JP6957762B2 - 異常診断システム、方法及びプログラム - Google Patents

異常診断システム、方法及びプログラム Download PDF

Info

Publication number
JP6957762B2
JP6957762B2 JP2020539935A JP2020539935A JP6957762B2 JP 6957762 B2 JP6957762 B2 JP 6957762B2 JP 2020539935 A JP2020539935 A JP 2020539935A JP 2020539935 A JP2020539935 A JP 2020539935A JP 6957762 B2 JP6957762 B2 JP 6957762B2
Authority
JP
Japan
Prior art keywords
data
model
unit
learning
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020539935A
Other languages
English (en)
Other versions
JPWO2020044477A1 (ja
Inventor
幸造 伴野
俊也 高野
友祐 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Publication of JPWO2020044477A1 publication Critical patent/JPWO2020044477A1/ja
Application granted granted Critical
Publication of JP6957762B2 publication Critical patent/JP6957762B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明の実施形態は、異常診断システム、方法及びプログラムに関する。
電力機器など社会インフラを支える設備又は機器の故障、事故等の異常に対し、その原因の識別にニューラルネットワークをはじめとした機械学習が用いられている。機械学習を用いて識別器を構築するためには、一般に数多くの異常データを学習させる必要があるが、社会インフラの設備、機器の故障や事故は滅多に発生せず、実際の異常データの数は少ない。さらに、このような設備、機器は、様々な環境に設置されており、各設備、機器から得られるデータは環境毎に特有のノイズ等の影響を受けるが、全ての環境を網羅した異常データを用意することは難しい。
データ数が限られた状況下での機械学習による診断について、多数の正常データと、少数の異常データにより学習を行い、正常と異常を識別させる技術が知られている。例えば、物体表面凍結時の少数データと、非凍結時の多数データを用いて学習させ、物体表面が凍結しているか否かを識別させる。
しかし、上記技術では、多数の正常データを元にした、正常と異常の2状態の識別は可能であるが、データ数が少ない異常データの種類を識別させることはできない。すなわち、異常データが示す診断対象の異常原因の種別を識別することはできない。
特開2017−125809号公報
異常データの種類を識別させるための対策として、シミュレーションや机上実験などにより、故障を模した模擬データを予め用意し、模擬データを学習させて識別器を構築した後、その識別器に実際の故障データを識別させ、その識別精度を確認する方法が考えられる。
しかし、設備や機器が設置されている環境をシミュレーションや机上実験では完全に再現することができず、模擬データと実際のデータはノイズ等の特性が異なってしまう場合がある。この場合、模擬データのみを学習させた識別器では、模擬データは正しく識別できるものの、実際のデータを正しく識別できないという問題が発生する。また、模擬データや実際のデータに特有のノイズが含まれ、データに偏りがあると、当該ノイズが異常原因を示す特徴であると誤って学習してしまい、識別精度が悪化してしまうという問題があった。
本発明の実施形態は、上記のような課題を解決するためになされたものであり、診断対象の異常原因種別を精度良く診断することのできる異常診断システム、方法及びプログラムを提供することを目的とする。
上記の目的を達成するために、本実施形態の異常診断システムは、診断対象の異常原因を診断する異常診断システムであって、モデルに基づいて前記診断対象の異常原因の種類を識別する診断部と、前記モデルを機械学習により生成する学習部と、を備え、前記診断部は、前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理部と、前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別部と、を有し、前記診断モデルが機械学習モデルであり、前記学習部は、前記診断モデルを機械学習により生成する診断モデル学習部と、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰部と、を有し、前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、前記診断モデル学習部は、前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成することを特徴とする。
また、本形態は、上記各部の処理をコンピュータ又は電子回路により実現する方法、上記の各部の処理をコンピュータに実現させるプログラムとして捉えることもできる。
