JP6959824B2 - Voltage regulator - Google Patents

Voltage regulator Download PDF

Info

Publication number
JP6959824B2
JP6959824B2 JP2017205576A JP2017205576A JP6959824B2 JP 6959824 B2 JP6959824 B2 JP 6959824B2 JP 2017205576 A JP2017205576 A JP 2017205576A JP 2017205576 A JP2017205576 A JP 2017205576A JP 6959824 B2 JP6959824 B2 JP 6959824B2
Authority
JP
Japan
Prior art keywords
voltage
phase
transformer
tap
series transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017205576A
Other languages
Japanese (ja)
Other versions
JP2019080430A (en
Inventor
慎一 三田
紀明 白土
健児 泉
南洋 平野
祐也 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2017205576A priority Critical patent/JP6959824B2/en
Publication of JP2019080430A publication Critical patent/JP2019080430A/en
Application granted granted Critical
Publication of JP6959824B2 publication Critical patent/JP6959824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Description

本発明は、調整変圧器、タップ切換器及び直列変圧器を用いた配電用の電圧調整装置に関する。 The present invention relates to a voltage regulator for power distribution using a regulating transformer, a tap changer and a series transformer.

いわゆる間接切換方式による電圧調整装置は、二次巻線が配電線に直列に接続される直列変圧器と、二次巻線に複数のタップが設けられた調整変圧器と、調整変圧器のタップを切り換えるタップ切換器と、タップ切換器を制御する切換制御部とを備えている。調整変圧器は、一次巻線が配電線に並列に接続されている。タップ切換器は、調整変圧器の二次巻線の各タップと直列変圧器の一次巻線との間に設けられている。切換制御部は、調整変圧器から直列変圧器に印加される調整電圧を調整して配電線の電圧を目標範囲に保つようにタップ切換器を制御する。 The voltage regulator by the so-called indirect switching method includes a series transformer in which the secondary winding is connected in series with the distribution line, a regulating transformer in which the secondary winding is provided with a plurality of taps, and a tap of the regulating transformer. It is provided with a tap changer for switching the tap changer and a switching control unit for controlling the tap changer. In the adjusting transformer, the primary winding is connected in parallel with the distribution line. A tap changer is provided between each tap of the secondary winding of the adjusting transformer and the primary winding of the series transformer. The switching control unit controls the tap switching unit so as to adjust the adjusting voltage applied from the adjusting transformer to the series transformer and keep the voltage of the distribution line within the target range.

タップ切換器は、直列変圧器の一次巻線に接続するタップを切り換えるタップ切換スイッチと、タップ切換を行う過程でタップ間に流れる矯絡電流を制限する限流抵抗器等の限流素子と、該限流素子のタップ間への接続及び切り離しを行う接離切換スイッチとを有する。タップ切換器は、更に、調整変圧器の二次巻線から直列変圧器の一次巻線に印加する電圧の極性を切り換える極性切換スイッチを有している。タップ切換器は、切換制御部に制御されてこれらの切換スイッチを所定のシーケンスでオンオフすることにより、調整変圧器から直列変圧器の一次巻線に印加する調整電圧の大きさ及び極性を切り換える。 The tap changer includes a tap changer switch that switches taps connected to the primary winding of a series transformer, and a current limiting element such as a current limiting resistor that limits the entangled current flowing between taps in the process of tap switching. It has a contact / disconnection selector switch for connecting and disconnecting the current limiting element between taps. The tap changer also has a polarity selector switch that switches the polarity of the voltage applied from the secondary winding of the adjusting transformer to the primary winding of the series transformer. The tap changer switches the magnitude and polarity of the adjustment voltage applied from the adjustment transformer to the primary winding of the series transformer by turning these changeover switches on and off in a predetermined sequence under the control of the changeover control unit.

特許文献1や特許文献2に示されているように、切換スイッチに双方向サイリスタ(双方向性を有しており交流をオンオフできるサイリスタ)を用いて、タップ切換器の無接点化を図った配電用の電圧調整装置が知られている。以下、このサイリスタ式の電圧調整器をTVR(Thyristor type Step Voltage Regulator )と言う。 As shown in Patent Document 1 and Patent Document 2, a bidirectional thyristor (a thyristor that has bidirectionality and can turn on and off alternating current) is used as a changeover switch to make the tap switch non-contact. Voltage regulators for power distribution are known. Hereinafter, this thyristor type voltage regulator is referred to as a TVR (Thyristor type Step Voltage Regulator).

従来のTVRは、調整変圧器の二次側をV結線とし、直列変圧器の一次側をY結線としたV−Y結線方式が主流である。特許文献3には、調整変圧器をV結線として二相分のタップ切換器を一括制御する従来のTVRをベースに、三相不平衡に対して調整変圧器のV結線の二相電圧を監視し、二相のタップ切換器を個別に制御することにより配電線の三相電圧不平衡を改善する三相電圧不平衡対応機能付TVRが開示されている。 The mainstream of conventional TVRs is a V-Y connection method in which the secondary side of the adjusting transformer is V-connected and the primary side of the series transformer is Y-connected. Patent Document 3 monitors the two-phase voltage of the V-connection of the adjustment transformer against three-phase imbalance based on the conventional TVR that collectively controls the tap switch for two phases with the adjustment transformer as the V connection. However, a TVR with a function for dealing with a three-phase voltage imbalance that improves the three-phase voltage imbalance of a distribution wire by individually controlling a two-phase tap switch is disclosed.

このTVRは、配電線の三相電圧の最大電圧相と最小電圧相に、電圧不平衡対応TVRの電圧監視相(タップ切換を行える二相)を接続することで、電圧不平衡の改善効果が高まるものである。従って三相電圧の最大電圧相と最小電圧相が時間によって変化する系統(各相に接続する単相の負荷や太陽光発電が大きく変動するようなケース)では期待した効果が得られない。また最大電圧相と最小電圧相が不明な系統に適用する場合には事前に計測調査を行った上でTVRの電圧監視相の接続先を決定する必要がある。 This TVR has the effect of improving the voltage imbalance by connecting the voltage monitoring phase (two phases that can switch taps) of the TVR that supports voltage imbalance to the maximum voltage phase and the minimum voltage phase of the three-phase voltage of the distribution line. It will increase. Therefore, the expected effect cannot be obtained in a system in which the maximum voltage phase and the minimum voltage phase of the three-phase voltage change with time (in the case where the single-phase load connected to each phase or the photovoltaic power generation fluctuates greatly). When applying to a system in which the maximum voltage phase and the minimum voltage phase are unknown, it is necessary to determine the connection destination of the voltage monitoring phase of TVR after conducting a measurement survey in advance.

これに対し、調整変圧器の二次側をY結線、直列変圧器の一次側をY結線としたY−Y結線方式が実現されている(例えば特許文献4参照)。このような調整変圧器の二次側がY結線のTVRは、三相分のタップ切換器を備えていることから、このタップ切換器を各相について制御すれば三相すべてを個別にタップ切換して三相任意に電圧調整することができ、上記の現行のV−Y結線方式の不平衡対応の課題を解消できるとされている。 On the other hand, a YY connection method has been realized in which the secondary side of the adjusting transformer is Y-connected and the primary side of the series transformer is Y-connected (see, for example, Patent Document 4). A TVR with a Y connection on the secondary side of such an adjustment transformer is equipped with a tap changer for three phases. Therefore, if this tap changer is controlled for each phase, all three phases can be tap-switched individually. It is said that the voltage can be adjusted arbitrarily in three phases, and the problem of dealing with the imbalance of the current VY connection method described above can be solved.

特開平8−335119号公報Japanese Unexamined Patent Publication No. 8-335119 特開平8−335121号公報Japanese Unexamined Patent Publication No. 8-335121 特開2017−85715号公報JP-A-2017-85715 特開2016−42279号公報Japanese Unexamined Patent Publication No. 2016-42279

しかしながら、Y−Y結線方式で相毎に異なるタップ切換を行った場合、直列変圧器に印加される調整電圧に零相電圧(以下、V0と言う)が発生し、系統に重畳される電圧にもV0が生じることから、変電所の地絡継電器が誤動作する等、V0発生による別の大きな問題が生じる。上述のとおり、三相の電圧がいかなる大小関係にあってもV0を発生させずに三相の電圧を調整することが可能な三相不平衡対応の電圧調整装置は、未だに実現されていない。 However, when different tap changes are performed for each phase in the YY connection method, a zero-phase voltage (hereinafter referred to as V0) is generated in the adjustment voltage applied to the series transformer, and the voltage is superimposed on the system. However, since V0 is generated, another big problem occurs due to the generation of V0, such as a malfunction of the ground relay of the substation. As described above, a three-phase unbalanced voltage adjusting device capable of adjusting the three-phase voltage without generating V0 has not yet been realized regardless of the magnitude relationship between the three-phase voltages.

本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、三相の電圧の大小関係に関わらず、V0の発生を抑制して三相の電圧を調整することが可能な電圧調整装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is that it is possible to suppress the generation of V0 and adjust the three-phase voltage regardless of the magnitude relationship of the three-phase voltage. The purpose is to provide a voltage regulator.

本発明に係る電圧調整装置は、三相の交流電圧を電源から負荷に配電する配電線に三相分の二次巻線が直列に接続されており、一次巻線がデルタ結線されている直列変圧器と、二次巻線に複数のタップを有し、前記配電線における前記直列変圧器の接続位置よりも前記負荷側の位置に一次巻線がデルタ結線されており、二次巻線がスター結線されている調整変圧器と、該調整変圧器の二次巻線及び前記直列変圧器の一次巻線の間に設けられており、前記直列変圧器に接続するタップを切り換えるための三相分の切換スイッチを有するタップ切換器とを備える。 In the voltage regulator according to the present invention, the secondary windings for three phases are connected in series to the distribution line that distributes the three-phase AC voltage from the power supply to the load, and the primary windings are delta-connected in series. The transformer and the secondary winding have a plurality of taps, and the primary winding is delta-connected at a position on the load side of the connection position of the series transformer on the distribution line, and the secondary winding is A three-phase system provided between a star-connected adjusting transformer and the secondary winding of the adjusting transformer and the primary winding of the series transformer for switching taps connected to the series transformer. It is provided with a tap changer having a minute changeover switch.

本発明にあっては、三相分の二次巻線が三相の配電線に直列接続される直列変圧器の一次巻線がデルタ(Δ)結線されており、三相分の一次巻線が配電線にΔ結線される調整変圧器の二次巻線がスター(Y)結線されている。そして、直列変圧器の一次巻線に対して、調整変圧器の二次巻線のタップから、タップ切換器の切換スイッチを介して調整電圧が印加される。従って、調整変圧器のタップを選択して切り換えることにより、配電線の三相の電圧が調整される。 In the present invention, the primary winding of the series transformer in which the secondary winding for three phases is connected in series to the distribution line for three phases is delta (Δ) connected, and the primary winding for three phases is connected. The secondary winding of the adjusting transformer is star (Y) connected. Then, an adjustment voltage is applied to the primary winding of the series transformer from the tap of the secondary winding of the adjustment transformer via the changeover switch of the tap changer. Therefore, the three-phase voltage of the distribution line is adjusted by selecting and switching the tap of the adjusting transformer.

本発明に係る電圧調整装置は、前記直列変圧器は、二次巻線から前記配電線に印加される三相の交流電圧の位相が、標準的なデルタ・スター結線の場合と比較して実質的にπ/3又は4π/3だけ遅れるように結線されている。 In the voltage regulator according to the present invention, in the series transformer, the phase of the three-phase AC voltage applied from the secondary winding to the distribution line is substantially higher than that in the case of standard delta star connection. The wires are connected so as to be delayed by π / 3 or 4π / 3.

本発明にあっては、配電線の三相の交流電圧に対して直列変圧器の二次巻線から直列に印加される交流電圧の位相が、標準的なデルタ・スター(Δ−Y)結線の場合と比較して実質的に60°又は60°+180°だけ遅れるように結線されている。これにより、Δ−Y結線の調整変圧器及び直列変圧器夫々における30°の位相の進みと上記60°の位相の遅れが実質的に相殺される。更に、調整変圧器で生成された調整電圧を直列変圧器で変圧した電圧が、配電線の交流電圧に対して同位相又は逆移相に近づくようにして加算される。 In the present invention, the phase of the AC voltage applied in series from the secondary winding of the series transformer to the three-phase AC voltage of the distribution line is a standard delta star (Δ-Y) connection. The wires are connected so as to be substantially delayed by 60 ° or 60 ° + 180 ° as compared with the case of. As a result, the phase advance of 30 ° and the phase delay of 60 ° in each of the delta-Y connection adjusting transformer and the series transformer are substantially offset. Further, the adjustment voltage generated by the adjustment transformer is transformed by the series transformer, and the voltage is added so as to approach the in-phase or reverse phase shift with respect to the AC voltage of the distribution line.

本発明に係る電圧調整装置は、前記切換スイッチは、前記調整変圧器の二次巻線の電圧の極性を切り換えて前記直列変圧器の一次巻線に印加するための極性切換スイッチを含む。 In the voltage regulator according to the present invention, the changeover switch includes a polarity changeover switch for switching the polarity of the voltage of the secondary winding of the adjustment transformer and applying it to the primary winding of the series transformer.

