JP6959491B2 - Separation device for thin plate materials of non-magnetic materials such as laminated aluminum - Google Patents

Separation device for thin plate materials of non-magnetic materials such as laminated aluminum Download PDF

Info

Publication number
JP6959491B2
JP6959491B2 JP2017234667A JP2017234667A JP6959491B2 JP 6959491 B2 JP6959491 B2 JP 6959491B2 JP 2017234667 A JP2017234667 A JP 2017234667A JP 2017234667 A JP2017234667 A JP 2017234667A JP 6959491 B2 JP6959491 B2 JP 6959491B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
variable
separator
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017234667A
Other languages
Japanese (ja)
Other versions
JP2019093373A5 (en
JP2019093373A (en
Inventor
一正 小森
Original Assignee
合同会社竹とんぼ技術設計
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社竹とんぼ技術設計 filed Critical 合同会社竹とんぼ技術設計
Priority to JP2017234667A priority Critical patent/JP6959491B2/en
Publication of JP2019093373A publication Critical patent/JP2019093373A/en
Publication of JP2019093373A5 publication Critical patent/JP2019093373A5/ja
Application granted granted Critical
Publication of JP6959491B2 publication Critical patent/JP6959491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sheets, Magazines, And Separation Thereof (AREA)

Description

本発明は、自動車のプレス部品製造における材料供給装置におけるアルミ等の非磁性体の分離装置に関する。 The present invention relates to a separation device for a non-magnetic material such as aluminum in a material supply device for manufacturing stamped parts of an automobile.

車体用プレス部品の生産に於いて、2枚以上の複数枚の材料を金型で加圧すると、過荷重でプレス機械が停止し、場合によっては金型が破損する等、生産を阻害する。このため積層されたプレス部品用材料を一枚ずつ的確に分離して供給する必要がある。 In the production of stamped parts for vehicle bodies, if two or more materials are pressed by a die, the press machine is stopped due to an overload, and in some cases, the die is damaged, which hinders production. Therefore, it is necessary to accurately separate and supply the laminated materials for pressed parts one by one.

車体用プレス部品の材質は殆どが軟鋼板であり、軟鋼板が磁性体である特性を利用して、その分離には磁石が用いられている。電磁石もしくは永久磁石を積層した材料の側面に密着させて材料を磁化し、材料自体が磁化することで、材料間に生じる磁石の同極の反発力を用いて分離を図るものである。磁性体に対する分離方法としてはこの磁石を用いた磁化方式が最も有効であることから、旧来より磁石式の分離装置が広く一般的に用いられている。 Most of the stamped parts for the vehicle body are made of mild steel plate, and a magnet is used for the separation by utilizing the characteristic that the mild steel plate is a magnetic material. The material is magnetized by bringing an electromagnet or a permanent magnet into close contact with the side surface of the laminated material, and the material itself is magnetized, so that separation is achieved by using the repulsive force of the same pole of the magnet generated between the materials. Since the magnetization method using this magnet is the most effective as a separation method for a magnetic material, a magnet type separation device has been widely and generally used since ancient times.

軟鋼板に加えて、一部、自動車の軽量化等を目的にアルミ材も採用されている。アルミ材は非磁性体であるため、磁性体である鉄材用の磁石式分離装置が使えず、鋸刃状の器具で材料端を引っ掛ける方法や、材料端に強風を当てる方法や、材料を端から捲るように持ち上げる方法や、それらを組合わせた方法が用いられている。 In addition to mild steel sheets, aluminum materials are also used for the purpose of reducing the weight of automobiles. Since aluminum material is a non-magnetic material, a magnetic separator for iron material, which is a magnetic material, cannot be used. A method of lifting the magnet by rolling it up or a method of combining them is used.

鋸刃状器具を用いる方式は、鋸刃状の引っ掛け具を積層した材料の側面に当て、引っ掛け具を下から上方に擦るように引き上げることで分離を図るものである。この時、材料の削り屑が発生し、この切り屑が異物となり、成形時の傷となりプレス部品の表面品質に悪影響を及ぼす一因となっている。 In the method using a saw blade-shaped instrument, a saw blade-shaped hook is applied to the side surface of the laminated material, and the hook is pulled up by rubbing from the bottom to the top for separation. At this time, shavings of the material are generated, and these chips become foreign substances, which become scratches during molding and contribute to adversely affecting the surface quality of the pressed parts.