すなわち、本実施形態の異常診断方法は、診断対象の異常原因を診断する異常診断方法であって、モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、前記モデルを機械学習により生成する学習ステップと、を備え、前記診断ステップは、前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、を有し、前記診断モデルが機械学習モデルであり、前記学習ステップは、前記診断モデルを機械学習により生成する診断モデル学習ステップと、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、を有し、前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、前記診断モデル学習ステップは、前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成することを特徴とする。
本実施形態の異常診断プログラムは、診断対象の異常原因を診断する異常診断プログラムであって、コンピュータに、モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、前記モデルを機械学習により生成する学習ステップと、を実行させ、前記診断ステップは、前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、を有し、前記診断モデルが機械学習モデルであり、前記学習ステップは、前記診断モデルを機械学習により生成する診断モデル学習ステップと、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、を有し、前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、前記診断モデル学習ステップは、前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成することを特徴とする。
第1の実施形態に係る異常診断システムの構成を示す図である。 データ取得部で取得されるデータの一例を示す図である。 学習データ格納部で保持する学習データのテーブルの一例を示すである。 データ変換部のニューラルネットワークの模式図である。 データ識別部のニューラルネットワークの模式図である。 異常原因識別部の機械学習モデルがニューラルネットワークである場合の当該ニューラルネットワークの模式図である。 異常診断システムの動作の一例を示す動作フローチャートである。 学習時におけるデータ変換部及びデータ識別部のニューラルネットワークの模式図である。 第1の実施形態における表示部の診断結果の表示例を示す図である。 第2の実施形態に係る異常診断システムの構成を示す図である。 表示制御部が表示部に表示させる画面の一例を示す図である。 第2の実施形態に係る異常診断システムの動作の一例を示す動作フローチャートである。 第2の実施形態の変形例1に係る表示制御部が表示部に表示させる画面の一例を示す図である。 第2の実施形態の変形例2に係る表示制御部が表示部に表示させる画面の一例を示す図である。 第2の実施形態の変形例3に係る表示制御部が表示部に表示させる画面の一例を示す図である。 学習時におけるデータ変換部、データ識別部及び異常原因識別部のニューラルネットワークの模式図である。 第1の実施形態をベースにした本実施形態の異常診断システムの動作の一例を示す動作フローチャートである。 第2の実施形態をベースにした本実施形態の異常診断システムの動作の一例を示す動作フローチャートである。 第3の実施形態の作用を説明するための図である。 第4の実施形態に係る異常診断システムの動作の一例を示す動作フローチャートである。 第5の実施形態において表示制御部が表示部に表示させる画面の一例を示す図である。 第5の実施形態に係る異常診断システムの動作の一例を示す動作フローチャートである。 第7の実施形態に係る異常診断システムの構成を示す図である。 第7の実施形態において表示制御部が表示部に表示させる画面の一例を示す図である。 第7の実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。 第7の実施形態の変形例に係る異常診断システム1の動作の一例を示す動作フローチャートである。 第7の実施形態の変形例1に係る表示制御部が表示部に表示させる画面の一例を示す図である。 第7の実施形態の変形例2に係る表示制御部が表示部に表示させる画面の一例を示す図である。
[第1の実施形態]
(概略構成)
図1は、第1の実施形態に係る異常診断システムの構成を示す図である。異常診断システム1は、機械学習モデルを構築し、当該機械学習モデルによって、診断対象となる設備又は機器(以下、単に「診断対象」ともいう。)の異常原因を診断する。診断対象は、例えば、電力系統に用いられる設備又は機器であり、異常診断システム1は、電力系統の監視システムなどに用いられる。図1に示すように、この異常診断システム1には、データ取得部100、学習データ格納部200が接続されている。
データ取得部100は、異常診断システム1が診断するデータ(以下、単に「診断対象データ」ともいう。)を取得する。診断対象データは、診断対象に異常が発生した際に測定されたデータである。診断対象の異常としては、例えば、診断対象の故障、事故による不具合が挙げられる。診断対象データは、例えば図2に示すような波形データである。但し、診断対象データは、波形データに限られず、画像データであっても良い。
