JP6960117B2 - Power generation device, transmission device and power generation method - Google Patents

Power generation device, transmission device and power generation method Download PDF

Info

Publication number
JP6960117B2
JP6960117B2 JP2017140252A JP2017140252A JP6960117B2 JP 6960117 B2 JP6960117 B2 JP 6960117B2 JP 2017140252 A JP2017140252 A JP 2017140252A JP 2017140252 A JP2017140252 A JP 2017140252A JP 6960117 B2 JP6960117 B2 JP 6960117B2
Authority
JP
Japan
Prior art keywords
permanent magnet
power generation
conducting wire
generation device
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017140252A
Other languages
Japanese (ja)
Other versions
JP2019022366A (en
JP2019022366A5 (en
Inventor
武 吉村
修一 村上
梓紗 檀上
敏生 巳波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
University Public Corporation Osaka
Osaka Research Institute of Industrial Science and Technology
Original Assignee
Daihen Corp
University Public Corporation Osaka
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, University Public Corporation Osaka, Osaka Research Institute of Industrial Science and Technology filed Critical Daihen Corp
Priority to JP2017140252A priority Critical patent/JP6960117B2/en
Publication of JP2019022366A publication Critical patent/JP2019022366A/en
Publication of JP2019022366A5 publication Critical patent/JP2019022366A5/ja
Application granted granted Critical
Publication of JP6960117B2 publication Critical patent/JP6960117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、交流磁場を永久磁石の運動エネルギーに変換し、当該運動エネルギーを圧電部材によって電力に変換する発電装置、送信装置及び発電方法に関する。 The present invention relates to a power generation device, a transmission device, and a power generation method that convert an AC magnetic field into kinetic energy of a permanent magnet and convert the kinetic energy into electric power by a piezoelectric member.

交流磁場をエネルギー源とする発電方法としては、コイルを用いる方法がある。交流磁場は、例えば、系統電源に接続された導線の回りに形成される。導線近傍に配されたコイルには、交流磁場によって起電力が誘起され、発電が行われる。 As a power generation method using an AC magnetic field as an energy source, there is a method using a coil. The AC magnetic field is formed, for example, around a conductor connected to a grid power supply. An electromotive force is induced in the coil arranged near the conducting wire by an AC magnetic field to generate electricity.

一方、特許文献1には、導線に流れる電流を検出するAC電流センサが開示されている。AC電流センサは、くぼみ部を有する基板と、一端部がくぼみ部の縁に固定され、他端部がくぼみ部において変位可能に支持された圧電フィルムと、圧電フィルムの当該他端部に設けられた磁性体とを備える。磁性体は、導線の周囲に形成される磁界の大きさによって変位し、圧電フィルムは当該変位に従って電荷を発生させる。当該電荷の大きさを検出することによって、導線に流れる電流値を検出することができる。 On the other hand, Patent Document 1 discloses an AC current sensor that detects a current flowing through a conducting wire. The AC current sensor is provided on a substrate having a recess, a piezoelectric film in which one end is fixed to the edge of the recess and the other end is displaceably supported in the recess, and the other end of the piezoelectric film. It is equipped with a magnetic material. The magnetic material is displaced by the magnitude of the magnetic field formed around the conductor, and the piezoelectric film generates an electric charge according to the displacement. By detecting the magnitude of the electric charge, the value of the current flowing through the conducting wire can be detected.

特開2006−138852号公報Japanese Unexamined Patent Publication No. 2006-138852

しかしながら、コイルを用いた発電方法においては、誘導起電力は周波数に比例するため、50Hz又は60Hzの系統電源に対して小型のコイルを用いる場合、電子回路等を駆動させる十分な出力電圧を得ることは困難である。 However, in the power generation method using a coil, the induced electromotive force is proportional to the frequency. Therefore, when a small coil is used for a system power supply of 50 Hz or 60 Hz, a sufficient output voltage for driving an electronic circuit or the like is obtained. It is difficult.

また、特許文献1のAC電流センサによれば、交流磁場に応じた信号が出力されるものの、電子回路等を駆動させる十分な出力電圧を得ることは困難である。 Further, according to the AC current sensor of Patent Document 1, although a signal corresponding to an AC magnetic field is output, it is difficult to obtain a sufficient output voltage for driving an electronic circuit or the like.

本発明は斯かる事情に鑑みてなされたものであり、その目的は、導線の周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことが可能な発電装置及び発電方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to generate electricity based on the AC magnetic field even if the frequency of the AC magnetic field formed around the conducting wire is as low as 10 Hz. The purpose is to provide a power generation device and a power generation method that can be performed.

本発明の一態様に係る発電装置は、圧電部材を有する弾性体と、該弾性体の第1部位を、交流が流れる導線に対して固定する固定部と、外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられた永久磁石と、前記圧電部材に発生した電圧を出力する出力部とを備え、前記導線の周囲に形成される交流磁場によって前記永久磁石が振動し、該永久磁石の振動によって前記圧電部材に発生した電圧が前記出力部から出力される。 In the power generation device according to one aspect of the present invention, the position of the elastic body having a piezoelectric member, the fixing portion for fixing the first portion of the elastic body to the conducting wire through which alternating current flows, and the position with respect to the conducting wire are changed by an external force. A permanent magnet provided in the second portion of the elastic body and an output unit for outputting a voltage generated in the piezoelectric member are provided, and the permanent magnet is vibrated by an AC magnetic field formed around the conducting wire, and the permanent magnet is vibrated. The voltage generated in the piezoelectric member due to the vibration of the permanent magnet is output from the output unit.

本態様によれば、弾性体に設けられた永久磁石は、導線の周囲に形成される交流磁場によって振動する。弾性体が有する圧電部材は、永久磁石の振動によって変形して発電し、圧電部材に発生した電圧は出力部から出力される。本発明に係る発電装置は、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。
なお、弾性体に設けられた永久磁石の振動周波数は、交流磁場の周波数に略一致させる構成が好ましい。例えば、交流磁場の周波数が50Hzである場合、永久磁石の振動周波数を50Hzとし、交流磁場の周波数が60Hzである場合、永久磁石の振動周波数を60Hzとする構成が望ましい。但し、所要の電力が得られる範囲で永久磁石の振動周波数を交流磁場の周波数からずらした構成も本発明に含まれる。
また、本態様に係る導線は、電流を通ずることが可能な材料で形成された線条の部材であり、レール状の導通部材、バスバー、角柱状の導体、長手方向を有する板状の導体も導線に含まれる。また、導線は特定の用途のものに限定されるものでは無く、アース線であっても良い。
According to this aspect, the permanent magnet provided on the elastic body vibrates by the alternating magnetic field formed around the conducting wire. The piezoelectric member of the elastic body is deformed by the vibration of the permanent magnet to generate electricity, and the voltage generated in the piezoelectric member is output from the output unit. The power generation device according to the present invention can generate power using the AC magnetic field as an energy source even if the frequency of the AC magnetic field is as low as 10 Hz.
It is preferable that the vibration frequency of the permanent magnet provided on the elastic body is substantially the same as the frequency of the AC magnetic field. For example, when the frequency of the AC magnetic field is 50 Hz, the vibration frequency of the permanent magnet is 50 Hz, and when the frequency of the AC magnetic field is 60 Hz, the vibration frequency of the permanent magnet is 60 Hz. However, the present invention also includes a configuration in which the vibration frequency of the permanent magnet is shifted from the frequency of the AC magnetic field within the range in which the required electric power can be obtained.
Further, the conducting wire according to this embodiment is a wire member made of a material capable of passing an electric current, and also includes a rail-shaped conducting member, a bus bar, a prismatic conductor, and a plate-shaped conductor having a longitudinal direction. Included in the conductor. Further, the conducting wire is not limited to that for a specific purpose, and may be a grounding wire.

本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に対して非直交方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に交差する方向に振動する構成が好ましい。 In the power generation device according to this embodiment, the permanent magnet has S poles and N poles arranged in a direction non-orthogonal to the separation direction of the lead wire and the permanent magnet, and intersects the alternating current flow direction and the separation direction. A configuration that vibrates in the direction of magnetism is preferable.

本態様によれば、振動する永久磁石と、導線との衝突する可能性を低減することができ、交流磁場を用いた効率的な発電が可能である(例えば、図4、図17等参照)。仮に、永久磁石が、導線及び永久磁石の離隔方向に対して直交方向に並ぶS極及びN極を有し、前記離隔方向に振動するように構成した場合(図18参照)、永久磁石の振動によって、当該永久磁石が導線に衝突する可能性がある。
一方、本態様によれば、図4、図17に示すように、永久磁石は、導線の中心に向かう方向から逸れた方向へ振動するため、永久磁石が導線に衝突する可能性を低減することができる。なお、上記説明は、本態様に係る発明の範囲を限定するものでは無い。
According to this aspect, the possibility of collision between the vibrating permanent magnet and the conducting wire can be reduced, and efficient power generation using an AC magnetic field is possible (see, for example, FIGS. 4, 17, etc.). .. If the permanent magnet has S poles and N poles that are aligned in the direction orthogonal to the separation direction of the lead wire and the permanent magnet and is configured to vibrate in the separation direction (see FIG. 18), the permanent magnet vibrates. There is a possibility that the permanent magnet will collide with the lead wire.
On the other hand, according to this aspect, as shown in FIGS. 4 and 17, the permanent magnet vibrates in a direction deviating from the direction toward the center of the conducting wire, so that the possibility that the permanent magnet collides with the conducting wire is reduced. Can be done. The above description does not limit the scope of the invention according to this aspect.

本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に直交する方向に振動する構成が好ましい。 In the power generation device according to this embodiment, the permanent magnet has an S pole and an N pole arranged in the separation direction of the lead wire and the permanent magnet, and vibrates in a direction orthogonal to the alternating current flow direction and the separation direction. Is preferable.

本態様によれば、振動する永久磁石と、導線との衝突を確実に回避することができ、交流磁場を用いた効率的な発電が可能である(例えば、図4参照)。図4に示す実施形態によれば、永久磁石は静止位置において導線から図4中上方に離隔しており、交流磁場によって永久磁石は図4中左右方向に振動する。この場合、永久磁石と、導線との距離は必ず大きくなり、これ以上、導線に接近することは無い。従って、永久磁石が導線と衝突することを確実に回避することができる。なお、上記説明は、本態様に係る発明の範囲を限定するものでは無い。 According to this aspect, the collision between the vibrating permanent magnet and the conducting wire can be reliably avoided, and efficient power generation using an AC magnetic field is possible (see, for example, FIG. 4). According to the embodiment shown in FIG. 4, the permanent magnet is separated from the conducting wire upward in FIG. 4 at the stationary position, and the permanent magnet vibrates in the left-right direction in FIG. 4 due to the AC magnetic field. In this case, the distance between the permanent magnet and the conducting wire is always large, and the permanent magnet does not come closer to the conducting wire any more. Therefore, it is possible to surely prevent the permanent magnet from colliding with the conducting wire. The above description does not limit the scope of the invention according to this aspect.

本態様に係る発電装置は、振動方向における前記永久磁石の幅は、下記式を満たす構成が好ましい。
w≦2(d−√2a)
但し、
w:振動方向における前記永久磁石の幅
d:前記導線の中心と、前記永久磁石との距離
a:前記永久磁石の振幅
The power generation device according to this embodiment preferably has a configuration in which the width of the permanent magnet in the vibration direction satisfies the following equation.
w ≦ 2 (d−√2a)
However,
w: Width of the permanent magnet in the vibration direction d: Distance between the center of the lead wire and the permanent magnet a: Amplitude of the permanent magnet

本態様によれば、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, it is possible to prevent a reverse force from acting on each part of the permanent magnet, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記離隔方向における前記永久磁石の幅は、前記導線の中心と前記永久磁石との距離の0.5倍以上、2倍以下である構成が好ましい。 The power generation device according to this embodiment preferably has a configuration in which the width of the permanent magnet in the separation direction is 0.5 times or more and 2 times or less the distance between the center of the lead wire and the permanent magnet.