強風を用いる方式は、積層した材料の側方もしくは側方やや斜め下から材料端に強風を当てて材料を捲りあげることで分離を図るものである。しかし、材料自体がその残留洗浄液で密着した状態であるため分離の確実性に難点があり、鉄材用の磁石式分離装置に比べ分離効果が著しく低い。 In the method using strong wind, the laminated material is separated by rolling up the material by applying a strong wind to the edge of the material from the side or slightly diagonally below. However, since the material itself is in a state of being in close contact with the residual cleaning liquid, there is a problem in the certainty of separation, and the separation effect is remarkably low as compared with the magnet type separation device for iron materials.

材料を端から捲るように持上げる方法は、積層した材料を持上げるための複数の吸着カップの上昇タイミングや上昇速度、もしくそれら双方を制御して、材料の端から捲るように持上げることで、残留洗浄液により固着しがちな材料を引き剥がすように分離を図る方法である。しかし、多くの材料に対しトライアンドエラーでの微細な調整が必要であり、多くの手間を必要とする上、微細な調整であるため分離の確実性も低い。 The method of lifting the material from the edge is to control the ascending timing and speed of multiple suction cups for lifting the laminated material, or both of them, and to lift the material from the edge. Therefore, it is a method of separating the material that tends to be stuck by the residual cleaning liquid so as to peel it off. However, for many materials, fine adjustment by trial and error is required, a lot of labor is required, and since the fine adjustment is performed, the certainty of separation is low.

特開2009−219339号公報Japanese Unexamined Patent Publication No. 2009-219339 特開2012−090467号公報Japanese Unexamined Patent Publication No. 2012-090467 特開2016−160055号公報Japanese Unexamined Patent Publication No. 2016-160055

非磁性体であるアルミ材の分離方法として、鋸刃や強風を用いる方法や、持上げ方法を工夫して対応しているが、鋸刃の接触時の切屑や分離の確実性の低さの問題点がある。また、軟鋼板材とアルミ材を混流して生産するラインに於いては、軟鋼板用のマグネット式分離装置に加え、アルミ材用の分離装置を備える必要があり、設備装置の複雑化による汎用性の制約や設備の高額化の原因となっている。従って、非磁性体であるアルミ材を確実に分離でき、かつ、軟鋼板材にも適用可能な分離装置を提供する。 As a method of separating aluminum material, which is a non-magnetic material, we have devised a method of using a saw blade or strong wind and a lifting method, but there is a problem of chips when the saw blade contacts and low certainty of separation. There is a point. In addition, in a line that mixes and produces mild steel sheets and aluminum materials, it is necessary to equip a separation device for aluminum materials in addition to the magnet type separation device for mild steel sheets, which makes it versatile due to the complexity of equipment. It is a cause of restrictions and expensive equipment. Therefore, a separating device capable of reliably separating an aluminum material which is a non-magnetic material and which can be applied to a mild steel plate material is provided.

本発明の磁束可変型分離装置は、複数の独立した電磁石を縦に一列に、もしくはそれらを複数列に並べた構造を成し、磁束可変型分離装置の電磁石の電流を個別に制御して磁束と磁束可変型分離装置の全体の磁束分布を調整することを特徴とする。 The variable magnetic flux separator of the present invention has a structure in which a plurality of independent electromagnets are vertically arranged in a row or arranged in a plurality of rows, and the current of the electromagnets of the variable magnetic flux separator is individually controlled to obtain a magnetic flux. It is characterized by adjusting the overall magnetic flux distribution of the variable magnetic flux separator.