学習データ格納部200は、異常診断システム1の学習に用いられる学習用データを格納している。学習用データは、過去の実際の診断対象の異常の実データ、診断対象の異常を模した模擬データである。
学習データ格納部200には、過去の実際の診断対象の異常の実データと、診断対象の異常を模した模擬データとが、各データに対し、異常原因種別を示す情報と、実データか模擬データかのデータ種別を示す情報が付加されて格納されている。例えば、図3に示すように、過去の実際の機器故障時の実データ(図中の「実故障データ」)と、シミュレーションや机上実験などにより故障を模擬した模擬データとが、各データに故障原因種別を示す情報と、データ種別を示す情報とが対応付けられている。学習データ格納部200に格納されている実データは、過去に測定された診断対象の異常を示すデータである。なお、図3では、故障原因種別は、故障A、Bの2種類となっているが、3種類以上であっても良い。
学習用データには、模擬データ又は実データの特有のノイズが含まれていても良い。このノイズは、異常原因種別が反映されていない部分である。すなわち、模擬データ又は実データは、何れかの異常原因種別を示すデータであるため、異常原因種別を識別可能にする特徴部分と、それ以外の特徴部分となるノイズ部分とを有する。このノイズ部分は、異常原因種別を識別可能にする特徴部分以外の特徴となる部分であり、例えば、模擬データ又は実データを図3に示すような波形データとし、異常原因種別を識別可能にする特徴部分を波形の山の形とすると、波形のオフセット値である。実データの特有のノイズは、例えば、診断対象が設置された環境が反映されたノイズであり、模擬データの特有のノイズは、例えば、机上実験等の実験環境が反映されたノイズである。
異常診断システム1は、単一のコンピュータ又はネットワーク接続された複数のコンピュータ及び表示装置を含み構成されている。異常診断システム1は、プログラム及びデータベースをHDDやSSD等のストレージに記憶しており、RAM等のメモリに適宜展開し、CPUで処理することにより、後述する機械学習モデルの構築やデータ変換などの必要な演算を行う。
具体的には、異常診断システム1は、処理部2、記憶部3、入力部4、表示部5を備える。記憶部3は、メモリ又はストレージを含み構成され、処理部2の動作プログラム、演算結果等を記憶する。入力部4は、ユーザによる入力インタフェースであり、例えば、キーボードやマウス、タッチパネルである。表示部5は、処理部2の演算結果を表示する。表示部5は、例えば、有機ELや液晶ディスプレイなどの表示装置である。
処理部2は、CPUを含み構成され、後述する種々の演算を行う。具体的には、処理部2は、診断部21、学習部22、及び表示制御部23を有する。
診断部21は、CPUを含み構成され、モデルに基づいて診断対象の異常原因の種類を識別する。学習部22は、上記モデルを機械学習により生成する。
具体的には、診断部21は、データ処理部211、異常原因識別部212を有する。データ処理部211は、CPUを含み構成され、診断対象データが入力されると、当該データからノイズが減衰された前処理済みデータを生成する。すなわち、データ処理部211は、データ取得部100から診断対象データを取得し、後述するノイズ減衰モデルに基づいて診断対象データを変換することで前処理済みデータを生成する。ここでいうノイズとは、診断対象データのうち、異常原因を識別可能にする特徴部分以外の特徴となる部分をいう。例えば、診断対象データが図2に示すような波形データであり、異常原因種別を識別可能にする特徴部分が波形の山の形であるとすると、波形のオフセット値である。
異常原因識別部212は、CPUを含み構成され、前処理済みデータが入力されると診断対象の異常原因種別を出力する診断モデルに基づいて、診断対象の異常原因の種類を識別する。診断モデルは、機械学習モデルであり、例えば、ニューラルネットワーク、決定木、ランダムフォレスト、SVM(support vector machine)などを用いることができる。図6は、異常原因識別部212の機械学習モデルがニューラルネットワークである場合の当該ニューラルネットワークの模式図である。図6に示すように、異常原因識別部212は、データ処理部211から出力された前処理済みデータを入力とし、異常原因種別を出力とする。
学習部22は、CPUを含み構成され、ノイズ減衰部221、ノイズ減衰モデル生成部222、診断モデル学習部223を有する。
ノイズ減衰部221は、CPUを含み構成され、診断モデルの機械学習のための学習用データからノイズが除去された減衰済みデータを生成する。この学習用データは、学習データ格納部200から取得した学習用データである。ここでいうノイズとは、学習用データのうち、異常原因を識別可能にする特徴部分以外の特徴となる部分をいう。例えば、学習用データが図3に示すような波形データであり、異常原因種別を識別可能にする特徴部分が波形の山の形であるとすると、波形のオフセット値である。
より詳細には、ノイズ減衰部221は、入力されたデータからノイズを減衰するノイズ減衰モデルに基づいて減衰済みデータを生成する。このノイズ減衰モデルは、診断モデルを生成するための学習段階のノイズ減衰部221で用いられる他、また診断段階の診断部21でも用いられる。すなわち、データ処理部211は、ノイズ減衰モデルに基づいて、入力された診断対象データからノイズを減衰して前処理済みデータを生成する。
