JP2020114136A - Power generation device, transmission device, and power generation method - Google Patents

Power generation device, transmission device, and power generation method Download PDF

Info

Publication number
JP2020114136A
JP2020114136A JP2019004670A JP2019004670A JP2020114136A JP 2020114136 A JP2020114136 A JP 2020114136A JP 2019004670 A JP2019004670 A JP 2019004670A JP 2019004670 A JP2019004670 A JP 2019004670A JP 2020114136 A JP2020114136 A JP 2020114136A
Authority
JP
Japan
Prior art keywords
permanent magnet
power generation
power generator
generator according
conducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019004670A
Other languages
Japanese (ja)
Inventor
吉村 武
Takeshi Yoshimura
武 吉村
村上 修一
Shuichi Murakami
修一 村上
梓紗 檀上
Azusa Danjo
梓紗 檀上
敏生 巳波
Toshio Minami
敏生 巳波
雄也 上野
Takeya Ueno
雄也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Osaka University NUC
Osaka Prefecture University
Osaka Research Institute of Industrial Science and Technology
Original Assignee
Daihen Corp
Osaka University NUC
Osaka Prefecture University
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Osaka University NUC, Osaka Prefecture University, Osaka Research Institute of Industrial Science and Technology filed Critical Daihen Corp
Priority to JP2019004670A priority Critical patent/JP2020114136A/en
Priority to PCT/JP2019/002384 priority patent/WO2020148916A1/en
Publication of JP2020114136A publication Critical patent/JP2020114136A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/04Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Abstract

To provide a power generation device capable of performing power generation on the basis of an AC magnetic field formed around a conductor even when the frequency of the AC magnetic field is as low as 10 Hz.SOLUTION: A power generation device includes a permanent magnet 3 provided displaceably with respect to a conducting wire W through which an alternating current flows, a conversion unit that converts vibration energy of a permanent magnet 3 into electric energy when the permanent magnet 3 vibrates due to the AC magnetic field formed around the conducting wire W, and an output unit 4 that outputs the converted electric energy.SELECTED DRAWING: Figure 1

Description

本発明は、交流磁場を永久磁石の運動エネルギーに変換し、当該運動エネルギーを電力に変換する発電装置、送信装置及び発電方法に関する。 The present invention relates to a power generation device, a transmission device, and a power generation method for converting an AC magnetic field into kinetic energy of a permanent magnet and converting the kinetic energy into electric power.

交流磁場をエネルギー源とする発電方法としては、コイルを用いる方法がある。交流磁場は、例えば、系統電源に接続された導線の回りに形成される。導線近傍に配されたコイルには、交流磁場によって起電力が誘起され、発電が行われる。 As a power generation method using an AC magnetic field as an energy source, there is a method using a coil. The alternating magnetic field is formed, for example, around a conductor wire connected to a system power supply. An electromotive force is induced in the coil arranged in the vicinity of the conducting wire by an alternating magnetic field to generate power.

一方、特許文献1には、導線に流れる電流を検出するAC電流センサが開示されている。AC電流センサは、くぼみ部を有する基板と、一端部がくぼみ部の縁に固定され、他端部がくぼみ部において変位可能に支持された圧電フィルムと、圧電フィルムの当該他端部に設けられた磁性体とを備える。磁性体は、導線の周囲に形成される磁界の大きさによって変位し、圧電フィルムは当該変位に従って電荷を発生させる。当該電荷の大きさを検出することによって、導線に流れる電流値を検出することができる。 On the other hand, Patent Document 1 discloses an AC current sensor that detects a current flowing through a conductor. The AC current sensor is provided on a substrate having a recess, a piezoelectric film having one end fixed to an edge of the recess and the other end displaceably supported in the recess, and the other end of the piezoelectric film. And a magnetic material. The magnetic body is displaced according to the magnitude of the magnetic field formed around the conducting wire, and the piezoelectric film generates an electric charge according to the displacement. By detecting the magnitude of the electric charge, the value of the current flowing through the conducting wire can be detected.

特開2006−138852号公報JP 2006-138852 A

しかしながら、コイルを用いた発電方法においては、誘導起電力は周波数に比例するため、50Hz又は60Hzの系統電源に対して小型のコイルを用いる場合、電子回路等を駆動させる十分な出力電圧を得ることは困難である。 However, in the power generation method using a coil, the induced electromotive force is proportional to the frequency. Therefore, when using a small coil for a 50 Hz or 60 Hz system power supply, obtain a sufficient output voltage to drive an electronic circuit or the like. It is difficult.

また、特許文献1のAC電流センサによれば、交流磁場に応じた信号が出力されるものの、電子回路等を駆動させる十分な出力電圧を得ることは困難である。 Further, according to the AC current sensor of Patent Document 1, although a signal according to the AC magnetic field is output, it is difficult to obtain a sufficient output voltage for driving an electronic circuit or the like.

本発明は斯かる事情に鑑みてなされたものであり、その目的は、導線の周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことが可能な発電装置及び発電方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to generate power based on the AC magnetic field even if the frequency of the AC magnetic field formed around the conductor is a low frequency of the order of 10 Hz. An object is to provide a power generation device and a power generation method that can be performed.

本発明の一態様に係る発電装置は、交流が流れる導線に対して変位可能に設けられた永久磁石と、前記導線の周囲に形成される交流磁場によって前記永久磁石が振動した場合、該永久磁石の振動エネルギーを電気エネルギーに変換する変換部と、該変換部にて変換された電気エネルギーを出力する出力部とを備える。 A power generator according to one aspect of the present invention is a permanent magnet that is displaceably provided with respect to a conducting wire through which alternating current flows, and the permanent magnet when the permanent magnet vibrates due to an alternating magnetic field formed around the conducting wire. A conversion unit for converting the vibration energy of the above into electric energy, and an output unit for outputting the electric energy converted by the conversion unit.

本態様によれば、永久磁石は、導線の周囲に形成される交流磁場によって振動する。変換部は、永久磁石の振動エネルギーを電気エネルギーに変換し、変換部によって変換された電気エネルギーは出力部から出力される。本発明に係る発電装置は、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。
なお、永久磁石の振動周波数、即ち共振周波数は、交流磁場の周波数に略一致させる構成が好ましい。例えば、交流磁場の周波数が50Hzである場合、永久磁石の振動周波数を50Hzとし、交流磁場の周波数が60Hzである場合、永久磁石の振動周波数を60Hzとする構成が望ましい。但し、所要の電力が得られる範囲で永久磁石の振動周波数を交流磁場の周波数からずらした構成も本発明に含まれる。
また、本態様に係る導線は、電流を通ずることが可能な材料で形成された線条の部材であり、レール状の導通部材、バスバー、角柱状の導体、長手方向を有する板状の導体も導線に含まれる。また、導線は特定の用途のものに限定されるものでは無く、アース線であっても良い。
According to this aspect, the permanent magnet vibrates due to the alternating magnetic field formed around the conductive wire. The conversion unit converts the vibration energy of the permanent magnet into electric energy, and the electric energy converted by the conversion unit is output from the output unit. The power generator according to the present invention can generate power using the alternating magnetic field as an energy source even if the alternating magnetic field has a low frequency of the order of 10 Hz.
In addition, it is preferable that the vibration frequency of the permanent magnet, that is, the resonance frequency, be substantially equal to the frequency of the alternating magnetic field. For example, when the frequency of the alternating magnetic field is 50 Hz, the vibration frequency of the permanent magnet is 50 Hz, and when the frequency of the alternating magnetic field is 60 Hz, the vibration frequency of the permanent magnet is preferably 60 Hz. However, the present invention includes a configuration in which the vibration frequency of the permanent magnet is deviated from the frequency of the alternating magnetic field within a range in which required power can be obtained.
Further, the conducting wire according to this aspect is a linear member formed of a material capable of passing an electric current, and also includes a rail-shaped conducting member, a bus bar, a prismatic conductor, and a plate-shaped conductor having a longitudinal direction. Included in the conductor. The conductor wire is not limited to a specific one, and may be a ground wire.

本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に対して非直交方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に交差する方向に振動する構成が好ましい。 In the power generator according to this aspect, the permanent magnet has an S pole and an N pole arranged in a non-orthogonal direction with respect to a separation direction of the conductive wire and the permanent magnet, and intersects with an alternating current flowing direction and the separating direction. A configuration that vibrates in the direction of rotation is preferable.

本態様によれば、振動する永久磁石と、導線との衝突する可能性を低減することができ、交流磁場を用いた効率的な発電が可能である(例えば、図4、図17等参照)。仮に、永久磁石が、導線及び永久磁石の離隔方向に対して直交方向に並ぶS極及びN極を有し、前記離隔方向に振動するように構成した場合(図18参照)、永久磁石の振動によって、当該永久磁石が導線に衝突する可能性がある。
一方、本態様によれば、図4、図17に示すように、永久磁石は、導線の中心に向かう方向から逸れた方向へ振動するため、永久磁石が導線に衝突する可能性を低減することができる。なお、上記説明は、本態様に係る発明の範囲を限定するものでは無い。
According to this aspect, the possibility of collision between the vibrating permanent magnet and the conducting wire can be reduced, and efficient power generation using an alternating magnetic field is possible (see, for example, FIGS. 4 and 17). .. If the permanent magnet has S poles and N poles arranged in a direction orthogonal to the separating direction of the conducting wire and the permanent magnet and configured to vibrate in the separating direction (see FIG. 18), vibration of the permanent magnet Therefore, the permanent magnet may collide with the lead wire.
On the other hand, according to this aspect, as shown in FIGS. 4 and 17, the permanent magnet vibrates in a direction deviating from the direction toward the center of the conducting wire, thus reducing the possibility that the permanent magnet collides with the conducting wire. You can The above description does not limit the scope of the invention according to this aspect.

本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に直交する方向に振動する構成が好ましい。 In the power generator according to this aspect, the permanent magnet has an S pole and an N pole arranged in a separating direction of the conducting wire and the permanent magnet, and vibrates in a flow direction of an alternating current and a direction orthogonal to the separating direction. Is preferred.

本態様によれば、振動する永久磁石と、導線との衝突を確実に回避することができ、交流磁場を用いた効率的な発電が可能である(例えば、図4参照)。図4に示す実施形態によれば、永久磁石は静止位置において導線から図4中上方に離隔しており、交流磁場によって永久磁石は図4中左右方向に振動する。この場合、永久磁石と、導線との距離は必ず大きくなり、これ以上、導線に接近することは無い。従って、永久磁石が導線と衝突することを確実に回避することができる。なお、上記説明は、本態様に係る発明の範囲を限定するものでは無い。 According to this aspect, it is possible to reliably avoid the collision between the vibrating permanent magnet and the conductive wire, and it is possible to efficiently generate electric power using the alternating magnetic field (see, for example, FIG. 4 ). According to the embodiment shown in FIG. 4, the permanent magnet is separated from the conductor in the rest position upward in FIG. 4, and the alternating magnetic field causes the permanent magnet to vibrate in the left-right direction in FIG. In this case, the distance between the permanent magnet and the conducting wire is always large, and the conducting wire will not approach any more. Therefore, it is possible to reliably prevent the permanent magnet from colliding with the conducting wire. The above description does not limit the scope of the invention according to this aspect.

本態様に係る発電装置は、振動方向における前記永久磁石の幅は、下記式を満たす構成が好ましい。
w≦2(d−√2a)
但し、
w:振動方向における前記永久磁石の幅
d:前記導線の中心と、前記永久磁石との距離
a:前記永久磁石の振幅
In the power generation device according to this aspect, it is preferable that the width of the permanent magnet in the vibration direction satisfies the following formula.
w≦2 (d−√2a)
However,
w: width of the permanent magnet in the vibration direction d: distance between the center of the conductive wire and the permanent magnet a: amplitude of the permanent magnet

本態様によれば、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, it is possible to prevent reverse force from acting on each part of the permanent magnet, and efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記離隔方向における前記永久磁石の幅は、前記導線の中心と前記永久磁石との距離の0.5倍以上、2倍以下である構成が好ましい。 In the power generation device according to this aspect, it is preferable that the width of the permanent magnet in the separating direction is 0.5 times or more and 2 times or less the distance between the center of the conductive wire and the permanent magnet.

本態様によれば、上記のように離隔方向における永久磁石の幅を設定することにより、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by setting the width of the permanent magnet in the separating direction as described above, efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、交流の通流方向に直交し、かつ前記導線及び前記永久磁石の離隔方向に対して略45度の方向に並ぶS極及びN極を有し、前記S極及びN極の並び方向に振動する構成が好ましい。 In the power generator according to this aspect, the permanent magnet has an S pole and an N pole that are orthogonal to the flow direction of the alternating current and are arranged in a direction of approximately 45 degrees with respect to the separating direction of the conductive wire and the permanent magnet. It is preferable to vibrate in the arrangement direction of the S pole and the N pole.

本態様によれば、S極及びN極の並び方向に永久磁石を振動させた発電が可能である。 According to this aspect, it is possible to generate electric power by vibrating the permanent magnets in the direction in which the S pole and the N pole are arranged.

