JP2007017249A - Abnormal voltage generating device - Google Patents

Abnormal voltage generating device Download PDF

Info

Publication number
JP2007017249A
JP2007017249A JP2005198398A JP2005198398A JP2007017249A JP 2007017249 A JP2007017249 A JP 2007017249A JP 2005198398 A JP2005198398 A JP 2005198398A JP 2005198398 A JP2005198398 A JP 2005198398A JP 2007017249 A JP2007017249 A JP 2007017249A
Authority
JP
Japan
Prior art keywords
transformer
switch
voltage
control device
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198398A
Other languages
Japanese (ja)
Other versions
JP4770296B2 (en
Inventor
Toru Katsuno
徹 勝野
Tomohiro Koike
智広 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005198398A priority Critical patent/JP4770296B2/en
Publication of JP2007017249A publication Critical patent/JP2007017249A/en
Application granted granted Critical
Publication of JP4770296B2 publication Critical patent/JP4770296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fesolve a complexity of connection switching by simulating an instantaneous voltage drop in a live-line state of electric apparatus connected with an actual line and reduce the size and weight of the system, loss and heating by eliminating a transformer having a multitude of winding lines. <P>SOLUTION: A power line comprises a transformer 41 for voltage-dropping which is connectable of a primary winding 41a, a load resistance 42, a breaker 44 of which the one end is connected with an end of a secondary winding 41a, a series circuit of a capacitor 46 and a switch 45, and a controller 47 for opening-closing control of the breaker 44 and the switch 45 by detecting the secondary side voltage of the transformer 41. The capacitor 46 is added to the secondary side of the transformer 41 by turning on the switch 45 with the breaker 44 closed, so that the voltage drop of the primary side of the transformer 44 is increased so as to lower the source voltage supplying a load 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力系統の電圧低下時、特に系統電圧が瞬時に低下した際の各種電気設備の異常動作や機能停止を試験、検査するための異常電圧発生装置に関するものである。   The present invention relates to an abnormal voltage generator for testing and inspecting abnormal operation and function stop of various electric facilities when the voltage of an electric power system drops, particularly when the system voltage drops instantaneously.

電力系統において、例えば電磁開閉器は、一般にコイルの励磁により遮断器を閉路し、自己保持している。しかし、系統電圧が瞬時低下してコイルの励磁電圧が低下すると、自己保持状態が解かれて遮断器が開路してしまう。このような場合、例えば半導体製造工場や製紙工場等の各種電気設備には系統から電源が供給されなくなり、ロットごと不良品が発生する等の事態を引き起こす。   In an electric power system, for example, an electromagnetic switch generally closes a circuit breaker by excitation of a coil and is self-holding. However, when the system voltage decreases instantaneously and the excitation voltage of the coil decreases, the self-holding state is released and the circuit breaker is opened. In such a case, for example, power is not supplied from the system to various electric facilities such as a semiconductor manufacturing factory and a paper manufacturing factory, and a defective product is generated for each lot.

上述の電圧低下を始めとした異常時における各種電気設備の挙動を試験するために、異常電圧や瞬時停電を発生させるようにした異常電圧発生装置付電圧調整器が、特許文献1に記載されている。
図3は、この従来技術において異常電圧を発生させる場合の等価回路図、図4は、瞬時停電を発生させるための等価回路図である。
Patent Document 1 discloses a voltage regulator with an abnormal voltage generator that generates an abnormal voltage or an instantaneous power failure in order to test the behavior of various electrical facilities in the event of an abnormality such as the voltage drop described above. Yes.
FIG. 3 is an equivalent circuit diagram when an abnormal voltage is generated in this prior art, and FIG. 4 is an equivalent circuit diagram for generating an instantaneous power failure.