ノイズ減衰モデル生成部222は、CPUを含み構成され、ノイズ減衰部221で用いられるノイズ減衰モデルを生成する。このノイズ減衰モデル生成部222は、データ変換部222a、データ識別部222b、変換モデル学習部222c、識別モデル学習部222dを有する。
データ変換部222aは、CPUを含み構成され、学習用データを変換する変換モデルに基づいて、学習用データを変換して変換後データを出力する。この学習用データは、学習データ格納部200から取得した学習用データである。変換モデルは、ここではニューラルネットワークである。図4は、データ変換部222aのニューラルネットワークの模式図である。このニューラルネットワークは、例えば、オートエンコーダである。
データ識別部222bは、CPUを含み構成され、変換後データが入力されることで学習用データのデータ種別を識別する識別モデルに基づいて、学習用データが模擬データか実データかを示すデータ種別を識別する。識別モデルは、ここではニューラルネットワークである。図5は、データ識別部222bのニューラルネットワークの模式図である。データ識別部222bは、データ変換部222aから変換後データを取得し、このニューラルネットワークにより、変換後データの元となった学習用データが模擬データか実データかを識別する。
識別モデル学習部222dは、CPUを含み構成され、識別モデルを機械学習により生成する。すなわち、識別モデル学習部222dは、識別モデルが変換後データから学習用データのデータ種別を正しく識別するモデルとなるように識別モデルを生成する。具体的には、データ識別部222bの出力結果と、教師データとなる学習用データのデータ種別との誤差が小さくなるようにデータ識別部222bのモデルを更新することで、識別モデルを生成する。
変換モデル学習部222cは、CPUを含み構成され、ノイズ減衰モデルを機械学習により生成する。すなわち、データ変換部222aの変換モデルを機械学習により更新することでノイズ減衰モデルを生成する。具体的には、変換モデル学習部222cは、学習用データに類似しているが、データ識別部222bが正しく識別できないように変換後データを出力するノイズ減衰モデルを生成する。より詳細には、変換モデル学習部222cは、変換モデルを、学習用データと変換後データとの誤差、及び、データ識別部222bの出力結果と不正解となるデータ種別との誤差が小さくなるように更新することで、ノイズ減衰モデルを生成する。なお、不正解となるデータ種別とは、データ識別部222bの出力結果と対応する学習用データのデータ種別を反転させたデータ種別である。
診断モデル学習部223は、CPUを含み構成され、診断モデルを機械学習により生成する。すなわち、診断モデル学習部223は、ノイズ減衰部221から出力された減衰済みデータを学習データとし、異常原因種別を教師データとして機械学習モデルにより診断モデルを生成する。教師データとする異常原因種別は、減衰済みデータ(出力)に対応する学習用データ(入力)の異常原因種別である。また、診断モデル学習部223は、一度構築した診断モデルを新たな教師データを用いて更新するようにしても良い。
表示制御部23は、CPUを含み構成され、異常原因識別部212(診断モデル)の識別結果を表示部5に表示させる。
(詳細構成)
異常診断システム1の処理をフローチャートに従って詳細に説明する。図7は、異常診断システム1の動作の一例を示す動作フローチャートである。
図7に示すように、まず、変換モデル学習部222c、識別モデル学習部222dは、データ変換部222a及びデータ識別部222bの各ニューラルネットワークを学習させる(ステップS01)。
すなわち、図8に示すように、データ変換部222aのニューラルネットワークの出力が、データ識別部222bのニューラルネットワークの入力となるようにネットワークを構成する。データ変換部222aは学習データ格納部200より学習用データを取得し、データ変換することで変換後データを出力する。そして、データ識別部222bは、データ変換部222aから変換後データを取得し、データ種別を識別する。識別モデル学習部222dは、データ識別部222bの出力結果と、教師データとして当該出力結果の元となったデータ変換部222aに入力された学習用データのデータ種別とを取得し、誤差逆伝播法を用いてデータ識別部222bのニューラルネットワークの重みを更新するとともに、変換モデル学習部222cは、データ変換部222aから変換後データと、教師データとして学習データ格納部200から学習用データとを取得し、データ識別部222bの出力結果を加味し誤差逆伝播法を用いてデータ変換部222aのニューラルネットワークの重みを更新する。
より具体的には、識別モデル学習部222dは、データ識別部222bのニューラルネットワークを、データ変換部222aの出力データを入力変数、模擬データか実データかを示すデータ種別を出力変数とする2クラス分類器として学習させる。例えば、kをデータ種別(0又は1)、tをデータ種別を示す正解ラベルのone−hot表現(すなわち、正解ラベルとなるインデックスだけが1で、その他は0とする)、yd1kをデータ識別部222bによるk番目の出力ノードの出力値としたとき、識別モデル学習部222dは、損失関数として交差エントロピー誤差を示す式(1)を算出し、誤差逆伝播法を用いて、データ識別部222bの出力yd1kを正解ラベルtに近づけるように、データ識別部222bのニューラルネットワークの有する重みを更新することで識別モデルを生成する。