本発明にあっては、直列変圧器の一次巻線に印加される調整電圧の極性が極性切換スイッチによって任意に切り換え可能であるため、配電線の三相の電圧の不平衡を調整する際の自由度が高い。 In the present invention, since the polarity of the adjustment voltage applied to the primary winding of the series transformer can be arbitrarily switched by the polarity changeover switch, the imbalance of the three-phase voltage of the distribution line is adjusted. High degree of freedom.

本発明に係る電圧調整装置は、前記切換スイッチは、サイリスタを含んで構成されている。 In the voltage adjusting device according to the present invention, the changeover switch includes a thyristor.

本発明にあっては、切換スイッチにサイリスタが用いられているため、タップの切り換えが高速に行える上にタップの寿命を考慮する必要がない。 In the present invention, since the thyristor is used as the changeover switch, the tap can be changed at high speed and the life of the tap does not need to be considered.

本発明に係る電圧調整装置は、前記直列変圧器よりも前記負荷側における前記配電線の三相の電圧を検出する電圧検出部と、該電圧検出部が検出した三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に基づいて前記切換スイッチにより前記タップを切り換える切換制御部とを更に備える。 The voltage regulator according to the present invention relates to a voltage detection unit that detects the three-phase voltage of the distribution line on the load side of the series transformer and a target voltage of the three-phase voltage detected by the voltage detection unit. A changeover control unit for calculating the deviation and switching the tap with the changeover switch based on the calculated deviation is further provided.

本発明にあっては、調整変圧器の二次巻線のタップから直列変圧器の一次巻線に印加される調整電圧によって調整された三相の配電線の電圧が検出されて目標電圧と比較され、比較結果である偏差に基づいて切換スイッチが制御されてタップが切り換えられる。これにより、配電線の三相の電圧の偏差がゼロに近づくようにフィードバック制御される。 In the present invention, the voltage of the three-phase distribution line adjusted by the adjustment voltage applied to the primary winding of the series transformer is detected from the tap of the secondary winding of the adjustment transformer and compared with the target voltage. Then, the changeover switch is controlled based on the deviation which is the comparison result, and the tap is switched. As a result, feedback control is performed so that the deviation of the three-phase voltage of the distribution line approaches zero.

本発明に係る電圧調整装置は、三相の電圧の目標電圧に対する偏差と前記調整変圧器の三相分の変圧比に係る量を関連付けて記憶する記憶部を更に備え、前記切換制御部は、前記偏差を算出した場合、前記記憶部を参照して三相分のタップの切換先を選択し、前記タップを選択した切換先に切り換える。 The voltage adjusting device according to the present invention further includes a storage unit that stores the deviation of the three-phase voltage with respect to the target voltage and the amount related to the transformation ratio of the three phases of the adjusting transformer in association with each other. When the deviation is calculated, the switching destination of the tap for three phases is selected with reference to the storage unit, and the tap is switched to the selected switching destination.

本発明にあっては、配電線の三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に応じて記憶部から読み出した変圧比に係る量に基づいてタップの切換先を選択し、選択した切換先に応じた切換スイッチを制御する。これにより、切換制御部の実行時に上述の調整電圧をベクトル演算で求める必要がなくなる。 In the present invention, the deviation of the three-phase voltage of the distribution line from the target voltage is calculated, and the tap switching destination is selected based on the amount related to the transformation ratio read from the storage unit according to the calculated deviation. Controls the changeover switch according to the selected changeover destination. This eliminates the need to obtain the above-mentioned adjustment voltage by vector calculation when the switching control unit is executed.

本発明によれば、三相の電圧の大小関係に関わらず、V0の発生を抑制して三相の電圧を調整することが可能となる。 According to the present invention, it is possible to suppress the generation of V0 and adjust the three-phase voltage regardless of the magnitude relationship of the three-phase voltage.

実施形態1に係る電圧調整装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the voltage adjustment apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る電圧調整装置における調整変圧器及び直列変圧器間の三相の結線関係を視覚的に示す説明図である。It is explanatory drawing which visually shows the connection | connection relation of three-phase between the adjustment transformer and the series transformer in the voltage adjustment apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る電圧調整装置における調整変圧器及び直列変圧器夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。It is a vector figure which shows the voltage vector which is applied or induced to each of the adjustment transformer and the series transformer in the voltage adjustment apparatus which concerns on Embodiment 1. FIG. 直列変圧器の結線の変更方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of changing the connection of a series transformer. 直列変圧器を標準的なΔ−Y結線にて接続した場合を説明するための電圧調整装置のブロック図である。It is a block diagram of the voltage regulator for demonstrating the case where a series transformer is connected by a standard Δ-Y connection. 直列変圧器を図1の場合と同等なΔ−Y結線にて接続してある電圧調整装置の第1例のブロック図である。It is a block diagram of the 1st example of the voltage adjustment device which connected the series transformer by the same Δ-Y connection as in the case of FIG. 直列変圧器を図1の場合と同等なΔ−Y結線にて接続してある電圧調整装置の第2例のブロック図である。It is a block diagram of the 2nd example of the voltage adjustment device which connected the series transformer by the same Δ-Y connection as in the case of FIG. 電圧調整装置における調整変圧器及び直列変圧器夫々に印加又は誘起される電圧ベクトルを他の観点から示すベクトル図である。It is a vector figure which shows the voltage vector applied or induced to each of the adjustment transformer and the series transformer in a voltage adjustment device from another viewpoint. 変形例1に係る電圧調整装置における調整変圧器及び直列変圧器夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。It is a vector figure which shows the voltage vector which is applied or induced to each of the adjustment transformer and the series transformer in the voltage adjustment apparatus which concerns on modification 1. FIG. 直列変圧器の結線の変更方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of changing the connection of a series transformer. 変形例2に係る電圧調整装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the voltage adjustment apparatus which concerns on modification 2. 実施形態2に係る電圧調整装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the voltage adjustment apparatus which concerns on Embodiment 2. 実施形態2に係る電圧調整装置で配電線の電圧を調整する切換制御部の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the switching control part which adjusts the voltage of a distribution line by the voltage adjustment apparatus which concerns on Embodiment 2. 検証に用いた配電系統のモデルを示す説明図である。It is explanatory drawing which shows the model of the distribution system used for the verification. タップ位置が異なる制御種別毎に二次側電圧及び内部回路電流を解析した結果を示す図表である。It is a figure which shows the result of having analyzed the secondary side voltage and the internal circuit current for each control type which tap position is different. 検証に用いた実験回路の構成を示すブロック図である。It is a block diagram which shows the structure of the experimental circuit used for the verification. 複数の制御種別の例についてタップ位置の選択を模式的に示す説明図である。It is explanatory drawing which shows typically the selection of the tap position for the example of a plurality of control types. 三相一括降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。It is a waveform diagram which shows the measurement result of the line voltage of the primary side and the secondary side of a voltage regulator in the case of three-phase batch step-down. 個別降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。It is a waveform figure which shows the measurement result of the line voltage of the primary side and the secondary side of a voltage regulator in the case of individual step-down. 個別昇降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。It is a waveform figure which shows the measurement result of the line voltage of the primary side and the secondary side of a voltage regulator in the case of individual buck-boost.

以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、実施形態1に係る電圧調整装置の構成例を示すブロック図である。図中1u,1v,1wは、電源から負荷(何れも不図示)へU相,V相,W相の交流電圧を紙面の右向きに配電する配電線である。電圧調整装置は、配電線1u,1v,1w夫々に二次巻線212,222,232が直列に接続される直列変圧器2と、配電線1u,1v,1wに一次巻線311,321,331がΔ結線される調整変圧器3と、調整変圧器3の二次巻線312,322,332及び直列変圧器2の一次巻線211,221,231の間に設けられたタップ切換器4とを備える。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration example of the voltage adjusting device according to the first embodiment. In the figure, 1u, 1v, and 1w are distribution lines that distribute U-phase, V-phase, and W-phase AC voltages from the power source to the load (all not shown) to the right of the paper. The voltage regulator includes a series transformer 2 in which secondary windings 212, 222, 232 are connected in series to distribution lines 1u, 1v, 1w, respectively, and primary windings 311, 3211 to distribution lines 1u, 1v, 1w. A tap switch 4 provided between the adjusting transformer 3 to which the 331 is Δ-connected, the secondary windings 312, 322, 332 of the adjusting transformer 3 and the primary windings 211, 221, 231 of the series transformer 2. And.

電圧調整装置は、また、Δ−Y結線された三相の計測用変圧器5を介して配電線1u,1v,1wの電圧を検出する電圧検出部62と、該電圧検出部62が検出した電圧を表示して使用者の操作を受け付けるための操作表示部63と、該操作表示部63によって受け付けた操作に基づいて、後述する切換スイッチS1,S2,・・S6,SS及び電磁接触器MCに、駆動部64を介して駆動信号を与える切換制御部61とを備える。切換スイッチS1,S2,・・S6は、何れも極性切換スイッチとして機能する。 The voltage regulator also detects the voltage of the distribution wires 1u, 1v, 1w via the three-phase measuring transformer 5 connected in Δ-Y, and the voltage detecting unit 62. Based on the operation display unit 63 for displaying the voltage and accepting the user's operation and the operation received by the operation display unit 63, the changeover switches S1, S2, ... S6, SS and the magnetic contactor MC described later will be described later. Also includes a switching control unit 61 that gives a drive signal via the drive unit 64. The changeover switches S1, S2, ... S6 all function as polarity changeover switches.

電圧検出部62は、配電線1u,1v,1wの線間電圧を検出するものであるが、Δ−Y結線以外の結線方式で結線された計測用変圧器を介して相電圧を検出してもよい。また、計測用変圧器5に代えて、調整変圧器3の一次巻線311,321,331夫々に対応する三次巻線を設けておき、この三次巻線を介して電圧検出部62が配電線1u,1v,1wの電圧を検出してもよいし、電圧調整装置とは別に配電線1u,1v,1wの電圧を検出してもよい。 The voltage detection unit 62 detects the line voltage of the distribution lines 1u, 1v, 1w, and detects the phase voltage via a measuring transformer connected by a connection method other than the Δ-Y connection. May be good. Further, instead of the measuring transformer 5, a tertiary winding corresponding to each of the primary windings 311, 321, 331 of the adjusting transformer 3 is provided, and the voltage detection unit 62 transmits the distribution wire through the tertiary winding. The voltage of 1u, 1v, 1w may be detected, or the voltage of the distribution line 1u, 1v, 1w may be detected separately from the voltage regulator.

直列変圧器2は、二次巻線212,222,232夫々に一次巻線211,221,231が対応している。一次巻線211,221,231はΔ結線されている。二次巻線212,222,232夫々の上記負荷側の端子に対応する一次巻線211,221,231の端子をu1,v1,w1とする。また、二次巻線212,222,232夫々の上記電源側の端子に対応する一次巻線211,221,231の端子をu2,v2,w2とする。 In the series transformer 2, the primary windings 211, 221, 231 correspond to the secondary windings 212, 222, 232, respectively. The primary windings 211, 211, 231 are Δ-connected. The terminals of the primary windings 211, 221, 231 corresponding to the terminals on the load side of each of the secondary windings 212, 222, 232 are u1, v1, w1. Further, the terminals of the primary windings 211, 221, 231 corresponding to the terminals on the power supply side of the secondary windings 212, 222, 232, respectively, are u2, v2, w2.

調整変圧器3は、一次巻線311が配電線1u,1v間に、一次巻線321が配電線1v,1w間に、一次巻線331が配電線1w,1u間に夫々接続されている。即ち、一次巻線311,321,331が配電線1u,1v,1wに対してΔ結線されている。一次巻線311,321,331夫々には二次巻線312,322,332が対応している。 In the adjusting transformer 3, the primary winding 311 is connected between the distribution lines 1u and 1v, the primary winding 321 is connected between the distribution lines 1v and 1w, and the primary winding 331 is connected between the distribution lines 1w and 1u, respectively. That is, the primary windings 311, 321, 331 are Δ-connected to the distribution lines 1u, 1v, 1w. Secondary windings 312, 322, and 332 correspond to the primary windings 311, 321, 331, respectively.

二次巻線312,322,332の夫々は、一端及び他端から引き出されたタップta及びtcと,タップta及びtcの間から引き出された中間のタップtbとを有する。二次巻線312,322,332夫々が有するタップta〜tcの何れか1つが、タップ切換器4を介して直列変圧器2の一次側の端子u1,v1,w1と、端子v2,w2,u2とに接続される。 Each of the secondary windings 312, 322, and 332 has taps ta and tc drawn from one end and the other end, and an intermediate tap tb drawn from between the taps ta and tc. Any one of the taps ta to tc of each of the secondary windings 312, 322, and 332 has terminals u1, v1, w1 and terminals v2, w2 on the primary side of the series transformer 2 via the tap changer 4. Connected to u2.