本態様によれば、上記のように離隔方向における永久磁石の幅を設定することにより、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by setting the width of the permanent magnet in the separation direction as described above, efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、交流の通流方向に直交し、かつ前記導線及び前記永久磁石の離隔方向に対して略45度の方向に並ぶS極及びN極を有し、前記S極及びN極の並び方向に振動する構成が好ましい。 In the power generation device according to this embodiment, the permanent magnet has S poles and N poles that are orthogonal to the alternating current flow direction and are aligned in a direction of approximately 45 degrees with respect to the separation direction of the lead wire and the permanent magnet. , The configuration that vibrates in the arrangement direction of the S pole and the N pole is preferable.

本態様によれば、S極及びN極の並び方向に永久磁石を振動させた発電が可能である。 According to this aspect, it is possible to generate electricity by vibrating a permanent magnet in the direction in which the S pole and the N pole are arranged.

本態様に係る発電装置は、前記永久磁石は、交流の通流方向と、前記導線及び前記永久磁石の離隔方向とに直交する方向に並ぶS極及びN極を有し、前記離隔方向に振動する構成が好ましい。 In the power generation device according to this embodiment, the permanent magnet has S poles and N poles arranged in a direction orthogonal to the alternating current flow direction and the separation direction of the lead wire and the permanent magnet, and vibrates in the separation direction. The configuration is preferable.

本態様によれば、前記離隔方向に永久磁石を振動させた発電が可能である。 According to this aspect, it is possible to generate electricity by vibrating a permanent magnet in the separation direction.

本態様に係る発電装置は、前記永久磁石は、振動方向に並ぶ複数組みのS極及びN極を有し、振動方向におけるS極及びN極の並びは、隣り合う各極が異極になるようにしてある構成が好ましい。 In the power generation device according to this embodiment, the permanent magnet has a plurality of sets of S poles and N poles arranged in the vibration direction, and the arrangement of the S poles and N poles in the vibration direction is such that the adjacent poles have different poles. Such a configuration is preferable.

本態様によれば、複数組みのS極及びN極を有する永久磁石を備え、かつ永久磁石の各部に逆向きの力が働かないようにS極及びN極を配置することにより、交流磁場を用いた効率的な発電が可能である。 According to this aspect, an AC magnetic field is generated by providing a permanent magnet having a plurality of sets of S poles and N poles and arranging the S poles and N poles so that a reverse force does not act on each part of the permanent magnets. Efficient power generation using is possible.

本態様に係る発電装置は、前記永久磁石は、前記導線を囲繞するC字状をなし、径方向に並ぶS極及びN極を有し、前記導線の周方向に振動する構成が好ましい。 In the power generation device according to this aspect, it is preferable that the permanent magnet has a C shape surrounding the lead wire, has S poles and N poles arranged in the radial direction, and vibrates in the circumferential direction of the lead wire.

本態様によれば、導線の周方向に沿って幅広く永久磁石を配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by arranging the permanent magnets widely along the circumferential direction of the conducting wire, each part of the permanent magnets can be brought close to the conducting wire, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に偏平である構成が好ましい。 The power generation device according to this embodiment preferably has a configuration in which the permanent magnet is flat in the separation direction of the conducting wire and the permanent magnet.

本態様によれば、永久磁石を離隔方向に偏平となる姿勢で配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by arranging the permanent magnets in a flattened posture in the separation direction, each part of the permanent magnets can be brought close to the conducting wire, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は前記導線に沿う長手方向を有する構成が好ましい。 The power generation device according to this embodiment preferably has a configuration in which the permanent magnet has a longitudinal direction along the conducting wire.

本態様によれば、永久磁石の各部を導線に沿って配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by arranging each part of the permanent magnet along the conducting wire, each part of the permanent magnet can be brought close to the conducting wire, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する構成が好ましい。 The power generation device according to this embodiment preferably has a configuration in which the permanent magnet has a dimension in which each part receives magnetic force in the same direction at least at the vibration center position.

本態様によれば、少なくとも永久磁石の静止位置において、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, it is possible to prevent a reverse force from acting on each part of the permanent magnet at least at the stationary position of the permanent magnet, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する構成が好ましい。 The power generation device according to this aspect preferably has a configuration in which the permanent magnet has a size in which each part receives a magnetic force in the same direction at an arbitrary vibration position.

本態様によれば、永久磁石の振動時においても、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, even when the permanent magnet vibrates, it is possible to prevent a reverse force from acting on each part of the permanent magnet, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記弾性体は、第2部位に前記永久磁石を除く他の構造物を有しない構成が好ましい。 The power generation device according to this embodiment preferably has a structure in which the elastic body does not have any other structure other than the permanent magnet in the second portion.

本態様によれば、余分な非磁性体部品を備え無いため、交流磁場を用いた効率的な発電が可能である。 According to this aspect, since no extra non-magnetic material component is provided, efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記弾性体の第2部位は、前記永久磁石の中心部に接続されている構成が好ましい。 The power generation device according to this embodiment preferably has a configuration in which the second portion of the elastic body is connected to the central portion of the permanent magnet.

本態様によれば、永久磁石を弾性体にバランス良く支持させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, the permanent magnet can be supported by the elastic body in a well-balanced manner, and efficient power generation using an AC magnetic field is possible.

本態様に係る発電装置は、前記弾性体はカンチレバーである構成が好ましい。 The power generation device according to this embodiment preferably has a structure in which the elastic body is a cantilever.

本態様によれば、カンチレバーの自由端に永久磁石を設ける簡単な構成で、交流磁場を用いた発電が可能である。 According to this aspect, it is possible to generate electricity using an AC magnetic field with a simple configuration in which a permanent magnet is provided at the free end of the cantilever.

本態様に係る発電装置は、前記弾性体は長板部を有し、前記圧電部材は板状であり、前記長板部の両面にそれぞれ配されている構成が好ましい。 In the power generation device according to this embodiment, it is preferable that the elastic body has a long plate portion and the piezoelectric member has a plate shape and is arranged on both sides of the long plate portion.

本態様によれば、カンチレバーを構成する長板部の両面に圧電部材を配することによって、交流磁場を用いた効率的な発電が可能である。 According to this aspect, efficient power generation using an AC magnetic field is possible by arranging piezoelectric members on both sides of a long plate portion constituting the cantilever.

本態様の一態様に係る送信装置は、上述のいずれか一つの発電装置と、信号を送信する送信部とを備え、前記送信部は、前記発電装置から出力される電圧にて駆動する。 The transmission device according to one aspect of this aspect includes any one of the above-mentioned power generation devices and a transmission unit that transmits a signal, and the transmission unit is driven by a voltage output from the power generation device.

本態様によれば、発電装置が出力する電圧を用いて送信部を駆動することができる。従って、電源を用意することができない環境であっても、送信部から信号を送信させることが可能である。 According to this aspect, the transmission unit can be driven by using the voltage output by the power generation device. Therefore, it is possible to transmit a signal from the transmission unit even in an environment where a power supply cannot be prepared.

本発明の一態様に係る発電方法は、圧電部材を有する弾性体の第1部位を、交流が流れる導線に対して固定し、外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられた永久磁石を、前記導線の周囲に形成される交流磁場によって振動させ、前記永久磁石の振動によって前記圧電部材に発生した電圧を出力させる。 In the power generation method according to one aspect of the present invention, the first portion of the elastic body having the piezoelectric member is fixed to the conducting wire through which alternating current flows, and the position of the elastic body with respect to the conducting wire is changed by an external force to the second portion of the elastic body. The provided permanent magnet is vibrated by an AC magnetic field formed around the conducting wire, and the voltage generated in the piezoelectric member by the vibration of the permanent magnet is output.

本態様によれば、上記の通り、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。 According to this aspect, as described above, even if the frequency of the AC magnetic field is as low as 10 Hz, it is possible to generate power using the AC magnetic field as an energy source.

本発明によれば、導線の周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。 According to the present invention, even if the frequency of the AC magnetic field formed around the conducting wire is as low as 10 Hz, power can be generated based on the AC magnetic field.

本発明の実施形態1に係る発電装置の斜視図である。It is a perspective view of the power generation apparatus which concerns on Embodiment 1 of this invention. 本実施形態1に係る発電装置の平面図である。It is a top view of the power generation apparatus which concerns on this Embodiment 1. 本実施形態1に係る発電装置の側面図である。It is a side view of the power generation apparatus which concerns on this Embodiment 1. 本実施形態1に係る発電装置の正面図である。It is a front view of the power generation apparatus which concerns on this Embodiment 1. 本実施形態1に係る発電装置の回路図である。It is a circuit diagram of the power generation apparatus which concerns on this Embodiment 1. 導線の周囲に配された永久磁石に働く力を説明するための概念図である。It is a conceptual diagram for explaining the force acting on the permanent magnet arranged around a conducting wire. 導線に対する永久磁石の位置と、当該永久磁石に働く力との関係を示すベクトル図である。It is a vector figure which shows the relationship between the position of a permanent magnet with respect to a conducting wire, and the force acting on the permanent magnet. 導線に対する永久磁石の位置と、当該永久磁石に働くx軸方向の力の大きさ及び向きとの関係を示すコンター図である。It is a contour figure which shows the relationship between the position of a permanent magnet with respect to a conducting wire, and the magnitude and direction of the force acting on the permanent magnet in the x-axis direction. 永久磁石の配置及び周波数並びに負荷の抵抗値と、発電量との関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the arrangement and frequency of a permanent magnet, the resistance value of a load, and the amount of power generation. 導線及び永久磁石間の距離と発電量との関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the distance between a conducting wire and a permanent magnet, and the amount of power generation. 導線に対する永久磁石の距離と発電量及び変位量との関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the distance of a permanent magnet with respect to a conducting wire, the amount of power generation and the amount of displacement. 永久磁石の特性が発電量に及ぼす影響を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the influence which the characteristic of a permanent magnet has on the amount of power generation. 永久磁石の配置姿勢の例を示す模式図である。It is a schematic diagram which shows the example of the arrangement posture of a permanent magnet. 永久磁石の厚みと発電量の関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the thickness of a permanent magnet and the amount of power generation. 実験用発電装置を示す模式図である。It is a schematic diagram which shows the experimental power generation apparatus. 永久磁石の配置及び周波数と、発電量の関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the arrangement and frequency of a permanent magnet, and the amount of power generation. 本実施形態2に係る発電装置を示す正面図である。It is a front view which shows the power generation apparatus which concerns on this Embodiment 2. 本実施形態3に係る発電装置を示す正面図である。It is a front view which shows the power generation apparatus which concerns on this Embodiment 3. 本実施形態4に係る発電装置を示す斜視図である。It is a perspective view which shows the power generation apparatus which concerns on this Embodiment 4. 本実施形態5に係る発電装置を示す斜視図である。It is a perspective view which shows the power generation apparatus which concerns on this Embodiment 5. 本実施形態6に係る電圧調整装置を示すブロック図である。It is a block diagram which shows the voltage adjustment apparatus which concerns on this Embodiment 6.