Figure 0006957762
同時に変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、学習データ格納部200から取得した学習データを入力とし、その入力データと類似しているが、そのデータ種別をデータ識別部222bが正しく識別できないように入力データを変換して出力するデータ変換器として学習させることで、ノイズ減衰モデルを生成する。
すなわち、変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、オートエンコーダ(Auto Encoder)を基本として構築する。具体的には、lをデータのインデックス、uをl番目の入力データの値、yaelをデータ変換部222aによるl番目データの出力値としたとき、損失関数として式(2)を用いることで、データ変換部222a及びノイズ減衰部221はオートエンコーダとして構築され、入力データと類似した値を出力する。
Figure 0006957762
また、データ識別部222bが模擬データか実データか正しく識別できないようなデータを出力させるように、変換モデル学習部222cは、上記オートエンコーダを、データ識別部222bの出力したデータ種別が、正解となる学習用データのデータ種別と反転するように学習させる。つまり、データ識別部222bの出力したデータ種別と、正解となる学習用データのデータ種別を反転させたデータ種別との誤差が改善されるように学習させる。
具体的には、変換モデル学習部222cは、損失関数として式(3)に基づいて、式(3)の誤差Eae’が改善されるようにデータ変換部222aの変換モデルを更新することで、入力データ(学習用データ)と類似し、且つ、データ識別部222bが正しく識別できないようなデータを出力するようにさせ、ノイズ減衰モデルを生成する。
Figure 0006957762
なお、式(3)の学習に関する重みパラメータaは、定数としても良いし、試行錯誤により決定しても良い。また、例えばデータ識別部222bのニューラルネットワークの識別精度が高いときにはデータ変換部222aの出力を大きく変動させるために、データ識別部222bのニューラルネットワークの識別率(正答率)や式(1)などの損失関数を変数とする数式としても良い。
以上のように、学習部22は、データ識別部222bのニューラルネットワークを式(1)の損失関数に基づいて、データ変換部222aのニューラルネットワークを式(3)の損失関数に基づいて、それぞれ誤差逆伝播法を用いて更新する処理を一定回数、又は損失関数値が改善しなくなるまで繰り返し、学習を完了させる。なお、データ変換部222aのニューラルネットワークは、式(3)を用いて学習する前に、式(2)を用いて事前学習しても良い。
次に、診断モデル学習部223は、機械学習モデルを学習させる(ステップS02)。すなわち、異常原因識別部212の機械学習モデルを、ステップS01で学習させたデータ変換部222aの変換後データ(減衰済みデータ)を入力変数、異常原因種別を出力変数とする多クラス分類器として学習させることで、診断モデルを生成する。この学習には、学習データ格納部200の学習データのうち、模擬データのみを用いる。つまり、異常原因識別部212の機械学習モデルへの入力変数は、学習後のデータ変換部222aが学習データ格納部200の模擬データを変換したデータ(減衰済みデータ)である。また、模擬データのみの学習後、学習データ格納部200の学習データのうち、実データを用いて正しく識別できることを確認する。
機械学習モデルとしてニューラルネットワーク用いる場合、mを異常原因種別、vを異常原因種別を示す正解ラベルのone−hot表現(正解ラベルとなるインデックスだけが1で、その他は0とする)、yd2mを異常原因識別部212によるm番目の出力ノードの出力値としたとき、診断モデル学習部223は、損失関数として交差エントロピー誤差を示す式(4)を算出し、誤差逆伝播法を用いて、異常原因識別部212の出力yd2mを正解ラベルvに近づけるように、ニューラルネットワークが有する重みを更新する。診断モデル学習部223は、この更新を一定回数、又は損失関数値が改善しなくなるまで繰り返し、学習を完了させる。これにより診断モデルが生成される。
Figure 0006957762
その後、データ処理部211及び異常原因識別部212により、診断対象データを診断する(ステップS03)。すなわち、データ処理部211は、データ取得部100から診断対象データを取得し、変換モデル学習部222cにより生成されたノイズ減衰モデルによって、取得したデータを変換し前処理済みデータとして異常原因識別部212に出力する。異常原因識別部212は、データ処理部211から前処理済みデータを取得し、異常原因種別を出力する。
表示制御部23は、異常原因識別部212が出力した異常原因種別を取得し、当該異常原因種別を診断結果として、図9に示すように表示部5に表示させる(ステップS04)。
(作用・効果)