タップ切換器4は、調整変圧器3の二次巻線312,322,332夫々が有するタップta,tb,tcを切り換えるための6つの切換スイッチS1,S2,・・S6を三相分有する。二次巻線312,322,332夫々のタップtaは、保護用のヒューズFを介して切換スイッチS1,S4の一端に接続されている。二次巻線312,322,332夫々のタップtbは、保護用のヒューズFを介して切換スイッチS2,S5の一端に接続されている。二次巻線312,322,332夫々のタップtcは、切換スイッチS3,S6の一端に接続されている。切換スイッチS1,S2,S3は他端同士が接続されている。切換スイッチS4,S5,S6は他端同士が接続されている。 The tap changer 4 has six changeover switches S1, S2, ... S6 for switching the taps ta, tb, and tk of the secondary windings 312, 322, and 332 of the adjustment transformer 3 for three phases. The tap tas of the secondary windings 312, 322, and 332 are connected to one end of the changeover switches S1 and S4 via a protective fuse F. The taps tb of each of the secondary windings 312, 322, and 332 are connected to one end of the changeover switches S2 and S5 via a protective fuse F. The tap cts of the secondary windings 312, 322, and 332 are connected to one end of the changeover switches S3 and S6. The other ends of the changeover switches S1, S2, and S3 are connected to each other. The other ends of the changeover switches S4, S5, and S6 are connected to each other.

二次巻線312のタップta,tb,tc夫々が一端に接続される切換スイッチS1,S2,S3の他端同士は、直列変圧器2の一次側の端子u1及びv2に接続されている。二次巻線312のタップta,tb,tc夫々が一端に接続される切換スイッチS4,S5,S6の他端同士は、中性点Nに接続されている。二次巻線322のタップta,tb,tc夫々が一端に接続される切換スイッチS1,S2,S3の他端同士は、直列変圧器2の一次側の端子v1及びw2に接続されている。二次巻線322のタップta,tb,tc夫々が一端に接続される切換スイッチS4,S5,S6の他端同士は、中性点Nに接続されている。二次巻線332のタップta,tb,tc夫々が一端に接続される切換スイッチS1,S2,S3の他端同士は、直列変圧器2の一次側の端子w1及びu2に接続されている。二次巻線332のタップta,tb,tc夫々が一端に接続される切換スイッチS4,S5,S6の他端同士は、中性点Nに接続されている。 The other ends of the changeover switches S1, S2, and S3 to which the taps ta, tb, and tc of the secondary winding 312 are connected to one end are connected to the terminals u1 and v2 on the primary side of the series transformer 2. The other ends of the changeover switches S4, S5, and S6 to which the taps ta, tb, and tc of the secondary winding 312 are connected to one end are connected to the neutral point N. The other ends of the changeover switches S1, S2, and S3 to which the taps ta, tb, and tc of the secondary winding 322 are connected to one end are connected to the terminals v1 and w2 on the primary side of the series transformer 2. The other ends of the changeover switches S4, S5, and S6 to which the taps ta, tb, and tc of the secondary winding 322 are connected to one end are connected to the neutral point N. The other ends of the changeover switches S1, S2, and S3 to which the taps ta, tb, and tc of the secondary winding 332 are connected to one end are connected to the terminals w1 and u2 on the primary side of the series transformer 2. The other ends of the changeover switches S4, S5, and S6 to which the taps ta, tb, and tc of the secondary winding 332 are connected to one end are connected to the neutral point N.

切換スイッチS1,S2,S3の他端同士と、切換スイッチS4,S5,S6の他端同士との間には、限流抵抗器R及び切換スイッチSSの直列回路と、電磁接触器MCとが並列に接続されている。切換スイッチSSは、切換スイッチS1,S2,・・S6によってタップta,tb,tcを切り換える過程で、限流抵抗器Rを介してタップ間を矯絡させておくために、タップ間への限流抵抗器Rの接続及び切り離しを行うためのものである。電磁接触器MCは、切換スイッチS1,S2,・・S6及びSSによってタップta,tb,tcを切り換える運用が停止されている間に、直列変圧器2の一次側の端子u1,v1間、端子v1,w1間及び端子w1,u1間を矯絡して、開放状態にしないようにするためのものである。 Between the other ends of the changeover switches S1, S2 and S3 and the other ends of the changeover switches S4, S5 and S6, a series circuit of the current limiting resistor R and the changeover switch SS and an electromagnetic contactor MC are provided. They are connected in parallel. The changeover switch SS is limited to the taps in order to entangle the taps via the current limiting resistor R in the process of switching the taps ta, tb, tk by the changeover switches S1, S2, ... S6. This is for connecting and disconnecting the flow resistor R. The magnetic contactor MC has terminals u1, v1 on the primary side of the series transformer 2 while the operation of switching taps ta, tb, and tc by the changeover switches S1, S2, ... S6 and SS is stopped. This is to prevent the v1 and w1 and the terminals w1 and u1 from being opened.

タップtbに対するタップtaの電圧は、例えばタップtcに対するタップtbの電圧の2倍となるようにしてあるが、これに限定されるものではない。このように構成された調整変圧器3のタップta,tb,tcを選択することにより、タップtcに対するタップtbの電圧に対して2倍(タップtbに対するタップta)、3倍(タップtcに対するタップta)、−1倍(タップtbに対するタップtc)、−2倍(タップtaに対するタップtb)及び−3倍(タップtaに対するタップtc)の電圧を取り出すことができる。即ち、調整変圧器3から取り出される相対的な調整電圧を1、−1、2、−2、3及び−3から選択することができる。 The voltage of the tap ta with respect to the tap tb is set to be twice the voltage of the tap tb with respect to the tap tc, but is not limited to this. By selecting the taps ta, tb, and tc of the adjusting transformer 3 configured in this way, the voltage of the tap tb with respect to the tap tc is doubled (tap ta with respect to the tap tb) and tripled (tap with respect to the tap tc). It is possible to take out the voltage of ta), -1 times (tap tk with respect to tap tb), -2 times (tap tb with respect to tap ta) and -3 times (tap tk with respect to tap ta). That is, the relative adjustment voltage taken out from the adjustment transformer 3 can be selected from 1, -1, 2, -2, 3 and -3.

本実施形態1では、例として図1に黒で塗りつぶした切換スイッチS2,S6のみをオンにしてタップtb,tcを選択することにより、二次巻線312,322,332夫々から取り出される調整電圧の比を1:1:1とする。以下では、二次巻線312のタップtb,tc夫々に対応する端子をU1,U2とし、二次巻線322のタップtb,tc夫々に対応する端子をV1,V2とし、二次巻線332のタップtb,tc夫々に対応する端子をW1,W2とする。ここでの例によれば、端子U2,V2,W2が中性点Nに接続され、端子U1,V1,W1から調整電圧が取り出されるが、例えば調整電圧の比を−1:−1:−1とする場合は、端子U1,V1,W1が中性点Nに接続され、端子U2,V2,W2から調整電圧が取り出される。 In the first embodiment, as an example, by turning on only the changeover switches S2 and S6 painted in black in FIG. 1 and selecting the taps tb and tk, the adjustment voltage taken out from each of the secondary windings 312, 322 and 332 is taken out. The ratio of is 1: 1: 1. In the following, the terminals corresponding to the taps tb and tc of the secondary winding 312 are U1 and U2, and the terminals corresponding to the taps tb and tc of the secondary winding 322 are V1 and V2, respectively, and the secondary winding 332 is used. The terminals corresponding to the taps tb and tc are W1 and W2. According to the example here, the terminals U2, V2, W2 are connected to the neutral point N, and the adjustment voltage is taken out from the terminals U1, V1, W1. For example, the ratio of the adjustment voltage is -1: -1:-. In the case of 1, the terminals U1, V1 and W1 are connected to the neutral point N, and the adjustment voltage is taken out from the terminals U2, V2 and W2.

次に、端子U1,V1,W1と、端子u1,u2,v1,v2,w1,w2との接続関係及び電圧の関係について説明する。図2は、実施形態1に係る電圧調整装置における調整変圧器3及び直列変圧器2間の三相の結線関係を視覚的に示す説明図である。図3は、実施形態1に係る電圧調整装置における調整変圧器3及び直列変圧器2夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。図4は、直列変圧器2の結線の変更方法を説明するための説明図である。本明細書では、ベクトルを表す文字列に対するドットの表記を省略する。 Next, the connection relationship between the terminals U1, V1, W1 and the terminals u1, u2, v1, v2, w1, w2 and the voltage relationship will be described. FIG. 2 is an explanatory diagram visually showing a three-phase connection relationship between the adjusting transformer 3 and the series transformer 2 in the voltage adjusting device according to the first embodiment. FIG. 3 is a vector diagram showing voltage vectors applied to or induced in the adjusting transformer 3 and the series transformer 2 in the voltage adjusting device according to the first embodiment. FIG. 4 is an explanatory diagram for explaining a method of changing the connection of the series transformer 2. In the present specification, the notation of dots for the character string representing the vector is omitted.

図1を参照して、図2における接続関係を説明すると、端子U1は、切換スイッチS2を介して端子u1及びv2に接続されている。端子V1は、切換スイッチS2を介して端子v1及びw2に接続されている。端子W1は、切換スイッチS2を介して端子w1及びu2に接続されている。図3の紙面右側に示すベクトル図では、配電線1u,1v,1wの相電圧Eu,Ev,Ewを実線で表し、線間電圧Vuv,Vvw,Vwuを破線で表す。以下、相電圧Euの位相を基準相とする。なお、図面上の凡例は、ベクトルで表される電圧が発生若しくは誘起する部位又は印加される部位を表す(以下同様)。 Explaining the connection relationship in FIG. 2 with reference to FIG. 1, the terminal U1 is connected to the terminals u1 and v2 via the changeover switch S2. The terminal V1 is connected to the terminals v1 and w2 via the changeover switch S2. The terminal W1 is connected to the terminals w1 and u2 via the changeover switch S2. In the vector diagram shown on the right side of the paper in FIG. 3, the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w are represented by solid lines, and the line voltages Vuv, Vvw, Vwoo are represented by broken lines. Hereinafter, the phase of the phase voltage Eu is used as the reference phase. The legend on the drawing represents a part where a voltage represented by a vector is generated or induced or a part where a voltage is applied (the same applies hereinafter).

Δ結線された調整変圧器3の一次巻線311,321,331夫々には、線間電圧Vuv,Vvw,Vwuが印加されるから、図3の紙面左側の実線及び図2に示すように、Y結線された二次巻線312,322,332夫々には、線間電圧Vuv,Vvw,Vwuと同位相で大きさが比例する電圧E’u,E’v,E’wが誘起する。これらの電圧E’u,E’v,E’wが、破線で示すように、Δ結線された直列変圧器2の一次巻線211,221,231に調整電圧として印加される。 Since the line voltages Vuv, Vvw, and Vwoo are applied to the primary windings 311, 321, 331 of the Δ-connected adjustment transformer 3, as shown in the solid line on the left side of the paper in FIG. 3 and FIG. In each of the Y-connected secondary windings 312, 322, and 332, voltages E'u, E'v, and E'w that are in phase with the line voltages Vuv, Vvw, and Vw and are proportional in magnitude are induced. These voltages E'u, E'v, E'w are applied as adjusting voltages to the primary windings 211, 211, 231 of the series transformer 2 connected by Δ as shown by the broken line.

図3の紙面左側に破線で示されるように、直列変圧器2の一次巻線211,221,231に印加される三相の調整電圧は、大きさが等しく位相が互いに2π/3だけずれているから、これらの電圧のベクトル和がゼロになる。よって、直列変圧器2の端子u1,v2,v1,w2,w1,u2を通る閉回路には、調整電圧のベクトル和による短絡ループ電流が流れない(図2参照)。そして、三相の調整電圧を直列変圧器2で変圧した電圧が、配電線1u,1v,1wの相電圧に重畳されるため、負荷側の配電線1u,1v,1wの電圧が均等に昇圧される。 As shown by the broken line on the left side of the paper in FIG. 3, the three-phase adjustment voltages applied to the primary windings 211, 211, 231 of the series transformer 2 have the same magnitude and are out of phase with each other by 2π / 3. Therefore, the vector sum of these voltages becomes zero. Therefore, the short-circuit loop current due to the vector sum of the adjustment voltage does not flow in the closed circuit passing through the terminals u1, v2, v1, w2, w1, u2 of the series transformer 2 (see FIG. 2). Then, the voltage obtained by transforming the three-phase adjusted voltage by the series transformer 2 is superimposed on the phase voltage of the distribution wires 1u, 1v, 1w, so that the voltages of the distribution wires 1u, 1v, 1w on the load side are uniformly boosted. Will be done.

なお、タップ切換器4は、切換スイッチS1,S2,・・S6及びSSにサイリスタを用いずに、他の半導体素子、電磁接触器等のスイッチを用いて構成してもよい。また、スイッチを用いたタップ切換器4に代えて、手動式のタップ切換器又はタップ切換台を用いてもよい。この場合であっても、使用者は、操作表示部63に表示された配電線1u,1v,1wの電圧、又は別途検出した配電線1u,1v,1wの電圧に基づいて切換先のタップta,tb,tcを選択し、選択した切換先のタップに手動で切り換えればよい。 The tap changer 4 may be configured by using a switch such as another semiconductor element or an electromagnetic contactor without using a thyristor for the changeover switches S1, S2, ... S6 and SS. Further, instead of the tap changer 4 using a switch, a manual tap changer or a tap changer may be used. Even in this case, the user taps the switching destination based on the voltage of the distribution lines 1u, 1v, 1w displayed on the operation display unit 63 or the voltage of the distribution lines 1u, 1v, 1w separately detected. , Tb, tc may be selected and manually switched to the tap of the selected switching destination.