前記磁束可変型分離装置において、非磁性体の導電体材料に対しては、前記磁束可変型分離装置の電磁石の電流を個別に制御して電磁石の磁束を増減させ、前記磁束可変型分離装置の全ての電磁石で生じる前記磁束可変型分離装置全体の磁束の分布を縦方向に波形に成し、かつ、この磁束の縦方向の波形分布が時間軸で上方に移動するように制御することにより、前記磁束可変型分離装置を積層した薄板の非磁性体の導電体材料の側面に密着させて使用した際に、非磁性体の導電体材料内に誘導される磁束と前記磁束可変型分離装置の電磁石の磁束との間の相互作用として、非磁性体の導電本材料内に生じる上方への力を利用して非磁性体の導電体材料を分離し、かつ、磁性体材料に対しては、前記磁束可変型分離装置の全ての電磁石の電流を同一方向に、かつ一定に保持することにより、前記磁束可変型分離装置を薄板の磁性体の側面に密着させた際に、磁性体材料を同一極に磁化し、材料間の磁力の反発力を利用して磁性体の材料を分離する前記磁束可変型分離装置の制御方法を特徴とする。 In the variable magnetic flux separator, for a non-magnetic conductive material, the current of the electromagnet of the variable magnetic flux separator is individually controlled to increase or decrease the magnetic flux of the electromagnet, and the variable magnetic flux separator of the variable magnetic flux separator. By forming the distribution of the magnetic flux of the entire variable magnetic flux separator generated in all the electromagnets into a waveform in the vertical direction and controlling the vertical waveform distribution of the magnetic flux to move upward on the time axis, When the magnetic flux variable separator is used in close contact with the side surface of the thin non-magnetic conductive material in which the laminated magnetic flux variable separator is used, the magnetic flux induced in the non-magnetic conductive material and the magnetic flux variable separator As an interaction with the magnetic flux of the electromagnet, the non-magnetic conductive material is separated by using the upward force generated in the present material, and the magnetic material is separated. By holding the currents of all the electromagnets of the variable magnetic flux separator in the same direction and constant, when the variable magnetic flux separator is brought into close contact with the side surface of the magnetic material of the thin plate, the magnetic material is the same. It is characterized by a control method of the magnetic flux variable type separating device which is magnetized to a pole and separates a magnetic material by utilizing the repulsive force of a magnetic force between the materials.

アルミ、ステンレス鋼、銅等の非磁性体の導電体材料の分離に適用できる。 It can be applied to the separation of non-magnetic conductive materials such as aluminum, stainless steel, and copper.

軟鋼板等の磁性体に対しても、本装置内の磁束を一定とすることにより、磁性体材料の分離にも適用できる。 For magnetic materials such as mild steel plates, by keeping the magnetic flux in this device constant, it can also be applied to the separation of magnetic materials.

非磁性体と磁性体の両方に適用でき、設備装置の簡略化が可能となる。 It can be applied to both non-magnetic and magnetic materials, and equipment can be simplified.

磁束可変型分離装置の構造と磁束分布の説明図である。It is explanatory drawing of the structure and magnetic flux distribution of the magnetic flux variable type separator. 磁束可変型分離装置の適用例の説明図である。It is explanatory drawing of the application example of the magnetic flux variable type separation apparatus.

誘導電動機の基本原理として、アラゴの円盤が知られている。これは、磁石の移動により非磁性体の金属製円盤に電磁誘導による渦電流が発生し、その磁束が磁石の磁束と作用し合い円盤が回転するというものである。誘導電動機やリニアモータは、この原理に基づき、並べた電磁コイルに流す電流を制御して、磁束を変化、移動させている。 Arago's disk is known as the basic principle of induction motors. This means that the movement of the magnet causes an eddy current generated by electromagnetic induction in the non-magnetic metal disk, and the magnetic flux interacts with the magnetic flux of the magnet to rotate the disk. Based on this principle, induction motors and linear motors control the current flowing through the arranged electromagnetic coils to change and move the magnetic flux.

図1に本発明の磁束可変型分離装置(10)の構造と磁束(13)とその分布(14)の説明図を示す。磁束可変型分離装置(10)を成す電磁石(11)は互いに独立しており、個々の電磁石(11)の電流(12)を個別に制御して電磁石(11)の磁束(13)とその分布(14)を調整する。なお、図1で示す磁束(13)の方向は一例であって、磁束(13)の方向は問わず、図と真逆の方向であっても良い。 FIG. 1 shows an explanatory diagram of the structure of the magnetic flux variable type separator (10) of the present invention, the magnetic flux (13), and its distribution (14). The electromagnets (11) forming the magnetic flux variable separator (10) are independent of each other, and the current (12) of each electromagnet (11) is individually controlled to control the magnetic flux (13) of the electromagnet (11) and its distribution. Adjust (14). The direction of the magnetic flux (13) shown in FIG. 1 is an example, and the direction of the magnetic flux (13) may be the exact opposite of that shown in the figure.