本態様に係る発電装置は、前記永久磁石は、交流の通流方向と、前記導線及び前記永久磁石の離隔方向とに直交する方向に並ぶS極及びN極を有し、前記離隔方向に振動する構成が好ましい。 In the power generator according to this aspect, the permanent magnet has an S pole and an N pole arranged in a direction orthogonal to a flow direction of an alternating current and a separation direction of the lead wire and the permanent magnet, and vibrates in the separation direction. The configuration is preferable.

本態様によれば、前記離隔方向に永久磁石を振動させた発電が可能である。 According to this aspect, it is possible to generate electricity by vibrating the permanent magnet in the separating direction.

本態様に係る発電装置は、前記永久磁石は、振動方向に並ぶ複数組みのS極及びN極を有し、振動方向におけるS極及びN極の並びは、隣り合う各極が異極になるようにしてある構成が好ましい。 In the power generator according to this aspect, the permanent magnet has a plurality of sets of S poles and N poles arranged in the vibration direction, and in the arrangement of the S poles and N poles in the vibration direction, adjacent poles are different poles. The configuration as described above is preferable.

本態様によれば、複数組みのS極及びN極を有する永久磁石を備え、かつ永久磁石の各部に逆向きの力が働かないようにS極及びN極を配置することにより、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by providing a permanent magnet having a plurality of sets of S poles and N poles and arranging the S poles and N poles so that the opposite force does not act on each part of the permanent magnet, the AC magnetic field is generated. Efficient power generation using it is possible.

本態様に係る発電装置は、前記永久磁石は、前記導線を囲繞するC字状をなし、径方向に並ぶS極及びN極を有し、前記導線の周方向に振動する構成が好ましい。 In the power generator according to this aspect, it is preferable that the permanent magnet has a C shape surrounding the conductor wire, has S poles and N poles arranged in a radial direction, and vibrates in the circumferential direction of the conductor wire.

本態様によれば、導線の周方向に沿って幅広く永久磁石を配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by arranging the permanent magnets widely along the circumferential direction of the conductor, each part of the permanent magnet can be brought close to the conductor, and efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、前記導線及び前記永久磁石の離隔方向に偏平である構成が好ましい。 In the power generator according to this aspect, it is preferable that the permanent magnet is flat in a direction in which the conductive wire and the permanent magnet are separated from each other.

本態様によれば、永久磁石を離隔方向に偏平となる姿勢で配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by arranging the permanent magnet in a flat posture in the separating direction, each part of the permanent magnet can be brought close to the conductor wire, and efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は前記導線に沿う長手方向を有する構成が好ましい。 In the power generator according to this aspect, it is preferable that the permanent magnet has a longitudinal direction along the conductive wire.

本態様によれば、永久磁石の各部を導線に沿って配置することにより、永久磁石の各部を導線に接近させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by arranging each part of the permanent magnet along the conductive wire, each part of the permanent magnet can be brought close to the conductive wire, and efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する構成が好ましい。 In the power generation device according to this aspect, it is preferable that the permanent magnet has a size such that each part receives a magnetic force in the same direction at least at a vibration center position.

本態様によれば、少なくとも永久磁石の静止位置において、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, it is possible to prevent reverse force from acting on each part of the permanent magnet at least at the stationary position of the permanent magnet, and efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記永久磁石は、任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する構成が好ましい。 In the power generator according to this aspect, it is preferable that the permanent magnet has a size such that each part receives a magnetic force in the same direction at an arbitrary vibration position.

本態様によれば、永久磁石の振動時においても、永久磁石の各部に逆向きの力が働かないようにすることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, even when the permanent magnet vibrates, it is possible to prevent the opposite force from acting on each part of the permanent magnet, and it is possible to efficiently generate electric power using the alternating magnetic field.

本態様に係る発電装置は、弾性体と、該弾性体の第1部位を、交流が流れる導線に対して固定する固定部とを備え、前記永久磁石は、外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられており、前記変換部は、前記弾性体に設けられた圧電部材を備え、前記導線の周囲に形成される交流磁場によって前記永久磁石が振動し、該永久磁石の振動によって前記圧電部材に発生した電圧が前記出力部から出力される。 The power generator according to the present aspect includes an elastic body and a fixing portion that fixes the first portion of the elastic body to a conducting wire through which alternating current flows, and the permanent magnet changes its position with respect to the conducting wire due to an external force. The converter is provided at a second portion of the elastic body, and the conversion unit includes a piezoelectric member provided on the elastic body, and the permanent magnet vibrates due to an alternating magnetic field formed around the conductive wire. The voltage generated in the piezoelectric member by the vibration of the magnet is output from the output unit.

本態様によれば、弾性体に設けられた永久磁石は、導線の周囲に形成される交流磁場によって振動する。弾性体が有する圧電部材は、永久磁石の振動によって変形して発電し、圧電部材に発生した電圧は出力部から出力される。本発明に係る発電装置は、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。 According to this aspect, the permanent magnet provided on the elastic body vibrates due to the alternating magnetic field formed around the conductive wire. The piezoelectric member included in the elastic body is deformed by the vibration of the permanent magnet to generate electric power, and the voltage generated in the piezoelectric member is output from the output unit. The power generator according to the present invention can generate power using the alternating magnetic field as an energy source even if the alternating magnetic field has a low frequency of the order of 10 Hz.

本態様に係る発電装置は、前記弾性体は、第2部位に前記永久磁石を除く他の構造物を有しない構成が好ましい。 In the power generator according to this aspect, it is preferable that the elastic body does not have any structure other than the permanent magnet in the second portion.

本態様によれば、余分な非磁性体部品を備え無いため、交流磁場を用いた効率的な発電が可能である。 According to this aspect, since no extra non-magnetic component is provided, efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記弾性体の第2部位は、前記永久磁石の中心部に接続されている構成が好ましい。 In the power generator according to this aspect, it is preferable that the second portion of the elastic body is connected to the central portion of the permanent magnet.

本態様によれば、永久磁石を弾性体にバランス良く支持させることができ、交流磁場を用いた効率的な発電が可能である。 According to this aspect, the permanent magnets can be supported by the elastic body in good balance, and efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記弾性体はカンチレバーである構成が好ましい。 In the power generator according to this aspect, it is preferable that the elastic body is a cantilever.

本態様によれば、カンチレバーの自由端に永久磁石を設ける簡単な構成で、交流磁場を用いた発電が可能である。 According to this aspect, power generation using an alternating magnetic field is possible with a simple configuration in which a permanent magnet is provided at the free end of the cantilever.

本態様に係る発電装置は、前記弾性体は長板部を有し、前記圧電部材は板状であり、前記長板部の両面にそれぞれ配されている構成が好ましい。 In the power generator according to this aspect, it is preferable that the elastic body has a long plate portion, the piezoelectric member has a plate shape, and the piezoelectric members are arranged on both surfaces of the long plate portion.

本態様によれば、カンチレバーを構成する長板部の両面に圧電部材を配することによって、交流磁場を用いた効率的な発電が可能である。 According to this aspect, by disposing the piezoelectric members on both surfaces of the long plate portion forming the cantilever, efficient power generation using an alternating magnetic field is possible.

本態様に係る発電装置は、前記変換部は、エレクトレットを有する第1電極基板と、前記エレクトレットに対向する対向電極を有する導電性の第2電極基板とを有し、該永久磁石の振動を電気エネルギーに変換するエレクトレット発電機を備える。 In the power generator according to this aspect, the conversion unit has a first electrode substrate having an electret and a conductive second electrode substrate having a counter electrode facing the electret, and the vibration of the permanent magnet is electrically generated. It has an electret generator that converts it into energy.

本態様によれば、エレクトレット発電機は、導線の周囲に形成される交流磁場によって振動する永久磁石の振動エネルギーを電気エネルギーに変換し、変換部によって変換された電気エネルギーは出力部から出力される。 According to this aspect, the electret generator converts the vibration energy of the permanent magnet vibrating by the AC magnetic field formed around the lead wire into the electric energy, and the electric energy converted by the conversion unit is output from the output unit. ..

本態様の一態様に係る送信装置は、上述のいずれか一つの発電装置と、信号を送信する送信部とを備え、前記送信部は、前記発電装置から出力される電圧にて駆動する。 A transmitter according to one aspect of the present aspect includes any one of the power generators described above and a transmitter that transmits a signal, and the transmitter is driven by a voltage output from the power generator.

本態様によれば、発電装置が出力する電圧を用いて送信部を駆動することができる。従って、電源を用意することができない環境であっても、送信部から信号を送信させることが可能である。 According to this aspect, it is possible to drive the transmitter using the voltage output from the power generator. Therefore, the signal can be transmitted from the transmitter even in an environment in which a power source cannot be prepared.

本発明の一態様に係る発電方法は、交流が流れる導線に対して変位可能に設けられた永久磁石を用意し、前記導線の周囲に形成される交流磁場によって前記永久磁石を振動させ、前記永久磁石の振動エネルギーを電気エネルギーに変換し、前記永久磁石の振動によって変換された電気エネルギーを出力させる。 A power generation method according to one aspect of the present invention provides a permanent magnet that is displaceably provided with respect to a conducting wire through which an alternating current flows, vibrates the permanent magnet by an alternating magnetic field formed around the conducting wire, and The vibration energy of the magnet is converted into electric energy, and the electric energy converted by the vibration of the permanent magnet is output.

本態様によれば、上記の通り、交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場をエネルギー源として発電することが可能である。 According to this aspect, as described above, even if the frequency of the alternating magnetic field is a low frequency of the order of 10 Hz, it is possible to generate electricity using the alternating magnetic field as an energy source.

本発明によれば、導線の周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。 According to the present invention, even if the frequency of the alternating magnetic field formed around the conducting wire is a low frequency of the order of 10 Hz, it is possible to generate power based on the alternating magnetic field.

本発明の実施形態1に係る発電装置の斜視図である。1 is a perspective view of a power generation device according to a first embodiment of the present invention. 本実施形態1に係る発電装置の平面図である。FIG. 3 is a plan view of the power generation device according to the first embodiment. 本実施形態1に係る発電装置の側面図である。It is a side view of the power generator according to the first embodiment. 本実施形態1に係る発電装置の正面図である。It is a front view of the power generator according to the first embodiment. 本実施形態1に係る発電装置の回路図である。It is a circuit diagram of the power generator according to the first embodiment. 導線の周囲に配された永久磁石に働く力を説明するための概念図である。It is a conceptual diagram for demonstrating the force which acts on the permanent magnet arrange|positioned around the conducting wire. 導線に対する永久磁石の位置と、当該永久磁石に働く力との関係を示すベクトル図である。It is a vector diagram which shows the relationship between the position of a permanent magnet with respect to a conducting wire, and the force which acts on the said permanent magnet. 導線に対する永久磁石の位置と、当該永久磁石に働くx軸方向の力の大きさ及び向きとの関係を示すコンター図である。FIG. 6 is a contour diagram showing the relationship between the position of the permanent magnet with respect to the lead wire and the magnitude and direction of the force acting on the permanent magnet in the x-axis direction. 永久磁石の配置及び周波数並びに負荷の抵抗値と、発電量との関係を示すシミュレーション結果のグラフである。It is a graph of a simulation result showing the relationship between the arrangement and frequency of the permanent magnets, the resistance value of the load, and the amount of power generation. 導線及び永久磁石間の距離と発電量との関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the distance between a conducting wire and a permanent magnet, and the amount of power generation. 導線に対する永久磁石の距離と発電量及び変位量との関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship of the distance of a permanent magnet with respect to a conducting wire, the amount of power generation, and the amount of displacement. 永久磁石の特性が発電量に及ぼす影響を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the influence which the characteristic of a permanent magnet has on power generation. 永久磁石の配置姿勢の例を示す模式図である。It is a schematic diagram which shows the example of an arrangement attitude of a permanent magnet. 永久磁石の厚みと発電量の関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the thickness of a permanent magnet and the amount of power generation. 実験用発電装置を示す模式図である。It is a schematic diagram showing an experimental power generator. 永久磁石の配置及び周波数と、発電量の関係を示す実験結果のグラフである。6 is a graph of experimental results showing the relationship between the arrangement and frequency of permanent magnets and the amount of power generation. 本実施形態2に係る発電装置を示す正面図である。It is a front view which shows the electric power generating apparatus which concerns on this Embodiment 2. 本実施形態3に係る発電装置を示す正面図である。It is a front view which shows the electric power generating apparatus which concerns on this Embodiment 3. 本実施形態4に係る発電装置を示す斜視図である。It is a perspective view which shows the electric power generating apparatus which concerns on this Embodiment 4. 本実施形態5に係る発電装置を示す斜視図である。It is a perspective view which shows the electric power generating apparatus which concerns on this Embodiment 5. 本実施形態6に係る発電装置を示す正面図である。It is a front view which shows the electric power generating apparatus which concerns on this Embodiment 6. 本実施形態7に係る電圧調整装置を示すブロック図である。It is a block diagram which shows the voltage adjustment apparatus which concerns on this Embodiment 7.