以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、本発明の実施形態1に係る発電装置100の斜視図、図2は、発電装置100の平面図、図3は、発電装置100の側面図、図4は、発電装置100の正面図である。本発明の実施形態1に係る発電装置100は、圧電部材12を有する弾性体としてのカンチレバー1と、カンチレバー1の固定端1a(第1部位)を、十Hzオーダの低周波数の交流が流れる導線Wに対して固定する固定部2と、カンチレバー1の自由端1b(第2部位)に設けられた永久磁石3と、カンチレバー1の圧電部材12に発生した電圧を出力する出力部4とを備える。本実施形態1においては、導線Wは、電流を通ずることが可能な断面略円形の材料で形成された線条の部材であり、導線Wは50Hz又は60Hzの系統電源に接続されているものとする。発電装置100は、導線Wの周囲に形成される交流磁場を永久磁石3の運動エネルギーに変換し、永久磁石3の運動エネルギーを圧電部材12によって電力に変換することによって、発電するものである。発電装置100は、本発明に係る発電方法を実施ないし実現する装置である。
なお、上記導線Wの構成は一例であり、永久磁石3を振動させる交流磁場を形成可能な電流が流れる構成であれば、その形状は特に限定されるものでは無く、レール状の導通部材、バスバー、角柱状の導体、長手方向を有する板状の導体であっても良い。また、導線Wは、部分的に方形板状のような非線条部分を有していても良く、全体として所定方向に交流電流が流れるような形状であれば良い。当該非線条部分に発電装置100を固定する構成も本願発明に含まれる。更に、導線Wは、必ずしも直線状である必要は無く、部分的に湾曲していても良い。更にまた、導線Wは特定の用途のものに限定されるものでは無く、アース線であっても良い。以下、本実施形態1では、導線Wが直線状の部材であるものとして説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
1 is a perspective view of the power generation device 100 according to the first embodiment of the present invention, FIG. 2 is a plan view of the power generation device 100, FIG. 3 is a side view of the power generation device 100, and FIG. 4 is a front view of the power generation device 100. It is a figure. In the power generation device 100 according to the first embodiment of the present invention, a cantilever 1 as an elastic body having a piezoelectric member 12 and a fixed end 1a (first portion) of the cantilever 1 are connected to a conducting wire through which low-frequency alternating current on the order of 10 Hz flows. It includes a fixing portion 2 fixed to W, a permanent magnet 3 provided at the free end 1b (second portion) of the cantilever 1, and an output portion 4 that outputs a voltage generated in the piezoelectric member 12 of the cantilever 1. .. In the first embodiment, the conductor W is a member of a wire made of a material having a substantially circular cross section capable of passing an electric current, and the conductor W is connected to a system power supply of 50 Hz or 60 Hz. do. The power generation device 100 generates electricity by converting the AC magnetic field formed around the lead wire W into the kinetic energy of the permanent magnet 3 and converting the kinetic energy of the permanent magnet 3 into electric power by the piezoelectric member 12. The power generation device 100 is a device that implements or realizes the power generation method according to the present invention.
The configuration of the conducting wire W is an example, and the shape is not particularly limited as long as a current capable of forming an AC magnetic field that vibrates the permanent magnet 3 flows, and the shape is not particularly limited. , A prismatic conductor, or a plate-shaped conductor having a longitudinal direction may be used. Further, the conducting wire W may partially have a non-strand portion such as a square plate, and may have a shape in which an alternating current flows in a predetermined direction as a whole. The present invention also includes a configuration in which the power generation device 100 is fixed to the non-linear portion. Further, the conductor W does not necessarily have to be linear, and may be partially curved. Furthermore, the conductor W is not limited to that of a specific application, and may be a ground wire. Hereinafter, in the first embodiment, the conductor W will be described as being a linear member.

カンチレバー1は、バイモルフ型圧電素子を用いてなる発電部材である。カンチレバー1は、外力によって弾性変形が可能な導電部材からなる長板部11と、厚み方向に分極した2枚の板状ないしシート状の圧電部材12とを備え、2枚の圧電部材12が長板部11を挟み込むように当該長板部11の両面に貼り合わされている。圧電部材12の長手方向の長さは、長板部11の固定部2からの突出部分の長さの2/3程度で十分である。また、2枚の圧電部材12には、それぞれシート状の電極13が設けられている。長板部11を構成する部材は、例えばステンレス等の金属である。圧電部材12は、例えば圧電セラミックスである。長板部11の長手方向一端部は固定部2に固定される固定端1aであり、長板部11の長手方向他端部は外力によって変位可能な自由端1bである。自由端1bが変位した場合、2枚の圧電部材12はそれぞれ伸張及び伸縮し、電極13及び長板部11間に電圧が発生する。
なお、ここではバイモルフ型圧電素子を説明したが、片面のみに圧電部材12を張り付けたユニモルフ構造であっても良い。
The cantilever 1 is a power generation member using a bimorph type piezoelectric element. The cantilever 1 includes a long plate portion 11 made of a conductive member that can be elastically deformed by an external force, and two plate-shaped or sheet-shaped piezoelectric members 12 that are polarized in the thickness direction, and the two piezoelectric members 12 are long. It is attached to both sides of the long plate portion 11 so as to sandwich the plate portion 11. It is sufficient that the length of the piezoelectric member 12 in the longitudinal direction is about 2/3 of the length of the protruding portion of the elongated plate portion 11 from the fixed portion 2. Further, each of the two piezoelectric members 12 is provided with a sheet-shaped electrode 13. The member constituting the long plate portion 11 is a metal such as stainless steel. The piezoelectric member 12 is, for example, piezoelectric ceramics. One end in the longitudinal direction of the long plate portion 11 is a fixed end 1a fixed to the fixed portion 2, and the other end in the longitudinal direction of the long plate portion 11 is a free end 1b that can be displaced by an external force. When the free end 1b is displaced, the two piezoelectric members 12 expand and contract, respectively, and a voltage is generated between the electrode 13 and the long plate portion 11.
Although the bimorph type piezoelectric element has been described here, a unimorph structure in which the piezoelectric member 12 is attached to only one side may be used.

固定部2は、カンチレバー1の固定端1aを導線Wに対して固定する部材である。固定部2は、例えば、略直方体形状をなし、導線Wが挿通する貫通孔21を有する。貫通孔21は、中心部を貫通する正面視円形状であり、貫通孔21が形成された固定部2の一面側の角部にカンチレバー1の固定端1aが固定され、カンチレバー1を保持している。より詳細には、固定部2は、カンチレバー1の自由端1bが、導線Wの中心線方向及び導線Wの径方向に略直交する方向に変位又は振動するように、カンチレバー1を保持している。言い換えると、カンチレバー1を構成する長板部11の厚み方向と、上記中心線方向及び径方向とが略直交するように、固定部2は、長板部11の固定端1aを保持している。 The fixing portion 2 is a member that fixes the fixed end 1a of the cantilever 1 to the conducting wire W. The fixing portion 2 has, for example, a substantially rectangular parallelepiped shape, and has a through hole 21 through which the conducting wire W is inserted. The through hole 21 has a circular shape in front view penetrating the central portion, and the fixed end 1a of the cantilever 1 is fixed to a corner portion on one side of the fixing portion 2 in which the through hole 21 is formed to hold the cantilever 1. There is. More specifically, the fixing portion 2 holds the cantilever 1 so that the free end 1b of the cantilever 1 is displaced or vibrates in a direction substantially orthogonal to the center line direction of the lead wire W and the radial direction of the lead wire W. .. In other words, the fixing portion 2 holds the fixed end 1a of the long plate portion 11 so that the thickness direction of the long plate portion 11 constituting the cantilever 1 is substantially orthogonal to the center line direction and the radial direction. ..

永久磁石3は、矩形板状をなし、厚み方向が導線Wの径方向を向く姿勢でカンチレバー1の自由端1bに接着固定されている。厚み方向とは、永久磁石3の縦寸法、横寸法及び高さ寸法の内、最も長さが短い方向を意味する。なお、接着は、永久磁石3の固定方法の一例である。カンチレバー1の自由端1bには永久磁石3及び接着剤を除く他の構造物を有しない。永久磁石3は、導線W及び永久磁石3の離隔方向、つまり厚み方向に並ぶ単一対のS極3b及びN極3aを有する。なお、永久磁石3の形状及び導線Wに対する姿勢は本発明の本質的な構成では無く、あくまで一構成例を示したものである。本実施形態1では、永久磁石3を構成するS極3b及びN極3aが上記離隔方向に配列している点がより重要である。
カンチレバー1に設けられた永久磁石3の振動周波数は、導線Wの周囲に形成される交流磁場の周波数に略一致するように構成されている。例えば、交流磁場の周波数が50Hzである場合、永久磁石3の振動周波数を50Hzとし、交流磁場の周波数が60Hzである場合、永久磁石3の振動周波数を60Hzとする。なお、振動周波数が交流磁場の周波数に略一致するとは、所要の電力が得られる範囲で、振動周波数を交流磁場の周波数からずれた構成も本実施形態1に係る発電装置100に含まれることを意味する。
The permanent magnet 3 has a rectangular plate shape and is adhesively fixed to the free end 1b of the cantilever 1 in a posture in which the thickness direction faces the radial direction of the lead wire W. The thickness direction means the direction in which the length of the permanent magnet 3 is the shortest among the vertical dimension, the horizontal dimension, and the height dimension. Adhesion is an example of a method for fixing the permanent magnet 3. The free end 1b of the cantilever 1 does not have any other structure except the permanent magnet 3 and the adhesive. The permanent magnet 3 has a single pair of S poles 3b and N poles 3a arranged in the separation direction of the conducting wire W and the permanent magnet 3, that is, the thickness direction. The shape of the permanent magnet 3 and the attitude of the permanent magnet 3 with respect to the conducting wire W are not the essential configurations of the present invention, but merely show one configuration example. In the first embodiment, it is more important that the S poles 3b and the N poles 3a constituting the permanent magnet 3 are arranged in the separation direction.
The vibration frequency of the permanent magnet 3 provided on the cantilever 1 is configured to substantially match the frequency of the AC magnetic field formed around the lead wire W. For example, when the frequency of the AC magnetic field is 50 Hz, the vibration frequency of the permanent magnet 3 is 50 Hz, and when the frequency of the AC magnetic field is 60 Hz, the vibration frequency of the permanent magnet 3 is 60 Hz. The fact that the vibration frequency substantially matches the frequency of the AC magnetic field means that the power generation device 100 according to the first embodiment also includes a configuration in which the vibration frequency deviates from the frequency of the AC magnetic field within the range in which the required power can be obtained. means.

永久磁石3は、少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する。好ましくは、永久磁石3は、任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する。具体的には、振動方向における永久磁石3の幅は、下記式(1)を満たすように設定すると良い。
w≦2(d−√2a)…(1)
但し、
w:振動方向における永久磁石3の幅
d:導線Wの中心と、永久磁石3の導線側端面との距離
a:永久磁石3の振幅
The permanent magnet 3 has a dimension in which each part receives a magnetic force in the same direction at least at the vibration center position. Preferably, the permanent magnet 3 has a dimension in which each part receives a magnetic force in the same direction at an arbitrary vibration position. Specifically, the width of the permanent magnet 3 in the vibration direction may be set so as to satisfy the following equation (1).
w ≦ 2 (d−√2a)… (1)
However,
w: Width of the permanent magnet 3 in the vibration direction d: Distance between the center of the lead wire W and the end face of the permanent magnet 3 on the lead wire side a: Amplitude of the permanent magnet 3

また、離隔方向における永久磁石3の幅は、下記式(2)を満たすように設定すると良い。
0.5a≦d≦2a…(2)
Further, the width of the permanent magnet 3 in the separation direction may be set so as to satisfy the following equation (2).
0.5a ≤ d ≤ 2a ... (2)

出力部4は、カンチレバー1の電極13と、長板部11とに接続されており、永久磁石3の振動により伸縮した圧電部材12に発生した電圧を出力する回路である。 The output unit 4 is a circuit that is connected to the electrode 13 of the cantilever 1 and the long plate portion 11 and outputs the voltage generated in the piezoelectric member 12 that expands and contracts due to the vibration of the permanent magnet 3.