図2に磁束可変型分離装置(10)の非磁性体の導電体材料への適用例を示す。アルミ等の非磁性体の導電体材料に対しては、同電磁石(11)の電流(12)を制御して磁束(13)を変化させ、非磁性体の導電体材料(15)内の誘導電流(16)により生じる磁束(17)との相互作用として非磁性体の導電体材料(15)に生じる上方への力を利用して材料の分離を図る。 FIG. 2 shows an example of application of the variable magnetic flux separator (10) to a non-magnetic conductive material. For a non-magnetic conductive material such as aluminum, the current (12) of the electric magnet (11) is controlled to change the magnetic flux (13) to induce the non-magnetic conductive material (15). The material is separated by utilizing the upward force generated in the non-magnetic conductor material (15) as an interaction with the magnetic flux (17) generated by the electric current (16).

非磁性体の導電体材料に対する磁束可変型分離装置(10)の制御方法をより詳しく説明する。磁束可変型分離装置(10)の全ての電磁石(11)の極性は交番させずに磁束(13)の方向を同一方向に保ちつつ、電磁石(11)の電流(12)を個別に制御して磁束(13)を増減させる。この磁束(13)の増減すなわち変化により、非磁性体の導電体材料(15)内に同一方向の磁束(17)が誘導される。さらに、電磁石(11)の電流(12)を個別に、磁束可変型分離装置(10)の全ての電磁石(11)で発生する全体の磁束(13)の分布(14)が縦方向に波形を成すように制御し、かつ、この磁束(13)の縦方向の波形分布(14)が時間軸で上方に移動するように制御する。これにより、磁束可変型分離装置(10)の磁束(13)と非磁性体の導電体材料(15)内に誘導された磁束(17)との間で働く相互作用として、非磁性体の導電体材料(15)内に生じる上方への力を利用して非磁性体の導電体材料(15)を分離する。 The control method of the magnetic flux variable type separator (10) for the non-magnetic conductor material will be described in more detail. The polarities of all the electromagnets (11) of the variable magnetic flux separator (10) are kept in the same direction of the magnetic flux (13) without alternating, and the current (12) of the electromagnet (11) is individually controlled. The magnetic flux (13) is increased or decreased. By increasing or decreasing the magnetic flux (13), that is, changing, the magnetic flux (17) in the same direction is induced in the non-magnetic conductive material (15). Further, the current (12) of the electromagnet (11) is individually changed, and the distribution (14) of the entire magnetic flux (13) generated by all the electromagnets (11) of the magnetic flux variable separator (10) has a waveform in the vertical direction. It is controlled so as to form, and the vertical waveform distribution (14) of the magnetic flux (13) is controlled to move upward on the time axis. As a result, the conductivity of the non-magnetic material acts as an interaction between the magnetic flux (13) of the variable magnetic flux separator (10) and the magnetic flux (17) induced in the conductive material (15) of the non-magnetic material. The non-magnetic conductive material (15) is separated by utilizing the upward force generated in the body material (15).

リニアモータ(特許文献1と2)の電磁石は、その極性を交番させ、磁石の引力と反発力を利用しているが、本発明の磁束可変型分離装置(10)は、全ての電磁石(11)の極性を交番させず、磁束(13)の方向を同一方向に保ったまま電流(12)の増減により磁束(13)を増減させ、かつ、電磁石(11)の電流(12)を個別に調整して、磁束可変型分離装置(10)全体で磁束(13)の分布(14)を波形とし、かつ、この磁束(13)の波形分布(14)を上方に移動するように制御し、磁束可変型分離装置(10)の磁束(13)と非磁性体の導電体材料(15)内に誘導された磁束(17)との間で働くアラゴの円盤の原理である相互作用である力を利用する。 The electromagnets of the linear motors (Patent Documents 1 and 2) alternate their polarities and utilize the attractive and repulsive forces of the magnets. However, the variable magnetic flux separator (10) of the present invention has all the electromagnets (11). ) Is not alternated, the magnetic flux (13) is increased or decreased by increasing or decreasing the current (12) while keeping the direction of the magnetic flux (13) in the same direction, and the current (12) of the electromagnet (11) is individually increased or decreased. By adjusting, the distribution (14) of the magnetic flux (13) is made into a waveform in the entire magnetic flux variable type separator (10), and the waveform distribution (14) of the magnetic flux (13) is controlled to move upward. The force that is the principle of the Arago disk acting between the magnetic flux (13) of the variable magnetic flux separator (10) and the magnetic flux (17) induced in the non-magnetic conductive material (15). To use.