以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、本発明の実施形態1に係る発電装置100の斜視図、図2は、発電装置100の平面図、図3は、発電装置100の側面図、図4は、発電装置100の正面図である。本発明の実施形態1に係る発電装置100は、圧電部材12を有する弾性体としてのカンチレバー1と、カンチレバー1の固定端1a(第1部位)を、十Hzオーダの低周波数の交流が流れる導線Wに対して固定する固定部2と、カンチレバー1の自由端1b(第2部位)に設けられた永久磁石3と、カンチレバー1の圧電部材12に発生した電圧を出力する出力部4とを備える。本実施形態1においては、導線Wは、電流を通ずることが可能な断面略円形の材料で形成された線条の部材であり、導線Wは50Hz又は60Hzの系統電源に接続されているものとする。発電装置100は、導線Wの周囲に形成される交流磁場を永久磁石3の運動エネルギーに変換し、永久磁石3の運動エネルギーを圧電部材12によって電力に変換することによって、発電するものである。発電装置100は、本発明に係る発電方法を実施ないし実現する装置である。
なお、上記導線Wの構成は一例であり、永久磁石3を振動させる交流磁場を形成可能な電流が流れる構成であれば、その形状は特に限定されるものでは無く、レール状の導通部材、バスバー、角柱状の導体、長手方向を有する板状の導体であっても良い。また、導線Wは、部分的に方形板状のような非線条部分を有していても良く、全体として所定方向に交流電流が流れるような形状であれば良い。当該非線条部分に発電装置100を固定する構成も本願発明に含まれる。更に、導線Wは、必ずしも直線状である必要は無く、部分的に湾曲していても良い。更にまた、導線Wは特定の用途のものに限定されるものでは無く、アース線であっても良い。以下、本実施形態1では、導線Wが直線状の部材であるものとして説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment thereof.
(Embodiment 1)
1 is a perspective view of a power generator 100 according to Embodiment 1 of the present invention, FIG. 2 is a plan view of the power generator 100, FIG. 3 is a side view of the power generator 100, and FIG. 4 is a front view of the power generator 100. It is a figure. A power generator 100 according to Embodiment 1 of the present invention includes a cantilever 1 as an elastic body having a piezoelectric member 12 and a fixed end 1a (first portion) of the cantilever 1 through which a low-frequency alternating current of the order of 10 Hz flows. A fixed portion 2 fixed to W, a permanent magnet 3 provided at a free end 1b (second portion) of the cantilever 1, and an output portion 4 for outputting a voltage generated in the piezoelectric member 12 of the cantilever 1 are provided. .. In the first embodiment, the conducting wire W is a linear member formed of a material having a substantially circular cross section capable of passing an electric current, and the conducting wire W is connected to a system power source of 50 Hz or 60 Hz. To do. The power generation device 100 converts the AC magnetic field formed around the conducting wire W into kinetic energy of the permanent magnet 3 and converts the kinetic energy of the permanent magnet 3 into electric power by the piezoelectric member 12 to generate electric power. The power generation device 100 is a device that implements or realizes the power generation method according to the present invention.
The configuration of the conducting wire W is an example, and the configuration is not particularly limited as long as a current capable of forming an AC magnetic field for vibrating the permanent magnet 3 flows, and a rail-shaped conducting member, a bus bar. The conductor may be a prismatic conductor or a plate conductor having a longitudinal direction. Further, the conductive wire W may partially have a non-linear strip portion such as a rectangular plate shape, and may have a shape that allows an alternating current to flow in a predetermined direction as a whole. The configuration in which the power generation device 100 is fixed to the non-linear portion is also included in the present invention. Furthermore, the conducting wire W does not necessarily have to be linear and may be partially curved. Furthermore, the conductive wire W is not limited to a specific one, and may be a ground wire. Hereinafter, in the first embodiment, the conductive wire W will be described as a linear member.

カンチレバー1は、バイモルフ型圧電素子を用いてなる発電部材である。カンチレバー
1は、外力によって弾性変形が可能な導電部材からなる長板部11と、厚み方向に分極した2枚の板状ないしシート状の圧電部材12とを備え、2枚の圧電部材12が長板部11を挟み込むように当該長板部11の両面に貼り合わされている。圧電部材12の長手方向の長さは、長板部11の固定部2からの突出部分の長さの2/3程度で十分である。また、2枚の圧電部材12には、それぞれシート状の電極13が設けられている。長板部11を構成する部材は、例えばステンレス等の金属である。圧電部材12は、例えば圧電セラミックスである。長板部11の長手方向一端部は固定部2に固定される固定端1aであり、長板部11の長手方向他端部は外力によって変位可能な自由端1bである。自由端1bが変位した場合、2枚の圧電部材12はそれぞれ伸張及び伸縮し、電極13及び長板部11間に電圧が発生する。
なお、ここではバイモルフ型圧電素子を説明したが、片面のみに圧電部材12を張り付けたユニモルフ構造であっても良い。圧電部材12は、導線Wの周囲に形成される交流磁場によって振動する永久磁石3の振動エネルギーを電気エネルギーに変換する変換部の一例である。
The cantilever 1 is a power generation member using a bimorph type piezoelectric element. The cantilever 1 includes a long plate portion 11 made of a conductive member that is elastically deformable by an external force, and two plate-shaped or sheet-shaped piezoelectric members 12 polarized in the thickness direction, and the two piezoelectric members 12 are long. The long plate 11 is attached to both sides of the long plate 11 so as to sandwich the plate 11. It is sufficient for the length of the piezoelectric member 12 in the longitudinal direction to be about 2/3 of the length of the protruding portion of the long plate portion 11 from the fixing portion 2. Further, each of the two piezoelectric members 12 is provided with a sheet-shaped electrode 13. The member forming the long plate portion 11 is a metal such as stainless steel. The piezoelectric member 12 is, for example, piezoelectric ceramics. One longitudinal end of the long plate portion 11 is a fixed end 1a fixed to the fixing portion 2, and the other longitudinal end of the long plate portion 11 is a free end 1b displaceable by an external force. When the free end 1b is displaced, the two piezoelectric members 12 expand and contract respectively, and a voltage is generated between the electrode 13 and the long plate portion 11.
Although the bimorph type piezoelectric element is described here, a unimorph structure in which the piezoelectric member 12 is attached to only one surface may be used. The piezoelectric member 12 is an example of a conversion unit that converts the vibration energy of the permanent magnet 3 vibrated by the AC magnetic field formed around the conducting wire W into electric energy.

固定部2は、カンチレバー1の固定端1aを導線Wに対して固定する部材である。固定部2は、例えば、略直方体形状をなし、導線Wが挿通する貫通孔21を有する。貫通孔21は、中心部を貫通する正面視円形状であり、貫通孔21が形成された固定部2の一面側の角部にカンチレバー1の固定端1aが固定され、カンチレバー1を保持している。より詳細には、固定部2は、カンチレバー1の自由端1bが、導線Wの中心線方向及び導線Wの径方向に略直交する方向に変位又は振動するように、カンチレバー1を保持している。言い換えると、カンチレバー1を構成する長板部11の厚み方向と、上記中心線方向及び径方向とが略直交するように、固定部2は、長板部11の固定端1aを保持している。 The fixing portion 2 is a member that fixes the fixed end 1 a of the cantilever 1 to the conducting wire W. The fixed portion 2 has, for example, a substantially rectangular parallelepiped shape, and has a through hole 21 through which the conductive wire W is inserted. The through hole 21 has a circular shape as viewed from the front and penetrates through the central portion, and the fixed end 1a of the cantilever 1 is fixed to a corner portion on one surface side of the fixing portion 2 in which the through hole 21 is formed, and holds the cantilever 1. There is. More specifically, the fixed portion 2 holds the cantilever 1 so that the free end 1b of the cantilever 1 is displaced or vibrated in a direction substantially orthogonal to the center line direction of the conductive wire W and the radial direction of the conductive wire W. .. In other words, the fixing portion 2 holds the fixed end 1a of the long plate portion 11 so that the thickness direction of the long plate portion 11 forming the cantilever 1 is substantially orthogonal to the center line direction and the radial direction. ..

永久磁石3は、矩形板状をなし、厚み方向が導線Wの径方向を向く姿勢でカンチレバー1の自由端1bに接着固定されている。厚み方向とは、永久磁石3の縦寸法、横寸法及び高さ寸法の内、最も長さが短い方向を意味する。なお、接着は、永久磁石3の固定方法の一例である。カンチレバー1の自由端1bには永久磁石3及び接着剤を除く他の構造物を有しない。永久磁石3は、導線W及び永久磁石3の離隔方向、つまり厚み方向に並ぶ単一対のS極3b及びN極3aを有する。なお、永久磁石3の形状及び導線Wに対する姿勢は本発明の本質的な構成では無く、あくまで一構成例を示したものである。本実施形態1では、永久磁石3を構成するS極3b及びN極3aが上記離隔方向に配列している点がより重要である。
カンチレバー1に設けられた永久磁石3の振動周波数は、導線Wの周囲に形成される交流磁場の周波数に略一致するように構成されている。例えば、交流磁場の周波数が50Hzである場合、永久磁石3の振動周波数を50Hzとし、交流磁場の周波数が60Hzである場合、永久磁石3の振動周波数を60Hzとする。なお、振動周波数が交流磁場の周波数に略一致するとは、所要の電力が得られる範囲で、振動周波数を交流磁場の周波数からずれた構成も本実施形態1に係る発電装置100に含まれることを意味する。
The permanent magnet 3 has a rectangular plate shape, and is bonded and fixed to the free end 1b of the cantilever 1 in a posture in which the thickness direction faces the radial direction of the conductor W. The thickness direction means the direction in which the length of the permanent magnet 3 is the shortest among the longitudinal dimension, lateral dimension and height dimension. The adhesion is an example of a method of fixing the permanent magnet 3. The free end 1b of the cantilever 1 does not have any other structure except the permanent magnet 3 and the adhesive. The permanent magnet 3 has a single pair of the S pole 3b and the N pole 3a arranged in the separating direction of the conductor W and the permanent magnet 3, that is, in the thickness direction. It should be noted that the shape of the permanent magnet 3 and the attitude of the permanent magnet 3 with respect to the conducting wire W are not an essential configuration of the present invention, but merely a configuration example. In the first embodiment, it is more important that the S pole 3b and the N pole 3a forming the permanent magnet 3 are arranged in the separating direction.
The vibration frequency of the permanent magnet 3 provided on the cantilever 1 is configured to substantially match the frequency of the AC magnetic field formed around the conducting wire W. For example, when the frequency of the alternating magnetic field is 50 Hz, the vibration frequency of the permanent magnet 3 is 50 Hz, and when the frequency of the alternating magnetic field is 60 Hz, the vibration frequency of the permanent magnet 3 is 60 Hz. It should be noted that the fact that the vibration frequency substantially matches the frequency of the AC magnetic field means that a configuration in which the vibration frequency is deviated from the frequency of the AC magnetic field is included in the power generation device 100 according to the first embodiment within a range in which required power can be obtained. means.

永久磁石3は、少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する。好ましくは、永久磁石3は、任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する。具体的には、振動方向における永久磁石3の幅は、下記式(1)を満たすように設定すると良い。
w≦2(d−√2a)…(1)
但し、
w:振動方向における永久磁石3の幅
d:導線Wの中心と、永久磁石3の導線側端面との距離
a:永久磁石3の振幅
The permanent magnet 3 has a size such that each part receives a magnetic force in the same direction at least at the vibration center position. Preferably, the permanent magnet 3 has a size such that each part receives a magnetic force in the same direction at any vibration position. Specifically, the width of the permanent magnet 3 in the vibration direction may be set so as to satisfy the following formula (1).
w≦2 (d−√2a) (1)
However,
w: width of the permanent magnet 3 in the vibration direction d: distance between the center of the conductive wire W and the end surface of the permanent magnet 3 on the conductive wire side a: amplitude of the permanent magnet 3

また、離隔方向における永久磁石3の幅は、下記式(2)を満たすように設定すると良い。
0.5a≦d≦2a…(2)
Further, the width of the permanent magnet 3 in the separating direction may be set so as to satisfy the following expression (2).
0.5a≦d≦2a (2)

出力部4は、カンチレバー1の電極13と、長板部11とに接続されており、永久磁石3の振動により伸縮した圧電部材12に発生した電圧を出力する回路である。 The output unit 4 is a circuit that is connected to the electrode 13 of the cantilever 1 and the long plate unit 11 and outputs the voltage generated in the piezoelectric member 12 that expands and contracts due to the vibration of the permanent magnet 3.

図5は、本実施形態1に係る発電装置100の回路図である。出力部4は、整流回路41及び平滑コンデンサ42を備える。整流回路41は、例えばダイオードブリッジ回路である。ダイオードブリッジは2つの順接続されたダイオードからなる直列回路を2組並列させた回路構成である。整流回路41の入力端子は圧電部材12及び長板部11に接続されており、整流回路41の出力端子対には平滑コンデンサ42の各端子が接続されている。整流回路41は、圧電部材12に発生した交流を全波整流し、平滑コンデンサ42にて平滑化された直流の電圧を負荷Rへ出力する。 FIG. 5 is a circuit diagram of the power generation device 100 according to the first embodiment. The output unit 4 includes a rectifying circuit 41 and a smoothing capacitor 42. The rectifier circuit 41 is, for example, a diode bridge circuit. The diode bridge has a circuit configuration in which two sets of series circuits each including two diodes connected in sequence are arranged in parallel. The input terminal of the rectifier circuit 41 is connected to the piezoelectric member 12 and the long plate portion 11, and each terminal of the smoothing capacitor 42 is connected to the output terminal pair of the rectifier circuit 41. The rectifier circuit 41 full-wave rectifies the alternating current generated in the piezoelectric member 12, and outputs the direct current voltage smoothed by the smoothing capacitor 42 to the load R.