図5は、本実施形態1に係る発電装置100の回路図である。出力部4は、整流回路41及び平滑コンデンサ42を備える。整流回路41は、例えばダイオードブリッジ回路である。ダイオードブリッジは2つの順接続されたダイオードからなる直列回路を2組並列させた回路構成である。整流回路41の入力端子は圧電部材12及び長板部11に接続されており、整流回路41の出力端子対には平滑コンデンサ42の各端子が接続されている。整流回路41は、圧電部材12に発生した交流を全波整流し、平滑コンデンサ42にて平滑化された直流の電圧を負荷Rへ出力する。 FIG. 5 is a circuit diagram of the power generation device 100 according to the first embodiment. The output unit 4 includes a rectifier circuit 41 and a smoothing capacitor 42. The rectifier circuit 41 is, for example, a diode bridge circuit. The diode bridge is a circuit configuration in which two sets of a series circuit composed of two forward-connected diodes are arranged in parallel. The input terminal of the rectifier circuit 41 is connected to the piezoelectric member 12 and the long plate portion 11, and each terminal of the smoothing capacitor 42 is connected to the output terminal pair of the rectifier circuit 41. The rectifier circuit 41 full-wave rectifies the alternating current generated in the piezoelectric member 12, and outputs the DC voltage smoothed by the smoothing capacitor 42 to the load R.

以下、交流磁場を用いた効率的な発電を可能にする発電装置100の構造及び発電特性の詳細を説明する。 Hereinafter, details of the structure and power generation characteristics of the power generation device 100 that enables efficient power generation using an AC magnetic field will be described.

<導線Wの近くに配された永久磁石3に働く力>
図6は、導線Wの周囲に配された永久磁石3に働く力を説明するための概念図である。導線Wに電流を流すとアンペールの法則に従って、導線Wの周囲に磁界が形成される。図6中、x軸、y軸及びz軸は直交座標系の座標軸であり、z軸の正方向(紙面手前方向)に電流が流れるものとする。導線W周辺の磁界はx軸方向及びy軸方向に勾配を有する。y軸方向を向いた磁気双極子を有する永久磁石3を導線Wの近傍に配した場合、永久磁石3が受ける磁気力は下記式(3)及び(4)で表される。
<Force acting on the permanent magnet 3 arranged near the conductor W>
FIG. 6 is a conceptual diagram for explaining the force acting on the permanent magnets 3 arranged around the conducting wire W. When an electric current is passed through the conductor W, a magnetic field is formed around the conductor W according to Ampere's law. In FIG. 6, the x-axis, the y-axis, and the z-axis are the coordinate axes of the Cartesian coordinate system, and it is assumed that the current flows in the positive direction of the z-axis (the direction toward the front of the paper). The magnetic field around the conductor W has a gradient in the x-axis direction and the y-axis direction. When a permanent magnet 3 having a magnetic dipole oriented in the y-axis direction is arranged in the vicinity of the lead wire W, the magnetic force received by the permanent magnet 3 is represented by the following equations (3) and (4).

Figure 0006960117
Figure 0006960117

図7は、導線Wに対する永久磁石3の位置と、当該永久磁石3に働く力との関係を示すベクトル図である。永久磁石3に働く力の大きさは、導線Wからの距離のみに依存するが、永久磁石3に働く力の方向は、導線Wに対する位置によって異なる。図7中、導線Wの上下及び左右の位置では、x軸方向の力が働き、x軸又はy軸に対して45度の位置ではy軸方向の力が働いていることが分かる。 FIG. 7 is a vector diagram showing the relationship between the position of the permanent magnet 3 with respect to the conducting wire W and the force acting on the permanent magnet 3. The magnitude of the force acting on the permanent magnet 3 depends only on the distance from the conductor W, but the direction of the force acting on the permanent magnet 3 differs depending on the position with respect to the conductor W. In FIG. 7, it can be seen that a force acts in the x-axis direction at the vertical and horizontal positions of the conducting wire W, and a force acts in the y-axis direction at a position 45 degrees with respect to the x-axis or the y-axis.

図8は、導線Wに対する永久磁石3の位置と、当該永久磁石3に働くx軸方向の力の大きさ及び向きとの関係を示すコンター図である。図8Aは、シミュレーション結果の出力画像をグレースケールで示すコンター図であり、図8Bは、グレースケールで表現できない力の向き(色)を便宜上、ハッチングの有無で模式的に示したコンター図である。図8B中、ハッチングが付されていない白抜きの領域P1は、永久磁石3に左方向の力が働くことを示し、ハッチングが付されている領域P2は、永久磁石3に右方向の力が働くことを示している。破線で示すように、x軸及びy軸に対して略45度の境界で区分けされた4つの領域中、図8中、左右の領域P1(図8B中、白抜きの領域P1)に配された永久磁石3には、白抜き左矢印で示すように左方向の力が働き、図8中、上下の領域P2(図8B中、ハッチングが付された領域P2)に配された永久磁石3には、白抜き右矢印で示すように右方向の力が働く。このように、領域P1と、領域P2とでは、永久磁石3に働く力の向きが左右逆向きである。発電装置100の永久磁石3を振動させて発電を行う場合、同一方向の力が働くように、領域P1又は領域P2のいずれか一方の領域を利用することが好ましい。 FIG. 8 is a contour diagram showing the relationship between the position of the permanent magnet 3 with respect to the conducting wire W and the magnitude and direction of the force acting on the permanent magnet 3 in the x-axis direction. FIG. 8A is a contour diagram showing the output image of the simulation result in gray scale, and FIG. 8B is a contour diagram schematically showing the direction (color) of the force that cannot be expressed in gray scale with or without hatching. .. In FIG. 8B, the white area P1 without hatching indicates that a force in the left direction acts on the permanent magnet 3, and the area P2 with hatching indicates that a force in the right direction acts on the permanent magnet 3. Shows that it works. As shown by the broken line, it is arranged in the left and right regions P1 (white regions P1 in FIG. 8B) in FIG. 8 among the four regions divided by the boundary of about 45 degrees with respect to the x-axis and the y-axis. A force in the left direction acts on the permanent magnet 3 as shown by the white left arrow, and the permanent magnet 3 is arranged in the upper and lower regions P2 (the hatched region P2 in FIG. 8B) in FIG. A force acts in the right direction as shown by the white arrow. As described above, in the region P1 and the region P2, the directions of the forces acting on the permanent magnets 3 are opposite to each other. When the permanent magnet 3 of the power generation device 100 is vibrated to generate power, it is preferable to use one of the regions P1 and P2 so that forces in the same direction act.

<圧電振動発電素子の支配方程式>
カンチレバー1の自由端1bに永久磁石3を設けてなる圧電振動発電素子の支配方程式は、図8中、導線Wの上下、即ちy軸上に永久磁石3を配した場合、下記式(5)及び(6)で表される。なお、導線Wの左右、即ちx軸上に永久磁石3を配した場合の支配方程式も同様にして表される。
<Governing equation of piezoelectric vibration power generation element>
The governing equation of the piezoelectric vibration power generation element in which the permanent magnet 3 is provided at the free end 1b of the cantilever 1 is the following equation (5) when the permanent magnet 3 is arranged above and below the lead wire W, that is, on the y-axis in FIG. And (6). The governing equation when the permanent magnets 3 are arranged on the left and right sides of the conducting wire W, that is, on the x-axis is also expressed in the same manner.

Figure 0006960117
Figure 0006960117

図9は、永久磁石3の配置及び周波数並びに負荷Rの抵抗値と、発電量との関係を示すシミュレーション結果のグラフである。横軸は交流の周波数、縦軸は発電量である。磁気モーメントがy軸方向を向いた磁気双極子を、図8中、x軸上、導線Wの右側又は、y軸上、導線Wの下側に配置したときの発電量を、上記支配方程式に基づいてシミュレートした。dは導線Wと、永久磁石3の導線W側の面との距離である。計算条件は以下の通りである。ただし、導線Wの径及び永久磁石3の大きさを無限小として取り扱った。
永久磁石3の質量:1g
電流値(実効値):10A
導線Wと永久磁石3の距離:10mm
電気機械連成係数:5%
素子の共振周波数:60Hz
カンチレバー1の非線形バネ定数:k3=0
圧電部材12の静電容量:170nF
負荷Rの抵抗値:3kΩ
残留磁束密度:1T
機械的品質係数(Q値):100
FIG. 9 is a graph of simulation results showing the relationship between the arrangement and frequency of the permanent magnets 3, the resistance value of the load R, and the amount of power generation. The horizontal axis is the frequency of alternating current, and the vertical axis is the amount of power generation. The amount of power generated when a magnetic dipole whose magnetic moment is oriented in the y-axis direction is placed on the x-axis, on the right side of the lead wire W, or on the y-axis, below the lead wire W in FIG. Simulated based on. d is the distance between the conductor W and the surface of the permanent magnet 3 on the conductor W side. The calculation conditions are as follows. However, the diameter of the conducting wire W and the size of the permanent magnet 3 were treated as infinitesimal.
Mass of permanent magnet 3: 1 g
Current value (effective value): 10A
Distance between conductor W and permanent magnet 3: 10 mm
Electromechanical coupling coefficient: 5%
Resonance frequency of the element: 60Hz
Non-linear spring constant of cantilever 1: k3 = 0
Capacitance of piezoelectric member 12: 170 nF
Load R resistance value: 3 kΩ
Residual magnetic flux density: 1T
Mechanical quality coefficient (Q value): 100

なお、導線Wに対する永久磁石3の位置及び姿勢を、図8を参照して導線Wの「右側」及び「下側」として説明するが、導線Wを基準とした鉛直方向又は水平方向の位置は必ずしも問題では無い。永久磁石3を導線Wの右側に配置することは、導線Wの径方向及び交流の通流方向に対して直交する方向にS極3b及びN極3aが並ぶように永久磁石3を配した構成を意味する。永久磁石3を導線Wの下側に配置することは、導線Wの径方向に沿ってS極3b及びN極3aが並ぶように永久磁石3を配した構成を意味する。 The position and orientation of the permanent magnet 3 with respect to the lead wire W will be described as "right side" and "lower side" of the lead wire W with reference to FIG. 8, but the position in the vertical direction or the horizontal direction with respect to the lead wire W is It doesn't necessarily matter. Placing the permanent magnet 3 on the right side of the conducting wire W means that the permanent magnets 3 are arranged so that the S poles 3b and the N poles 3a are lined up in the radial direction of the conducting wire W and the direction orthogonal to the alternating current flow direction. Means. Placing the permanent magnet 3 below the conductor W means a configuration in which the permanent magnets 3 are arranged so that the S poles 3b and the N poles 3a are lined up along the radial direction of the conductor W.

図9A及び図9Bは、永久磁石3をそれぞれ導線Wの下側及び右側に配置したときの、複数の負荷抵抗値(100Ω、300Ω、1kΩ、3kΩ、10kΩ)毎のシミュレーション結果を示している。図9A及び図9Bに示すように、共振周波数付近で発電量が最大となる。また、負荷Rの抵抗値が3kΩのとき、発電装置100及び負荷Rがインピーダンス整合し、発電量が最大となることが分かる。上記条件においては、永久磁石3の配置による発電量の際はほとんど無い。 9A and 9B show simulation results for each of a plurality of load resistance values (100Ω, 300Ω, 1kΩ, 3kΩ, 10kΩ) when the permanent magnets 3 are arranged on the lower side and the right side of the conducting wire W, respectively. As shown in FIGS. 9A and 9B, the amount of power generation is maximized near the resonance frequency. Further, it can be seen that when the resistance value of the load R is 3 kΩ, the power generation device 100 and the load R are impedance-matched and the amount of power generation is maximized. Under the above conditions, there is almost no amount of power generated by the arrangement of the permanent magnets 3.