上述の非磁性体への適用に加え、磁性体材料に対しては、磁束可変型分離装置(10)の全ての電磁石(11)の電流(12)を同一方向に、かつ一定に保持して磁性体材料を同一極に磁化し、材料間の磁気の反発力を利用して分離する。 In addition to the above-mentioned application to the non-magnetic material, the currents (12) of all the electromagnets (11) of the magnetic flux variable type separator (10) are held in the same direction and constantly with respect to the magnetic material. Magnetic materials are magnetized to the same pole and separated using the magnetic repulsive force between the materials.

従来の材料分離装置(特許文献3)では、磁性体材料と非磁性体材料の双方に別々の材料分離装置が必要で、設備の構造が複雑になり、汎用性等の生産上の制約となるとともに設備の高額化の一因でもあった。本発明の磁束可変型分離装置(10)は、電磁石(11)の電流(12)の適切な制御により、磁性体と非磁性体の導電体の双方に対応可能であるため、設備を簡素化できる。 In the conventional material separation device (Patent Document 3), separate material separation devices are required for both the magnetic material and the non-magnetic material, which complicates the structure of the equipment and imposes production restrictions such as versatility. At the same time, it was one of the reasons for the high price of equipment. The variable magnetic flux separator (10) of the present invention can handle both magnetic and non-magnetic conductors by appropriately controlling the current (12) of the electromagnet (11), thus simplifying the equipment. can.

磁性体、非磁性体を問わず、積層した薄板の導電体材料の分離に適用できる。 It can be applied to the separation of the conductive material of laminated thin plates regardless of whether it is a magnetic material or a non-magnetic material.

10 磁束可変型分離装置
11 磁束可変型分離装置の電磁石
12 磁束可変型分離装置の電磁石の電流
13 磁束可変型分離装置の電磁石の磁束
14 磁束可変型分離装置の磁束の分布
15 非磁性体の導電体材料
16 誘導電流
17 誘導電流により生じる磁束
10 Variable magnetic flux separator 11 Electromagnetic flux variable separator 12 Electromagnetic current of variable magnetic flux separator 13 Magnetic flux of electromagnet of variable magnetic flux separator 14 Distribution of magnetic flux of variable magnetic flux separator 15 Conductivity of non-magnetic material Body material 16 Induced current 17 Magnetic flux generated by the induced current

Claims (3)