次に、図4を用いて直列変圧器2における結線の変更について説明する。図5は、直列変圧器2を標準的なΔ−Y結線にて接続した場合を説明するための電圧調整装置のブロック図である。標準的なΔ−Y結線によれば、調整変圧器3の端子U1,V1,W1夫々からの調整電圧E’u,E’v,E’wのうち、E’uが直列変圧器2の端子u1,w2に印加され、E’vが端子v1,u2に印加され、E’wが端子w1,v2に印加される。そして、一次巻線211,221,231夫々に対応する二次巻線212,222,232が、配電線1u,1v,1wに直列に接続される。図5に示すその他の接続関係については、図1に示すブロック図の場合と同様である。 Next, the change of the connection in the series transformer 2 will be described with reference to FIG. FIG. 5 is a block diagram of a voltage regulator for explaining a case where the series transformer 2 is connected by a standard Δ-Y connection. According to the standard Δ-Y connection, of the adjustment voltages E'u, E'v, E'w from the terminals U1, V1 and W1 of the adjustment transformer 3, E'u is the series transformer 2. It is applied to terminals u1 and w2, E'v is applied to terminals v1 and u2, and E'w is applied to terminals w1 and v2. Then, the secondary windings 212, 222, 232 corresponding to the primary windings 211, 221, 231 respectively are connected in series with the distribution lines 1u, 1v, 1w. The other connection relationships shown in FIG. 5 are the same as in the block diagram shown in FIG.

直列変圧器2の一次巻線211,221,231及び二次巻線212,222,232が、仮に標準的なΔ−Y結線にて接続されている場合、図3の紙面左側に破線で示す端子U1−V1間,端子V1−W1間,端子W1−U1間夫々からの調整電圧が、直列変圧器2の一次巻線211,221,231に印加される。これにより、二次巻線212,222,232には、図4の紙面右側に示すように、上記端子間夫々からの電圧と同位相で大きさが比例する電圧Eu”,Ev”,Ew”が誘起する。これらの電圧Eu”,Ev”,Ew”夫々は、配電線1u,1v,1wの相電圧Eu,Ev,Ewに対してπ/3(60°)だけ位相が進んでいる。これは、Δ−Y結線された調整変圧器3及び直列変圧器2夫々にて位相が30°ずつ進むことに起因している。 If the primary windings 211,221,231 and the secondary windings 212,222,232 of the series transformer 2 are connected by a standard Δ-Y connection, they are shown by broken lines on the left side of the paper in FIG. Adjusting voltages from terminals U1-V1, terminals V1-W1, and terminals W1-U1 are applied to the primary windings 211, 211, 231 of the series transformer 2. As a result, as shown on the right side of the paper in FIG. 4, the secondary windings 212, 222, 232 have voltages Eu ”, Ev”, Ew ”which are in phase with the voltage from each of the terminals and whose magnitude is proportional to each other. Each of these voltages Eu ", Ev", and Ew "is advanced by π / 3 (60 °) with respect to the phase voltages Eu, Ev, and Ew of the distribution lines 1u, 1v, and 1w. This is due to the fact that the phase of each of the adjusting transformer 3 and the series transformer 2 connected in Δ-Y advances by 30 °.

ここで、例えばEw”に着目すれば、Ew”の位相を反転させた−Ew”が基準相(即ちEu)と同位相になることが分かる(図4の紙面左側参照)。同様に、−Eu”がEvと同位相になり、−Ev”がEwと同位相になることが分かる。このように、電圧Eu”,Ev”,Ew”夫々をπ/3だけ遅らせた電圧と同等な−Ew”,−E”u,−E”vを、配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算すれば、相電圧Eu,Ev,Ew夫々と同位相の電圧によって配電線1u,1v,1wの電圧を調整することができる。 Here, for example, focusing on Ew ", it can be seen that -Ew", which is the inverted phase of Ew ", has the same phase as the reference phase (that is, Eu) (see the left side of the paper in FIG. 4). It can be seen that "Eu" is in phase with Ev and -Ev "is in phase with Ew. In this way, the voltages Eu", Ev ", and Ew" are equivalent to the voltage delayed by π / 3. If Ew ", -E" u, -E "v is added to the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w, the distribution lines will have the same phase voltage as the phase voltages Eu, Ev, Ew. The voltage of 1u, 1v, 1w can be adjusted.

図6及び図7の夫々は、直列変圧器2を図1の場合と同等なΔ−Y結線にて接続してある電圧調整装置の第1例及び第2例のブロック図である。図6及び図7に示す直列変圧器2のΔ−Y結線を除くその他の接続関係については、図1に示すブロック図の場合と同様である。上述の考察に従い、Eu”,Ev”,Ew”夫々よりもπ/3だけ位相が遅れている−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算するには、図5に示す直列変圧器2の二次巻線212,222,232の結線を、図6に示すように変更して調整すればよい。即ち、電圧E”u,E”v,E”w夫々が誘起する二次巻線212,222,232に対する配線の極性を反転して配電線1v,1w,1uに直列に接続する。 6 and 7 are block diagrams of the first example and the second example of the voltage adjusting device in which the series transformer 2 is connected by the same Δ-Y connection as in the case of FIG. Other connection relationships except for the Δ-Y connection of the series transformer 2 shown in FIGS. 6 and 7 are the same as in the block diagram shown in FIG. According to the above consideration, the phases of -Ew ", -E" u, -E "v, which are π / 3 behind each of Eu", Ev ", and Ew", are set to the phase voltage Eu of the distribution lines 1u, 1v, and 1w. , Ev, Ew, the connections of the secondary windings 212, 222, 232 of the series transformer 2 shown in FIG. 5 may be changed and adjusted as shown in FIG. That is, the polarities of the wiring with respect to the secondary windings 212, 222, 232 induced by the voltages E "u, E" v, E "w are reversed and connected in series to the distribution lines 1v, 1w, 1u.

図6に示す直列変圧器2のΔ−Y結線は、図7に示すように変更することができる。即ち、図6に示す一次巻線211,221,231の夫々と、二次巻線212,222,232の夫々とに接続されている配線を、サイクリックにローテーションすることにより、図7に示す接続となる。より具体的には、一次巻線211,221,231夫々に接続されていた配線を、一次巻線221,231,211に接続換えし、二次巻線212,222,232夫々に接続されていた配線を、二次巻線222,232,212に接続換えする。 The Δ-Y connection of the series transformer 2 shown in FIG. 6 can be changed as shown in FIG. 7. That is, the wiring connected to each of the primary windings 211, 221, 231 and the secondary windings 212, 222, 232 shown in FIG. 6 is cyclically rotated to be shown in FIG. It becomes a connection. More specifically, the wirings connected to the primary windings 211,221,231 are replaced with the primary windings 221,231,211 and connected to the secondary windings 212,222,232 respectively. The wiring is reconnected to the secondary winding 222,232,212.

図7に示す直列変圧器2のΔ−Y結線は、更に、一次巻線211,221,231の夫々と、二次巻線212,222,232の夫々とに接続されている配線の極性を反転させることにより、図1に示す接続となる。このように、図1に示す直列変圧器2のΔ−Y結線と、図6及び図7に示す直列変圧器2のΔ−Y結線とが同等であることが示された。 The Δ-Y connection of the series transformer 2 shown in FIG. 7 further determines the polarity of the wiring connected to each of the primary windings 211, 221, 231 and the secondary windings 212, 222, 232, respectively. By inverting the connection, the connection shown in FIG. 1 is obtained. As described above, it was shown that the Δ-Y connection of the series transformer 2 shown in FIG. 1 and the Δ-Y connection of the series transformer 2 shown in FIGS. 6 and 7 are equivalent.

次に、図1に示す直列変圧器2のΔ−Y結線を導き出す他の方法について説明する。直列変圧器2の二次巻線212,222,232夫々は、配電線1u,1v,1wに直列に接続されているものとする。図8は、電圧調整装置における調整変圧器3及び直列変圧器2夫々に印加又は誘起される電圧ベクトルを他の観点から示すベクトル図である。図8の紙面右側に示すベクトル図は、図3の紙面右側に示すベクトル図と同じである。即ち、配電線1u,1v,1wの相電圧Eu,Ev,Ewを実線で表し、線間電圧Vuv,Vvw,Vwuを破線で表す。 Next, another method for deriving the Δ-Y connection of the series transformer 2 shown in FIG. 1 will be described. It is assumed that the secondary windings 212, 222, 232 of the series transformer 2 are connected in series with the distribution lines 1u, 1v, 1w, respectively. FIG. 8 is a vector diagram showing voltage vectors applied to or induced in each of the adjusting transformer 3 and the series transformer 2 in the voltage adjusting device from another viewpoint. The vector diagram shown on the right side of the paper surface of FIG. 8 is the same as the vector diagram shown on the right side of the paper surface of FIG. That is, the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w are represented by solid lines, and the line voltages Vuv, Vvw, Vwoo are represented by broken lines.

図8の紙面左側の実線に示すように、Y結線された調整変圧器3の二次巻線312,322,332夫々には、線間電圧Vuv,Vvw,Vwuと同位相で大きさが比例する電圧V’uv,V’vw,V’wuが誘起する。これにより、端子W1−U1間,U1−V1間,V1−W1間夫々に、相電圧Eu,Ev,Ewと逆方向の電圧−E’u,−E’v,−E’wが誘起する(破線を参照)。例えばE’uは、相電圧Euと同位相であるから、このE’uが一次巻線211の端子u1−u2間に印加されるようにすればよい。換言すれば、端子W1とu2を接続し、端子U1とu1を接続する。同様に、端子U1とv2,端子V1とv1,端子V1とw2,端子W1とw1を夫々接続する。このようにして、図1に示す直列変圧器2の一次巻線211,221,231に対する接続が導き出される。 As shown by the solid line on the left side of the paper in FIG. 8, the secondary windings 312, 322, and 332 of the Y-connected adjusting transformer 3 are in phase with the line voltages Vuv, Vvw, and Vw, respectively, and their magnitudes are proportional to each other. The resulting voltages V'uv, V'vw, and V'ww are induced. As a result, the voltages -E'u, -E'v, and -E'w in the directions opposite to the phase voltages Eu, Ev, and Ew are induced between the terminals W1-U1, U1-V1, and V1-W1, respectively. (See dashed line). For example, since E'u has the same phase as the phase voltage Eu, this E'u may be applied between the terminals u1-u2 of the primary winding 211. In other words, terminals W1 and u2 are connected, and terminals U1 and u1 are connected. Similarly, terminals U1 and v2, terminals V1 and v1, terminals V1 and w2, and terminals W1 and w1 are connected, respectively. In this way, the connection to the primary windings 211,221,231 of the series transformer 2 shown in FIG. 1 is derived.

(変形例1)
実施形態1では、二次巻線312,322,332夫々について同一のタップから三相の調整電圧を取り出したが、変形例1では、二次巻線312,322,332夫々について相異なるタップから三相の調整電圧を取り出すため、三相の調整電圧の比が1:1:1とは異なるものとなる。変形例1における電圧調整装置のブロック構成は、図1に示すものと同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
(Modification example 1)
In the first embodiment, the three-phase adjustment voltage is taken out from the same tap for each of the secondary windings 312, 322, 332, but in the modified example 1, the three-phase adjustment voltage is taken out from a different tap for each of the secondary windings 312, 322, 332. Since the three-phase adjustment voltage is taken out, the ratio of the three-phase adjustment voltage is different from 1: 1: 1. Since the block configuration of the voltage adjusting device in the first modification is the same as that shown in FIG. 1, the same reference numerals are given to the parts corresponding to the first embodiment, and the description thereof will be omitted.

例えば、二次巻線312,322夫々について切換スイッチS3,S5をオンにしてタップtc,tbを選択し、二次巻線332について切換スイッチS2,S5をオンにしてタップtbのみを選択することにより、二次巻線312,322,332から取り出される三相の調整電圧の大きさの比を−1:−1:0とすることができる。この場合、二次巻線332について切換スイッチS2,S5の両方をオンにするのは、直列変圧器2の端子u2,w1を開放状態にせずにゼロの電圧を印加するためである。なお、二次巻線332について、切換スイッチS1,S4のみをオンにしてタップtaのみを選択したり、切換スイッチS3,S6のみをオンにしてタップtcのみを選択したりしてもよい。 For example, for the secondary windings 312 and 322, the changeover switches S3 and S5 are turned on to select taps tc and tb, and for the secondary windings 332, the changeover switches S2 and S5 are turned on and only the tap tb is selected. Therefore, the ratio of the magnitudes of the three-phase adjustment voltages taken out from the secondary windings 312, 322, and 332 can be set to -1: -1: 0. In this case, the reason why both the changeover switches S2 and S5 are turned on for the secondary winding 332 is to apply a zero voltage without opening the terminals u2 and w1 of the series transformer 2. Regarding the secondary winding 332, only the changeover switches S1 and S4 may be turned on to select only the tap ta, or only the changeover switches S3 and S6 may be turned on to select only the tap tc.