まず、図3において、51は電源入力端子、52は昇圧用トランス、52aはその一次巻線、52bは二次巻線、52cは三次巻線、54は降圧用トランス、54aはその一次巻線、54bは二次巻線、55は検査対象の電気設備が接続される出力端子である。
三次巻線52cの両端には、所定のタイミングでオンオフされるスイッチ53と、抵抗56及び可変抵抗57との直列回路が接続され、スイッチ53には押ボタンスイッチ58が並列に接続されている。
3, 51 is a power input terminal, 52 is a step-up transformer, 52a is its primary winding, 52b is a secondary winding, 52c is a tertiary winding, 54 is a step-down transformer, and 54a is its primary winding. , 54b are secondary windings, and 55 is an output terminal to which the electrical equipment to be inspected is connected.
A series circuit of a switch 53 that is turned on and off at a predetermined timing, a resistor 56, and a variable resistor 57 is connected to both ends of the tertiary winding 52c, and a push button switch 58 is connected to the switch 53 in parallel.

その動作を説明すると、平常時はスイッチ53をオフしておくことにより、昇圧用トランス52の三次巻線52c側が回路全体から除去され、出力端子55からはトランス52,54により所定の大きさに調整された電圧が出力される。
また、異常電圧を発生させる場合には、スイッチ53をオンして三次巻線52cに電流を流し、一次巻線52aの電流すなわち電圧降下を増加させて一次側の電圧を低下させる。このため、トランス52,54の巻線比に応じて発生する出力端子55の電圧を低下させることができ、スイッチ53を適宜なタイミングでオンオフすることにより、出力端子55から断続的に異常電圧を発生させることができる。
なお、上記の動作における出力電圧の低下量は可変抵抗57により調節可能であると共に、押ボタンスイッチ58をオン状態に保てば、スイッチ53のオンオフに関わりなく継続的に異常電圧を発生させることができる。
Explaining the operation, by turning off the switch 53 in the normal state, the tertiary winding 52c side of the step-up transformer 52 is removed from the entire circuit, and the output terminal 55 has a predetermined size by the transformers 52 and 54. The adjusted voltage is output.
Further, when an abnormal voltage is generated, the switch 53 is turned on to pass a current through the tertiary winding 52c, and the current of the primary winding 52a, that is, the voltage drop is increased to lower the primary side voltage. For this reason, the voltage of the output terminal 55 generated according to the turns ratio of the transformers 52 and 54 can be reduced, and an abnormal voltage is intermittently generated from the output terminal 55 by turning on and off the switch 53 at an appropriate timing. Can be generated.
The amount of decrease in output voltage in the above operation can be adjusted by the variable resistor 57, and if the pushbutton switch 58 is kept on, an abnormal voltage can be continuously generated regardless of whether the switch 53 is on or off. Can do.

次に、図4に従って瞬時停電を発生させる場合の動作を説明する。
図4において、平常時はスイッチ53をオンしておくことにより、図3におけるスイッチ53のオフ時と同様に所定の大きさの電圧が出力される。
また、スイッチ53をオフすると、両トランス52,54が切り離されるため、出力端子55からは電圧が出力されなくなるため、スイッチ53を瞬時オフさせることによって瞬時停電状態を実現することができる。
Next, the operation when an instantaneous power failure occurs according to FIG. 4 will be described.
In FIG. 4, when the switch 53 is normally turned on, a voltage having a predetermined magnitude is output in the same manner as when the switch 53 is turned off in FIG.
When the switch 53 is turned off, the transformers 52 and 54 are disconnected, so that no voltage is output from the output terminal 55. Therefore, the instantaneous power failure state can be realized by turning off the switch 53 instantaneously.

特開昭62−71470号公報(第3頁左下欄第14行〜第4頁右上欄第14行、第3図、第4図等)JP-A-62-71470 (page 3, lower left column, line 14 to page 4, upper right column, line 14, FIG. 3, FIG. 4 etc.)