複数の独立した電磁石を縦に一列に並べた一群、もしくはその縦に並べた一群を横に並列に複数列に並べた構造を成す電磁石群であって、非磁性体の導電体材料に対しては、これら複数の独立した電磁石群の全てでその電磁石の磁束の方向を同一方向に保持しつつ、電磁石の電流を個別に制御して磁束を増減させ、全ての電磁石で生じる全体の磁束の分布を縦方向に波形と成し、かつ、この磁束の縦方向の波形分布が時間軸で上方に移動するように変化させる制御を行うことにより、この電磁石群の全体を積層した薄板の非磁性体の導電体材料の側面に密着させて使用した際に、同材料内に誘導される磁束と電磁石群の磁束との間の相互作用として、非磁性体の導電体材料内に生じる上方への力を利用して非磁性体の導電体材料を分離し、かつ、磁性体材料に対しては、この電磁石群を構成する全ての電磁石の電流を同一方向に、かつ一定に保持し、この電磁石群の全体を薄板の磁性体の側面に密着させた際に、磁性体材料を同一極に磁化し、材料間の磁力の反発力を利用して磁性体の材料を分離することを特徴とする積層した非磁性体の薄板と積層した磁性体の導電体の薄板の双方に有効な磁束可変型分離器。 A group of independent magnets arranged vertically in a row, or a group of vertically arranged groups arranged horizontally in multiple rows, for a non-magnetic conductive material. Keeps the direction of the magnetic flux of the electric magnets in the same direction in all of these multiple independent electric magnet groups, and controls the current of the electric magnets individually to increase or decrease the magnetic force, and distributes the total magnetic force generated in all the electric magnets. Is formed into a waveform in the vertical direction, and by controlling the change in the vertical waveform distribution of this magnetic flux so as to move upward on the time axis, a thin non-magnetic material in which the entire group of electromagnets is laminated. When used in close contact with the side surface of the conductive material, the upward force generated in the non-magnetic conductive material as an interaction between the magnetic flux induced in the material and the magnetic flux of the electromagnet group. The non-magnetic conductive material is separated by using the above, and the currents of all the electromagnets constituting this electromagnet group are held in the same direction and constant with respect to the magnetic material, and the electromagnet group is maintained. Lamination characterized by magnetizing the magnetic material to the same pole and separating the magnetic material using the repulsive force of the magnetic force between the materials when the entire material is brought into close contact with the side surface of the magnetic material of the thin plate. A variable magnetic flux separator that is effective for both thin non-magnetic thin plates and laminated magnetic conductive thin plates. 前記磁束可変型分離器を成す電磁石群の電流を個別に制御して磁束とその磁束分布を調整する制御装置であって、非磁性体の導電体材料に対しては、前記磁束可変型分離器の全ての電磁石の磁束の方向を同一方向に保持しつつ、電磁石の電流を個別に制御して磁束を増減させ、前記磁束可変型分離器で生じる全体の磁束の分布を縦方向に波形と成し、かつ、この磁束の縦方向の波形分布が時間軸で上方に移動するように変化させる制御を行うことにより、前記磁束可変型分離器を積層した薄板の非磁性体の導電体材料の側面に密着させて使用した際に、同材料内に誘導される磁束と電磁石群の磁束との間の相互作用として、非磁性体の導電体材料内に生じる上方への力を利用して非磁性体の導電体材料を分離し、かつ、磁性体材料に対しては、前記磁束可変型分離器の全ての電磁石の電流を同一方向に、かつ一定に保持し、前記磁束可変型分離器を薄板の磁性体の側面に密着させた際に、磁性体材料を同一極に磁化し、材料間の磁力の反発力を利用して磁性体の材料を分離することを特徴とする請求項1に記載の磁束可変型分離器の磁束可変制御装置。A control device that individually controls the current of the electromagnet group forming the magnetic flux variable separator to adjust the magnetic flux and its magnetic flux distribution. For a non-magnetic conductive material, the magnetic flux variable separator While keeping the directions of the magnetic fluxes of all the electromagnets in the same direction, the currents of the electromagnets are individually controlled to increase or decrease the magnetic flux, and the distribution of the entire magnetic flux generated by the variable magnetic flux separator is formed into a vertical waveform. In addition, by controlling the change in the vertical waveform distribution of the magnetic flux so as to move upward on the time axis, the side surface of the non-magnetic conductive material of the thin plate on which the variable magnetic flux separator is laminated. As an interaction between the magnetic flux induced in the same material and the magnetic flux of the electromagnet group when used in close contact with the non-magnetic material, the upward force generated in the non-magnetic conductive material is used to make the non-magnetic material non-magnetic. The conductive material of the body is separated, and the currents of all the electromagnets of the magnetic flux variable separator are held in the same direction and constant with respect to the magnetic material, and the magnetic flux variable separator is made into a thin plate. The first aspect of claim 1 , wherein the magnetic material is magnetized to the same pole when it is brought into close contact with the side surface of the magnetic material, and the magnetic material is separated by utilizing the repulsive force of the magnetic force between the materials. flux variable control unit of the magnetic flux variable separator. 前記磁束可変型分離器と前記磁束可変制御装置において、非磁性体の導電体材料に対しては、前記磁束可変型分離器の全ての電磁石の磁束の方向を同一方向に保持しつつ、前記磁束可変型分離器の電磁石の電流を個別に制御して磁束を増減させ、前記磁束可変型分離器の全ての電磁石で生じる全体の磁束の分布を縦方向に波形と成し、かつ、この磁束の縦方向の波形分布が時間軸で上方に移動するように制御することにより、前記磁束可変型分離器を積層した薄板の非磁性体の導電体材料の側面に密着させて使用した際に、同材料内に誘導される磁束と前記磁束可変型分離器の磁束との間の相互作用として、非磁性体の導電体材料内に生じる上方への力を利用して非磁性体の導電体材料を分離し、かつ、磁性体材料に対しては、前記磁束可変型分離器の全ての電磁石の電流を同一方向に、かつ一定に保持し、前記磁束可変型分離器を薄板の磁性体の側面に密着させた際に、磁性体材料を同一極に磁化し、材料間の磁力の反発力を利用して磁性体の材料を分離することを特徴とする請求項1に記載の磁束可変型分離器と請求項2に記載の磁束可変制御装置を用いた、積層した非磁性体の薄板と積層した磁性体の導電体の薄板の双方に有効な薄板の分離方法。In the variable magnetic flux separator and the variable magnetic flux controller, the magnetic flux is maintained for the non-magnetic conductive material while maintaining the magnetic flux directions of all the electromagnets of the variable magnetic flux separator in the same direction. The current of the electromagnets of the variable separator is individually controlled to increase or decrease the magnetic force, and the distribution of the entire magnetic flux generated by all the electromagnets of the variable magnetic flux separator is formed into a waveform in the vertical direction, and the magnetic flux of this magnetic flux is increased or decreased. By controlling the waveform distribution in the vertical direction to move upward on the time axis, the same when the magnetic flux variable separator is used in close contact with the side surface of a thin non-magnetic conductive material on which the magnetic flux variable separator is laminated. As an interaction between the magnetic flux induced in the material and the magnetic flux of the variable magnetic flux separator, the non-magnetic conductive material is subjected to an upward force generated in the non-magnetic conductive material. For the magnetic material, the currents of all the electromagnets of the variable magnetic flux separator are held in the same direction and constant, and the variable magnetic flux separator is placed on the side surface of the magnetic material of the thin plate. The variable magnetic flux separator according to claim 1 , wherein the magnetic material is magnetized to the same pole when they are brought into close contact with each other, and the magnetic material is separated by utilizing the repulsive force of the magnetic force between the materials. A method for separating a thin plate effective for both a laminated non-magnetic thin plate and a laminated magnetic conductor thin plate using the variable magnetic flux control device according to claim 2.
JP2017234667A 2017-11-17 2017-11-17 Separation device for thin plate materials of non-magnetic materials such as laminated aluminum Active JP6959491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017234667A JP6959491B2 (en) 2017-11-17 2017-11-17 Separation device for thin plate materials of non-magnetic materials such as laminated aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234667A JP6959491B2 (en) 2017-11-17 2017-11-17 Separation device for thin plate materials of non-magnetic materials such as laminated aluminum