次にベクトル図を用いて電圧関係について説明する。図9は、変形例1に係る電圧調整装置における調整変圧器3及び直列変圧器2夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。図10は、直列変圧器2の結線の変更方法を説明するための説明図である。図9の紙面右側に示すベクトル図は、図及びの紙面右側に示すベクトル図と同じである。即ち、配電線1u,1v,1wの相電圧Eu,Ev,Ewを実線で表し、線間電圧Vuv,Vvw,Vwuを破線で表す。この線間電圧Vuv,Vvw,Vwu夫々が調整変圧器3の一次巻線311,321,331に印加される。 Next, the voltage relationship will be described using a vector diagram. FIG. 9 is a vector diagram showing voltage vectors applied to or induced in the adjusting transformer 3 and the series transformer 2 in the voltage adjusting device according to the first modification. FIG. 10 is an explanatory diagram for explaining a method of changing the connection of the series transformer 2. The vector diagram shown on the right side of the paper in FIG. 9 is the same as the vector diagram shown on the right side of the paper in FIGS. 3 and 8. That is, the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w are represented by solid lines, and the line voltages Vuv, Vvw, Vwoo are represented by broken lines. The line voltages Vuv, Vvw, and Vw are applied to the primary windings 311, 321, 331 of the adjusting transformer 3, respectively.

図9の紙面左側に実線で示すように、Y結線された二次巻線312,322,332夫々には、上記線間電圧Vuv,Vvw,Vwuに基づいて大きさが相異なる電圧E’u,E’v,E’wが発生する。この電圧E’u,E’v,E’wは、上記線間電圧Vuv,Vvw,Vwu夫々と同位相で二次巻線312,322,332に誘起する電圧のV0(零相電圧)を基準とする三相電圧であるため、ベクトル和がゼロになる。これらの電圧E’u,E’v,E’wが、破線で示すように、Δ結線された直列変圧器2の一次巻線211,221,231に調整電圧として印加される。 As shown by the solid line on the left side of the paper in FIG. 9, the Y-connected secondary windings 312, 322, and 332 have different voltages E'u based on the above-mentioned line voltages Vuv, Vvw, and Vwoo. , E'v, E'w occur. The voltages E'u, E'v, and E'w generate V0 (zero-phase voltage) of the voltage induced in the secondary windings 312, 322, and 332 in the same phase as the line voltages Vuv, Vvw, and Vw, respectively. Since it is a reference three-phase voltage, the vector sum becomes zero. These voltages E'u, E'v, E'w are applied as adjusting voltages to the primary windings 211, 211, 231 of the series transformer 2 connected by Δ as shown by the broken line.

図10に移って、直列変圧器2の一次巻線211,221,231及び二次巻線212,222,232が、仮に標準的なΔ−Y結線にて接続されている場合、図9の紙面左側に破線で示す端子U1−V1間,端子V1−W1間,端子W1−U1間夫々からの調整電圧が、直列変圧器2の一次巻線211,221,231に印加される。これにより、直列変圧器2の二次巻線212,222,232には、図10の紙面右側に示すように、端子U1−V1間,端子V1−W1間,端子W1−U1間夫々からの電圧と同位相で大きさが比例する電圧Eu”,Ev”,Ew”が誘起する。これらの電圧Eu”,Ev”,Ew”夫々は、配電線1u,1v,1wの相電圧Eu,Ev,Ewに対して略π/3(60°)だけ位相が進んでいる。 Moving on to FIG. 10, when the primary windings 211,221,231 and the secondary windings 212,222,232 of the series transformer 2 are connected by a standard Δ-Y connection, FIG. 9 shows. Adjusting voltages from terminals U1-V1, terminals V1-W1, and terminals W1-U1 shown by broken lines on the left side of the paper are applied to the primary windings 211, 211, 231 of the series transformer 2. As a result, the secondary windings 212, 222, 232 of the series transformer 2 are connected to terminals U1-V1, terminals V1-W1, and terminals W1-U1 as shown on the right side of the paper in FIG. Voltages Eu ", Ev", Ew "that are in phase with the voltage and proportional in magnitude are induced. These voltages Eu", Ev ", Ew" are the phase voltages Eu, Ev of the distribution lines 1u, 1v, 1w, respectively. The phase is advanced by approximately π / 3 (60 °) with respect to Ew.

ここで、実施形態1の図4で説明した場合と同様に図10の紙面左側に示すとおり、Eu”,Ev”,Ew”夫々よりも略π/3だけ位相が遅れている−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算すれば、相電圧Eu,Ev,Ew夫々と略同位相の電圧によって配電線1u,1v,1wの電圧を容易に調整することができる。以上のことから、配電線1u,1v,1w夫々の相電圧Eu,Ev,Ewが時々刻々と変化する場合であっても、V0を変化させないように不平衡電圧を適正に調整することができる。 Here, as shown on the left side of the paper in FIG. 10, as in the case described with reference to FIG. 4 of the first embodiment, the phase is delayed by approximately π / 3 from each of Eu ”, Ev”, and Ew ”, If -E "u, -E" v is added to the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w, the distribution lines 1u, 1v are obtained by voltages having substantially the same phase as the phase voltages Eu, Ev, Ew, respectively. , 1w voltage can be easily adjusted. From the above, even if the phase voltages Eu, Ev, and Ew of the distribution lines 1u, 1v, and 1w change from moment to moment, the unbalanced voltage can be appropriately adjusted so as not to change V0. ..

(変形例2)
実施形態1では、直列変圧器2の二次巻線212,222,232夫々に誘起する電圧−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算したが、変形例2では、電圧−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewから減算する。換言すれば、電圧Ew”,E”u,E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算する。このことは、電圧Eu”,Ev”,Ew”夫々を4π/3だけ遅らせた電圧と同等なEw”,E”u,E”vを、配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算することを意味する(図4参照)。
(Modification 2)
In the first embodiment, the voltages -Ew", -E "u, -E" v induced in the secondary windings 212, 222, 232 of the series transformer 2 are set to the phase voltages Eu of the distribution lines 1u, 1v, 1w, respectively. Although it is added to Ev and Ew, in the second modification, the voltages -Ew ", -E" u and -E "v are subtracted from the phase voltages Eu, Ev and Ew of the distribution lines 1u, 1v and 1w. In other words, the voltages Ew ", E" u, E "v are added to the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w, which adds the voltages Eu", Ev ", Ew", respectively. This means that Ew ", E" u, E "v, which is equivalent to the voltage delayed by 4π / 3, is added to the phase voltages Eu, Ev, Ew of the distribution lines 1u, 1v, 1w (see FIG. 4).

図11は、変形例2に係る電圧調整装置の構成例を示すブロック図である。本変形例2では、実施形態1の図1に示す場合に対して、直列変圧器2の二次巻線212,222,232夫々に対する配線の極性を反転して配電線1v,1w,1uに直列に接続する。これにより、調整変圧器3で生成された調整電圧を変圧した電圧が配電線1v,1w,1uの交流電圧に対して逆位相で加算される。従って、タップ切換器4のタップを適当に選択して、調整変圧器3から取り出される相対的な調整電圧の符号(プラス/マイナス)を実施形態1の場合に対して反転させることにより、配電線1u,1v,1wの不平衡電圧を調整する際に、実施形態1の場合と同様の効果を奏する。 FIG. 11 is a block diagram showing a configuration example of the voltage adjusting device according to the modified example 2. In the second modification, the polarities of the wiring for the secondary windings 212, 222, 232 of the series transformer 2 are reversed to the distribution lines 1v, 1w, 1u with respect to the case shown in FIG. 1 of the first embodiment. Connect in series. As a result, the transformed voltage of the adjustment voltage generated by the adjustment transformer 3 is added in the opposite phase to the AC voltage of the distribution lines 1v, 1w, 1u. Therefore, by appropriately selecting the tap of the tap changer 4 and inverting the sign (plus / minus) of the relative adjustment voltage taken out from the adjustment transformer 3 with respect to the case of the first embodiment, the distribution line When adjusting the unbalanced voltage of 1u, 1v, 1w, the same effect as in the case of the first embodiment is obtained.

本変形例2における直列変圧器2の結線は、図11の場合に限定されない。例えば、図1に示す直列変圧器2の一次巻線211,221,231夫々に接続されている配線を極性反転させてもよいし、図6又は図7に示す直列変圧器2の一次巻線211,221,231夫々若しくは二次巻線212,222,232夫々に接続されている配線の極性を反転させてもよい。 The connection of the series transformer 2 in the second modification is not limited to the case of FIG. For example, the polarity of the wiring connected to the primary winding of the series transformer 2 shown in FIG. 1 may be reversed, or the primary winding of the series transformer 2 shown in FIG. 6 or 7 may be reversed. The polarity of the wiring connected to each of 211,221,231 or the secondary winding 212,222,232 may be reversed.

以上のように実施形態1及び変形例1,2によれば、二次巻線212,222,232夫々が配電線1u,1v,1wに直列接続される直列変圧器2の一次巻線211,221,231がΔ結線されており、一次巻線311,321,331が配電線1u,1v,1wにΔ結線される調整変圧器3の二次巻線312,322,332がY結線されている。そして、直列変圧器2の一次巻線211,221,231に対して、調整変圧器3の二次巻線312,322,332夫々のタップta,tb,tcから、タップ切換器4の切換スイッチS1,S2,・・S6を介して調整電圧が印加される。従って、調整変圧器3のタップta,tb,tcを選択して切り換えることにより、配電線1u,1v,1wの三相の電圧を調整することが可能となる。電圧調整装置を、変電所における負荷時タップ切換変圧器(LRT:Load Ratio control Transformer )や、送電線路における自動電圧調整器(SVR:Step Voltage Regulator )に適用することも可能である。 As described above, according to the first embodiment and the first and second modifications, the primary windings 211, of the series transformer 2 in which the secondary windings 212, 222, 232 are connected in series to the distribution lines 1u, 1v, 1w, respectively. The 221 and 231 are Δ-connected, and the primary windings 311, 321 and 331 are Δ-connected to the distribution lines 1u, 1v and 1w. There is. Then, with respect to the primary windings 211, 221, 231 of the series transformer 2, the changeover switch of the tap changer 4 is selected from the taps ta, tb, and tk of the secondary windings 321, 322, and 332 of the adjustment transformer 3, respectively. The adjustment voltage is applied via S1, S2, ... S6. Therefore, by selecting and switching the taps ta, tb, and tc of the adjusting transformer 3, it is possible to adjust the three-phase voltage of the distribution lines 1u, 1v, and 1w. It is also possible to apply the voltage regulator to a load ratio control transformer (LRT) in a substation and an automatic voltage regulator (SVR: Step Voltage Regulator) in a power transmission line.

また、実施形態1及び変形例1,2によれば、配電線1u,1v,1wの三相の交流電圧に対して直列変圧器2の二次巻線212,222,232から直列に印加される交流電圧の位相が、標準的なΔ−Y結線の場合と比較して実質的に60°又は60°+180°だけ遅れるように結線されている。従って、Δ−Y結線の調整変圧器3及び直列変圧器2夫々における30°の位相の進みと上記60°の位相の遅れを実質的に相殺することができる。更に、調整変圧器3で生成した調整電圧を直列変圧器2で変圧した電圧を、配電線1u,1v,1wの交流電圧に対して同位相又は逆移相に近づけて加算することができる。 Further, according to the first embodiment and the first and second modifications, the secondary windings 212, 222, 232 of the series transformer 2 are applied in series with respect to the three-phase AC voltage of the distribution lines 1u, 1v, 1w. The AC voltage is connected so that the phase of the AC voltage is substantially delayed by 60 ° or 60 ° + 180 ° as compared with the case of the standard Δ-Y connection. Therefore, it is possible to substantially cancel the phase advance of 30 ° and the phase delay of 60 ° in each of the adjusting transformer 3 and the series transformer 2 of the Δ-Y connection. Further, the adjusted voltage generated by the adjusting transformer 3 and the voltage transformed by the series transformer 2 can be added to the AC voltage of the distribution lines 1u, 1v, 1w so as to be in phase or in reverse phase.

また、実施形態1及び変形例1,2によれば、直列変圧器2の一次巻線211,221,231に印加される調整電圧の極性が切換スイッチS1,S2,・・S6を選択することによって任意に切り換え可能であるため、配電線1u,1v,1wの三相の電圧の不平衡を調整する際の自由度を高くすることができる。 Further, according to the first embodiment and the first and second modifications, the polarity of the adjustment voltage applied to the primary windings 211, 211, 231 of the series transformer 2 selects the changeover switches S1, S2, ... S6. Since it can be arbitrarily switched depending on the voltage, the degree of freedom in adjusting the imbalance of the three-phase voltages of the distribution lines 1u, 1v, and 1w can be increased.

また、実施形態1及び変形例1,2によれば、切換スイッチS1,S2,・・S6にサイリスタが用いられているため、タップta,tb,tcの切り換えが高速に行える上にタップta,tb,tcの寿命を考慮する必要がない。 Further, according to the first embodiment and the first and second modifications, since the thyristor is used for the changeover switches S1, S2, ... S6, the tap ta, tb, and tc can be switched at high speed, and the tap ta, It is not necessary to consider the life of tb and tc.