(1)本実施形態の異常診断システム1は、診断対象の異常原因を診断する異常診断システムであって、モデルに基づいて診断対象の異常原因の種類を識別する診断部21と、モデルを機械学習により生成する学習部22と、を備え、診断部21は、診断対象から出力されたデータが入力されると、当該データから異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理部211と、前処理済みデータが入力されると診断対象の異常原因種別を出力する診断モデルに基づいて、診断対象の異常原因の種類を識別する異常原因識別部212と、を有し、診断モデルが機械学習モデルであり、学習部22は、診断モデルを機械学習により生成する診断モデル学習部223と、診断モデルの機械学習のための学習用データから上記ノイズが除去された減衰済みデータを生成するノイズ減衰部221と、を有し、学習用データは、診断対象の異常を模擬した模擬データ又は診断対象の異常を示す実データであり、診断モデル学習部223は、減衰済みデータを学習データとし、異常原因種別を教師データとして機械学習により診断モデルを生成するようにした。
これにより、ノイズ減衰部221によって学習用データから、異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズを減衰した減衰済みデータを入力として、診断モデルを生成するようにしたので、診断対象の異常原因種別を精度良く診断することができる。すなわち、模擬データ、実データには、異常原因種別を識別可能にする特徴部分と、当該特徴部分以外の特徴となるノイズ部分とが含まれることから、当該ノイズ部分をノイズ減衰部221によって減衰することにより、診断モデル学習部223によって機械学習モデルが、異常原因を識別可能にする模擬データ、実データの特徴部分を学習し、診断モデルを生成することができる。そして、診断モデルを用いて異常原因種別を識別する際には、データ処理部211により診断対象データから異常原因を識別可能にする特徴分以外の特徴となるノイズ部分を減衰することで、異常原因種別を識別可能にする特徴部分が残され、異常原因識別部212によって診断し易い形になっている。その結果、診断対象の異常原因種別を精度良く診断することができる。
(2)ノイズ減衰部221は、入力されたデータからノイズを除去するノイズ減衰モデルに基づいて減衰済みデータを生成し、学習部22は、ノイズ減衰モデルを生成するノイズ減衰モデル生成部222を有するようにした。そして、ノイズ減衰モデル生成部222は、学習用データを変換する変換モデルに基づいて、学習用データを変換して変換後データを出力するデータ変換部222aと、変換後データが入力されることで学習用データのデータ種別を識別する識別モデルに基づいて、学習用データが模擬データか実データかを示すデータ種別を識別するデータ識別部222bと、変換モデルを機械学習により更新することで、学習用データが入力されると減衰済みデータを出力するノイズ減衰モデルを生成する変換モデル学習部222cと、識別モデルを機械学習により更新する識別モデル学習部222dと、を有し、識別モデル及び変換モデルは、ニューラルネットワークであり、識別モデル学習部222dは、識別モデルが変換後データから学習用データのデータ種別を正しく識別するモデルとなるように識別モデルを生成し、変換モデル学習部222cは、変換モデルを、学習用データに類似しているが、データ識別部222bが正しく識別できないように変換後データを出力するよう更新することにより、ノイズ減衰モデルを生成し、データ処理部211は、変換モデル学習部222cにより生成されたノイズ減衰モデルに基づいて、診断対象から出力されたデータから前処理済みデータを生成するようにした。
これにより、変換モデルを、学習用データに類似しているが、データ識別部222bが正しく識別できないように変換後データを出力するよう更新してノイズ減衰モデルを生成することで、ノイズ減衰部221により、学習用データから模擬データ又は実データの特有のノイズが減衰又は除去され、データ識別部222bにより模擬データとも実データとも識別できないような中間的データに変換される。例えば、模擬データ、実データにそれぞれ特有のノイズが含まれていると、データ識別部222dは、上記の例で言えばオフセット等、当該ノイズ部分に着目することでデータ種別を識別し得るが、データ識別部222bにより模擬データとも実データとも識別できないような変換後データ(例えば、波形は同じでオフセット値が模擬データとも実データとも異なるデータ)を出力するよう変換モデルを更新させてノイズ減衰モデルを生成することで、模擬データ、実データに特有のノイズを減衰又は除去した中間的データを得ることができる。つまり、本来の異常原因種別を識別するのに必要な特徴部分が中間的データに残されることになる。
このような中間的データを用いて診断モデル学習部223が機械学習モデルを学習させて診断モデルを生成するので、元の学習用データが模擬データでも実データでも精度良く異常原因種別を識別することができるとともに、新たな診断対象データに対しても精度良く異常原因種別を識別することができる。
(3)変換モデル学習部222cは、当該変換モデルを、データ識別部222bの出力した模擬データ又は実データのデータ種別がデータ変換部222aに入力された入力データのデータ種別と反転するように更新するようにした。
これにより、実データとも模擬データとも識別できないような中間的データを生成することができる。すなわち、変換モデル学習部222cが、変換モデルに対し、入力データと出力データとの誤差を改善するように学習させるだけであれば(式(2)又は式(3)の最右辺第1項に対応)、出力データが入力データに近づくように学習されるだけであるが、本実施形態では更に、変換モデル学習部222cにより変換モデルの出力データのデータ種別が、データ変換部222aに入力された入力データのデータ種別と反転したデータ種別になるように学習させるようにしたので(式(3)の最右辺の第2項に対応)、ノイズ減衰モデルの出力したデータがデータ識別部222bによって正しく識別できないデータとすることができる。これにより、実データとも模擬データとも識別できないような中間的データを生成することができる。