図3,図4に等価回路として示した従来技術は、あくまで実系統に接続されていない非活線状態の電気設備を対象とした試験装置であり、実際の系統内で活線状態にある電気設備に対してそのまま異常電圧を印加したり瞬時停電を模擬できるようには構成されていない。
従って、活線状態の電気設備に対し、例えば数十[ms]〜数百[ms]間の系統電圧の低下を模擬するためには、電気設備を接続替えして図3のような装置に接続しなければならず、その作業が極めて煩雑であった。また、図3の回路では多数の巻線を有するトランスが必要であり、これが設備重量を増加させて装置全体の大形化を招くという問題があった。更に、電圧低下量の調整を可変抵抗57により行う方法では、損失や発熱を無視できないという問題もあった。
The prior art shown as an equivalent circuit in FIG. 3 and FIG. 4 is a test device for non-live electrical equipment that is not connected to the actual system, and the electrical equipment in the live system in the actual system. It is not configured to apply an abnormal voltage to the equipment as it is or to simulate an instantaneous power failure.
Therefore, for example, in order to simulate a drop in the system voltage between several tens [ms] to several hundreds [ms] of the live electrical equipment, the electrical equipment is switched to the apparatus shown in FIG. It was necessary to connect them, and the work was extremely complicated. In addition, the circuit of FIG. 3 requires a transformer having a large number of windings, which increases the equipment weight and leads to an increase in the size of the entire apparatus. Further, the method of adjusting the voltage drop amount by the variable resistor 57 has a problem that loss and heat generation cannot be ignored.

そこで本発明の解決課題は、実系統に接続された電気設備に対し活線状態のままで瞬時電圧低下を模擬可能として接続替えの煩雑さを解消すると共に、多数の巻線を有するトランスを不要にして装置の小形軽量化を図り、併せて損失や発熱を低減させた異常電圧発生装置を提供することにある。   Therefore, the problem to be solved by the present invention is that it is possible to simulate an instantaneous voltage drop for an electric equipment connected to an actual system while eliminating the trouble of changing the connection, and a transformer having a large number of windings is unnecessary. Thus, it is an object of the present invention to provide an abnormal voltage generator that can reduce the size and weight of the device and reduce loss and heat generation.

上記課題を解決するため、請求項1に記載した発明は、
電気設備に電源電圧を供給する電力系統に一次巻線を接続可能な降圧用のトランスと、このトランスの二次巻線の両端に接続された負担抵抗と、一端が前記二次巻線の一端に接続された遮断器と、この遮断器の他端と前記二次巻線の他端との間に接続されたコンデンサとスイッチとの直列回路と、前記トランスの二次側電圧を検出して前記遮断器及び前記スイッチの開閉制御を行う制御装置と、を備え、
前記制御装置により前記遮断器を閉じた状態で前記スイッチをオンさせて前記トランスの二次側に前記コンデンサを投入し、前記トランスの一次側の電圧降下を増加させて前記電気設備に供給する電源電圧を低下させるものである。
In order to solve the above problem, the invention described in claim 1
A step-down transformer capable of connecting a primary winding to an electric power system that supplies a power supply voltage to electrical equipment, a burden resistor connected to both ends of the secondary winding of the transformer, and one end of the secondary winding A circuit breaker connected to the other end of the circuit breaker, a series circuit of a capacitor and a switch connected between the other end of the circuit breaker and the other end of the secondary winding, and a secondary side voltage of the transformer A control device for controlling opening and closing of the circuit breaker and the switch,
A power supply that supplies power to the electrical equipment by increasing the voltage drop on the primary side of the transformer by turning on the switch with the circuit breaker closed by the control device and inserting the capacitor on the secondary side of the transformer The voltage is lowered.

請求項2に記載した発明は、請求項1において、
前記トランスの二次側電流を検出する電流検出手段を備え、この電流検出手段による過電流検出時に前記制御装置により前記遮断器を開放するものである。
The invention described in claim 2 is the invention according to claim 1,
Current detecting means for detecting a secondary side current of the transformer is provided, and the circuit breaker is opened by the control device when an overcurrent is detected by the current detecting means.

請求項3に記載した発明は、請求項1または2において、
前記コンデンサとスイッチとの直列回路を複数、並列に接続し、前記制御装置により前記スイッチを選択的に投入して前記コンデンサを前記トランスの二次側に投入するものである。
The invention described in claim 3 is the invention according to claim 1 or 2,
A plurality of series circuits of the capacitor and the switch are connected in parallel, the switch is selectively turned on by the control device, and the capacitor is put on the secondary side of the transformer.

