas due to the regeneration of the particulate filter. Control method.
JP2017099372A 2017-05-18 2017-05-18 Cooling control device and cooling control method for reducing agent injection valve Active JP6960241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099372A JP6960241B2 (en) 2017-05-18 2017-05-18 Cooling control device and cooling control method for reducing agent injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099372A JP6960241B2 (en) 2017-05-18 2017-05-18 Cooling control device and cooling control method for reducing agent injection valve

Publications (2)

Publication Number Publication Date
JP2018193942A JP2018193942A (en) 2018-12-06
JP6960241B2 true JP6960241B2 (en) 2021-11-05

Family

ID=64569996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099372A Active JP6960241B2 (en) 2017-05-18 2017-05-18 Cooling control device and cooling control method for reducing agent injection valve

Country Status (1)

Country Link
JP (1) JP6960241B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570255B2 (en) * 2015-02-06 2019-09-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Control device and control method for reducing agent injection device
JP6187505B2 (en) * 2015-03-02 2017-08-30 トヨタ自動車株式会社 Exhaust purification device

Also Published As

Publication number Publication date
JP2018193942A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP5087188B2 (en) Exhaust purification system and control method of exhaust purification system
JP4900002B2 (en) Exhaust gas purification system for internal combustion engine
JP2008057364A (en) Exhaust emission control system of internal combustion engine
JP2007016619A (en) Exhaust gas after-treatment device for diesel engine
US9822683B2 (en) Exhaust gas purification system for internal combustion engine
JP2010261423A (en) Exhaust emission control device of internal combustion engine
JP2012017674A (en) Exhaust gas purification apparatus of internal combustion engine
JP6252075B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5653208B2 (en) Reducing agent supply device and control method thereof
WO2014097391A1 (en) System for purifying exhaust of internal combustion engine
JP2005180322A (en) Exhaust gas after-treatment device for diesel engine
US20150330275A1 (en) Exhaust Purification System for Internal Combustion Engine
JP5062780B2 (en) Exhaust purification system and control method of exhaust purification system
JP2016098682A (en) Internal combustion engine exhaust emission control apparatus
JP6973195B2 (en) Exhaust purification device, vehicle and exhaust purification control device
JP6287539B2 (en) Exhaust purification system
JP6570255B2 (en) Control device and control method for reducing agent injection device
JP2012002065A (en) Scr system
JP6960241B2 (en) Cooling control device and cooling control method for reducing agent injection valve
JP5698525B2 (en) Exhaust purification system and control method of exhaust purification system
JP2010043597A (en) Exhaust emission control device for internal combustion engine
JP4155192B2 (en) Exhaust gas purification device for internal combustion engine
JP2015194120A (en) Exhaust emission control system
JP2013072328A (en) Exhaust emission control system for internal combustion engine, internal combustion engine, and exhaust emission control method for internal combustion engine
JP2018044471A (en) Exhaust emission control device and exhaust emission control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6960241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150