図10は、導線W及び永久磁石3間の距離と発電量との関係を示すシミュレーション結果のグラフである。横軸は負荷Rの抵抗値、縦軸は発電量である。図10A及び図10Bは、上記と同様の条件で永久磁石3をそれぞれ導線Wの下側及び右側に配置したときのシミュレーション結果を示している。ただし、交流の周波数は、各抵抗値において発電量が最大になるときの周波数を用いて、発電量をプロットしている。
導線W及び永久磁石3間の距離が15mm以上では、永久磁石3の配置による発電量の差は僅かであるが、10mmでは永久磁石3を右側に配置したときの方が、発電量が数%大きい。導線W及び永久磁石3間の距離を5mmまで接近させると、永久磁石3を導線Wの右側に配置した場合においては、永久磁石3が導線Wに衝突してしまい、シミュレーション結果が得られなかった。
FIG. 10 is a graph of simulation results showing the relationship between the distance between the conductor W and the permanent magnet 3 and the amount of power generation. The horizontal axis is the resistance value of the load R, and the vertical axis is the amount of power generation. 10A and 10B show simulation results when the permanent magnets 3 are arranged on the lower side and the right side of the conducting wire W under the same conditions as described above. However, for the AC frequency, the power generation amount is plotted using the frequency at which the power generation amount is maximized at each resistance value.
When the distance between the lead wire W and the permanent magnet 3 is 15 mm or more, the difference in the amount of power generation due to the arrangement of the permanent magnet 3 is small, but when the distance is 10 mm, the amount of power generation is several percent when the permanent magnet 3 is arranged on the right side. big. When the distance between the lead wire W and the permanent magnet 3 was brought close to 5 mm, the permanent magnet 3 collided with the lead wire W when the permanent magnet 3 was placed on the right side of the lead wire W, and no simulation result could be obtained. ..

以上の通り、導線Wの下側に永久磁石3を配置した場合、導線Wに永久磁石3を接近させても衝突の問題は生じないため、結果として、導線Wの右側に永久磁石3を配置する場合に比べて大きな発電量を得ることができる。 As described above, when the permanent magnet 3 is arranged under the conductor W, the problem of collision does not occur even if the permanent magnet 3 is brought close to the conductor W. As a result, the permanent magnet 3 is arranged on the right side of the conductor W. It is possible to obtain a large amount of power generation as compared with the case where the magnet is used.

図11は、導線Wに対する永久磁石3の距離と発電量及び変位量との関係を示すシミュレーション結果のグラフである。横軸は導線W及び永久磁石3間の距離を示し、図11Aの縦軸は発電量、図11Bの縦軸は変位量を示している。各グラフには、異なる機械的品質係数Qの値(30、50、100、200、500)毎に、距離と、発電量及び変位量との関係がプロットされている。図11中の「Q値」は、機械的品質係数を示す。図11のグラフから、発電量は機械的品質係数Qに比例することが分かる。
また、図11のグラフから、永久磁石3と導線Wとの距離が10mm以上である場合、発電量は永久磁石3と導線Wの距離の4乗に反比例することが分かる。しかし、永久磁石3と導線Wとの距離が10mm未満である場合、反比例関係が崩れ始め、永久磁石3の変位量が永久磁石3及び導線W間の距離と同程度になると、それ以上、永久磁石3を導線Wに近づけても発電量と変位量が減少することが分かる。これは、永久磁石3の振幅が大きくなり、図8に示す領域P2で振動していた永久磁石3が、領域P1に進入し、永久磁石3に逆方向の力が働くためであると考えられる。
以上の結果から、永久磁石3の横方向の長さ、つまり永久磁石3の振動方向であるx軸方向の長さが大きいと、振動を制限するような逆方向の力が働く領域に永久磁石3が進入し易くなってしまうことが分かる。永久磁石3の横方向の長さは、永久磁石3が領域P2内に留まるように設計することが好ましい。
FIG. 11 is a graph of simulation results showing the relationship between the distance of the permanent magnet 3 with respect to the conducting wire W and the amount of power generation and the amount of displacement. The horizontal axis shows the distance between the conductor W and the permanent magnet 3, the vertical axis of FIG. 11A shows the amount of power generation, and the vertical axis of FIG. 11B shows the amount of displacement. In each graph, the relationship between the distance and the amount of power generation and the amount of displacement is plotted for each value of different mechanical quality coefficients Q (30, 50, 100, 200, 500). The “Q value” in FIG. 11 indicates a mechanical quality coefficient. From the graph of FIG. 11, it can be seen that the amount of power generation is proportional to the mechanical quality coefficient Q.
Further, from the graph of FIG. 11, it can be seen that when the distance between the permanent magnet 3 and the lead wire W is 10 mm or more, the amount of power generation is inversely proportional to the fourth power of the distance between the permanent magnet 3 and the lead wire W. However, when the distance between the permanent magnet 3 and the lead wire W is less than 10 mm, the inverse proportional relationship begins to break, and when the amount of displacement of the permanent magnet 3 becomes about the same as the distance between the permanent magnet 3 and the lead wire W, it becomes permanent. It can be seen that the amount of power generation and the amount of displacement decrease even when the magnet 3 is brought closer to the lead wire W. It is considered that this is because the amplitude of the permanent magnet 3 becomes large, the permanent magnet 3 vibrating in the region P2 shown in FIG. 8 enters the region P1, and a force in the opposite direction acts on the permanent magnet 3. ..
From the above results, if the lateral length of the permanent magnet 3, that is, the length in the x-axis direction, which is the vibration direction of the permanent magnet 3, is large, the permanent magnet is in a region where a force in the opposite direction that limits vibration acts. It can be seen that 3 is easy to enter. The lateral length of the permanent magnet 3 is preferably designed so that the permanent magnet 3 stays within the region P2.

図12は、永久磁石3の特性が発電量に及ぼす影響を示すシミュレーション結果のグラフである。当該シミュレーションにおいては、共振周波数を49Hzとした。横軸は交流の周波数、縦軸は発電量を示す。図12Aは、永久磁石3の残留磁束密度(0.22T、0.44T、0.88T、1.76T)と、発電量との関係を示すグラフであり、図12Bは、永久磁石3の質量(0.5g、1g、2g、4g、8g)と発電量との関係を示すグラフである。なお、永久磁石3の質量を変化させた際、係数k1の値を調整し、共振周波数が変化しないようにしてシミュレーションを行った。図12Aに示すグラフから、発電量は残留磁束密度の2乗に比例することが分かる。また、図12Bに示すグラフから、共振周波数一定の条件では、発電量は永久磁石3の質量に比例することが分かる。 FIG. 12 is a graph of simulation results showing the influence of the characteristics of the permanent magnet 3 on the amount of power generation. In the simulation, the resonance frequency was set to 49 Hz. The horizontal axis shows the frequency of alternating current, and the vertical axis shows the amount of power generation. FIG. 12A is a graph showing the relationship between the residual magnetic flux density (0.22T, 0.44T, 0.88T, 1.76T) of the permanent magnet 3 and the amount of power generation, and FIG. 12B is the mass of the permanent magnet 3. It is a graph which shows the relationship between (0.5 g, 1 g, 2 g, 4 g, 8 g) and the amount of power generation. When the mass of the permanent magnet 3 was changed, the value of the coefficient k1 was adjusted so that the resonance frequency did not change, and the simulation was performed. From the graph shown in FIG. 12A, it can be seen that the amount of power generation is proportional to the square of the residual magnetic flux density. Further, from the graph shown in FIG. 12B, it can be seen that the amount of power generation is proportional to the mass of the permanent magnet 3 under the condition that the resonance frequency is constant.

以上の結果を総括すると、発電量と4乗の比例関係を有するパラメータは、導線W及び永久磁石3間の距離であり、2乗の比例関係を有するのは永久磁石3の残留磁束密度であり、1乗の比例関係を有するのは永久磁石3の質量及び機械的品質係数Qであることが分かる。大きな発電量を得るためには、4乗又は2乗の比例関係を有するパラメータを優先して発電装置100を設計すると良い。
例えば、カンチレバー1の自由端1bに部品を取り付ける場合、可能な限り、磁性体からなる部品を用いることが望ましい。カンチレバー1の自由端1bに非磁性体部品を取り付けた場合、その質量に比例して発電量が増加すると考えられるが、磁性体部品を取り付ける場合に比べて、2乗の比例関係を有する残留磁束密度が低下し、結果として発電特性は低下してしまう。
Summarizing the above results, the parameter having a proportional relationship between the amount of power generation and the fourth power is the distance between the lead wire W and the permanent magnet 3, and the parameter having a proportional relationship with the square is the residual magnetic flux density of the permanent magnet 3. It can be seen that it is the mass of the permanent magnet 3 and the mechanical quality coefficient Q that have a proportional relationship of 1st power. In order to obtain a large amount of power generation, it is preferable to design the power generation device 100 by giving priority to parameters having a proportional relationship of 4th or 2nd power.
For example, when attaching a component to the free end 1b of the cantilever 1, it is desirable to use a component made of a magnetic material as much as possible. When a non-magnetic component is attached to the free end 1b of the cantilever 1, it is considered that the amount of power generation increases in proportion to its mass, but the residual magnetic flux having a square proportional relationship is compared with the case where the magnetic component is attached. The density is reduced, and as a result, the power generation characteristics are reduced.

また、永久磁石3は可能な限り導線Wに近い位置に配置し、永久磁石3の振動方向が導線Wに接近しない方向に設定することが望ましい。 Further, it is desirable that the permanent magnet 3 is arranged at a position as close to the conductor W as possible, and the vibration direction of the permanent magnet 3 is set so as not to approach the conductor W.

更に、振動を抑制する力が永久磁石3に作用しないよう、振動方向における永久磁石3の寸法を短く形成することが望ましい。 Further, it is desirable to make the dimensions of the permanent magnet 3 in the vibration direction short so that the force for suppressing vibration does not act on the permanent magnet 3.

図13は、永久磁石3の配置姿勢の例を示す模式図である。3辺の長さが異なる直方体の永久磁石3を配置する方法としては、図13A〜図13Cに示す3通りがある。上記の見地から、図13A〜図13Cに示す永久磁石3の体積及び質量が同じ永久磁石3であっても、発電量は図13Aに示す配置姿勢で最も大きく、図13A、図13B及び図13Cの順に発電量が小さくなると考えられる。
つまり、永久磁石3の厚み方向が導線Wの径方向を向き、永久磁石3の長辺方向が導線Wに沿うように配置すると良い。
FIG. 13 is a schematic view showing an example of the arrangement posture of the permanent magnet 3. There are three methods of arranging the rectangular parallelepiped permanent magnets 3 having different lengths on the three sides as shown in FIGS. 13A to 13C. From the above viewpoint, even if the permanent magnets 3 shown in FIGS. 13A to 13C have the same volume and mass, the amount of power generation is the largest in the arrangement posture shown in FIG. 13A, and FIGS. 13A, 13B and 13C It is considered that the amount of power generation decreases in the order of.
That is, it is preferable that the thickness direction of the permanent magnet 3 faces the radial direction of the lead wire W and the long side direction of the permanent magnet 3 is along the lead wire W.