以下、交流磁場を用いた効率的な発電を可能にする発電装置100の構造及び発電特性の詳細を説明する。 Details of the structure and power generation characteristics of the power generation device 100 that enables efficient power generation using an alternating magnetic field will be described below.

<導線Wの近くに配された永久磁石3に働く力>
図6は、導線Wの周囲に配された永久磁石3に働く力を説明するための概念図である。導線Wに電流を流すとアンペールの法則に従って、導線Wの周囲に磁界が形成される。図6中、x軸、y軸及びz軸は直交座標系の座標軸であり、z軸の正方向(紙面手前方向)に電流が流れるものとする。導線W周辺の磁界はx軸方向及びy軸方向に勾配を有する。y軸方向を向いた磁気双極子を有する永久磁石3を導線Wの近傍に配した場合、永久磁石3が受ける磁気力は下記式(3)及び(4)で表される。
<Force acting on the permanent magnet 3 arranged near the conducting wire W>
FIG. 6 is a conceptual diagram for explaining the force acting on the permanent magnets 3 arranged around the conducting wire W. When a current is passed through the conductor W, a magnetic field is formed around the conductor W according to Ampere's law. In FIG. 6, the x-axis, the y-axis, and the z-axis are coordinate axes of the orthogonal coordinate system, and it is assumed that the current flows in the positive direction of the z-axis (the front side of the paper surface). The magnetic field around the conductor W has a gradient in the x-axis direction and the y-axis direction. When the permanent magnet 3 having a magnetic dipole oriented in the y-axis direction is arranged near the conducting wire W, the magnetic force received by the permanent magnet 3 is expressed by the following equations (3) and (4).

図7は、導線Wに対する永久磁石3の位置と、当該永久磁石3に働く力との関係を示すベクトル図である。永久磁石3に働く力の大きさは、導線Wからの距離のみに依存するが、永久磁石3に働く力の方向は、導線Wに対する位置によって異なる。図7中、導線Wの上下及び左右の位置では、x軸方向の力が働き、x軸又はy軸に対して45度の位置ではy軸方向の力が働いていることが分かる。 FIG. 7 is a vector diagram showing the relationship between the position of the permanent magnet 3 with respect to the conductor W and the force acting on the permanent magnet 3. The magnitude of the force acting on the permanent magnet 3 depends only on the distance from the conductor W, but the direction of the force acting on the permanent magnet 3 differs depending on the position with respect to the conductor W. In FIG. 7, it can be seen that the force in the x-axis direction acts at the upper, lower, left and right positions of the conducting wire W, and the force in the y-axis direction acts at a position of 45 degrees with respect to the x-axis or the y-axis.

図8は、導線Wに対する永久磁石3の位置と、当該永久磁石3に働くx軸方向の力の大きさ及び向きとの関係を示すコンター図である。図8Aは、シミュレーション結果の出力画像をグレースケールで示すコンター図であり、図8Bは、グレースケールで表現できない力の向き(色)を便宜上、ハッチングの有無で模式的に示したコンター図である。図8B中、ハッチングが付されていない白抜きの領域P1は、永久磁石3に左方向の力が働く
ことを示し、ハッチングが付されている領域P2は、永久磁石3に右方向の力が働くことを示している。破線で示すように、x軸及びy軸に対して略45度の境界で区分けされた4つの領域中、図8中、左右の領域P1(図8B中、白抜きの領域P1)に配された永久磁石3には、白抜き左矢印で示すように左方向の力が働き、図8中、上下の領域P2(図8B中、ハッチングが付された領域P2)に配された永久磁石3には、白抜き右矢印で示すように右方向の力が働く。このように、領域P1と、領域P2とでは、永久磁石3に働く力の向きが左右逆向きである。発電装置100の永久磁石3を振動させて発電を行う場合、同一方向の力が働くように、領域P1又は領域P2のいずれか一方の領域を利用することが好ましい。
FIG. 8 is a contour diagram showing the relationship between the position of the permanent magnet 3 with respect to the conducting wire W and the magnitude and direction of the force acting on the permanent magnet 3 in the x-axis direction. FIG. 8A is a contour diagram showing the output image of the simulation result in gray scale, and FIG. 8B is a contour diagram schematically showing the direction (color) of the force that cannot be expressed in gray scale with and without hatching for convenience. .. In FIG. 8B, a white area P1 without hatching indicates that a leftward force acts on the permanent magnet 3, and a hatched area P2 indicates that a rightward force is applied to the permanent magnet 3. It shows that it works. As shown by the broken line, among the four regions divided by the boundary of approximately 45 degrees with respect to the x-axis and the y-axis, they are arranged in the left and right regions P1 in FIG. 8 (white region P1 in FIG. 8B). A force in the left direction acts on the permanent magnet 3 as indicated by the white left arrow, and the permanent magnets 3 arranged in the upper and lower areas P2 in FIG. 8 (hatched area P2 in FIG. 8B). A force in the right direction acts on, as indicated by the white right arrow. As described above, in the regions P1 and P2, the directions of the forces acting on the permanent magnets 3 are opposite to each other. When vibrating the permanent magnet 3 of the power generation device 100 to generate power, it is preferable to use either one of the region P1 and the region P2 so that forces in the same direction act.

<圧電振動発電素子の支配方程式>
カンチレバー1の自由端1bに永久磁石3を設けてなる圧電振動発電素子の支配方程式は、図8中、導線Wの上下、即ちy軸上に永久磁石3を配した場合、下記式(5)及び(6)で表される。なお、導線Wの左右、即ちx軸上に永久磁石3を配した場合の支配方程式も同様にして表される。
<Governing equation of piezoelectric vibration power generation element>
The governing equation of the piezoelectric vibration power generating element in which the permanent magnet 3 is provided at the free end 1b of the cantilever 1 is as follows when the permanent magnet 3 is arranged above and below the conducting wire W in FIG. And (6). The governing equation when the permanent magnets 3 are arranged on the right and left sides of the conductor W, that is, on the x-axis is also expressed in the same manner.

図9は、永久磁石3の配置及び周波数並びに負荷Rの抵抗値と、発電量との関係を示すシミュレーション結果のグラフである。横軸は交流の周波数、縦軸は発電量である。磁気モーメントがy軸方向を向いた磁気双極子を、図8中、x軸上、導線Wの右側又は、y軸上、導線Wの下側に配置したときの発電量を、上記支配方程式に基づいてシミュレートした。dは導線Wと、永久磁石3の導線W側の面との距離である。計算条件は以下の通りである。ただし、導線Wの径及び永久磁石3の大きさを無限小として取り扱った。
永久磁石3の質量:1g
電流値(実効値):10A
導線Wと永久磁石3の距離:10mm
電気機械連成係数:5%
素子の共振周波数:60Hz
カンチレバー1の非線形バネ定数:k3=0
圧電部材12の静電容量:170nF
負荷Rの抵抗値:3kΩ
残留磁束密度:1T
機械的品質係数(Q値):100
FIG. 9 is a graph of simulation results showing the relationship between the arrangement and frequency of the permanent magnet 3, the resistance value of the load R, and the amount of power generation. The horizontal axis represents the frequency of alternating current, and the vertical axis represents the amount of power generation. The power generation amount when the magnetic dipole whose magnetic moment is oriented in the y-axis direction is arranged on the x-axis, on the right side of the conductor W or on the y-axis, below the conductor W in FIG. Based on the simulation. d is the distance between the conducting wire W and the surface of the permanent magnet 3 on the conducting wire W side. The calculation conditions are as follows. However, the diameter of the conductive wire W and the size of the permanent magnet 3 were treated as infinitesimally small.
Mass of permanent magnet 3: 1g
Current value (effective value): 10A
Distance between conductor W and permanent magnet 3: 10 mm
Electromechanical coupling coefficient: 5%
Resonant frequency of element: 60Hz
Non-linear spring constant of cantilever 1: k3=0
Capacitance of piezoelectric member 12: 170 nF
Resistance value of load R: 3 kΩ
Residual magnetic flux density: 1T
Mechanical quality factor (Q value): 100

なお、導線Wに対する永久磁石3の位置及び姿勢を、図8を参照して導線Wの「右側」及び「下側」として説明するが、導線Wを基準とした鉛直方向又は水平方向の位置は必ずしも問題では無い。永久磁石3を導線Wの右側に配置することは、導線Wの径方向及び交流の通流方向に対して直交する方向にS極3b及びN極3aが並ぶように永久磁石3を配した構成を意味する。永久磁石3を導線Wの下側に配置することは、導線Wの径方向に沿ってS極3b及びN極3aが並ぶように永久磁石3を配した構成を意味する。 The position and orientation of the permanent magnet 3 with respect to the conductor W will be described as “right side” and “lower side” of the conductor W with reference to FIG. 8. However, the position in the vertical direction or the horizontal direction with respect to the conductor W is Not necessarily a problem. The permanent magnet 3 is arranged on the right side of the conductor W by arranging the permanent magnet 3 so that the S pole 3b and the N pole 3a are arranged in a direction orthogonal to the radial direction of the conductor W and the flow direction of the alternating current. Means Arranging the permanent magnet 3 below the conducting wire W means a configuration in which the permanent magnet 3 is arranged so that the S pole 3b and the N pole 3a are arranged along the radial direction of the conducting wire W.

図9A及び図9Bは、永久磁石3をそれぞれ導線Wの下側及び右側に配置したときの、複数の負荷抵抗値(100Ω、300Ω、1kΩ、3kΩ、10kΩ)毎のシミュレーション結果を示している。図9A及び図9Bに示すように、共振周波数付近で発電量が最大となる。また、負荷Rの抵抗値が3kΩのとき、発電装置100及び負荷Rがインピーダンス整合し、発電量が最大となることが分かる。上記条件においては、永久磁石3の配置による発電量の際はほとんど無い。 9A and 9B show simulation results for each of a plurality of load resistance values (100Ω, 300Ω, 1kΩ, 3kΩ, 10kΩ) when the permanent magnets 3 are arranged on the lower side and the right side of the conducting wire W, respectively. As shown in FIGS. 9A and 9B, the amount of power generation is maximum near the resonance frequency. Further, it can be seen that when the resistance value of the load R is 3 kΩ, the power generation device 100 and the load R are impedance-matched and the amount of power generation is maximum. Under the above conditions, there is almost no power generation due to the arrangement of the permanent magnets 3.

図10は、導線W及び永久磁石3間の距離と発電量との関係を示すシミュレーション結果のグラフである。横軸は負荷Rの抵抗値、縦軸は発電量である。図10A及び図10Bは、上記と同様の条件で永久磁石3をそれぞれ導線Wの下側及び右側に配置したときのシミュレーション結果を示している。ただし、交流の周波数は、各抵抗値において発電量が最大になるときの周波数を用いて、発電量をプロットしている。
導線W及び永久磁石3間の距離が15mm以上では、永久磁石3の配置による発電量の差は僅かであるが、10mmでは永久磁石3を右側に配置したときの方が、発電量が数%大きい。導線W及び永久磁石3間の距離を5mmまで接近させると、永久磁石3を導線Wの右側に配置した場合においては、永久磁石3が導線Wに衝突してしまい、シミュレーション結果が得られなかった。
FIG. 10 is a graph of simulation results showing the relationship between the distance between the conducting wire W and the permanent magnet 3 and the amount of power generation. The horizontal axis represents the resistance value of the load R, and the vertical axis represents the power generation amount. 10A and 10B show simulation results when the permanent magnets 3 are arranged on the lower side and the right side of the conducting wire W under the same conditions as described above. However, as the frequency of the alternating current, the power generation amount is plotted by using the frequency at which the power generation amount becomes maximum at each resistance value.
When the distance between the conducting wire W and the permanent magnet 3 is 15 mm or more, the difference in the amount of power generation due to the arrangement of the permanent magnet 3 is small, but when the distance is 10 mm, the amount of power generation is a few% when the permanent magnet 3 is arranged on the right side. large. When the distance between the conducting wire W and the permanent magnet 3 is reduced to 5 mm, in the case where the permanent magnet 3 is arranged on the right side of the conducting wire W, the permanent magnet 3 collides with the conducting wire W and a simulation result cannot be obtained. ..

以上の通り、導線Wの下側に永久磁石3を配置した場合、導線Wに永久磁石3を接近させても衝突の問題は生じないため、結果として、導線Wの右側に永久磁石3を配置する場合に比べて大きな発電量を得ることができる。 As described above, when the permanent magnet 3 is arranged below the conducting wire W, the problem of collision does not occur even if the permanent magnet 3 is brought close to the conducting wire W. As a result, the permanent magnet 3 is arranged on the right side of the conducting wire W. It is possible to obtain a large amount of power generation as compared with the case of performing.