Publications (3)

Publication Number Publication Date
JP2019093373A JP2019093373A (en) 2019-06-20
JP2019093373A5 JP2019093373A5 (en) 2020-08-27
JP6959491B2 true JP6959491B2 (en) 2021-11-02

Family

ID=66970477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234667A Active JP6959491B2 (en) 2017-11-17 2017-11-17 Separation device for thin plate materials of non-magnetic materials such as laminated aluminum

Country Status (1)

Country Link
JP (1) JP6959491B2 (en)

Also Published As

Publication number Publication date
JP2019093373A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US9914599B2 (en) Systems, processes and apparatuses for automated handling of non-ferrous metal objects
RU2010106391A (en) METHOD OF INDUCTION HEATING
JP2017185675A5 (en)
JP6959491B2 (en) Separation device for thin plate materials of non-magnetic materials such as laminated aluminum
CN202162632U (en) Electromagnetic metallographic polishing machine
JP2020138232A (en) Separation unit of thin plate of nonmagnetic substance such as laminated aluminum
KR101318173B1 (en) Apparatus for transferring substrates
CN101537799A (en) Permanent-magnet electromagnetic hybrid magnet structure of electromagnetic-type maglev train
CN107481832B (en) Electric control permanent magnet type magnetic field generating device for magnetorheological plane polishing
JPH04317935A (en) Non-magnetic metal plate takeout device
CN105141106B (en) A kind of motion workbench of Three Degree Of Freedom
CN107364777A (en) Magnetic elevator drive member and manufacture method
CN100519259C (en) Permanent magnetism electromagnetic blending magnet design method of electromagnetic type maglev train
JP2009084025A (en) Stripping tool and stripping device
CN106961201A (en) Linear electric motors
US1937216A (en) Electromagnet
CN105489339B (en) Magnetic field generating system in magnetic induction free abrasive saw blade cutting
CN106300705A (en) Calutron
CN203944465U (en) Electricity magneto tramp iron separator
CN220873340U (en) Parallel U-shaped iron core is last tiling neodymium iron boron magnetic steel and takes air gap to lead magnet formula magnetic disk
RU219534U1 (en) ELECTROMAGNETIC CONTACTOR
CN203614631U (en) Magnetic brake device
CN101997383A (en) Rectangular permanent magnet reciprocating type shielding device
DE102016123360A1 (en) MAGNETODYNAMIC DEVICE AND METHOD FOR SEPARATING IRON-FREE CONDUCTIVE COVERS
KR20090022568A (en) Magnetization-demagnetization method and apparatus for a magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6959491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150