なお、本発明は、請求項4に記載するように、前記制御装置により前記スイッチを瞬時オンさせることで電気設備に供給する電源電圧を瞬時低下させ、これによる電気設備の挙動を試験する用途に最適である。   According to the present invention, as described in claim 4, the control device instantaneously turns on the switch to instantaneously lower the power supply voltage supplied to the electrical equipment, thereby testing the behavior of the electrical equipment. Is optimal.

本発明によれば、電力系統に一次側が接続されたトランスの二次側にコンデンサを瞬時投入することで、トランスの一次側における電圧降下を増加させ、電気設備に供給される電源電圧を瞬時低下させることができる。
すなわち、従来のように電気設備を接続替えせずに活線状態のままで電源電圧を瞬時低下させることができ、煩雑な接続替え作業を不要にすると共に、多数の巻線を有するトランスを用いないので、装置の小型化、軽量化が可能となる。更に、電圧低下量を可変抵抗により調節する方法ではないため、損失や発熱の低減も可能である。
According to the present invention, the voltage drop on the primary side of the transformer is increased by instantaneously inserting a capacitor on the secondary side of the transformer whose primary side is connected to the power system, and the power supply voltage supplied to the electrical equipment is instantaneously reduced. Can be made.
In other words, the power supply voltage can be instantaneously reduced without changing the electrical equipment as in the conventional case, and a complicated connection change work is not required, and a transformer having a large number of windings is used. Therefore, the apparatus can be reduced in size and weight. Furthermore, since it is not a method of adjusting the voltage drop amount with a variable resistor, loss and heat generation can be reduced.

以下、図に沿って本発明の実施形態を説明する。図1は、実施形態の構成を示す回路図である。
図1において、10は三相交流電源、20は電力系統の線路、21は変圧器漏れインピーダンス等を含めた線路インピーダンス、30は需要家の電気設備内の三相負荷である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a configuration of the embodiment.
In FIG. 1, 10 is a three-phase AC power source, 20 is a power system line, 21 is a line impedance including transformer leakage impedance, etc., and 30 is a three-phase load in a customer's electrical equipment.

一方、40はこの実施形態に係る異常電圧発生装置であり、一次巻線41aの両端が接続点22S,22Tを介して二相の線路20にそれぞれ接続される降圧用のトランス41と、このトランス41の二次側から電圧、電流を検出して後述の制御動作を行う制御装置47と、トランス41の二次巻線41bの両端に接続された負担抵抗42、電流検出器43、遮断器44、スイッチ45〜45、コンデンサ46〜46等を備えている。ここで、トランス41の定格電圧は、例えば一次側が200[V]、二次側が10[V]である。 On the other hand, reference numeral 40 denotes an abnormal voltage generator according to this embodiment, and a step-down transformer 41 in which both ends of a primary winding 41a are respectively connected to the two-phase line 20 via connection points 22S and 22T, and the transformer A control device 47 that detects a voltage and a current from the secondary side of 41 and performs a control operation described later, a burden resistor 42 connected to both ends of the secondary winding 41b of the transformer 41, a current detector 43, and a circuit breaker 44. , Switches 45 1 to 45 n , capacitors 46 1 to 46 n and the like. Here, the rated voltage of the transformer 41 is, for example, 200 [V] on the primary side and 10 [V] on the secondary side.

なお、前記接続点22S,22Tは、例えば一次巻線41aの両端をクリップ等にて線路20に接続してなるものである。すなわち、この異常電圧発生装置40は、実系統の線路20に活線状態で接続されている三相負荷30に対して電源電圧の瞬時低下を模擬するために、トランス41の一次巻線41aをクリップ等により線路20に接続して使用できるように構成されている。   The connection points 22S and 22T are formed by connecting both ends of the primary winding 41a to the line 20 with clips or the like, for example. In other words, the abnormal voltage generator 40 has a primary winding 41a of the transformer 41 for simulating an instantaneous drop in the power supply voltage with respect to the three-phase load 30 connected in a live state to the line 20 of the actual system. It is configured to be used by being connected to the line 20 by a clip or the like.