一方、永久磁石3に振動を抑制する力が作用しないようにするためには、振動する永久磁石3が常に図8に示す領域P2にあることが望ましく、振動方向の永久磁石3の幅は、上記式(3)の範囲内で設定すると良いことが分かる。 On the other hand, in order to prevent the force for suppressing vibration from acting on the permanent magnet 3, it is desirable that the vibrating permanent magnet 3 is always in the region P2 shown in FIG. It can be seen that the setting should be made within the range of the above equation (3).

図14は、永久磁石3の厚みと発電量の関係を示すシミュレーション結果のグラフである。横軸は永久磁石3の厚み、縦軸は発電量を示す。導線Wの上側に永久磁石3を配置した場合を考える。導線Wの中心と、永久磁石3の導線側の面(下面)との距離をa、永久磁石3の厚み(上下方向の幅)をdとすると、発電量Pは、下記式(7)で表される。 FIG. 14 is a graph of simulation results showing the relationship between the thickness of the permanent magnet 3 and the amount of power generation. The horizontal axis represents the thickness of the permanent magnet 3, and the vertical axis represents the amount of power generation. Consider the case where the permanent magnet 3 is arranged on the upper side of the conducting wire W. Assuming that the distance between the center of the lead wire W and the surface (lower surface) of the permanent magnet 3 on the lead wire side is a and the thickness of the permanent magnet 3 (width in the vertical direction) is d, the amount of power generation P is given by the following equation (7). expressed.

Figure 0006960117
Figure 0006960117

ただし、導線Wの径を無限小とし、永久磁石3の振幅は距離aよりも十分に小さいものと仮定する。図14は、上記式(7)をグラフ化したものである。図14のグラフからd≒aのとき、発電量が最大となることが分かる。最大発電量の90%以上の発電量が得られる永久磁石3の厚みdは、約0.5a以上、2a以下である。 However, it is assumed that the diameter of the conducting wire W is infinitesimal and the amplitude of the permanent magnet 3 is sufficiently smaller than the distance a. FIG. 14 is a graph of the above equation (7). From the graph of FIG. 14, it can be seen that the amount of power generation is maximized when d≈a. The thickness d of the permanent magnet 3 capable of obtaining 90% or more of the maximum power generation amount is about 0.5a or more and 2a or less.

<実験結果>
図15は、実験用発電装置を示す模式図である。実験用発電装置の基本的な構成は、図1に示した発電装置100と同様である。長手方向が鉛直方向となるようにカンチレバー1の下端を固定部2によって固定している点が図1に示した発電装置100と異なるが、永久磁石3に働く磁気力Fの向き、永久磁石3の振動方向、磁気双極子の向き等は同じであり、原理的には同一構造と見なせる。なお図15は、導線Wの右側に永久磁石3を配置した例を図示している。永久磁石3を導線Wの下側に配置すると、図1に示す発電装置100と実質的に同じ構成となる。
圧電発電部であるカンチレバー1にはPZTセラミックスをステンレス基板の両面に接着したバイモルフ素子(FDK製PZBA00030)を用いた。圧電体の長さと幅はそれぞれ48mm及び20mmである。永久磁石3には、残留磁束密度が0.43TのNd−Fe−Bを用いた。永久磁石3の体積と質量は、それぞれ250mm、1.8gである。
また、素子の共振周波数が50Hz程度になるように永久磁石3の質量や取り付け位置を調整した。Q値の低下を防ぐために圧電バイモルフ素子の固定端1aは精密バイスで固定している。永久磁石3は双極子が下向きになるように固定している。圧電部材12の静電容量は140nFである。発電量の評価のために負荷Rとして抵抗を接続した。共振周波数との関係からインピーダンス整合する負荷Rの抵抗値は24kΩであった。永久磁石3の振動振幅はレーザ変位計を用いて測定した。負荷Rに発生する起電力はロックインアンプで測定した。
<Experimental results>
FIG. 15 is a schematic view showing an experimental power generation device. The basic configuration of the experimental power generation device is the same as that of the power generation device 100 shown in FIG. It differs from the power generation device 100 shown in FIG. 1 in that the lower end of the cantilever 1 is fixed by the fixing portion 2 so that the longitudinal direction is the vertical direction, but the direction of the magnetic force F acting on the permanent magnet 3 and the permanent magnet 3 The vibration direction, the direction of the magnetic dipole, etc. are the same, and in principle, they can be regarded as having the same structure. Note that FIG. 15 illustrates an example in which the permanent magnet 3 is arranged on the right side of the conducting wire W. When the permanent magnet 3 is arranged below the conductor W, it has substantially the same configuration as the power generation device 100 shown in FIG.
A bimorph element (FDK PZBA000030) in which PZT ceramics were bonded to both sides of a stainless steel substrate was used for the cantilever 1 which is a piezoelectric power generation unit. The length and width of the piezoelectric body are 48 mm and 20 mm, respectively. As the permanent magnet 3, Nd-Fe-B having a residual magnetic flux density of 0.43T was used. The volume and mass of the permanent magnet 3 are 250 mm 3 , 1.8 g, respectively.
Further, the mass and mounting position of the permanent magnet 3 were adjusted so that the resonance frequency of the element was about 50 Hz. The fixed end 1a of the piezoelectric bimorph element is fixed with a precision vise in order to prevent a decrease in the Q value. The permanent magnet 3 is fixed so that the dipole faces downward. The capacitance of the piezoelectric member 12 is 140 nF. A resistor was connected as a load R for evaluation of the amount of power generation. The resistance value of the load R whose impedance matching was in relation to the resonance frequency was 24 kΩ. The vibration amplitude of the permanent magnet 3 was measured using a laser displacement meter. The electromotive force generated in the load R was measured by a lock-in amplifier.

図16は、永久磁石3の配置及び周波数と、発電量の関係を示す実験結果のグラフである。横軸は周波数、縦軸は発電量である。図16A、図16B及び図16Cは、永久磁石3を、それぞれ導線Wの右側、右下側及び下側に配置した場合の発電量と、周波数の関係を示している。電流量は0.06A、0.12A、0.25Aと変化させ、素子の共振周波数付近で、発電量の周波数依存性を調べた。導線Wと永久磁石3の距離は6mmで一定になるように調整した。すべての測定において共振周波数付近で発電量が最大になっている。永久磁石3が導線Wに対して右と下の位置ではほぼ同じ発電量であるのに対し、右下位置では発電量が減少している。上記構成において永久磁石3を導線Wの右側又は下側に配置した場合、発電装置100は、約1μWの電力を発電していることが分かる。 FIG. 16 is a graph of experimental results showing the relationship between the arrangement and frequency of the permanent magnets 3 and the amount of power generation. The horizontal axis is frequency and the vertical axis is power generation. 16A, 16B and 16C show the relationship between the amount of power generation and the frequency when the permanent magnets 3 are arranged on the right side, the lower right side and the lower side of the conducting wire W, respectively. The amount of current was changed to 0.06A, 0.12A, and 0.25A, and the frequency dependence of the amount of power generation was investigated in the vicinity of the resonance frequency of the element. The distance between the conductor W and the permanent magnet 3 was adjusted to be constant at 6 mm. The amount of power generation is maximized near the resonance frequency in all measurements. While the permanent magnet 3 has substantially the same amount of power generation at the right and lower positions with respect to the conductor W, the amount of power generation decreases at the lower right position. When the permanent magnet 3 is arranged on the right side or the lower side of the conducting wire W in the above configuration, it can be seen that the power generation device 100 is generating electric power of about 1 μW.

<本実施形態に係る発電装置100の作用効果>
以上の通り、本実施形態1に係る発電装置100によれば、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。
<Operational effect of the power generation device 100 according to this embodiment>
As described above, according to the power generation device 100 according to the first embodiment, even if the frequency of the AC magnetic field formed around the lead wire W is as low as 10 Hz, power is generated based on the AC magnetic field. be able to.

また、振動する永久磁石3と、導線Wとの衝突を確実に回避することができ、交流磁場を用いて効率的に発電することができる。 Further, the collision between the vibrating permanent magnet 3 and the conducting wire W can be reliably avoided, and the AC magnetic field can be used to efficiently generate electricity.

更に、永久磁石3を離隔方向に偏平となる姿勢で配置することにより、永久磁石3の各部を導線Wに接近させることができ、効率的に発電することができる。 Further, by arranging the permanent magnets 3 in a flattened posture in the separation direction, each part of the permanent magnets 3 can be brought close to the conducting wire W, and power can be generated efficiently.

更にまた、本発明によれば、永久磁石3の各部を導線Wに沿って配置することにより、永久磁石3の各部を導線Wに接近させることができ、効率的に発電することができる。 Furthermore, according to the present invention, by arranging each part of the permanent magnet 3 along the conducting wire W, each part of the permanent magnet 3 can be brought close to the conducting wire W, and power can be efficiently generated.

更にまた、離隔方向における永久磁石3の幅を、導線W及び永久磁石3の距離の0.5倍以上、2倍以下に設定することにより、効率的に発電することができる。 Furthermore, by setting the width of the permanent magnet 3 in the separation direction to 0.5 times or more and 2 times or less the distance between the conductor W and the permanent magnet 3, efficient power generation can be performed.

更にまた、永久磁石3の静止位置及び振動時の任意の位置において、永久磁石3の各部に逆向きの力が働かないようにすることができ、効率的に発電することができる。 Furthermore, it is possible to prevent a reverse force from acting on each part of the permanent magnet 3 at a stationary position of the permanent magnet 3 and an arbitrary position at the time of vibration, and it is possible to generate electricity efficiently.

更にまた、余分な非磁性体部品を備え無いため、効率的に発電することができる。 Furthermore, since it is not provided with extra non-magnetic parts, it is possible to generate electricity efficiently.

更にまた、カンチレバー1の自由端1bに永久磁石3を設ける簡単な構成で、交流磁場を用いた発電を行うことができる。 Furthermore, power generation using an AC magnetic field can be performed with a simple configuration in which the permanent magnet 3 is provided at the free end 1b of the cantilever 1.

更にまた、カンチレバー1を構成する長板部11の両面に圧電部材12を配することによって、効率的に発電することができる。 Furthermore, by arranging the piezoelectric members 12 on both sides of the long plate portion 11 constituting the cantilever 1, it is possible to generate electricity efficiently.

(実施形態2)
実施形態2に係る発電装置200は、導線Wに対する永久磁石3の配置及び姿勢、振動方向が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 2)
Since the power generation device 200 according to the second embodiment is different from the first embodiment in the arrangement, posture, and vibration direction of the permanent magnets 3 with respect to the conducting wire W, the above differences will be mainly described below. Since other configurations and actions and effects are the same as those in the first embodiment, the corresponding parts are designated by the same reference numerals and detailed description thereof will be omitted.

図17は、本実施形態2に係る発電装置200を示す正面図である。本実施形態2に係る永久磁石3は、導線W及び永久磁石3の離隔方向に対して略45度の方向に並ぶS極3b及びN極3aを有する。そして、カンチレバー1は、永久磁石3がS極3b及びN極3aの並び方向(図17中、上下方向)に振動するように固定部2に固定されている。 FIG. 17 is a front view showing the power generation device 200 according to the second embodiment. The permanent magnet 3 according to the second embodiment has S poles 3b and N poles 3a arranged in a direction of approximately 45 degrees with respect to the separation direction of the conductor W and the permanent magnet 3. The cantilever 1 is fixed to the fixing portion 2 so that the permanent magnet 3 vibrates in the arrangement direction (vertical direction in FIG. 17) of the S pole 3b and the N pole 3a.

実施形態2に係る発電装置200によれば、実施形態1と同様、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、導線Wの周囲に形成される交流磁場に基づいて発電を行うことができる。 According to the power generation device 200 according to the second embodiment, as in the first embodiment, even if the frequency of the AC magnetic field formed around the lead wire W is as low as 10 Hz, it is formed around the lead wire W. Power can be generated based on an alternating magnetic field.