図11は、導線Wに対する永久磁石3の距離と発電量及び変位量との関係を示すシミュレーション結果のグラフである。横軸は導線W及び永久磁石3間の距離を示し、図11Aの縦軸は発電量、図11Bの縦軸は変位量を示している。各グラフには、異なる機械的品質係数Qの値(30、50、100、200、500)毎に、距離と、発電量及び変位量との関係がプロットされている。図11中の「Q値」は、機械的品質係数を示す。図11のグラフから、発電量は機械的品質係数Qに比例することが分かる。
また、図11のグラフから、永久磁石3と導線Wとの距離が10mm以上である場合、発電量は永久磁石3と導線Wの距離の4乗に反比例することが分かる。しかし、永久磁石3と導線Wとの距離が10mm未満である場合、反比例関係が崩れ始め、永久磁石3の変位量が永久磁石3及び導線W間の距離と同程度になると、それ以上、永久磁石3を導線Wに近づけても発電量と変位量が減少することが分かる。これは、永久磁石3の振幅が大き
くなり、図8に示す領域P2で振動していた永久磁石3が、領域P1に進入し、永久磁石3に逆方向の力が働くためであると考えられる。
以上の結果から、永久磁石3の横方向の長さ、つまり永久磁石3の振動方向であるx軸方向の長さが大きいと、振動を制限するような逆方向の力が働く領域に永久磁石3が進入し易くなってしまうことが分かる。永久磁石3の横方向の長さは、永久磁石3が領域P2内に留まるように設計することが好ましい。
FIG. 11 is a graph of simulation results showing the relationship between the distance of the permanent magnet 3 with respect to the conductor W and the amount of power generation and the amount of displacement. The horizontal axis represents the distance between the conductive wire W and the permanent magnet 3, the vertical axis in FIG. 11A represents the power generation amount, and the vertical axis in FIG. 11B represents the displacement amount. In each graph, the relationship between the distance and the power generation amount and the displacement amount is plotted for each different mechanical quality factor Q value (30, 50, 100, 200, 500). “Q value” in FIG. 11 indicates a mechanical quality factor. From the graph of FIG. 11, it can be seen that the power generation amount is proportional to the mechanical quality factor Q.
Further, from the graph of FIG. 11, it can be seen that when the distance between the permanent magnet 3 and the conducting wire W is 10 mm or more, the amount of power generation is inversely proportional to the fourth power of the distance between the permanent magnet 3 and the conducting wire W. However, when the distance between the permanent magnet 3 and the conducting wire W is less than 10 mm, the inverse proportional relationship begins to break down, and when the displacement amount of the permanent magnet 3 becomes about the same as the distance between the permanent magnet 3 and the conducting wire W, it becomes permanent. It can be seen that the amount of power generation and the amount of displacement decrease even when the magnet 3 is brought close to the conducting wire W. It is considered that this is because the amplitude of the permanent magnet 3 becomes large, the permanent magnet 3 vibrating in the region P2 shown in FIG. 8 enters the region P1, and a force in the opposite direction acts on the permanent magnet 3. ..
From the above results, when the lateral length of the permanent magnet 3, that is, the length in the x-axis direction, which is the vibration direction of the permanent magnet 3, is large, the permanent magnet is applied to a region where a force in the opposite direction that restricts vibration acts. It turns out that 3 becomes easy to enter. The lateral length of the permanent magnet 3 is preferably designed so that the permanent magnet 3 stays in the region P2.

図12は、永久磁石3の特性が発電量に及ぼす影響を示すシミュレーション結果のグラフである。当該シミュレーションにおいては、共振周波数を49Hzとした。横軸は交流の周波数、縦軸は発電量を示す。図12Aは、永久磁石3の残留磁束密度(0.22T、0.44T、0.88T、1.76T)と、発電量との関係を示すグラフであり、図12Bは、永久磁石3の質量(0.5g、1g、2g、4g、8g)と発電量との関係を示すグラフである。なお、永久磁石3の質量を変化させた際、係数k1の値を調整し、共振周波数が変化しないようにしてシミュレーションを行った。図12Aに示すグラフから、発電量は残留磁束密度の2乗に比例することが分かる。また、図12Bに示すグラフから、共振周波数一定の条件では、発電量は永久磁石3の質量に比例することが分かる。 FIG. 12 is a graph of simulation results showing the effect of the characteristics of the permanent magnet 3 on the amount of power generation. In the simulation, the resonance frequency was 49 Hz. The horizontal axis represents the frequency of alternating current, and the vertical axis represents the amount of power generation. FIG. 12A is a graph showing the relationship between the residual magnetic flux density (0.22T, 0.44T, 0.88T, 1.76T) of the permanent magnet 3 and the power generation amount, and FIG. 12B is the mass of the permanent magnet 3. It is a graph which shows the relationship between (0.5g, 1g, 2g, 4g, 8g) and the amount of power generation. In addition, when the mass of the permanent magnet 3 was changed, the value of the coefficient k1 was adjusted so that the resonance frequency did not change, and a simulation was performed. It can be seen from the graph shown in FIG. 12A that the amount of power generation is proportional to the square of the residual magnetic flux density. Further, from the graph shown in FIG. 12B, it is understood that the amount of power generation is proportional to the mass of the permanent magnet 3 under the condition where the resonance frequency is constant.

以上の結果を総括すると、発電量と4乗の比例関係を有するパラメータは、導線W及び永久磁石3間の距離であり、2乗の比例関係を有するのは永久磁石3の残留磁束密度であり、1乗の比例関係を有するのは永久磁石3の質量及び機械的品質係数Qであることが分かる。大きな発電量を得るためには、4乗又は2乗の比例関係を有するパラメータを優先して発電装置100を設計すると良い。
例えば、カンチレバー1の自由端1bに部品を取り付ける場合、可能な限り、磁性体からなる部品を用いることが望ましい。カンチレバー1の自由端1bに非磁性体部品を取り付けた場合、その質量に比例して発電量が増加すると考えられるが、磁性体部品を取り付ける場合に比べて、2乗の比例関係を有する残留磁束密度が低下し、結果として発電特性は低下してしまう。
To summarize the above results, the parameter having a proportional relationship with the amount of power generation and the fourth power is the distance between the conducting wire W and the permanent magnet 3, and the proportional relationship with the square is the residual magnetic flux density of the permanent magnet 3. It can be seen that it is the mass of the permanent magnet 3 and the mechanical quality factor Q that have a linear relationship. In order to obtain a large amount of power generation, the power generation device 100 may be designed by giving priority to a parameter having a proportional relationship of the fourth power or the second power.
For example, when attaching a component to the free end 1b of the cantilever 1, it is desirable to use a component made of a magnetic material as much as possible. When a non-magnetic material part is attached to the free end 1b of the cantilever 1, it is considered that the amount of power generation increases in proportion to the mass of the cantilever 1, but the residual magnetic flux having a squared proportional relationship compared to the case where the magnetic material part is attached. The density is lowered, and as a result, the power generation characteristics are lowered.

また、永久磁石3は可能な限り導線Wに近い位置に配置し、永久磁石3の振動方向が導線Wに接近しない方向に設定することが望ましい。 Further, it is desirable that the permanent magnet 3 is arranged as close as possible to the conducting wire W so that the vibration direction of the permanent magnet 3 does not approach the conducting wire W.

更に、振動を抑制する力が永久磁石3に作用しないよう、振動方向における永久磁石3の寸法を短く形成することが望ましい。 Further, it is desirable to make the dimension of the permanent magnet 3 in the vibration direction short so that the force for suppressing the vibration does not act on the permanent magnet 3.

図13は、永久磁石3の配置姿勢の例を示す模式図である。3辺の長さが異なる直方体の永久磁石3を配置する方法としては、図13A〜図13Cに示す3通りがある。上記の見地から、図13A〜図13Cに示す永久磁石3の体積及び質量が同じ永久磁石3であっても、発電量は図13Aに示す配置姿勢で最も大きく、図13A、図13B及び図13Cの順に発電量が小さくなると考えられる。
つまり、永久磁石3の厚み方向が導線Wの径方向を向き、永久磁石3の長辺方向が導線Wに沿うように配置すると良い。
FIG. 13 is a schematic diagram showing an example of the arrangement posture of the permanent magnet 3. As a method of arranging the rectangular parallelepiped permanent magnets 3 having different three sides, there are three methods shown in FIGS. 13A to 13C. From the above point of view, even if the permanent magnets 3 shown in FIGS. 13A to 13C have the same volume and mass, the power generation amount is the largest in the arrangement posture shown in FIG. 13A, and FIGS. 13A, 13B, and 13C. It is considered that the power generation amount decreases in the order of.
That is, it is preferable that the thickness direction of the permanent magnet 3 faces the radial direction of the conductive wire W, and the long side direction of the permanent magnet 3 is arranged along the conductive wire W.

一方、永久磁石3に振動を抑制する力が作用しないようにするためには、振動する永久磁石3が常に図8に示す領域P2にあることが望ましく、振動方向の永久磁石3の幅は、上記式(3)の範囲内で設定すると良いことが分かる。 On the other hand, in order to prevent the force for suppressing the vibration from acting on the permanent magnet 3, it is desirable that the vibrating permanent magnet 3 is always in the region P2 shown in FIG. 8, and the width of the permanent magnet 3 in the vibration direction is It is understood that it is preferable to set within the range of the above formula (3).

図14は、永久磁石3の厚みと発電量の関係を示すシミュレーション結果のグラフである。横軸は永久磁石3の厚み、縦軸は発電量を示す。導線Wの上側に永久磁石3を配置した場合を考える。導線Wの中心と、永久磁石3の導線側の面(下面)との距離をa、永久磁石3の厚み(上下方向の幅)をdとすると、発電量Pは、下記式(7)で表される。 FIG. 14 is a graph of simulation results showing the relationship between the thickness of the permanent magnet 3 and the amount of power generation. The horizontal axis represents the thickness of the permanent magnet 3, and the vertical axis represents the power generation amount. Consider a case where the permanent magnet 3 is arranged above the conducting wire W. When the distance between the center of the conductive wire W and the conductive wire side surface (lower surface) of the permanent magnet 3 is a, and the thickness of the permanent magnet 3 (width in the vertical direction) is d, the power generation amount P is expressed by the following formula (7). expressed.

ただし、導線Wの径を無限小とし、永久磁石3の振幅は距離aよりも十分に小さいものと仮定する。図14は、上記式(7)をグラフ化したものである。図14のグラフからd≒aのとき、発電量が最大となることが分かる。最大発電量の90%以上の発電量が得られる永久磁石3の厚みdは、約0.5a以上、2a以下である。 However, it is assumed that the diameter of the conductor wire W is infinitely small and the amplitude of the permanent magnet 3 is sufficiently smaller than the distance a. FIG. 14 is a graph of the equation (7). From the graph of FIG. 14, it can be seen that the power generation amount is maximum when d≈a. The thickness d of the permanent magnet 3 capable of obtaining 90% or more of the maximum power generation is about 0.5a or more and 2a or less.

<実験結果>
図15は、実験用発電装置を示す模式図である。実験用発電装置の基本的な構成は、図1に示した発電装置100と同様である。長手方向が鉛直方向となるようにカンチレバー1の下端を固定部2によって固定している点が図1に示した発電装置100と異なるが、永久磁石3に働く磁気力Fの向き、永久磁石3の振動方向、磁気双極子の向き等は同じであり、原理的には同一構造と見なせる。なお図15は、導線Wの右側に永久磁石3を配置した例を図示している。永久磁石3を導線Wの下側に配置すると、図1に示す発電装置100と実質的に同じ構成となる。
圧電発電部であるカンチレバー1にはPZTセラミックスをステンレス基板の両面に接着したバイモルフ素子(FDK製PZBA00030)を用いた。圧電体の長さと幅はそれぞれ48mm及び20mmである。永久磁石3には、残留磁束密度が0.43TのNd−Fe−Bを用いた。永久磁石3の体積と質量は、それぞれ250mm3 、1.8gである。
また、素子の共振周波数が50Hz程度になるように永久磁石3の質量や取り付け位置を調整した。Q値の低下を防ぐために圧電バイモルフ素子の固定端1aは精密バイスで固定している。永久磁石3は双極子が下向きになるように固定している。圧電部材12の静電容量は140nFである。発電量の評価のために負荷Rとして抵抗を接続した。共振周波数との関係からインピーダンス整合する負荷Rの抵抗値は24kΩであった。永久磁石3の振動振幅はレーザ変位計を用いて測定した。負荷Rに発生する起電力はロックインアンプで測定した。
<Experimental results>
FIG. 15 is a schematic diagram showing an experimental power generator. The basic configuration of the experimental power generator is the same as that of the power generator 100 shown in FIG. 1 is different in that the lower end of the cantilever 1 is fixed by a fixing portion 2 so that the longitudinal direction is the vertical direction, but the direction of the magnetic force F acting on the permanent magnet 3 and the permanent magnet 3 are different. The directions of vibrations and directions of magnetic dipoles are the same, and in principle they can be regarded as the same structure. Note that FIG. 15 illustrates an example in which the permanent magnet 3 is arranged on the right side of the conducting wire W. When the permanent magnet 3 is arranged below the conducting wire W, the structure is substantially the same as that of the power generation device 100 shown in FIG. 1.
A bimorph element (PZBA00030 manufactured by FDK) in which PZT ceramics were adhered to both surfaces of a stainless substrate was used for the cantilever 1 which is a piezoelectric power generation unit. The length and width of the piezoelectric body are 48 mm and 20 mm, respectively. For the permanent magnet 3, Nd-Fe-B having a residual magnetic flux density of 0.43T was used. The volume and mass of the permanent magnet 3 are 250 mm 3 and 1.8 g, respectively.
Further, the mass and mounting position of the permanent magnet 3 were adjusted so that the resonance frequency of the element was about 50 Hz. In order to prevent the Q value from decreasing, the fixed end 1a of the piezoelectric bimorph element is fixed with a precision vise. The permanent magnet 3 is fixed so that the dipole faces downward. The capacitance of the piezoelectric member 12 is 140 nF. A resistor was connected as a load R to evaluate the amount of power generation. The resistance value of the load R which is impedance-matched was 24 kΩ from the relationship with the resonance frequency. The vibration amplitude of the permanent magnet 3 was measured using a laser displacement meter. The electromotive force generated in the load R was measured with a lock-in amplifier.