二次巻線41bの両端に接続された負担抵抗42は、トランス41の二次側開放時に過大な電圧が発生しないようにするための保護用の抵抗であり、この負担抵抗42の両端から検出したトランス41二次側の電圧が制御装置47に入力されている。また、負担抵抗42の一端には電流検出器43と遮断器44とが直列に接続され、電流検出器43による電流検出値が制御装置47に入力されている。なお、遮断器44は制御装置47からの開閉信号aにより開閉されるようになっている。   The burden resistor 42 connected to both ends of the secondary winding 41b is a protective resistor for preventing an excessive voltage from being generated when the secondary side of the transformer 41 is opened, and is detected from both ends of the burden resistor 42. The voltage on the secondary side of the transformer 41 is input to the control device 47. In addition, a current detector 43 and a circuit breaker 44 are connected in series to one end of the burden resistor 42, and a current detection value by the current detector 43 is input to the control device 47. The circuit breaker 44 is opened / closed by an opening / closing signal a from the control device 47.

スイッチ45〜45及びコンデンサ46〜46は、各1個ずつが直列に接続されており、これらのスイッチとコンデンサとからなるn個の直列回路が、前記抵抗42の一端と遮断器44の一端との間に互いに並列に接続されている。ここで、コンデンサ46〜46の静電容量は全て等しくすることを予定しているが、異なる値であっても良い。なお、スイッチ45〜45のオンオフは、制御装置47からの開閉信号bにより個別に制御可能である。 Each of the switches 45 1 to 45 n and the capacitors 46 1 to 46 n is connected in series, and n series circuits composed of these switches and capacitors are connected to one end of the resistor 42 and a circuit breaker. 44 are connected in parallel with each other. Here, the capacitances of the capacitors 46 1 to 46 n are all supposed to be equal, but may be different values. The on / off of the switches 45 1 to 45 n can be individually controlled by an open / close signal b from the control device 47.

次に、この実施形態の動作を説明する。
平常時には、制御装置47からの開閉信号aによって遮断器44を開放し、コンデンサ46〜46をトランス41の二次側から除去しておく。この時、三相負荷30には三相交流電源10から所定の電源電圧が供給されている。
Next, the operation of this embodiment will be described.
In normal times, the circuit breaker 44 is opened by an open / close signal a from the control device 47 and the capacitors 46 1 to 46 n are removed from the secondary side of the transformer 41. At this time, a predetermined power supply voltage is supplied to the three-phase load 30 from the three-phase AC power supply 10.

三相負荷30に対して電源電圧の瞬時低下を模擬する場合には、制御装置47からの開閉信号aにより遮断器44を閉じると共に、開閉信号bによって選択したスイッチ45〜45のうちの必要数を瞬時にオンし、当該スイッチに直列接続されたコンデンサをトランス41の二次側に投入する。 When simulating an instantaneous drop in power supply voltage for the three-phase load 30, the circuit breaker 44 is closed by an open / close signal a from the control device 47, and one of the switches 45 1 to 45 n selected by the open / close signal b. The required number is turned on instantaneously, and a capacitor connected in series with the switch is put on the secondary side of the transformer 41.

これにより、投入されたコンデンサを流れる電流によってトランス41の一次巻線41aを流れる電流が増加し、一次巻線41aや線路インピーダンス21による電圧降下が増加するため、三相負荷30に印加される電源電圧を瞬時に低下させることができる。この電圧低下量は、投入するコンデンサの数や容量を選択することで適宜調整可能であり、コンデンサを投入するタイミングは、制御装置47が、検出した電圧波形及び予め設定した位相に基づいて決定すればよい。電圧低下の継続時間についても、制御装置47が開閉信号bによるスイッチのオン期間を制御することで任意に設定可能である。   As a result, the current flowing through the primary winding 41a of the transformer 41 increases due to the current flowing through the input capacitor, and the voltage drop due to the primary winding 41a and the line impedance 21 increases. The voltage can be reduced instantaneously. The amount of voltage drop can be adjusted as appropriate by selecting the number and capacity of capacitors to be charged. The timing for charging the capacitors is determined by the control device 47 based on the detected voltage waveform and a preset phase. That's fine. The duration of the voltage drop can also be arbitrarily set by the control device 47 controlling the ON period of the switch by the open / close signal b.