(実施形態2)
実施形態1は、操作表示部63によって受け付けた操作に基づいて切換制御部61がタップta,tb,tcを切り換えるか、又は使用者が手動式のタップ切換器若しくはタップ切換台を操作する形態であるのに対し、実施形態2は、電圧検出部62が検出した電圧に基づいて、切換制御部61が自動的にタップta,tb,tcを切り換える形態である。図12は、実施形態2に係る電圧調整装置の構成例を示すブロック図である。実施形態2に係る電圧調整装置は、図1に示す実施形態1に係る電圧調整装置と比較して、操作表示部63が削除されており、記憶部65が追加されている。操作表示部63が削除されていなくてもよい。
(Embodiment 2)
In the first embodiment, the switching control unit 61 switches the taps ta, tb, and tc based on the operation received by the operation display unit 63, or the user operates a manual tap switching device or tap switching table. On the other hand, in the second embodiment, the switching control unit 61 automatically switches the taps ta, tb, and tc based on the voltage detected by the voltage detection unit 62. FIG. 12 is a block diagram showing a configuration example of the voltage adjusting device according to the second embodiment. In the voltage adjusting device according to the second embodiment, the operation display unit 63 is deleted and the storage unit 65 is added as compared with the voltage adjusting device according to the first embodiment shown in FIG. The operation display unit 63 may not be deleted.

記憶部65は、配電線1u,1v,1wの三相分の電圧の目標電圧に対する偏差と、調整変圧器3の三相分の変圧比に係る量とを関連付けて記憶するものである。記憶部65は、その記憶内容が切換制御部61から参照可能となるように切換制御部61と接続されているが、記憶部65が切換制御部61に含まれていてもよい。 The storage unit 65 stores the deviation of the voltage of the three phases of the distribution lines 1u, 1v, and 1w with respect to the target voltage and the amount related to the transformation ratio of the three phases of the adjusting transformer 3 in association with each other. The storage unit 65 is connected to the switching control unit 61 so that the stored contents can be referred to by the switching control unit 61, but the storage unit 65 may be included in the switching control unit 61.

記憶部65には、三相分の偏差と三相分の変圧比の変化量とを関連付けて記憶してあるが、例えば調整変圧器3のタップta,tb,tcに通番が付されている場合は、三相分の偏差と三相分のタップの切換数とを関連付けて記憶してもよい。その他、実施形態1に対応する箇所には同様の符号を付して、その説明を省略する。 The storage unit 65 stores the deviation of the three phases and the change amount of the transformation ratio of the three phases in association with each other. For example, the taps ta, tb, and tk of the adjusting transformer 3 are numbered. In this case, the deviation for the three phases and the number of taps for the three phases may be associated and stored. Other parts corresponding to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

以下では、上述した切換制御部61の動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、切換制御部61に含まれる不図示のROM(Read Only Memory)に予め格納されている制御プログラムに従って、不図示のCPU(Central Processing Unit)により実行される。 Hereinafter, the operation of the switching control unit 61 described above will be described with reference to a flowchart showing the operation. The processing shown below is executed by a CPU (Central Processing Unit) (not shown) according to a control program stored in advance in a ROM (Read Only Memory) (not shown) included in the switching control unit 61.

図13は、実施形態2に係る電圧調整装置で配電線1u,1v,1wの電圧を調整する切換制御部61の処理手順を示すフローチャートである。この処理手順は、例えば4〜5秒毎に周期的に実行される。切換制御部61に含まれる不図示のRAM(Random Access Memory)には、三相分の現在の変圧比が記憶されているものとする。 FIG. 13 is a flowchart showing a processing procedure of the switching control unit 61 that adjusts the voltages of the distribution lines 1u, 1v, and 1w by the voltage adjusting device according to the second embodiment. This processing procedure is periodically executed, for example, every 4 to 5 seconds. It is assumed that the current transformation ratios for the three phases are stored in the RAM (Random Access Memory) (not shown) included in the switching control unit 61.

図13の処理が起動された場合、切換制御部61の(以下同様)CPUは、負荷側の配電線1u,1v,1wの三相分の線間電圧又は相電圧を電圧検出部62から取得し(S11)、取得した三相分の電圧について目標電圧に対する偏差を算出する(S12)。 When the process of FIG. 13 is activated, the CPU of the switching control unit 61 (the same applies hereinafter) acquires the line voltage or phase voltage of the three phases of the distribution lines 1u, 1v, 1w on the load side from the voltage detection unit 62. Then, the deviation of the acquired three-phase voltage with respect to the target voltage is calculated (S12).

次いで、CPUは、偏差に関連付けて記憶部65に記憶されている内容(変圧比の変化量)を読み出して、三相分のタップta,tb,tcの切換先を選択する(S13)。タップta,tb,tcの切換先を選択するには、RAMに記憶されている現在の変圧比に読み出した変化量を加算し、加算結果の変圧比に応じたタップを選択すればよい。加算結果の三相分の変圧比は、現在の変圧比を更新するものとしてRAMに記憶される。 Next, the CPU reads out the content (change amount of the transformation ratio) stored in the storage unit 65 in association with the deviation, and selects the switching destination of the taps ta, tb, and tc for the three phases (S13). To select the switching destination of the taps ta, tb, and tc, the amount of change read out may be added to the current transformation ratio stored in the RAM, and the tap corresponding to the transformation ratio of the addition result may be selected. The transformation ratio of the three phases of the addition result is stored in the RAM as updating the current transformation ratio.

その後、CPUは、三相分の切換スイッチSSをオンしておき(S14)、三相分の切換スイッチS1,S2,・・S6をオフした(S15)後に、選択した切換先のタップに応じた切換スイッチをオンする(S16)。次いで、CPUは、三相分の切換スイッチSSをオフした(S17)後、図13の処理を終了する。 After that, the CPU turns on the three-phase changeover switch SS (S14), turns off the three-phase changeover switches S1, S2, ... S6 (S15), and then responds to the tap of the selected switching destination. The changeover switch is turned on (S16). Next, the CPU finishes the process of FIG. 13 after turning off the three-phase changeover switch SS (S17).

なお、上述のフローチャートにあっては、記憶部65に、三相分の偏差と三相分の変圧比の変化量とを関連付けて記憶してあることを前提としたが、これに限定されるものではない。例えば、記憶部65に、三相分の偏差と三相分のタップの切換数とを関連付けて記憶してある場合は、RAMに三相分の現在のタップ番号を記憶し、ステップS12で算出した偏差に関連付けて記憶部65に記憶されているタップの切換数を、RAMに記憶した現在のタップ番号に加算し、加算結果のタップ番号に応じたタップを選択すればよい。加算結果の三相分のタップ番号は、現在のタップ番号を更新するものとしてRAMに記憶することとなる。 In the above flowchart, it is assumed that the storage unit 65 stores the deviation of the three phases and the change amount of the transformation ratio of the three phases in association with each other, but the present invention is limited to this. It's not a thing. For example, when the storage unit 65 stores the deviation of the three phases and the number of taps switched for the three phases in association with each other, the current tap number of the three phases is stored in the RAM and calculated in step S12. The number of taps to be switched stored in the storage unit 65 in association with the deviation may be added to the current tap number stored in the RAM, and the tap corresponding to the tap number of the addition result may be selected. The tap numbers for the three phases of the addition result are stored in the RAM as updating the current tap numbers.

以上のように本実施形態2によれば、調整変圧器3の二次巻線312,322,332のタップta,tb,tcから直列変圧器2の一次巻線211,221,231に印加される調整電圧によって調整された三相の配電線1u,1v,1wの電圧が電圧検出部62で検出されて目標電圧と比較され、比較結果である偏差に基づいて切換スイッチS1,S2,・・S6が制御されてタップta,tb,tcが切り換えられる。従って、配電線1u,1v,1wの電圧の偏差がゼロに近づくようにフィードバック制御することが可能となる。 As described above, according to the second embodiment, the taps ta, tb, and tk of the secondary windings 312, 322, 332 of the adjusting transformer 3 are applied to the primary windings 211, 221, 231 of the series transformer 2. The voltage of the three-phase distribution lines 1u, 1v, 1w adjusted by the adjustment voltage is detected by the voltage detection unit 62 and compared with the target voltage, and the changeover switches S1, S2, ... S6 is controlled and the taps ta, tb, and tc are switched. Therefore, it is possible to perform feedback control so that the voltage deviations of the distribution lines 1u, 1v, and 1w approach zero.

また、実施形態2によれば、配電線1u,1v,1wの三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に応じて記憶部65から読み出した変圧比の変化量に基づいてタップta,tb,tcの切換先を選択し、選択した切換先に応じた切換スイッチS1,S2,・・S6を制御する。従って、切換制御部61の実行時に上述の調整電圧をベクトル演算で求める必要がなくなる。 Further, according to the second embodiment, the deviation of the three-phase voltages of the distribution lines 1u, 1v, and 1w with respect to the target voltage is calculated, and based on the amount of change in the transformation ratio read from the storage unit 65 according to the calculated deviation. The switching destinations of the taps ta, tb, and tc are selected, and the switching switches S1, S2, ... S6 are controlled according to the selected switching destination. Therefore, it is not necessary to obtain the above-mentioned adjustment voltage by vector calculation when the switching control unit 61 is executed.

(シミュレーション)
以下では、実施形態1に係る電圧調整装置による配電線1u,1v,1wの電圧調整をシミュレーションによって検証した結果について説明する。図14は、検証に用いた配電系統のモデルを示す説明図である。このモデルでは、三相電源100から三相負荷110に三相の交流電圧を配電する配電線1u,1v,1wに、直列変圧器2及び調整変圧器3が接続されている。調整変圧器3は、タップ切換器(不図示)及び電流計測部103を介して直列変圧器に接続されている。
(simulation)
Hereinafter, the result of verifying the voltage adjustment of the distribution lines 1u, 1v, 1w by the voltage adjusting device according to the first embodiment by simulation will be described. FIG. 14 is an explanatory diagram showing a model of the distribution system used for verification. In this model, the series transformer 2 and the adjusting transformer 3 are connected to the distribution lines 1u, 1v, 1w that distribute the three-phase AC voltage from the three-phase power supply 100 to the three-phase load 110. The adjusting transformer 3 is connected to the series transformer via a tap changer (not shown) and a current measuring unit 103.

三相電源100は、線間電圧を30Vとし、周波数を50Hzとする。三相の交流電圧は、初期状態が三相の平衡状態にあるものとする。三相負荷110は、100Ωの抵抗がΔ結線された平衡な負荷である。直列変圧器2は、変圧比を10(10:1)とし、調整変圧器3は、変圧比を1(1:1)とする。不図示のタップ切換器は、3段のタップ(素通し,昇圧,降圧)を有する。一般的に、TVRのタップ段数は、素通し、昇圧:3段、及び降圧:3段の計7段であり、段数の増加は調整量の増大に寄与するが、原理的には素通し、昇圧:1段、及び降圧:1段を含む計3段のタップで場合を尽くして解析できるため、ここでは3段のタップを用いる。 The three-phase power supply 100 has a line voltage of 30 V and a frequency of 50 Hz. It is assumed that the initial state of the three-phase AC voltage is in the three-phase equilibrium state. The three-phase load 110 is a balanced load in which a resistance of 100 Ω is Δ-connected. The series transformer 2 has a transformation ratio of 10 (10: 1), and the adjusting transformer 3 has a transformation ratio of 1 (1: 1). The tap changer (not shown) has three taps (through, step-up, step-down). Generally, the number of tap stages of TVR is 7 stages in total, that is, through, step-up: 3 stages, and step-down: 3 stages, and an increase in the number of stages contributes to an increase in the adjustment amount. Since the analysis can be performed with a total of three taps including one step and step-down: one step, a three-step tap is used here.

上述の構成にて、電圧調整装置の一次側(即ち三相電源100側)及び二次側(即ち三相負荷110側)夫々の電圧を電圧計測部101及び102で計測した結果と、調整変圧器3の二次巻線312、322、332から直列変圧器2の一次巻線211,221,231に流れる三相の内部回路電流を電流計測部103で計測した結果とをシミュレーションによって解析した。解析におけるサンプリング周期は100μsとし、解析時間は0〜5秒とした。 In the above configuration, the results of measuring the voltages on the primary side (that is, the three-phase power supply 100 side) and the secondary side (that is, the three-phase load 110 side) of the voltage regulator by the voltage measuring units 101 and 102, and the adjusting transformer. The results of measuring the three-phase internal circuit currents flowing from the secondary windings 312, 322, 332 of the device 3 to the primary windings 211, 221 and 231 of the series transformer 2 by the current measuring unit 103 were analyzed by simulation. The sampling period in the analysis was 100 μs, and the analysis time was 0 to 5 seconds.

図15は、タップ位置が異なる制御種別毎に二次側電圧及び内部回路電流を解析した結果を示す図表である。図15には、10通りの制御種別について解析した一次側の電圧と、二次側の電圧及び調整電圧と、一次側及び二次側の零相電圧(V0)の差異と、内部回路電流とを数値で示してある。制御種別は、タップ位置の選択に応じて三相素通し、三相一括降圧、素通しの線間を含む個別降圧、個別昇降圧、素通しの線間を含む個別昇圧、及び三相一括昇圧の6種類に分け、そのうち、個別降圧を2通りに、個別昇降圧を3通りに、個別昇圧を2通りに分けて解析した。タップ位置の選択を示す数値については、実施形態1で説明した通りである。なお、制御種別における「素通し」は、調整電圧の大きさを0とするタップ位置を選択することを表す。 FIG. 15 is a chart showing the results of analyzing the secondary side voltage and the internal circuit current for each control type having a different tap position. In FIG. 15, the primary side voltage analyzed for 10 control types, the secondary side voltage and adjustment voltage, the difference between the primary side and secondary side zero-phase voltage (V0), and the internal circuit current are shown. Is shown numerically. There are six control types, three-phase straight-through, three-phase batch step-down, individual step-down including plain-through lines, individual step-up / down pressure, individual boost-up including plain-through lines, and three-phase batch boost-up according to the tap position selection. Of these, the individual step-down was divided into two, the individual step-up / down pressure was divided into three, and the individual boost was divided into two. The numerical value indicating the selection of the tap position is as described in the first embodiment. In addition, "passing through" in the control type indicates that the tap position where the magnitude of the adjustment voltage is 0 is selected.