図16は、永久磁石3の配置及び周波数と、発電量の関係を示す実験結果のグラフである。横軸は周波数、縦軸は発電量である。図16A、図16B及び図16Cは、永久磁石3を、それぞれ導線Wの右側、右下側及び下側に配置した場合の発電量と、周波数の関係を示している。電流量は0.06A、0.12A、0.25Aと変化させ、素子の共振周波数付近で、発電量の周波数依存性を調べた。導線Wと永久磁石3の距離は6mmで一定になるように調整した。すべての測定において共振周波数付近で発電量が最大になっている。永久磁石3が導線Wに対して右と下の位置ではほぼ同じ発電量であるのに対し、右下位置では発電量が減少している。上記構成において永久磁石3を導線Wの右側又は下側に配置した場合、発電装置100は、約1μWの電力を発電していることが分かる。 FIG. 16 is a graph of experimental results showing the relationship between the arrangement and frequency of the permanent magnet 3 and the amount of power generation. The horizontal axis represents frequency and the vertical axis represents power generation. 16A, 16B, and 16C show the relationship between the amount of power generation and the frequency when the permanent magnets 3 are arranged on the right side, the lower right side, and the lower side of the conducting wire W, respectively. The amount of current was changed to 0.06 A, 0.12 A, and 0.25 A, and the frequency dependence of the amount of power generation was examined near the resonance frequency of the element. The distance between the conducting wire W and the permanent magnet 3 was adjusted to be 6 mm and constant. The amount of power generation is maximized near the resonance frequency in all measurements. The permanent magnets 3 generate substantially the same amount of power at the right and lower positions with respect to the conductor W, whereas the amount of power generation decreases at the lower right position. It can be seen that when the permanent magnet 3 is arranged on the right side or the lower side of the conducting wire W in the above configuration, the power generation device 100 generates about 1 μW of electric power.

<本実施形態に係る発電装置100の作用効果>
以上の通り、本実施形態1に係る発電装置100によれば、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。
<Operation and effect of power generation device 100 according to the present embodiment>
As described above, according to the power generation device 100 according to the first embodiment, even if the frequency of the AC magnetic field formed around the conductor W is a low frequency of the order of 10 Hz, power generation is performed based on the AC magnetic field. be able to.

また、振動する永久磁石3と、導線Wとの衝突を確実に回避することができ、交流磁場を用いて効率的に発電することができる。 Further, it is possible to reliably avoid the collision between the vibrating permanent magnet 3 and the conducting wire W, and it is possible to efficiently generate electricity using the alternating magnetic field.

更に、永久磁石3を離隔方向に偏平となる姿勢で配置することにより、永久磁石3の各部を導線Wに接近させることができ、効率的に発電することができる。 Furthermore, by arranging the permanent magnet 3 in a flat posture in the separating direction, each part of the permanent magnet 3 can be brought close to the conducting wire W, and power can be efficiently generated.

更にまた、本発明によれば、永久磁石3の各部を導線Wに沿って配置することにより、永久磁石3の各部を導線Wに接近させることができ、効率的に発電することができる。 Furthermore, according to the present invention, by arranging each part of the permanent magnet 3 along the conducting wire W, each part of the permanent magnet 3 can be brought close to the conducting wire W, and efficient power generation can be achieved.

更にまた、離隔方向における永久磁石3の幅を、導線W及び永久磁石3の距離の0.5倍以上、2倍以下に設定することにより、効率的に発電することができる。 Furthermore, by setting the width of the permanent magnet 3 in the separating direction to be 0.5 times or more and 2 times or less the distance between the conducting wire W and the permanent magnet 3, it is possible to efficiently generate power.

更にまた、永久磁石3の静止位置及び振動時の任意の位置において、永久磁石3の各部に逆向きの力が働かないようにすることができ、効率的に発電することができる。 Furthermore, at the stationary position of the permanent magnet 3 and at an arbitrary position during vibration, it is possible to prevent reverse force from acting on each part of the permanent magnet 3, and it is possible to efficiently generate power.

更にまた、余分な非磁性体部品を備え無いため、効率的に発電することができる。 Furthermore, since no extra non-magnetic material part is provided, power can be efficiently generated.

更にまた、カンチレバー1の自由端1bに永久磁石3を設ける簡単な構成で、交流磁場を用いた発電を行うことができる。 Furthermore, with a simple configuration in which the permanent magnet 3 is provided at the free end 1b of the cantilever 1, it is possible to perform power generation using an alternating magnetic field.

更にまた、カンチレバー1を構成する長板部11の両面に圧電部材12を配することによって、効率的に発電することができる。 Furthermore, by disposing the piezoelectric members 12 on both surfaces of the long plate portion 11 forming the cantilever 1, it is possible to efficiently generate power.

(実施形態2)
実施形態2に係る発電装置200は、導線Wに対する永久磁石3の配置及び姿勢、振動方向が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 2)
The power generator 200 according to the second embodiment is different from that of the first embodiment in the arrangement, posture, and vibration direction of the permanent magnet 3 with respect to the conducting wire W, and therefore the above differences will be mainly described below. Since other configurations and effects are similar to those of the first embodiment, the corresponding portions are denoted by the same reference numerals and detailed description thereof will be omitted.

図17は、本実施形態2に係る発電装置200を示す正面図である。本実施形態2に係る永久磁石3は、導線W及び永久磁石3の離隔方向に対して略45度の方向に並ぶS極3b及びN極3aを有する。そして、カンチレバー1は、永久磁石3がS極3b及びN極3aの並び方向(図17中、上下方向)に振動するように固定部2に固定されている。 FIG. 17 is a front view showing the power generation device 200 according to the second embodiment. The permanent magnet 3 according to the second embodiment has an S pole 3b and an N pole 3a that are arranged in a direction of approximately 45 degrees with respect to the separating direction of the conductor W and the permanent magnet 3. The cantilever 1 is fixed to the fixed portion 2 so that the permanent magnet 3 vibrates in the direction in which the S pole 3b and the N pole 3a are arranged (the vertical direction in FIG. 17).

実施形態2に係る発電装置200によれば、実施形態1と同様、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、導線Wの周囲に形成される交流磁場に基づいて発電を行うことができる。 According to the power generation device 200 according to the second embodiment, similarly to the first embodiment, even if the frequency of the alternating magnetic field formed around the conducting wire W is a low frequency of the order of 10 Hz, it is formed around the conducting wire W. Electric power can be generated based on the alternating magnetic field.

また、永久磁石3は、導線W及び永久磁石3の離隔方向に対して略45度の角度で振動するため、永久磁石3を導線Wから所定距離離隔させることにより、振動する永久磁石3と、導線Wとの接触を回避することができる。 Further, since the permanent magnet 3 vibrates at an angle of approximately 45 degrees with respect to the separating direction of the conductor wire W and the permanent magnet 3, by separating the permanent magnet 3 from the conductor wire W by a predetermined distance, the vibrating permanent magnet 3 and It is possible to avoid contact with the conductor wire W.

(実施形態3)
本実施形態3に係る永久磁石3は、導線Wに対する永久磁石3の配置及び姿勢、振動方向が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 3)
The permanent magnet 3 according to the third embodiment is different from that of the first embodiment in the arrangement, posture, and vibration direction of the permanent magnet 3 with respect to the conducting wire W, and therefore the differences will be mainly described below. Since other configurations and effects are similar to those of the first embodiment, the corresponding portions are denoted by the same reference numerals and detailed description thereof will be omitted.

図18は、本実施形態3に係る発電装置300を示す正面図である。本実施形態3に係る永久磁石3は、交流の通流方向と、導線W及び永久磁石3の離隔方向とに直交する方向に並ぶS極3b及びN極3aを有する。そして、カンチレバー1は、永久磁石3の離隔方向、つまり導線Wの径方向に振動するように固定部2に固定されている。 FIG. 18 is a front view showing the power generation device 300 according to the third embodiment. The permanent magnet 3 according to the third embodiment has an S pole 3b and an N pole 3a arranged in a direction orthogonal to the flow direction of the alternating current and the separating direction of the conducting wire W and the permanent magnet 3. The cantilever 1 is fixed to the fixed portion 2 so as to vibrate in the separating direction of the permanent magnet 3, that is, in the radial direction of the conducting wire W.

実施形態3に係る発電装置300によれば、実施形態1と同様、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、導線Wの周囲に形成される交流磁場に基づいて発電を行うことができる。 According to the power generation device 300 according to the third embodiment, similarly to the first embodiment, even if the frequency of the alternating magnetic field formed around the conducting wire W is a low frequency of the order of 10 Hz, it is formed around the conducting wire W. Electric power can be generated based on the alternating magnetic field.

(実施形態4)
本実施形態4に係る永久磁石403は、永久磁石403及びカンチレバー401の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 4)
In the permanent magnet 403 according to the fourth embodiment, the configurations of the permanent magnet 403 and the cantilever 401 are different from those in the first embodiment, and therefore the above-mentioned differences will be mainly described below. Since other configurations and effects are similar to those of the first embodiment, the corresponding portions are denoted by the same reference numerals and detailed description thereof will be omitted.

図19は、本実施形態4に係る発電装置400を示す斜視図である。カンチレバー401は、長板部11の厚み方向が、導線Wの径方向及び交流の通流方向に交差する姿勢、つまり、自由端1bが導線Wの径方向及び上記通流方向に略直交する方向に変位する姿勢で固定部2に固定されている。 FIG. 19 is a perspective view showing the power generation device 400 according to the fourth embodiment. The cantilever 401 has a posture in which the thickness direction of the long plate portion 11 intersects the radial direction of the conductor W and the flow direction of the alternating current, that is, the free end 1b is substantially orthogonal to the radial direction of the conductor W and the flow direction. It is fixed to the fixed portion 2 in a posture in which it is displaced.

カンチレバー401の自由端1bには、複数の磁極対431,432,433を有する永久磁石403が設けられている。カンチレバー401の自由端1bは、永久磁石403の中心部に接続されている。永久磁石403は、複数の磁極対431,432,433を支持するための矩形板状の支持板430を有し、支持板430の長手方向が長板部11の厚み方向を向き、支持板430の厚み方向が導線Wの径方向と略一致するように、カンチレバー401の自由端1bに固定されている。 The free end 1b of the cantilever 401 is provided with a permanent magnet 403 having a plurality of magnetic pole pairs 431, 432, 433. The free end 1b of the cantilever 401 is connected to the center of the permanent magnet 403. The permanent magnet 403 has a rectangular plate-shaped support plate 430 for supporting the plurality of magnetic pole pairs 431, 432, 433. The longitudinal direction of the support plate 430 faces the thickness direction of the long plate portion 11, and the support plate 430. Is fixed to the free end 1b of the cantilever 401 so that its thickness direction substantially coincides with the radial direction of the conducting wire W.

支持板430の長手方向略中央部及び両端部にはそれぞれ、厚み方向に着磁された磁極対431,432,433が設けられている。上記略中央部に設けられた磁極対431は導線W側がS極、反導線側がN極である。上記両側に設けられた磁極対432,433は導線W側がN極、反導線側がS極である。 Magnetic pole pairs 431, 432, 433 magnetized in the thickness direction are provided on the support plate 430 at substantially the center and both ends thereof in the longitudinal direction. The magnetic pole pair 431 provided at the substantially central portion has an S pole on the conducting wire W side and an N pole on the anti-conducting wire side. The magnetic pole pairs 432 and 433 provided on both sides have an N pole on the conducting wire W side and an S pole on the anti-conducting wire side.