なお、線路インピーダンス21は系統構成に応じて種々の値をとるので、トランス41の二次側に投入するコンデンサが単一であってその静電容量が固定されていると所望の電圧低下量が得られない場合もある。このため、図1のように所要数のコンデンサを必要に応じて投入可能とし、トランス41の負荷である静電容量を任意に段階的に変更可能とすることは有用である。
電圧低下量は、電圧検出値に基づいて制御装置47が演算可能であるから、所定の電圧低下量に達するまで制御装置47がスイッチ45,45,……を順次投入していくようなシーケンスを設定しても良い。
また、制御装置47は、電流検出器43による電流検出値から過電流を検出した場合には、開閉信号aにより遮断器44を開放して保護動作を行う。
Since the line impedance 21 takes various values depending on the system configuration, if a single capacitor is inserted on the secondary side of the transformer 41 and its capacitance is fixed, a desired voltage drop amount is obtained. It may not be obtained. Therefore, it is useful to make it possible to input a required number of capacitors as needed as shown in FIG. 1 and to change the capacitance as a load of the transformer 41 arbitrarily in a stepwise manner.
Since the control device 47 can calculate the voltage drop amount based on the detected voltage value, the control device 47 sequentially turns on the switches 45 1 , 45 2 ,... Until the predetermined voltage drop amount is reached. A sequence may be set.
In addition, when the control device 47 detects an overcurrent from the current detection value by the current detector 43, the control device 47 opens the circuit breaker 44 by the open / close signal a and performs a protective operation.

ここで、図2(a)は、系統の線間電圧(=電源電圧)を200[V](実効値)、線路インピーダンス21をR=0.23[Ω],L=2[mH]とした場合の瞬時電圧低下波形(三相負荷30の電源電圧波形)である。また、図2(b)は、図1における遮断器44をt=0.1[s]からt=0.2[s]まで0.1秒間オンさせた場合のオンオフシーケンスであり、これと同時に所定のスイッチをオンしてコンデンサを投入することにより、図2(a)の瞬時電圧低下波形を得たものである。
この実施形態によれば、図2(a)から明らかなように、活線状態のままで約0.1秒間の瞬時電圧低下状態を模擬可能である。
Here, FIG. 2A shows that the line voltage (= power supply voltage) of the system is 200 [V] (effective value), the line impedance 21 is R = 0.23 [Ω], and L = 2 [mH]. It is the instantaneous voltage drop waveform (power supply voltage waveform of the three-phase load 30) at the time of doing. FIG. 2B is an on / off sequence when the circuit breaker 44 in FIG. 1 is turned on for 0.1 second from t 1 = 0.1 [s] to t 2 = 0.2 [s]. At the same time, a predetermined switch is turned on and a capacitor is turned on to obtain the instantaneous voltage drop waveform of FIG.
According to this embodiment, as is clear from FIG. 2A, it is possible to simulate an instantaneous voltage drop state for about 0.1 seconds in a live line state.

上記のように本実施形態によれば、三相負荷30の電源電圧を活線状態のままで瞬時低下させることができ、瞬時電圧低下による電気設備の挙動試験や検査を容易に行うことができる。
なお、上記の実施形態では三相電力系統を対象として説明したが、本発明が単相電力系統にも適用可能であるのはいうまでもない。
As described above, according to the present embodiment, the power supply voltage of the three-phase load 30 can be instantaneously reduced while being in a live line state, and behavior tests and inspections of electrical equipment due to the instantaneous voltage drop can be easily performed. .
In the above embodiment, the three-phase power system has been described. However, it goes without saying that the present invention is also applicable to a single-phase power system.