図表中のタップ位置に係るUV線間,VW線間,WU線間夫々は、調整変圧器3の二次巻線312,322,332のタップ位置の選択結果に応じた調整電圧の相対的な大きさを表す。二次側電圧に係るUV線間,VW線間,WU線間夫々は、二次側の配電線1u,1v,1wの線間電圧を表す。内部回路電流に係るU相、V相、及びW相夫々は、調整変圧器3からの調整電圧によって直列変圧器2の端子u1,v2、端子v1,w2、及び端子w1,u2に流入する電流を表す(何れも図1参照)。なお、一次側電圧は、三相電源100の電圧そのものであり、全ての制御種別について何れの線間も30.00Vである。また、一次側電圧に調整電圧を加算したものが、二次側電圧となる。 The UV line, VW line, and WU line, respectively, related to the tap position in the chart are relative to the adjustment voltage according to the selection result of the tap position of the secondary winding 321, 322, 332 of the adjustment transformer 3. Represents the size. The UV line, VW line, and WU line related to the secondary side voltage represent the line voltage of the distribution lines 1u, 1v, and 1w on the secondary side, respectively. The U-phase, V-phase, and W-phase related to the internal circuit current are the currents that flow into the terminals u1, v2, terminals v1, w2, and terminals w1, u2 of the series transformer 2 due to the adjustment voltage from the adjustment transformer 3. (See FIG. 1 for both). The primary voltage is the voltage of the three-phase power supply 100 itself, and is 30.00 V between all the lines for all control types. Further, the value obtained by adding the adjustment voltage to the primary side voltage is the secondary side voltage.

図15に示す解析結果より、何れの制御種別についても、タップ位置の選択結果を示す数値に応じて調整電圧及び二次側電圧が変化していると言える。特にNo.2及び10の場合は、3つの線間の調整量(調整電圧の絶対値:以下同様)が等しくなっており、三相一括で制御できていることが分かる。No.3,5,8,9の場合は、昇圧又は降圧している線間の調整量が、三相一括の場合と比べれば少ないものの、素通しになっている線間の調整量より多くなっており、狙った方向に調整できていることが分かる。No.4(又は7)の場合は、降圧(又は昇圧)している2つの線間の調整量が等しく、昇圧(又は降圧)している1つの線間より調整量が多いものの、2つの線間と1つの線間とで調整方向が逆になっており、狙った方向に調整できていることが分かる。また、No.6の場合は、昇圧及び降圧している2つの線間の調整量は、三相一括の場合と比べれば少ないものの、素通しになっている線間の調整量より多くなっており、狙った方向に調整できていることが分かる。 From the analysis results shown in FIG. 15, it can be said that the adjustment voltage and the secondary side voltage change according to the numerical value indicating the tap position selection result for each control type. Especially No. In the cases of 2 and 10, the adjustment amount between the three lines (absolute value of the adjustment voltage: the same applies hereinafter) is equal, and it can be seen that the three phases can be controlled collectively. No. In the cases of 3, 5, 8 and 9, the amount of adjustment between the lines that are stepping up or down is smaller than that in the case of the three-phase batch, but it is larger than the amount of adjustment between the lines that are transparent. , You can see that it can be adjusted in the intended direction. No. In the case of 4 (or 7), the amount of adjustment between the two lines that are stepping down (or stepping up) is equal, and the amount of adjustment is larger than that between one line that is stepping up (or stepping down), but between the two lines. The adjustment direction is opposite between and one line, and it can be seen that the adjustment can be made in the target direction. In addition, No. In the case of 6, the adjustment amount between the two lines that are stepping up and down is smaller than that in the case of the three-phase batch, but it is larger than the adjustment amount between the straight lines, and the target direction. You can see that it can be adjusted to.

零相電圧差異は、全ての制御種別について何れも10-14 V程度の値であった。この値は、シミュレーション上の数値計算誤差と考えられ、線間電圧が6600Vである実際の配電系統に適用することで、線間電圧に比例して零相電圧差異が増大したとしても問題のない値であると言える。内部回路電流については、No.10の三相一括昇圧の場合に最も大きくなり、他の制御種別については、三相一括昇圧の場合よりも小さくなっている。これは抵抗で構成される三相負荷に最も大きい電圧が印加されるNo.10の場合に、内部回路にも大きな電流が流れるためである。その他の制御種別については、No.10の場合よりも内部回路電流が小さくなっており、異常電流が発生していないことが分かる。 Zero-phase voltage differences were about 10-14 V for all control types. This value is considered to be a numerical calculation error in the simulation, and there is no problem even if the zero-phase voltage difference increases in proportion to the line voltage by applying it to the actual distribution system where the line voltage is 6600V. It can be said that it is a value. Regarding the internal circuit current, No. It is the largest in the case of the three-phase batch boosting of 10, and is smaller in the case of the other control types than in the case of the three-phase batch boosting. This is No. 1 where the largest voltage is applied to the three-phase load composed of resistors. This is because in the case of 10, a large current also flows in the internal circuit. For other control types, see No. It can be seen that the internal circuit current is smaller than in the case of 10, and no abnormal current is generated.

本シミュレーションでは、電圧調整装置の一次側(三相電源100側)及び二次側(三相負荷110側)夫々の電圧波形と電流波形、並びに調整変圧器3の二次側の電圧(調整電圧)及び電流(内部回路電流)の波形についても検証した。これらの波形の図示は省略するが、何れの波形も短絡や欠相が見られない正常な三相波形であった。 In this simulation, the voltage waveform and current waveform of the primary side (three-phase power supply 100 side) and the secondary side (three-phase load 110 side) of the voltage regulator, and the voltage of the secondary side of the regulator transformer 3 (adjustment voltage). ) And the current (internal circuit current) waveforms were also verified. Although the illustration of these waveforms is omitted, all the waveforms were normal three-phase waveforms in which no short circuit or open phase was observed.

(模擬実験)
以下では、実施形態1係る電圧調整装置による配電線1u,1v,1wの電圧調整時の波形を模擬実験によって検証した結果について説明する。図16は、検証に用いた実験回路の構成を示すブロック図であり、図17は、複数の制御種別の例についてタップ位置の選択を模式的に示す説明図である。この実験回路では、上述のシミュレーションの場合と同様に、三相電源100から三相負荷110に三相の交流電圧を配電する配電線1u,1v,1wに、模擬の直列変圧器2及び調整変圧器3が接続されている。模擬の調整変圧器3と直列変圧器2との間には、模擬のタップ切換器4が接続されている。
(Simulation experiment)
Hereinafter, the result of verifying the waveform at the time of voltage adjustment of the distribution lines 1u, 1v, 1w by the voltage adjusting device according to the first embodiment by a simulation experiment will be described. FIG. 16 is a block diagram showing a configuration of an experimental circuit used for verification, and FIG. 17 is an explanatory diagram schematically showing selection of a tap position for an example of a plurality of control types. In this experimental circuit, as in the case of the above simulation, the simulated series transformer 2 and the adjustment transformer are connected to the distribution lines 1u, 1v, 1w that distribute the three-phase AC voltage from the three-phase power supply 100 to the three-phase load 110. The vessel 3 is connected. A simulated tap changer 4 is connected between the simulated adjusting transformer 3 and the series transformer 2.

三相電源100は、線間電圧を30Vとし、周波数を60Hzとする。三相負荷110は、100Ωの抵抗がΔ結線された平衡な負荷である。直列変圧器2は、変圧比が10である3つの単相変圧器によって模擬されている。調整変圧器3は、変圧比が1である3つの単相変圧器によって模擬されている。タップ切換器4は、3つの単相変圧器夫々の二次巻線のタップを切り換える3組のスイッチ群によって模擬されている。 The three-phase power supply 100 has a line voltage of 30 V and a frequency of 60 Hz. The three-phase load 110 is a balanced load in which a resistance of 100 Ω is Δ-connected. The series transformer 2 is simulated by three single-phase transformers having a transformation ratio of 10. The adjusting transformer 3 is simulated by three single-phase transformers having a transformation ratio of 1. The tap changer 4 is simulated by a group of three switches that switch the tap of the secondary winding of each of the three single-phase transformers.

直列変圧器2の二次巻線212,222,232夫々に対応する単相変圧器(U),(V),(W)の二次巻線は、端子台Aの端子a及びb,端子c及びd,端子e及びfを介して、配電線1u,1v,1wに直列に接続されている。直列変圧器2の一次巻線211,221,231夫々に対応する単相変圧器(U),(V),(W)の一次巻線は、端子台Bの端子a及びb,端子c及びd,端子e及びfを介してΔ結線されている。 The secondary windings of the single-phase transformers (U), (V), and (W) corresponding to the secondary windings 212, 222, 232 of the series transformer 2 are the terminals a and b, and the terminals of the terminal block A. It is connected in series to the distribution lines 1u, 1v, 1w via c and d, terminals e and f. The primary windings of the single-phase transformers (U), (V), and (W) corresponding to the primary windings 211, 211, 231 of the series transformer 2 are the terminals a and b of the terminal block B, the terminals c, and the terminals c. It is Δ-connected via d, terminals e and f.

調整変圧器3の二次巻線312,322,332夫々に対応する単相変圧器(U),(V),(W)の二次巻線は、タップ切換器4を模擬するスイッチ群と、端子台Cの端子a及びb,端子c及びd,端子e及びfとを介してY結線されている。調整変圧器3の一次巻線311,321,331夫々に対応する単相変圧器(U),(V),(W)の一次巻線は、端子台Dの端子a及びb,端子c及びd,端子e及びfを介して配電線1u,1v,1wにΔ結線されている。 The secondary windings of the single-phase transformers (U), (V), and (W) corresponding to the secondary windings 312, 322, and 332 of the adjusting transformer 3 are switch groups simulating the tap changer 4. , Terminals a and b, terminals c and d, terminals e and f of the terminal block C, and Y-connected. The primary windings of the single-phase transformers (U), (V), and (W) corresponding to the primary windings 311, 321, 331 of the adjusting transformer 3 are the terminals a and b of the terminal block D, the terminals c, and the terminals c. It is Δ-connected to the distribution lines 1u, 1v, 1w via d, terminals e and f.

タップ切換器4のタップ段数は、シミュレーションの場合と同様に3段(素通し,昇圧,降圧)とする。従って、タップ切換器4を模擬する各スイッチ群は、調整変圧器3を模擬する3つの単相変圧器(U),(V),(W)夫々の二次巻線における固定的な2つのタップを、端子台Cの端子a及びb,端子c及びd,端子e及びfに並列に接続するか、逆並列に接続するか、素通しにするかの何れかとなるように切り換えを行う。図16に示す接続は、基本的には実施形態1の図1に示す接続と同様であるため、その他の詳細な説明を省略する。 The number of tap steps of the tap changer 4 is set to 3 (pass-through, step-up, step-down) as in the case of simulation. Therefore, each switch group simulating the tap changer 4 has two fixed secondary windings of the three single-phase transformers (U), (V), and (W) simulating the adjustment transformer 3. The taps are switched so as to be connected in parallel to the terminals a and b, terminals c and d, terminals e and f of the terminal block C, connected in antiparallel, or made transparent. Since the connection shown in FIG. 16 is basically the same as the connection shown in FIG. 1 of the first embodiment, other detailed description thereof will be omitted.

図17には、紙面の左側から順に、三相一括降圧、個別降圧及び個別昇降圧夫々の場合について、模擬のタップ切換器4によるタップの選択結果を示してある。三相一括降圧の場合、単相変圧器(U),(V),(W)夫々の二次巻線は、端子台Cの端子a及びb,端子c及びd,端子e及びfに逆並列に接続される。V,W相を素通しにする個別降圧の場合、単相変圧器(U)の二次巻線は、端子台Cの端子a及びbに逆並列に接続されるのに対し、単相変圧器(V),(W)夫々の二次巻線の一方のタップが、端子台Cの端子c及びd,端子e及びfに接続される。U相を降圧し、W相を昇圧する個別昇降圧の場合、単相変圧器(U)の二次巻線は、端子台Cの端子a及びbに逆並列に接続され、単相変圧器(V)の二次巻線の一方のタップが端子台Cの端子c及びdに接続され、単相変圧器(W)の二次巻線が端子台Cの端子e及びfに並列に接続される。 FIG. 17 shows the tap selection results by the simulated tap changer 4 for each of the three-phase batch step-down, individual step-down, and individual step-up / down pressure in order from the left side of the paper. In the case of three-phase batch step-down, the secondary windings of the single-phase transformers (U), (V), and (W) are reversed to the terminals a and b, terminals c and d, and terminals e and f of the terminal block C. Connected in parallel. In the case of individual step-down through which the V and W phases are passed through, the secondary winding of the single-phase transformer (U) is connected to the terminals a and b of the terminal block C in antiparallel, whereas the single-phase transformer is connected. One tap of each of the secondary windings (V) and (W) is connected to terminals c and d, terminals e and f of the terminal block C. In the case of individual buck-boost that steps down the U phase and boosts the W phase, the secondary winding of the single-phase transformer (U) is connected in antiparallel to terminals a and b of the terminal block C, and is a single-phase transformer. One tap of the secondary winding of (V) is connected to the terminals c and d of the terminal block C, and the secondary winding of the single-phase transformer (W) is connected in parallel to the terminals e and f of the terminal block C. Will be done.