支持板430に設けられた3つの磁極対431,432,433は、間隙を設けて配されている。支持板430の略中央部に配された磁極対431は、導線Wに電流が流れて永久磁石403が振動する際、同一方向の力が作用するように配されている。具体的には、支持板430の略中央部に設けられた磁極対431は図8に示すように、領域P2に位置し、支持板430の両端部に設けられた磁極対432,433は、領域P1に位置するように構成されている。 The three magnetic pole pairs 431, 432, 433 provided on the support plate 430 are arranged with a gap. The magnetic pole pair 431 arranged substantially in the center of the support plate 430 is arranged so that a force in the same direction acts when a current flows through the conductive wire W and the permanent magnet 403 vibrates. Specifically, as shown in FIG. 8, the magnetic pole pair 431 provided in the substantially central portion of the support plate 430 is located in the region P2, and the magnetic pole pairs 432 and 433 provided at both end portions of the support plate 430 are It is configured to be located in the region P1.

実施形態4に係る発電装置400によれば、複数組みのS極及びN極を有する永久磁石403を備え、かつ上記の通り、永久磁石403の各部に逆向きの力が働かないようにS極及びN極を配置することにより、効率的に発電することができる。 According to the power generation device 400 according to the fourth embodiment, the permanent magnet 403 having a plurality of sets of S poles and N poles is provided, and as described above, the S pole is prevented from acting on each part of the permanent magnet 403 in the opposite direction. By disposing the and N poles, it is possible to efficiently generate power.

また、永久磁石403の中心部分にカンチレバー401の自由端1bが接続されているため、永久磁石403を弾性体にバランス良く支持させることができ、効率的に発電することができる。 Further, since the free end 1b of the cantilever 401 is connected to the central portion of the permanent magnet 403, the permanent magnet 403 can be supported by the elastic body in a well-balanced manner, and efficient power generation can be performed.

(実施形態5)
本実施形態5に係る永久磁石503は、永久磁石503及びカンチレバー501の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 5)
In the permanent magnet 503 according to the fifth embodiment, the configurations of the permanent magnet 503 and the cantilever 501 are different from those of the first embodiment, and therefore the above-mentioned differences will be mainly described below. Since other configurations and effects are similar to those of the first embodiment, the corresponding portions are denoted by the same reference numerals and detailed description thereof will be omitted.

図20は、本実施形態5に係る発電装置500を示す斜視図である。実施形態5に係る発電装置500は、2本のカンチレバー501を備える。各カンチレバー501の固定端
1aは、貫通孔21を挟んで上部及び下部に固定されている。各カンチレバー501の長板部11の厚み方向が、導線Wの径方向及び交流の通流方向に交差する姿勢で固定部2に固定されている。
FIG. 20 is a perspective view showing the power generation device 500 according to the fifth embodiment. The power generation device 500 according to the fifth embodiment includes two cantilevers 501. The fixed end 1 a of each cantilever 501 is fixed to the upper and lower parts with the through hole 21 interposed therebetween. The long plate portion 11 of each cantilever 501 is fixed to the fixing portion 2 in a posture in which the thickness direction of the long plate portion 11 intersects the radial direction of the conductive wire W and the alternating current flow direction.

各カンチレバー501の自由端1bには、導線Wを囲繞する正面視略C字状をなし、径方向に並ぶN極503a及びS極503bを有する永久磁石503が固定されている。第1のカンチレバー501の自由端1bは、C字状の永久磁石503の一端部が固定され、第2のカンチレバー501の自由端1bには、当該永久磁石503の他端部が固定されている。 At the free end 1b of each cantilever 501, a permanent magnet 503 that surrounds the conducting wire W and has a substantially C shape in a front view and has N pole 503a and S pole 503b arranged in a radial direction is fixed. One end of a C-shaped permanent magnet 503 is fixed to the free end 1b of the first cantilever 501, and the other end of the permanent magnet 503 is fixed to the free end 1b of the second cantilever 501. ..

このように構成された永久磁石503は、導線Wの周方向に沿って幅広く永久磁石503を配置することにより、永久磁石503の各部を導線Wに接近させることができ、交流磁場を用いて効率的に発電することができる。 In the permanent magnet 503 configured in this way, by arranging the permanent magnet 503 widely along the circumferential direction of the conductor W, each part of the permanent magnet 503 can be brought close to the conductor W, and the efficiency can be improved by using an AC magnetic field. Can generate electricity.

実施形態5に係る発電装置500によれば、導線Wの周囲に沿って幅広く永久磁石503を配置することができ、効率的に発電することができる。 According to the power generation device 500 according to the fifth embodiment, the permanent magnets 503 can be widely arranged along the circumference of the conducting wire W, and power can be efficiently generated.

(実施形態6)
本実施形態6に発電装置600は永久磁石3の振動エネルギーを電気エネルギーに変換する構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
(Embodiment 6)
In the sixth embodiment, the power generator 600 is different from the first embodiment in the configuration of converting the vibration energy of the permanent magnet 3 into the electric energy, and therefore the differences will be mainly described below. Since other configurations and effects are similar to those of the first embodiment, the corresponding portions are denoted by the same reference numerals and detailed description thereof will be omitted.

図21は本実施形態6に係る発電装置600を示す正面図である。作図の便宜上、固定部2の図示を省略している。実施形態6に係る発電装置600は、弾性体としてのカンチレバー601と、カンチレバー601の固定端1a(第1部位)を、十Hzオーダの低周波数の交流が流れる導線Wに対して固定する固定部2と、カンチレバー601の自由端1b(第2部位)に設けられた永久磁石3と、永久磁石3の振動エネルギーを電気エネルギーに変換するエレクトレット発電機605と、エレクトレット発電機605によって変換された電気エネルギーを出力する出力部4とを備える。 FIG. 21 is a front view showing the power generation device 600 according to the sixth embodiment. For convenience of drawing, illustration of the fixed portion 2 is omitted. The power generation device 600 according to the sixth embodiment includes a fixing portion that fixes a cantilever 601 as an elastic body and a fixed end 1a (first portion) of the cantilever 601 to a conductor W through which an alternating current of low frequency on the order of 10 Hz flows. 2, a permanent magnet 3 provided at the free end 1b (second portion) of the cantilever 601, an electret generator 605 that converts the vibration energy of the permanent magnet 3 into electric energy, and the electricity converted by the electret generator 605. The output part 4 which outputs energy is provided.

エレクトレット発電機605は、実施形態1の圧電部材12に代えて設けられたものであり、永久磁石3の振動エネルギーを電気エネルギーに変換する装置である。エレクトレット発電機605は、複数のエレクトレット651aを有する第1電極基板651と、複数の各エレクトレット651aそれぞれに対向する複数の対向電極652aを有する導電性の第2電極基板652とを備える。エレクトレット651aは電荷を蓄えた荷電体である。エレクトレット651aは半永久的に電荷を保持し、電場を形成する。第1電極基板651は、複数のエレクトレット651aが永久磁石3の振動方向に並ぶような姿勢で永久磁石3に固定されている。 The electret generator 605 is provided in place of the piezoelectric member 12 of the first embodiment, and is a device that converts the vibration energy of the permanent magnet 3 into electric energy. The electret generator 605 includes a first electrode substrate 651 having a plurality of electrets 651a, and a conductive second electrode substrate 652 having a plurality of counter electrodes 652a facing the respective electrets 651a. The electret 651a is a charged body that stores electric charges. The electret 651a semi-permanently holds an electric charge and forms an electric field. The first electrode substrate 651 is fixed to the permanent magnet 3 in such a posture that a plurality of electrets 651 a are arranged in the vibration direction of the permanent magnet 3.

第2電極基板652は、複数の対向電極652aが複数のエレクトレット651aそれぞれに対向する姿勢で、導線Wに対する位置が変化しないように固定されている。例えば、第2電極基板652は固定部2に固定されている。対向電極652aは導電性の部材であり、静電誘導によって電荷が蓄えられる。 The second electrode substrate 652 is fixed such that the position with respect to the conducting wire W does not change in a posture in which the plurality of counter electrodes 652a face the plurality of electrets 651a, respectively. For example, the second electrode substrate 652 is fixed to the fixed portion 2. The counter electrode 652a is a conductive member, and charges are stored by electrostatic induction.

導線Wの周囲に形成される交流磁場によって永久磁石3は図21中、横方向に振動する。永久磁石3が振動すると、エレクトレット651aと、対向電極652aとの相対位置が変化し、電荷が移動する。エレクトレット発電機605は、このようにして、永久磁石3の振動エネルギーを電気エネルギーに変換することができ、電荷の移動によって生じた電圧は出力部4から出力される。 The permanent magnet 3 vibrates in the lateral direction in FIG. 21 due to the AC magnetic field formed around the conducting wire W. When the permanent magnet 3 vibrates, the relative position between the electret 651a and the counter electrode 652a changes, and the charge moves. In this way, the electret generator 605 can convert the vibration energy of the permanent magnet 3 into electric energy, and the voltage generated by the movement of the charges is output from the output unit 4.

本実施形態6に係る発電装置600によれば、導線Wの周囲に形成される交流磁場の周波数が十Hzオーダの低周波数であっても、当該交流磁場に基づいて発電を行うことができる。 According to the power generator 600 of Embodiment 6, even if the frequency of the AC magnetic field formed around the conducting wire W is a low frequency of the order of 10 Hz, it is possible to generate power based on the AC magnetic field.

実施形態6では、実施形態1の圧電部材12に代えてエレクトレット発電機605を備える例を説明したが、実施形態2〜5に係る圧電部材12に代えて、エレクトレット発電機を備えても良い。また、第1電極基板651を永久磁石3に設け、第2電極基板652を導線Wに対して固定する例を説明したが、第2電極基板652を永久磁石3に設け、第1電極基板651を導線Wに対して固定しても良い。 In the sixth embodiment, the example in which the piezoelectric member 12 of the first embodiment is replaced with the electret generator 605 has been described, but the piezoelectric member 12 according to the second to fifth embodiments may be replaced with an electret generator. Further, although the example in which the first electrode substrate 651 is provided on the permanent magnet 3 and the second electrode substrate 652 is fixed to the conducting wire W has been described, the second electrode substrate 652 is provided on the permanent magnet 3 and the first electrode substrate 651 is provided. May be fixed to the conductor W.

圧電部材12の代替手段としてエレクトレット発電機605を説明したが、磁歪素子を有する発電機等、永久磁石3の振動エネルギーを電気エネルギーに変換可能な公知の発電機を圧電部材12に代えて用いても良い。 Although the electret generator 605 has been described as an alternative means of the piezoelectric member 12, a known generator capable of converting the vibration energy of the permanent magnet 3 into electric energy, such as a generator having a magnetostrictive element, is used instead of the piezoelectric member 12. Is also good.

(実施形態7)
図22は、本実施形態7に係る電圧調整装置を示すブロック図である。実施形態7に係る電圧調整装置は、系統に接続された導線Wの電圧を調整するための電圧調整機706と、電圧調整機706の状態を検出する検出装置707と、当該検出装置707にて検出された検出情報を外部へ無線送信する送信装置708とを備える。電圧調整機706は、例えば、SVR(Step Voltage Regulator)、SVC(static var compensator)等であり、
検出情報は、電圧調整機706の上流側及び下流側の電圧、電流、電圧調整内容等である。
(Embodiment 7)
FIG. 22 is a block diagram showing the voltage adjustment device according to the seventh embodiment. The voltage adjusting device according to the seventh embodiment includes a voltage adjusting device 706 for adjusting the voltage of the conductor W connected to the system, a detecting device 707 for detecting the state of the voltage adjusting device 706, and the detecting device 707. A transmission device 708 that wirelessly transmits the detected detection information to the outside. The voltage regulator 706 is, for example, an SVR (Step Voltage Regulator), an SVC (static var compensator), or the like.
The detection information is the voltage, current, voltage adjustment content, etc. on the upstream and downstream sides of the voltage regulator 706.

実施形態7に係る送信装置708は、実施形態1に係る発電装置100と、当該発電装置100が出力する電力にて駆動し、検出装置707によって検出された検出情報に係る信号を無線送信する送信部781とを備える。発電装置100は、導線Wの周囲に形成される交流磁場に基づいて発電し、電圧を送信部781へ出力し、送信部781は、発電装置100から出力される電圧にて駆動する。 The transmission device 708 according to the seventh embodiment is driven by the power generation device 100 according to the first embodiment and the power output by the power generation device 100, and wirelessly transmits a signal related to the detection information detected by the detection device 707. Section 781. The power generation device 100 generates power based on the AC magnetic field formed around the conducting wire W and outputs a voltage to the transmission unit 781, and the transmission unit 781 is driven by the voltage output from the power generation device 100.

実施形態7に係る電圧調整装置によれば、発電装置100が出力する電圧を用いて送信部781を駆動することができる。従って、電源を用意することができない環境、例えば、送電線の途中に設けられた電圧調整機706の側に発電装置100及び送信部781を配し、電圧調整機706に係る情報を外部へ無線送信することができる。 According to the voltage regulator of the seventh embodiment, the transmitter 781 can be driven using the voltage output by the power generator 100. Therefore, the power generation device 100 and the transmission unit 781 are arranged on the side where the voltage regulator 706 provided in the middle of the power transmission line cannot provide a power source, and the information related to the voltage regulator 706 is wirelessly transmitted to the outside. Can be sent.