また、永久磁石3は、導線W及び永久磁石3の離隔方向に対して略45度の角度で振動するため、永久磁石3を導線Wから所定距離離隔させることにより、振動する永久磁石3と、導線Wとの接触を回避することができる。 Further, since the permanent magnet 3 vibrates at an angle of about 45 degrees with respect to the separation direction of the conductor W and the permanent magnet 3, the permanent magnet 3 vibrates by separating the permanent magnet 3 from the conductor W by a predetermined distance. Contact with the conductor W can be avoided.

(実施形態3)
本実施形態3に係る永久磁石3は、導線Wに対する永久磁石3の配置及び姿勢、振動方向が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 3)
Since the permanent magnet 3 according to the third embodiment is different from the first embodiment in the arrangement, posture, and vibration direction of the permanent magnet 3 with respect to the conducting wire W, the above differences will be mainly described below. Since other configurations and actions and effects are the same as those in the first embodiment, the corresponding parts are designated by the same reference numerals and detailed description thereof will be omitted.

図18は、本実施形態3に係る発電装置300を示す正面図である。本実施形態3に係る永久磁石3は、交流の通流方向と、導線W及び永久磁石3の離隔方向とに直交する方向に並ぶS極3b及びN極3aを有する。そして、カンチレバー1は、永久磁石3の離隔方向、つまり導線Wの径方向に振動するように固定部2に固定されている。 FIG. 18 is a front view showing the power generation device 300 according to the third embodiment. The permanent magnet 3 according to the third embodiment has S poles 3b and N poles 3a arranged in a direction orthogonal to the direction of alternating current flow and the direction of separation of the lead wire W and the permanent magnet 3. The cantilever 1 is fixed to the fixing portion 2 so as to vibrate in the separation direction of the permanent magnet 3, that is, in the radial direction of the conducting wire W.

実施形態3に係る発電装置300によれば、実施形態1と同様、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、導線Wの周囲に形成される交流磁場に基づいて発電を行うことができる。 According to the power generation device 300 according to the third embodiment, as in the first embodiment, even if the frequency of the AC magnetic field formed around the lead wire W is as low as 10 Hz, it is formed around the lead wire W. Power can be generated based on an alternating magnetic field.

(実施形態4)
本実施形態4に係る永久磁石403は、永久磁石403及びカンチレバー401の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 4)
Since the permanent magnet 403 according to the fourth embodiment has a different configuration of the permanent magnet 403 and the cantilever 401 from the first embodiment, the above differences will be mainly described below. Since other configurations and actions and effects are the same as those in the first embodiment, the corresponding parts are designated by the same reference numerals and detailed description thereof will be omitted.

図19は、本実施形態4に係る発電装置400を示す斜視図である。カンチレバー401は、長板部11の厚み方向が、導線Wの径方向及び交流の通流方向に交差する姿勢、つまり、自由端1bが導線Wの径方向及び上記通流方向に略直交する方向に変位する姿勢で固定部2に固定されている。 FIG. 19 is a perspective view showing the power generation device 400 according to the fourth embodiment. The cantilever 401 has a posture in which the thickness direction of the long plate portion 11 intersects the radial direction of the lead wire W and the alternating current flow direction, that is, the direction in which the free end 1b is substantially orthogonal to the radial direction of the lead wire W and the current flow direction. It is fixed to the fixing portion 2 in a posture of being displaced to.

カンチレバー401の自由端1bには、複数の磁極対431,432,433を有する永久磁石403が設けられている。カンチレバー401の自由端1bは、永久磁石403の中心部に接続されている。永久磁石403は、複数の磁極対431,432,433を支持するための矩形板状の支持板430を有し、支持板430の長手方向が長板部11の厚み方向を向き、支持板430の厚み方向が導線Wの径方向と略一致するように、カンチレバー401の自由端1bに固定されている。 A permanent magnet 403 having a plurality of magnetic pole pairs 431,432,433 is provided at the free end 1b of the cantilever 401. The free end 1b of the cantilever 401 is connected to the center of the permanent magnet 403. The permanent magnet 403 has a rectangular plate-shaped support plate 430 for supporting a plurality of magnetic pole pairs 431,432,433, and the longitudinal direction of the support plate 430 faces the thickness direction of the long plate portion 11, and the support plate 430 Is fixed to the free end 1b of the cantilever 401 so that the thickness direction of the cantilever is substantially the same as the radial direction of the lead wire W.

支持板430の長手方向略中央部及び両端部にはそれぞれ、厚み方向に着磁された磁極対431,432,433が設けられている。上記略中央部に設けられた磁極対431は導線W側がS極、反導線側がN極である。上記両側に設けられた磁極対432,433は導線W側がN極、反導線側がS極である。 Magnetic pole pairs 431, 432 and 433 magnetized in the thickness direction are provided at substantially the center and both ends of the support plate 430 in the longitudinal direction, respectively. The magnetic pole pair 431 provided in the substantially central portion has an S pole on the W side of the conductor and an N pole on the reverse conductor side. The magnetic pole pairs 432 and 433 provided on both sides have an N pole on the W side of the conductor and an S pole on the reverse conductor side.

支持板430に設けられた3つの磁極対431,432,433は、間隙を設けて配されている。支持板430の略中央部に配された磁極対431は、導線Wに電流が流れて永久磁石403が振動する際、同一方向の力が作用するように配されている。具体的には、支持板430の略中央部に設けられた磁極対431は図8に示すように、領域P2に位置し、支持板430の両端部に設けられた磁極対432,433は、領域P1に位置するように構成されている。 The three magnetic pole pairs 431, 432 and 433 provided on the support plate 430 are arranged with a gap. The magnetic pole pairs 431 arranged at substantially the center of the support plate 430 are arranged so that a force in the same direction acts when a current flows through the conducting wire W and the permanent magnet 403 vibrates. Specifically, as shown in FIG. 8, the magnetic pole pairs 431 provided at the substantially central portion of the support plate 430 are located in the region P2, and the magnetic pole pairs 432 and 433 provided at both ends of the support plate 430 are It is configured to be located in the region P1.

実施形態4に係る発電装置400によれば、複数組みのS極及びN極を有する永久磁石403を備え、かつ上記の通り、永久磁石403の各部に逆向きの力が働かないようにS極及びN極を配置することにより、効率的に発電することができる。 According to the power generation device 400 according to the fourth embodiment, the permanent magnet 403 having a plurality of sets of S poles and N poles is provided, and as described above, the S poles are prevented from exerting a reverse force on each part of the permanent magnet 403. By arranging the north pole and the north pole, it is possible to generate electricity efficiently.

また、永久磁石403の中心部分にカンチレバー401の自由端1bが接続されているため、永久磁石403を弾性体にバランス良く支持させることができ、効率的に発電することができる。 Further, since the free end 1b of the cantilever 401 is connected to the central portion of the permanent magnet 403, the permanent magnet 403 can be supported by the elastic body in a well-balanced manner, and power can be generated efficiently.

(実施形態5)
本実施形態5に係る永久磁石503は、永久磁石503及びカンチレバー501の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 5)
Since the permanent magnet 503 according to the fifth embodiment has a different configuration of the permanent magnet 503 and the cantilever 501 from the first embodiment, the above differences will be mainly described below. Since other configurations and actions and effects are the same as those in the first embodiment, the corresponding parts are designated by the same reference numerals and detailed description thereof will be omitted.

図20は、本実施形態5に係る発電装置500を示す斜視図である。実施形態5に係る発電装置500は、2本のカンチレバー501を備える。各カンチレバー501の固定端1aは、貫通孔21を挟んで上部及び下部に固定されている。各カンチレバー501の長板部11の厚み方向が、導線Wの径方向及び交流の通流方向に交差する姿勢で固定部2に固定されている。 FIG. 20 is a perspective view showing the power generation device 500 according to the fifth embodiment. The power generation device 500 according to the fifth embodiment includes two cantilever 501s. The fixed end 1a of each cantilever 501 is fixed to the upper part and the lower part with the through hole 21 interposed therebetween. The thickness direction of the long plate portion 11 of each cantilever 501 is fixed to the fixing portion 2 in a posture of intersecting the radial direction of the conducting wire W and the alternating current flow direction.

各カンチレバー501の自由端1bには、導線Wを囲繞する正面視略C字状をなし、径方向に並ぶN極503a及びS極503bを有する永久磁石503が固定されている。第1のカンチレバー501の自由端1bは、C字状の永久磁石503の一端部が固定され、第2のカンチレバー501の自由端1bには、当該永久磁石503の他端部が固定されている。 A permanent magnet 503 having a substantially C-shaped front view surrounding the lead wire W and having N poles 503a and S poles 503b arranged in the radial direction is fixed to the free end 1b of each cantilever 501. One end of a C-shaped permanent magnet 503 is fixed to the free end 1b of the first cantilever 501, and the other end of the permanent magnet 503 is fixed to the free end 1b of the second cantilever 501. ..

このように構成された永久磁石503は、導線Wの周方向に沿って幅広く永久磁石503を配置することにより、永久磁石503の各部を導線Wに接近させることができ、交流磁場を用いて効率的に発電することができる。 In the permanent magnet 503 configured in this way, by arranging the permanent magnets 503 widely along the circumferential direction of the conducting wire W, each part of the permanent magnet 503 can be brought close to the conducting wire W, and efficiency is achieved by using an AC magnetic field. Can generate electricity.

実施形態5に係る発電装置500によれば、導線Wの周囲に沿って幅広く永久磁石503を配置することができ、効率的に発電することができる。 According to the power generation device 500 according to the fifth embodiment, the permanent magnets 503 can be widely arranged along the periphery of the conducting wire W, and power can be efficiently generated.

(実施形態6)
図21は、本実施形態6に係る電圧調整装置を示すブロック図である。実施形態6に係る電圧調整装置は、系統に接続された導線Wの電圧を調整するための電圧調整機605と、電圧調整機605の状態を検出する検出装置606と、当該検出装置606にて検出された検出情報を外部へ無線送信する送信装置607とを備える。電圧調整機605は、例えば、SVR(Step Voltage Regulator)、SVC(static var compensator)等であり、検出情報は、電圧調整機605の上流側及び下流側の電圧、電流、電圧調整内容等である。
(Embodiment 6)
FIG. 21 is a block diagram showing a voltage adjusting device according to the sixth embodiment. The voltage adjusting device according to the sixth embodiment is a voltage adjusting device 605 for adjusting the voltage of the conducting wire W connected to the system, a detecting device 606 for detecting the state of the voltage adjusting device 605, and the detecting device 606. A transmission device 607 that wirelessly transmits the detected detection information to the outside is provided. The voltage regulator 605 is, for example, an SVR (Step Voltage Regulator), an SVC (static var compensator), or the like, and the detection information is the voltage, current, voltage adjustment content, etc. on the upstream side and the downstream side of the voltage regulator 605. ..

実施形態6に係る送信装置607は、実施形態1に係る発電装置100と、当該発電装置100が出力する電力にて駆動し、検出装置606によって検出された検出情報に係る信号を無線送信する送信部671とを備える。発電装置100は、導線Wの周囲に形成される交流磁場に基づいて発電し、電圧を送信部671へ出力し、送信部671は、発電装置100から出力される電圧にて駆動する。 The transmission device 607 according to the sixth embodiment is driven by the power generation device 100 according to the first embodiment and the electric power output by the power generation device 100, and wirelessly transmits a signal related to the detection information detected by the detection device 606. A unit 671 is provided. The power generation device 100 generates power based on an AC magnetic field formed around the conductor W, outputs a voltage to the transmission unit 671, and the transmission unit 671 is driven by the voltage output from the power generation device 100.