図18は、三相一括降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。図19は、個別降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。図20は、個別昇降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。図18,19,20夫々には、上段に一次側の線間線圧の波形を示し、下段に二次側の線間電圧の波形を示す。各図の横軸は時間(ms)を表し、縦軸は線間の電圧(V)を表す。また、実線はU,V相間の電圧Vuvを表し、破線はV,W相間の電圧Vvwを表し、一点鎖線はW,U相間の電圧Vwuを表す。 FIG. 18 is a waveform diagram showing the measurement results of the line voltage on the primary side and the secondary side of the voltage regulator in the case of three-phase batch step-down. FIG. 19 is a waveform diagram showing the measurement results of the line voltage on the primary side and the secondary side of the voltage regulator in the case of individual step-down. FIG. 20 is a waveform diagram showing the measurement results of the line voltage on the primary side and the secondary side of the voltage regulator in the case of individual buck-boost. In FIGS. 18, 19 and 20, the waveform of the line pressure on the primary side is shown in the upper row, and the waveform of the line voltage on the secondary side is shown in the lower row, respectively. The horizontal axis of each figure represents time (ms), and the vertical axis represents voltage (V) between lines. The solid line represents the voltage Vuv between the U and V phases, the broken line represents the voltage Vvw between the V and W phases, and the alternate long and short dash line represents the voltage Vw between the W and U phases.

図18では、二次側のVuv,Vvw,Vwuが一次側に対して一様に低下していることが確認される。図19では、二次側にてVuvがVvw及びVwuよりも低下しており、V,U線間の電圧が相対的に降圧されていることが確認される。図20では、二次側にてVvwに対してVuvが低下しすると共にVwuが上昇しており、V,U線間の電圧が相対的に降圧され、W,U線間の電圧が相対的に昇圧されていることが確認される。 In FIG. 18, it is confirmed that Vuv, Vvw, and Vwoo on the secondary side are uniformly lowered with respect to the primary side. In FIG. 19, it is confirmed that Vuv is lower than Vvw and Vwoo on the secondary side, and the voltage between the V and U lines is relatively stepped down. In FIG. 20, Vuv decreases and Vww increases with respect to Vvw on the secondary side, the voltage between the V and U lines is relatively stepped down, and the voltage between the W and U lines is relative. It is confirmed that the voltage is boosted to.

以上のシミュレーション及び模擬実験での検証結果から、本発明によれば、配電線1u,1v,1wのV0を変化させることなく、任意の線間電圧を個別に制御できることが示された。シミュレーション及び模擬実験では、三相の平衡状態からタップを切り換える制御を行ったが、実際の配電系統で制御を行う場合は、配電系統に生じている電圧の不平衡を是正する向きに制御を行うことで、三相の不平衡を改善できるものと考えられる。よって、三相の最大電圧相と最小電圧相が時間的に変化する配電系統(各相に接続する単相の負荷や太陽光発電装置からの電力等が大きく変動するような系統)に対しても、本発明に係る電圧調整装置を適用することが可能である。また、最大電圧相及び最小電圧相が不明な配電系統においても、電圧調整装置を接続する接続相を決定するための事前の計測調査などは不要であり、任意の位置に本発明に係る電圧調整装置を接続することができる。 From the verification results in the above simulations and simulated experiments, it was shown that according to the present invention, any line voltage can be individually controlled without changing V0 of the distribution lines 1u, 1v, 1w. In the simulation and simulation experiments, the tap was controlled to switch from the three-phase balanced state, but when controlling in the actual distribution system, the control is performed in the direction to correct the voltage imbalance occurring in the distribution system. Therefore, it is considered that the imbalance of the three phases can be improved. Therefore, for a distribution system in which the maximum voltage phase and the minimum voltage phase of the three phases change with time (a system in which the single-phase load connected to each phase and the power from the photovoltaic power generation device fluctuate greatly). Also, the voltage adjusting device according to the present invention can be applied. Further, even in a distribution system in which the maximum voltage phase and the minimum voltage phase are unknown, it is not necessary to perform a preliminary measurement survey to determine the connection phase to which the voltage adjustment device is connected, and the voltage adjustment according to the present invention can be performed at an arbitrary position. Devices can be connected.

今回開示された実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。 The embodiments disclosed this time should be considered as exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. Also, the technical features described in each embodiment can be combined with each other.

1u、1v、1w 配電線
2 直列変圧器
211,221、231 一次巻線
212、222、232 二次巻線
u1、v1、w1 端子
N 中性点
3 調整変圧器
311、321、331 一次巻線
312、322、332 二次巻線
S1、S2、S3、S4、S5、S6、SS 切換スイッチ
U1、U2、V1、V2、W1、W2 端子
F ヒューズ
MC 電磁接触器
R 限流抵抗器
4 タップ切換器
ta、tb、tc タップ
5 計測用変圧器
61 切換制御部
62 電圧検出部
63 操作表示部
64 駆動部
65 記憶部
1u, 1v, 1w Distribution wire 2 Series transformer 211,221,231 Primary winding 212, 222, 232 Secondary winding u1, v1, w1 Terminal N Neutral point 3 Adjusting transformer 311, 321, 331 Primary winding 312, 322, 332 Secondary winding S1, S2, S3, S4, S5, S6, SS selector switch U1, U2, V1, V2, W1, W2 terminal F fuse MC electromagnetic contactor R limiting current resistor 4 tap switching Instrument ta, tb, tc Tap 5 Measuring transformer 61 Switching control unit 62 Voltage detection unit 63 Operation display unit 64 Drive unit 65 Storage unit

Claims (6)

三相の交流電圧を電源から負荷に配電する配電線に三相分の二次巻線が直列に接続されており、一次巻線がデルタ結線されている直列変圧器と、
二次巻線に複数のタップを有し、前記配電線における前記直列変圧器の接続位置よりも前記負荷側の位置に一次巻線がデルタ結線されており、二次巻線がスター結線されている調整変圧器と、
該調整変圧器の二次巻線及び前記直列変圧器の一次巻線の間に設けられており、前記直列変圧器に接続するタップを切り換えるための三相分の切換スイッチを有するタップ切換器と
を備える電圧調整装置。
A series transformer in which the secondary windings for three phases are connected in series to the distribution line that distributes the three-phase AC voltage from the power supply to the load, and the primary windings are delta-connected.
The secondary winding has a plurality of taps, the primary winding is delta-connected at a position on the load side of the distribution line from the connection position of the series transformer, and the secondary winding is star-connected. With the adjusting transformer
A tap changer provided between the secondary winding of the adjusting transformer and the primary winding of the series transformer and having a three-phase changeover switch for switching taps connected to the series transformer. A voltage regulator equipped with.
前記直列変圧器は、二次巻線から前記配電線に印加される三相の交流電圧の位相が、標準的なデルタ・スター結線の場合と比較して実質的にπ/3又は4π/3だけ遅れるように結線されている請求項1に記載の電圧調整装置。 In the series transformer, the phase of the three-phase AC voltage applied from the secondary winding to the distribution line is substantially π / 3 or 4π / 3 as compared with the case of a standard delta star connection. The voltage regulator according to claim 1, which is connected so as to be delayed only by. 前記切換スイッチは、前記調整変圧器の二次巻線の電圧の極性を切り換えて前記直列変圧器の一次巻線に印加するための極性切換スイッチを含む請求項1又は2に記載の電圧調整装置。 The voltage adjusting device according to claim 1 or 2, wherein the changeover switch includes a polarity changeover switch for switching the polarity of the voltage of the secondary winding of the adjusting transformer and applying it to the primary winding of the series transformer. .. 前記切換スイッチは、サイリスタを含んで構成されている請求項1から3の何れか1項に記載の電圧調整装置。 The voltage adjusting device according to any one of claims 1 to 3, wherein the changeover switch includes a thyristor. 前記直列変圧器よりも前記負荷側における前記配電線の三相の電圧を検出する電圧検出部と、
該電圧検出部が検出した三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に基づいて前記切換スイッチにより前記タップを切り換える切換制御部と
を更に備える請求項1から4の何れか1項に記載の電圧調整装置。
A voltage detector that detects the three-phase voltage of the distribution line on the load side of the series transformer, and
Any one of claims 1 to 4, further comprising a switching control unit for calculating the deviation of the three-phase voltage detected by the voltage detecting unit with respect to the target voltage and switching the tap with the changeover switch based on the calculated deviation. The voltage regulator described in the section.
三相の電圧の目標電圧に対する偏差と前記調整変圧器の三相分の変圧比に係る量を関連付けて記憶する記憶部を更に備え、
前記切換制御部は、前記偏差を算出した場合、前記記憶部を参照して三相分のタップの切換先を選択し、前記タップを選択した切換先に切り換える
請求項5に記載の電圧調整装置。
Further provided with a storage unit that stores the deviation of the three-phase voltage with respect to the target voltage and the amount related to the transformation ratio of the three phases of the adjusting transformer in association with each other.
The voltage adjusting device according to claim 5, wherein when the switching control unit calculates the deviation, the switching destination of the tap for three phases is selected with reference to the storage unit, and the tap is switched to the selected switching destination. ..
JP2017205576A 2017-10-24 2017-10-24 Voltage regulator Active JP6959824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205576A JP6959824B2 (en) 2017-10-24 2017-10-24 Voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205576A JP6959824B2 (en) 2017-10-24 2017-10-24 Voltage regulator

Publications (2)

Publication Number Publication Date
JP2019080430A JP2019080430A (en) 2019-05-23
JP6959824B2 true JP6959824B2 (en) 2021-11-05

Family

ID=66628247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205576A Active JP6959824B2 (en) 2017-10-24 2017-10-24 Voltage regulator

Country Status (1)

Country Link
JP (1) JP6959824B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986752B (en) * 2023-02-03 2024-01-23 国网北京市电力公司 Adjustable voltage source, power distribution system and power adjustment method of power distribution system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028319A (en) * 1996-07-08 1998-01-27 Tohoku Electric Power Co Inc Protective device for series compensation system
JP2000014009A (en) * 1998-06-24 2000-01-14 Toshiba Corp Power system stabilizing device
JP2002091578A (en) * 2000-09-14 2002-03-29 Toshiba Corp Voltage regulator and phase regulator
JP4643225B2 (en) * 2004-11-02 2011-03-02 中国電力株式会社 Instantaneous voltage drop prevention device and instantaneous voltage drop prevention method
RU2393608C2 (en) * 2006-03-28 2010-06-27 Абб Рисёч Лтд Device and method of power flow control in transmission line
JP5118397B2 (en) * 2007-06-22 2013-01-16 株式会社日立製作所 Current limiting device
JP6000835B2 (en) * 2012-12-07 2016-10-05 関西電力株式会社 Automatic voltage regulator
JP2016042279A (en) * 2014-08-18 2016-03-31 関西電力株式会社 Automatic voltage regulator
JP6535594B2 (en) * 2015-12-22 2019-06-26 株式会社ダイヘン Automatic voltage regulator
CN106786613A (en) * 2016-12-16 2017-05-31 湖南世优电力科技股份有限公司 A kind of pressure regulator and the regulating circuit comprising the pressure regulator

Also Published As

Publication number Publication date
JP2019080430A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
EP2722955A2 (en) Voltage regulator and methods for simulating reactive power in parallel power generation systems
JP6959824B2 (en) Voltage regulator
JP2018186598A (en) Voltage regulation device
RU2657322C1 (en) Method and device for testing a load tap changer of a transformer
RU2657316C1 (en) Method and device for testing a load tap changer of a transformer
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
EP3392996B1 (en) Longitudinal voltage regulation at the line terminals of a phase shifting transformer
JP7291639B2 (en) on-load tap changer
JP7332441B2 (en) On-load tap-changers, on-load tap-changing transformers and voltage regulators
KR20110002779A (en) Automatic voltage regulator
JP7393965B2 (en) voltage regulator
JP6755812B2 (en) Phase voltage calculator and automatic voltage regulator
JP7332510B2 (en) on-load tap changer
JP5960498B2 (en) Voltage regulator
KR20160147966A (en) Method and device for testing a tap changer of a transformer
Pretzer Protective Relaying Student Laboratory
US10345831B2 (en) Methods and systems for using a tapped transformer to generate voltage sags
Minoza et al. Programmable Logic Controller (PLC) Protected Transformer Banking Trainer Kit for Electrical Engineering Education
Pedra et al. Effects of balanced and unbalanced voltage sags on DC adjustable-speed drives
JP2007017249A (en) Abnormal voltage generating device
JP4037967B2 (en) Distribution line voltage adjustment method and apparatus
JP2021197891A (en) Voltage regulator
JP6184294B2 (en) Condensation prevention device and condensation prevention method
Hellman-Wylie et al. Microgrid Protection Student Laboratory
JP6675913B2 (en) Load sharing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211008

R150 Certificate of patent or registration of utility model

Ref document number: 6959824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150