本発明の実施形態の構成を示す回路図である。It is a circuit diagram which shows the structure of embodiment of this invention. 実施形態の動作を示す瞬時電圧低下波形及び遮断器のオンオフシーケンスを示す図である。It is a figure which shows the on-off sequence of the instantaneous voltage drop waveform and circuit breaker which show operation | movement of embodiment. 従来技術において異常電圧を発生させるための等価回路図である。It is an equivalent circuit diagram for generating an abnormal voltage in the prior art. 従来技術において瞬時停電を発生させるための等価回路図である。It is an equivalent circuit diagram for generating an instantaneous power failure in the prior art.

符号の説明Explanation of symbols

10:三相交流電源
20:線路
21:線路インピーダンス
22S,22T:接続点
30:三相負荷
40:異常電圧発生装置
41:トランス
41a:一次巻線
41b:二次巻線
42:負担抵抗
43:電流検出器
44:遮断器
45〜45:スイッチ
46〜46:コンデンサ
47:制御装置
a,b:開閉信号
10: Three-phase AC power supply 20: Line 21: Line impedance 22S, 22T: Connection point 30: Three-phase load 40: Abnormal voltage generator 41: Transformer 41a: Primary winding 41b: Secondary winding 42: Burden resistance 43: current detector 44: breaker 45 1 to 45 n: switch 46 1 -46 n: capacitor 47: control device a, b: switching signal

Claims (4)

電気設備に電源電圧を供給する電力系統に一次巻線を接続可能な降圧用のトランスと、
このトランスの二次巻線の両端に接続された負担抵抗と、
一端が前記二次巻線の一端に接続された遮断器と、
この遮断器の他端と前記二次巻線の他端との間に接続されたコンデンサとスイッチとの直列回路と、
前記トランスの二次側電圧を検出して前記遮断器及び前記スイッチの開閉制御を行う制御装置と、
を備え、
前記制御装置により前記遮断器を閉じた状態で前記スイッチをオンさせて前記トランスの二次側に前記コンデンサを投入し、前記トランスの一次側の電圧降下を増加させて前記電気設備に供給する電源電圧を低下させることを特徴とする異常電圧発生装置。
A step-down transformer capable of connecting a primary winding to a power system that supplies power supply voltage to electrical equipment;
Burden resistance connected to both ends of the secondary winding of this transformer,
A circuit breaker having one end connected to one end of the secondary winding;
A series circuit of a capacitor and a switch connected between the other end of the circuit breaker and the other end of the secondary winding;
A control device that detects the secondary side voltage of the transformer and controls opening and closing of the circuit breaker and the switch;
With
A power supply that supplies power to the electrical equipment by increasing the voltage drop on the primary side of the transformer by turning on the switch with the circuit breaker closed by the control device and inserting the capacitor on the secondary side of the transformer An abnormal voltage generator characterized by reducing voltage.
請求項1に記載した異常電圧発生装置において、
前記トランスの二次側電流を検出する電流検出手段を備え、この電流検出手段による過電流検出時に前記制御装置により前記遮断器を開放することを特徴とする異常電圧発生装置。
In the abnormal voltage generator according to claim 1,
An abnormal voltage generator comprising: current detection means for detecting a secondary side current of the transformer, and the circuit breaker is opened by the control device when an overcurrent is detected by the current detection means.
請求項1または2に記載した異常電圧発生装置において、
前記コンデンサとスイッチとの直列回路を複数、並列に接続し、前記制御装置により前記スイッチを選択的に投入して前記コンデンサを前記トランスの二次側に投入することを特徴とする異常電圧発生装置。
In the abnormal voltage generator according to claim 1 or 2,
A plurality of series circuits of the capacitor and the switch are connected in parallel, the switch is selectively turned on by the control device, and the capacitor is put on the secondary side of the transformer, .
請求項1〜3の何れか1項に記載した異常電圧発生装置において、
前記制御装置により前記スイッチを瞬時オンさせて前記電気設備に供給する電源電圧を瞬時低下させることを特徴とする異常電圧発生装置。
In the abnormal voltage generator in any one of Claims 1-3,
An abnormal voltage generator, wherein the control device turns on the switch instantaneously to instantaneously reduce a power supply voltage supplied to the electrical equipment.
JP2005198398A 2005-07-07 2005-07-07 Abnormal voltage generator Active JP4770296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198398A JP4770296B2 (en) 2005-07-07 2005-07-07 Abnormal voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198398A JP4770296B2 (en) 2005-07-07 2005-07-07 Abnormal voltage generator