実施形態6に係る電圧調整装置によれば、発電装置100が出力する電圧を用いて送信部671を駆動することができる。従って、電源を用意することができない環境、例えば、送電線の途中に設けられた電圧調整機605の側に発電装置100及び送信部671を配し、電圧調整機605に係る情報を外部へ無線送信することができる。 According to the voltage adjusting device according to the sixth embodiment, the transmission unit 671 can be driven by using the voltage output by the power generation device 100. Therefore, in an environment where a power source cannot be prepared, for example, the power generation device 100 and the transmission unit 671 are arranged on the side of the voltage regulator 605 provided in the middle of the transmission line, and the information related to the voltage regulator 605 is wirelessly transmitted to the outside. Can be sent.

なお、実施形態6では、実施形態1に係る発電装置100を備える例を説明したが、言うまでも無く、実施形態2〜実施形態5に係る発電装置200,300,400,500を用いて、実施形態6に係る電圧調整装置を構成しても良い。 In the sixth embodiment, an example including the power generation device 100 according to the first embodiment has been described, but it goes without saying that the power generation devices 200, 300, 400, 500 according to the second to fifth embodiments are used. The voltage adjusting device according to the sixth embodiment may be configured.

今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered as exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

100、200,300,400,500 発電装置
1、401、501 カンチレバー
1a 固定端
1b 自由端
2、402、502 固定部
21 貫通孔
3、403、503 永久磁石
3a N極
3b S極
4 出力部
11 長板部
12 圧電部材
13 電極
41 整流回路
42 平滑コンデンサ
605 電圧調整機
606 検出装置
607 送信装置
671 送信部
W 導線
R 負荷
100, 200, 300, 400, 500 Power generator 1, 401, 501 Cantilever 1a Fixed end 1b Free end 2, 402, 502 Fixed part 21 Through hole 3, 403, 503 Permanent magnet 3a N pole 3b S pole 4 Output part 11 Long plate part 12 piezoelectric member 13 electrode 41 rectifier circuit 42 smoothing capacitor 605 voltage regulator 606 detector 607 transmitter 671 transmitter W lead wire R load

Claims (14)

圧電部材を有する弾性体と、
該弾性体の第1部位を、交流が流れる導線に対して固定する固定部と、
外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられた永久磁石と、
前記圧電部材に発生した電圧を出力する出力部と
を備え、
前記永久磁石は、
前記導線及び前記永久磁石の離隔方向に並ぶS極及びN極を有し、
前記導線の周囲に形成される交流磁場によって前記永久磁石が前記導線の中心に向かう方向から逸れた方向へ振動し、該永久磁石の振動によって前記圧電部材に発生した電圧が前記出力部から出力される発電装置。
An elastic body with a piezoelectric member and
A fixing portion for fixing the first portion of the elastic body to a conducting wire through which alternating current flows, and a fixing portion.
A permanent magnet provided at the second portion of the elastic body whose position with respect to the conducting wire changes due to an external force, and
It is provided with an output unit that outputs the voltage generated in the piezoelectric member.
The permanent magnet is
It has S poles and N poles that are aligned in the separation direction of the conductor and the permanent magnet.
The permanent magnet vibrates in a direction deviated from the direction toward the center of the conductor by the AC magnetic field formed around the conductor, and the voltage generated in the piezoelectric member by the vibration of the permanent magnet is output from the output unit. Power generation equipment.
振動方向における前記永久磁石の幅は、下記式を満たす
請求項1に記載の発電装置
w≦2(d−√2a)
但し、
w:振動方向における前記永久磁石の幅
d:前記導線の中心と、前記永久磁石との距離
a:前記永久磁石の振幅
The width of the permanent magnet in the vibration direction satisfies the following equation.
The power generation device according to claim 1 .
w ≦ 2 (d−√2a)
However,
w: Width of the permanent magnet in the vibration direction
d: Distance between the center of the conducting wire and the permanent magnet
a: Amplitude of the permanent magnet
前記離隔方向における前記永久磁石の幅は、前記導線の中心と前記永久磁石との距離の0.5倍以上、2倍以下である
請求項1又は請求項2に記載の発電装置。
The width of the permanent magnet in the separation direction is 0.5 times or more and 2 times or less the distance between the center of the conducting wire and the permanent magnet.
The power generation device according to claim 1 or 2.
前記永久磁石は、
前記導線及び前記永久磁石の離隔方向に偏平である
請求項1〜請求項3までのいずれか一項に記載の発電装置。
The permanent magnet is
The power generation device according to any one of claims 1 to 3, which is flat in the separation direction of the conducting wire and the permanent magnet.
前記永久磁石は前記導線に沿う長手方向を有する
請求項1〜請求項4までのいずれか一項に記載の発電装置。
The power generation device according to any one of claims 1 to 4, wherein the permanent magnet has a longitudinal direction along the conducting wire.
前記永久磁石は、
少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する
請求項1〜請求項5までのいずれか一項に記載の発電装置。
The permanent magnet is
The power generation device according to any one of claims 1 to 5 , wherein each part has a dimension of receiving a magnetic force in the same direction at least at the vibration center position.
前記永久磁石は、
任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する
請求項1〜請求項6までのいずれか一項に記載の発電装置。
The permanent magnet is
The power generation device according to any one of claims 1 to 6 , wherein each part has a dimension of receiving a magnetic force in the same direction at an arbitrary vibration position.
前記弾性体は、第2部位に前記永久磁石を除く他の構造物を有しない
請求項1〜請求項7までのいずれか一項に記載の発電装置。
The power generation device according to any one of claims 1 to 7 , wherein the elastic body does not have any other structure other than the permanent magnet in the second portion.
前記弾性体の第2部位は、前記永久磁石の中心部に接続されている
請求項1〜請求項8までのいずれか一項に記載の発電装置。
The power generation device according to any one of claims 1 to 8 , wherein the second portion of the elastic body is connected to the central portion of the permanent magnet.
前記弾性体はカンチレバーである
請求項1〜請求項9までのいずれか一項に記載の発電装置。
The power generation device according to any one of claims 1 to 9 , wherein the elastic body is a cantilever.
前記弾性体は長板部を有し、
前記圧電部材は板状であり、前記長板部の両面にそれぞれ配されている
請求項10に記載の発電装置。
The elastic body has a long plate portion and has a long plate portion.
The piezoelectric member has a plate shape and is arranged on both sides of the long plate portion.
The power generation device according to claim 10.
請求項1〜請求項11までのいずれか一項に記載の発電装置と、
信号を送信する送信部と
を備え、
前記送信部は、
前記発電装置から出力される電圧にて駆動する送信装置。
The power generation device according to any one of claims 1 to 11.
Equipped with a transmitter that transmits signals
The transmitter
A transmission device driven by a voltage output from the power generation device.
圧電部材を有する弾性体の第1部位を、交流が流れる導線に対して固定し、
外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられた永久磁石を、前記導線の周囲に形成される交流磁場によって振動させ、
前記永久磁石の振動によって前記圧電部材に発生した電圧を出力させる
発電方法であって、
前記永久磁石は、
前記導線及び前記永久磁石の離隔方向に並ぶS極及びN極を有し、
前記導線の周囲に形成される交流磁場によって前記永久磁石を、前記導線の中心に向かう方向から逸れた方向へ振動させる
発電方法。
The first part of the elastic body having the piezoelectric member is fixed to the conducting wire through which the alternating current flows.
A permanent magnet provided at the second portion of the elastic body whose position with respect to the conducting wire is changed by an external force is vibrated by an alternating magnetic field formed around the conducting wire.
A power generation method for outputting a voltage generated in the piezoelectric member by vibration of the permanent magnet .
The permanent magnet is
It has S poles and N poles that are aligned in the separation direction of the conductor and the permanent magnet.
The alternating magnetic field formed around the conductor causes the permanent magnet to vibrate in a direction deviating from the direction toward the center of the conductor.
Power generation method.
振動方向における前記永久磁石の幅は、下記式を満たす
請求項13に記載の発電方法
w≦2(d−√2a)
但し、
w:振動方向における前記永久磁石の幅
d:前記導線の中心と、前記永久磁石との距離
a:前記永久磁石の振幅
The width of the permanent magnet in the vibration direction satisfies the following equation.
The power generation method according to claim 13 .
w ≦ 2 (d−√2a)
However,
w: Width of the permanent magnet in the vibration direction
d: Distance between the center of the conducting wire and the permanent magnet
a: Amplitude of the permanent magnet
JP2017140252A 2017-07-19 2017-07-19 Power generation device, transmission device and power generation method Active JP6960117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140252A JP6960117B2 (en) 2017-07-19 2017-07-19 Power generation device, transmission device and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140252A JP6960117B2 (en) 2017-07-19 2017-07-19 Power generation device, transmission device and power generation method

Publications (3)

Publication Number Publication Date
JP2019022366A JP2019022366A (en) 2019-02-07
JP2019022366A5 JP2019022366A5 (en) 2020-07-09
JP6960117B2 true JP6960117B2 (en) 2021-11-05

Family

ID=65354603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140252A Active JP6960117B2 (en) 2017-07-19 2017-07-19 Power generation device, transmission device and power generation method

Country Status (1)

Country Link
JP (1) JP6960117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114136A (en) * 2019-01-15 2020-07-27 株式会社ダイヘン Power generation device, transmission device, and power generation method
JP7244827B2 (en) * 2019-02-13 2023-03-23 株式会社ダイヘン generator and transmitter
JP2021023033A (en) * 2019-07-26 2021-02-18 株式会社ダイヘン Environmental power generation apparatus and transmitter
JP7361300B2 (en) * 2019-09-26 2023-10-16 株式会社ダイヘン Power generator and transmitter

Also Published As

Publication number Publication date
JP2019022366A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6960117B2 (en) Power generation device, transmission device and power generation method
Marin et al. Multiple cell configuration electromagnetic vibration energy harvester
EP2618166B1 (en) Electrical sensor for a two-wire power cable
WO2010151738A2 (en) Piezomagnetoelastic structure for broadband vibration energy harvesting
US11005352B2 (en) Device for generating electrical power from low frequency oscillations
US9823277B1 (en) Fiber optic electromagnetic phenomena sensors
Li et al. A miniaturized electromagnetic energy harvester with volt-level output based on stacked flexible coils
CN115618668A (en) Cantilever beam type magnetic-mechanical-electric composite type hybrid energy collector modeling method
KR101332006B1 (en) Omnidirectional vibration based energy harvester
US11368049B2 (en) Electrodynamic wireless power receiver
JP7244830B2 (en) generator and transmitter
WO2020148916A1 (en) Power generation device, transmission device, and power generation method
JP7244827B2 (en) generator and transmitter
JP7361300B2 (en) Power generator and transmitter
Karami et al. Experimental study of the nonlinear hybrid energy harvesting system
Halim et al. A chip-sized piezoelectric receiver for low-frequency, near-field wireless power transfer: Design, modeling and experimental validation
JP2015177552A (en) power generator
Nyamayoka et al. Design of a prototype generator based on piezoelectric power generation for vibration energy harvesting
Ali et al. Investigation of hybrid energy harvesting circuits using piezoelectric and electromagnetic mechanisms
JP2017184444A (en) Vibration generator
KR101652815B1 (en) Energy harvester using cantilever
KR102114497B1 (en) Device for generation of electricity using triboelectic
JP2023009446A (en) Power generator, transmitter, and power generation method
JP2020088933A (en) Power generation device
JP2021136734A (en) Power generator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211001

R150 Certificate of patent or registration of utility model

Ref document number: 6960117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150