(4)異常原因識別部212の識別結果を表示部に表示させる表示制御部23を備えるようにした。これにより、ユーザが表示部5に表示された異常原因の識別結果を得ることができ、診断対象の異常に対処することができる。
(第2の実施形態)
(構成)
第2の実施形態を、図10を用いて説明する。第2の実施形態は、第1の実施形態の基本構成と同じである。以下では、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
図10は、第2の実施形態に係る異常診断システムの構成を示す図である。本実施形態では、入力部4は、学習部22の学習に関するパラメータのユーザによる入力を受け付ける。この学習に関するパラメータは、データ変換部222a及びデータ識別部222bのニューラルネットワーク、並びに、異常原因識別部212の機械学習モデルのネットワーク構成、学習回数、式(3)に含まれる重みパラメータaなどである。この学習に関するパラメータは、学習部22での学習に用いられる。
表示制御部23は、図11に示すように、パラメータ再設定ボタンPRを表示部5に表示させる。パラメータ再設定ボタンPRは、パラメータを再調整して学習部22による学習を実行させるボタンである。
また、表示制御部23は、図11に示すように、学習部22によるデータ変換部222a、データ識別部222bのニューラルネットワーク、異常原因識別部212の機械学習モデルの学習によってノイズ減衰モデルと診断モデルの生成後、表示部5に、学習用データの異常原因種別と、学習用データに対する診断モデルによる正答率、ノイズ減衰部221によるノイズ減衰前後のデータと当該データのデータ番号、又は診断モデルによる診断結果を表示させる。この正答率は、(診断モデルが学習用データが示す異常原因種別と一致する数/学習用データの数)×100で算出することができる。ここでは、処理部2がCPUを含み構成された正答率算出部24を有し、正答率算出部24が正答率を算出する。なお、この正答率は、本明細書又は図面において故障原因識別率とも称する。
また、診断モデルによる診断結果は、本明細書又は図面において判定結果とも称する。また、ノイズ減衰済みデータは、変換モデル学習部222cによる学習後のデータ変換部222aの変換後データと等しく、また、ノイズ減衰前のデータは、変換モデル学習部222cによる学習後のデータ変換部222aの変換前のデータ、すなわち学習用データと等しい。そのため、ノイズ減衰部221によるノイズ減衰前後のデータは、本明細書又は図面において、学習後のデータ変換部222aの変換前後のデータ(以下、単に「変換前後のデータ」ともいう。)とも称する。
上記表示をさせるべく、表示制御部23は、学習データ格納部200から学習用データを、学習後のデータ変換部222aから変換後のデータを、学習後の異常原因識別部212からその識別結果である異常原因種別をそれぞれ取得する。
また、表示制御部23は、図11に示すように、左右ボタンLR、異常診断開始ボタンSを表示部5に表示させる。左右ボタンLRは、変換前後のデータの表示を切り替える。すなわち、左側のボタンを1回押下すると、データ番号が1つ小さい変換前後のデータを表示させ、右側のボタンを1回押下すると、データ番号が1つ大きい変換前後のデータを表示させる。異常診断開始ボタンSは、異常原因種別の識別を開始するためのボタンである。なお、異常診断開始ボタンSは、異常が故障である場合、故障診断開始ボタンSである。
表示制御部23による表示部5への各表示は、診断対象データに対する異常原因を診断する前に行う。
図12は、第2の実施形態に係る異常診断システム1の動作の一例を示す動作フローチャートである。なお、第1の実施形態の動作と同じ動作については、適宜説明を省略する。
図12に示すように、まず、入力部4による学習に関するパラメータの入力を受け付け、パラメータを設定する(ステップS11)。その後、学習部22により、データ変換部222a及びデータ識別部222bのニューラルネットワークを学習させ(ステップS01)、異常原因識別部212の機械学習モデルの学習をさせる(ステップS02)。
各ニューラルネットワーク及び機械学習モデルの学習後、表示制御部23により、表示部5に、確認画面を表示させる(ステップS12)。すなわち、正答率、変換前後のデータ及びそのデータ番号、学習用データの異常原因種別、異常原因識別部212の識別結果を表示させる。ユーザが左右ボタンLRを押下する等して表示部5の表示を確認し、パラメータを再設定する場合は(ステップS13のYES)、ユーザのパラメータ再設定ボタンPRの押下によりステップS11に戻り、パラメータの再設定が不要であれば(ステップS13のNO)、ユーザの異常診断開始ボタンSの押下により、診断対象データを診断し(ステップS03)、表示制御部23によって診断結果を表示部5に表示する(ステップS04)。
(作用・効果)
本実施形態では、表示制御部23は、学習部22によるデータ変換部222a及び異常原因識別部212の学習後、診断対象の異常原因を診断する前に、表示部5に、学習用データに対する診断モデルの正答率、又は、データ変換部222aによる変換前後のデータを表示させるようにした。