なお、実施形態7では、実施形態1に係る発電装置100を備える例を説明したが、言うまでも無く、実施形態2〜実施形態6に係る発電装置200,300,400,500を用いて、実施形態7に係る電圧調整装置を構成しても良い。
また、永久磁石3を変位可能に支持する構成としてカンチレバー1を例示したが、振動磁場によって永久磁石3が移動できる構成であれば、支持機構は特にカンチレバー1に限定されるものでは無い。
In addition, in the seventh embodiment, an example including the power generation device 100 according to the first embodiment has been described, but needless to say, using the power generation devices 200, 300, 400, 500 according to the second to sixth embodiments, The voltage adjusting device according to the seventh embodiment may be configured.
Although the cantilever 1 is illustrated as a structure for movably supporting the permanent magnet 3, the supporting mechanism is not particularly limited to the cantilever 1 as long as the permanent magnet 3 can be moved by an oscillating magnetic field.

今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above meaning but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.

100発電装置、1カンチレバー、1a固定端、1b自由端、2固定部、3永久磁石、4出力部、W導線 100 generator, 1 cantilever, 1a fixed end, 1b free end, 2 fixed part, 3 permanent magnet, 4 output part, W conducting wire

Claims (21)

交流が流れる導線に対して変位可能に設けられた永久磁石と、
前記導線の周囲に形成される交流磁場によって前記永久磁石が振動した場合、該永久磁石の振動エネルギーを電気エネルギーに変換する変換部と、
該変換部にて変換された電気エネルギーを出力する出力部と
を備える発電装置。
A permanent magnet displaceably provided with respect to the conducting wire through which the alternating current flows,
When the permanent magnet vibrates due to an AC magnetic field formed around the conductor, a conversion unit that converts the vibration energy of the permanent magnet into electric energy.
An output unit configured to output the electric energy converted by the conversion unit.
前記永久磁石は、
前記導線及び前記永久磁石の離隔方向に対して非直交方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に交差する方向に振動する
請求項1に記載の発電装置。
The permanent magnet is
The power generator according to claim 1, which has an S pole and an N pole arranged in a non-orthogonal direction with respect to a separating direction of the conductive wire and the permanent magnet, and vibrates in a direction intersecting with a flowing direction of an alternating current and the separating direction. ..
前記永久磁石は、
前記導線及び前記永久磁石の離隔方向に並ぶS極及びN極を有し、交流の通流方向及び前記離隔方向に直交する方向に振動する
請求項2に記載の発電装置。
The permanent magnet is
The power generator according to claim 2, which has an S pole and an N pole arranged in a separating direction of the conducting wire and the permanent magnet, and vibrates in a direction orthogonal to an alternating current flowing direction and the separating direction.
振動方向における前記永久磁石の幅は、下記式を満たす
請求項3に記載の発電装置。
w≦2(d−√2a)
但し、
w:振動方向における前記永久磁石の幅
d:前記導線の中心と、前記永久磁石との距離
a:前記永久磁石の振幅
The power generator according to claim 3, wherein the width of the permanent magnet in the vibration direction satisfies the following formula.
w≦2 (d−√2a)
However,
w: width of the permanent magnet in the vibration direction d: distance between the center of the conductive wire and the permanent magnet a: amplitude of the permanent magnet
前記離隔方向における前記永久磁石の幅は、前記導線の中心と前記永久磁石との距離の0.5倍以上、2倍以下である
請求項3又は請求項4に記載の発電装置。
The power generator according to claim 3 or 4, wherein a width of the permanent magnet in the separating direction is 0.5 times or more and 2 times or less of a distance between the center of the conductive wire and the permanent magnet.
前記永久磁石は、
交流の通流方向に直交し、かつ前記導線及び前記永久磁石の離隔方向に対して略45度の方向に並ぶS極及びN極を有し、前記S極及びN極の並び方向に振動する
請求項1に記載の発電装置。
The permanent magnet is
It has an S pole and an N pole which are orthogonal to the flow direction of the alternating current and which are arranged in a direction of about 45 degrees with respect to the separating direction of the conducting wire and the permanent magnet, and vibrate in the arrangement direction of the S pole and the N pole. The power generator according to claim 1.
前記永久磁石は、
交流の通流方向と、前記導線及び前記永久磁石の離隔方向とに直交する方向に並ぶS極及びN極を有し、前記離隔方向に振動する
請求項1に記載の発電装置。
The permanent magnet is
The power generator according to claim 1, which has an S pole and an N pole arranged in a direction orthogonal to a flow direction of an alternating current and a separating direction of the conductive wire and the permanent magnet, and vibrates in the separating direction.
前記永久磁石は、
振動方向に並ぶ複数組みのS極及びN極を有し、振動方向におけるS極及びN極の並びは、隣り合う各極が異極になるようにしてある
請求項3に記載の発電装置。
The permanent magnet is
The power generation device according to claim 3, wherein a plurality of sets of S poles and N poles arranged in the vibration direction are provided, and the S poles and N poles arranged in the vibration direction are arranged such that adjacent poles have different polarities.
前記永久磁石は、
前記導線を囲繞するC字状をなし、径方向に並ぶS極及びN極を有し、前記導線の周方
向に振動する
請求項3に記載の発電装置。
The permanent magnet is
The power generator according to claim 3, which has a C shape surrounding the conductor, has S poles and N poles arranged in a radial direction, and vibrates in the circumferential direction of the conductor.
前記永久磁石は、
前記導線及び前記永久磁石の離隔方向に偏平である
請求項1〜請求項9までのいずれか一項に記載の発電装置。
The permanent magnet is
The power generator according to any one of claims 1 to 9, wherein the conductor and the permanent magnet are flat in a separating direction.
前記永久磁石は前記導線に沿う長手方向を有する
請求項1〜請求項10までのいずれか一項に記載の発電装置。
The power generator according to any one of claims 1 to 10, wherein the permanent magnet has a longitudinal direction along the lead wire.
前記永久磁石は、
少なくとも振動中心位置で各部が同一方向の磁気力を受ける寸法を有する
請求項1〜請求項11までのいずれか一項に記載の発電装置。
The permanent magnet is
The power generator according to any one of claims 1 to 11, wherein each unit has a size that receives a magnetic force in the same direction at least at a vibration center position.
前記永久磁石は、
任意の振動位置で各部が同一方向の磁気力を受ける寸法を有する
請求項1〜請求項12までのいずれか一項に記載の発電装置。
The permanent magnet is
The power generator according to any one of claims 1 to 12, wherein each unit has a size that receives a magnetic force in the same direction at an arbitrary vibration position.
弾性体と、
該弾性体の第1部位を、交流が流れる導線に対して固定する固定部と
を備え、
前記永久磁石は、
外力によって前記導線に対する位置が変化する前記弾性体の第2部位に設けられており、
前記変換部は、
前記弾性体に設けられた圧電部材を備え、
前記導線の周囲に形成される交流磁場によって前記永久磁石が振動し、該永久磁石の振動によって前記圧電部材に発生した電圧が前記出力部から出力される
請求項1〜請求項13までのいずれか一項に記載の発電装置。
An elastic body,
A fixing portion for fixing the first portion of the elastic body to a conducting wire through which an alternating current flows,
The permanent magnet is
It is provided in the second portion of the elastic body whose position with respect to the conducting wire is changed by an external force,
The conversion unit is
A piezoelectric member provided on the elastic body,
The alternating magnetic field formed around the conductor wire vibrates the permanent magnet, and the voltage generated in the piezoelectric member by the vibration of the permanent magnet is output from the output unit. The power generator according to claim 1.
前記弾性体は、第2部位に前記永久磁石を除く他の構造物を有しない
請求項14に記載の発電装置。
The power generator according to claim 14, wherein the elastic body does not have any structure other than the permanent magnet in the second portion.
前記弾性体の第2部位は、前記永久磁石の中心部に接続されている
請求項14又は請求項15に記載の発電装置。
The power generator according to claim 14 or 15, wherein the second portion of the elastic body is connected to a central portion of the permanent magnet.
前記弾性体はカンチレバーである
請求項14〜請求項16までのいずれか一項に記載の発電装置。
The power generator according to any one of claims 14 to 16, wherein the elastic body is a cantilever.
前記弾性体は長板部を有し、
前記圧電部材は板状であり、前記長板部の両面にそれぞれ配されている
請求項17に記載の発電装置。
The elastic body has a long plate portion,
The power generation device according to claim 17, wherein the piezoelectric members are plate-shaped and are arranged on both surfaces of the long plate portion.
前記変換部は、
エレクトレットを有する第1電極基板と、前記エレクトレットに対向する対向電極を有する導電性の第2電極基板とを有し、該永久磁石の振動を電気エネルギーに変換するエレクトレット発電機を備える
請求項1〜請求項13までのいずれか一項に記載の発電装置。
The conversion unit is
An electret generator having a first electrode substrate having an electret and a conductive second electrode substrate having a counter electrode facing the electret, and comprising an electret generator for converting vibration of the permanent magnet into electric energy. The power generator according to claim 13.
請求項1〜請求項19までのいずれか一項に記載の発電装置と、
信号を送信する送信部と
を備え、
前記送信部は、
前記発電装置から出力される電圧にて駆動する送信装置。
A power generator according to any one of claims 1 to 19,
And a transmitter for transmitting a signal,
The transmitter is
A transmitter that is driven by the voltage output from the power generator.
交流が流れる導線に対して変位可能に設けられた永久磁石を用意し、
前記導線の周囲に形成される交流磁場によって前記永久磁石を振動させ、
前記永久磁石の振動エネルギーを電気エネルギーに変換し、
前記永久磁石の振動によって変換された電気エネルギーを出力させる
発電方法。
Prepare a permanent magnet that is displaceable with respect to the conductor through which alternating current flows,
Vibrating the permanent magnet by an alternating magnetic field formed around the conductor,
The vibration energy of the permanent magnet is converted into electric energy,
A power generation method of outputting electric energy converted by vibration of the permanent magnet.
JP2019004670A 2019-01-15 2019-01-15 Power generation device, transmission device, and power generation method Withdrawn JP2020114136A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019004670A JP2020114136A (en) 2019-01-15 2019-01-15 Power generation device, transmission device, and power generation method
PCT/JP2019/002384 WO2020148916A1 (en) 2019-01-15 2019-01-25 Power generation device, transmission device, and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019004670A JP2020114136A (en) 2019-01-15 2019-01-15 Power generation device, transmission device, and power generation method

Publications (1)

Publication Number Publication Date
JP2020114136A true JP2020114136A (en) 2020-07-27

Family

ID=71614489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019004670A Withdrawn JP2020114136A (en) 2019-01-15 2019-01-15 Power generation device, transmission device, and power generation method

Country Status (2)

Country Link
JP (1) JP2020114136A (en)
WO (1) WO2020148916A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304161A (en) * 2004-04-09 2005-10-27 Mayekawa Mfg Co Ltd Non-contacting type generator by piezoelectric element such as bicycle
JP2014016207A (en) * 2012-07-06 2014-01-30 Ibaraki Univ Current measuring device
JP6746901B2 (en) * 2015-11-20 2020-08-26 株式会社リコー Power generator
JP6960117B2 (en) * 2017-07-19 2021-11-05 株式会社ダイヘン Power generation device, transmission device and power generation method

Also Published As

Publication number Publication date
WO2020148916A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
JP6960117B2 (en) Power generation device, transmission device and power generation method
CN109997305B (en) Vibration power generation element
US7345372B2 (en) Electromechanical generator for, and method of, converting mechanical vibrational energy into electrical energy
JP5888486B2 (en) Power generation device, power generation device control method, electronic device, and moving means
KR101053256B1 (en) Energy harvester
US11005352B2 (en) Device for generating electrical power from low frequency oscillations
KR101251412B1 (en) Magnetically driven the development device generating unit using piezo-composite materials
JP2011152004A (en) Power generation unit and power generation devic
KR101332006B1 (en) Omnidirectional vibration based energy harvester
JP7361300B2 (en) Power generator and transmitter
WO2020148916A1 (en) Power generation device, transmission device, and power generation method
JP7244830B2 (en) generator and transmitter
JP7244827B2 (en) generator and transmitter
JP2015177552A (en) power generator
Nyamayoka et al. Design of a prototype generator based on piezoelectric power generation for vibration energy harvesting
Halim et al. A chip-sized piezoelectric receiver for low-frequency, near-field wireless power transfer: Design, modeling and experimental validation
CN113804284B (en) Vibration displacement measuring method of vibration type viscoelastic sensor
JP5849580B2 (en) Power generation device and method for controlling power generation device
KR102114497B1 (en) Device for generation of electricity using triboelectic
Ali et al. Investigation of hybrid energy harvesting circuits using piezoelectric and electromagnetic mechanisms
JP2017184444A (en) Vibration generator
KR20160036708A (en) Energy harvester using cantilever
JP2023009446A (en) Power generator, transmitter, and power generation method
JP2020078175A (en) Power generation device
JP2022134501A (en) Power generation device, transmission device and power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211006

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20211112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211112