Publications (2)

Publication Number Publication Date
JP2007017249A true JP2007017249A (en) 2007-01-25
JP4770296B2 JP4770296B2 (en) 2011-09-14

Family

ID=37754541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198398A Active JP4770296B2 (en) 2005-07-07 2005-07-07 Abnormal voltage generator

Country Status (1)

Country Link
JP (1) JP4770296B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334413A (en) * 2015-10-16 2016-02-17 四川大学 Electric shock accident characteristic signal detection method based on SCICA (Single Channel Independent Component Analysis) method
CN115224664A (en) * 2022-06-30 2022-10-21 山东电工电气集团新能科技有限公司 Protection method for secondary side open circuit of 10kV pole-mounted circuit breaker CT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278722B (en) * 2013-06-24 2015-03-11 南车株洲电力机车研究所有限公司 Voltage drop control method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271470A (en) * 1985-09-25 1987-04-02 Toyota Motor Corp Voltage regulator with abnormal voltage generator
JP2003153443A (en) * 2001-11-13 2003-05-23 Toshiba Corp Voltage regulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271470A (en) * 1985-09-25 1987-04-02 Toyota Motor Corp Voltage regulator with abnormal voltage generator
JP2003153443A (en) * 2001-11-13 2003-05-23 Toshiba Corp Voltage regulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334413A (en) * 2015-10-16 2016-02-17 四川大学 Electric shock accident characteristic signal detection method based on SCICA (Single Channel Independent Component Analysis) method
CN115224664A (en) * 2022-06-30 2022-10-21 山东电工电气集团新能科技有限公司 Protection method for secondary side open circuit of 10kV pole-mounted circuit breaker CT
CN115224664B (en) * 2022-06-30 2024-05-14 山东电工电气集团新能科技有限公司 Protection method for CT secondary side open circuit of 10kV pole-mounted circuit breaker

Also Published As

Publication number Publication date
JP4770296B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US9121882B2 (en) Wind energy plant testing device
US9379535B2 (en) System, apparatus, and method for reducing inrush current in a transformer
US8169756B2 (en) Fault current limiting
JP6554109B2 (en) Power system connection point for distribution system, regulating transformer for power system connection point, and method for operating power system connection point
US8330302B2 (en) Device for the ignition and the start-up of silicon rods
RU2657316C1 (en) Method and device for testing a load tap changer of a transformer
KR100923684B1 (en) Electronic motor protection relay and control method thereof
CA2815464C (en) Inrush current suppressing device
RU2657322C1 (en) Method and device for testing a load tap changer of a transformer
JP5082961B2 (en) Switchboard AC voltage circuit testing apparatus and method
JP4770296B2 (en) Abnormal voltage generator
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
JP7192487B2 (en) Inspection method and test equipment
CN113791344B (en) Switching test loop and method for switching current of high-voltage isolating switch
RU2657326C1 (en) Method and device for testing a load tap changer of a transformer
WO2008116428A2 (en) Method of improvement of earth-fault protection reliability and applicable wiring diagram
JP3157386B2 (en) Ground fault detector
KR20170122005A (en) Short-circuit testing device
JPH07274381A (en) Low-voltage switchboard
JP5485336B2 (en) DC power supply
JP7331707B2 (en) Inspection method
KR100358197B1 (en) Tester For Relay
RU2199788C2 (en) Device testing serviceability of ac overcurrent protection
KR20120011674A (en) Apparatus and method for Electronic OverCurrent Relay Test
KR20180025132A (en) Switching surge and transient voltage/current reducing method and apparatus in parallel connection with mechanical switch of capacitor bank and Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250