これにより、異常原因診断前に、ノイズ減衰モデルと診断モデルの妥当性をユーザが確認することができる。例えば、図11の例で説明すると、波形の学習データにおいて、山の部分が異常を示す特徴部分であり、変換前の波形データが全体的に信号強度が低下するように下側に偏っているノイズが含まれているとすると、変換後の波形データは、全体的に信号強度が増大してノイズが減衰し、特徴部分の山の部分が残されており、ノイズ減衰モデルの処理が妥当な処理となっていることが確認できる。
変形例1として、図13に示すように、表示制御部23は、正答率と、データ番号及び変換前後のデータ、学習用データの異常原因種別、異常原因の識別結果を含む個別のデータ情報とを、模擬データ、実データ毎に並べて表示部5に表示させるようにしても良い。これにより、ユーザは、模擬データを用いた学習の妥当性と、実データを用いた学習の妥当性を比較しながら診断モデルの妥当性を確認することができる。
変形例2として、図14に示すように、表示制御部23は、正答率と上記個別のデータ情報とを模擬データ、実データ毎、且つ異常原因種別毎に並べて表示部5に表示させるようにしても良い。これにより、ユーザは、機械学習モデルの妥当性について、異常原因種別毎に模擬データを用いた学習の妥当性、実データを用いた学習の妥当性を比較して確認することができ、より信頼度の高い異常診断を行うことができる。
変形例3として、図15に示すように、表示制御部23は、ステップS04において、表示部5に、異常原因識別部212の識別結果と、データ変換部222aによる変換前後のデータとを表示させるようにしても良い。これにより、データ変換部222aによってどのような変換がなされているかを確認することができる。すなわち、異常原因識別部212の学習用データ及び学習用データの元となるデータを確認できるので、ユーザによって診断結果に対する信頼性を検証することができる。
(第3の実施形態)
(構成)
第3の実施形態を説明する。第3の実施形態は、第1の実施形態又は第2の実施形態の基本構成と同じである。以下では、第2の実施形態と異なる点のみを説明し、第2の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態の異常原因識別部212の機械学習モデルは、ニューラルネットワークである。学習部22は、データ変換部222a、データ識別部222b、異常原因識別部212のニューラルネットワークを同時に学習させる。図16に示すように、学習部22は、データ変換部222aのニューラルネットワークの出力が、データ識別部222b及び異常原因識別部212の入力となるようにネットワークを構成することで、各ニューラルネットワークの重みを同時に更新する。
具体的には、データ変換部222aが学習データ格納部200から学習用データを取得し、データ変換を行い、データ識別部222b及び異常原因識別部212に変換後のデータを出力する。そして、データ識別部222bが変換後のデータのデータ種別を識別するとともに、異常原因識別部212が、変換後のデータから異常原因種別を識別する。学習部22は、データ識別部222bの識別結果、及び異常原因識別部212の識別結果を受け取り、誤差逆伝播法を用いて、各部211、212、23のニューラルネットワークの重みを更新する。
すなわち、診断モデル学習部223は、異常原因識別部212のニューラルネットワークを、異常原因識別部212の識別結果である異常原因種別と、その識別結果の元となった学習用データの異常原因種別との誤差が改善されるように、誤差逆伝播法を用いて更新させるとともに、識別モデル学習部222dは、データ識別部222bのニューラルネットワークを、データ識別部222bの識別結果であるデータ種別と、その元となった学習用データのデータ種別との誤差が改善されるように、誤差逆伝播法を用いて更新させる。
より詳細には、診断モデル学習部223は、損失関数として式(4)を用いて、異常原因識別部212のニューラルネットワークを学習させ、識別モデル学習部222dは、損失関数として式(1)を用いて、データ識別部222bのニューラルネットワークを学習させる。異常原因識別部212の学習には、学習データ格納部200の学習データのうち、模擬データのみで学習を行わせることができる。
また、変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、入力データに類似しているが、データ識別部222bが正しく識別できず、かつ、異常原因識別部212が正しく識別できるデータをデータ変換部222aが出力するように学習させる。つまり、変換モデル学習部222cは、データ変換部222aのニューラルネットワークを、学習用データとデータ変換部222aの変換後のデータとの誤差、データ識別部222bが出力したデータ種別と、正解となる学習用データのデータ種別を反転させたデータ種別との誤差、及び、異常原因識別部212が出力した異常原因種別と、正解となる学習データの異常原因種別との誤差が改善されるように更新させる。
より詳細には、変換モデル学習部222cは、損失関数として式(5)に基づいて、誤差逆伝播法を用いて更新する処理を一定回数、又は損失関数値が改善しなくなるまで繰り返し、学習させる。
Figure 0006957762
なお、式(5)の学習に関する重みパラメータa、aは、定数としても良いし、試行錯誤により決定しても良いし、また、例えば、aについてはデータ識別部222bのニューラルネットワークの識別精度が高いときにはデータ変換部222aの出力を大きく変動させるために、データ識別部222bのニューラルネットワークの識別率(正答率)や式(1)などの損失関数を変数とする数式としても良い。aについては異常原因識別部212のニューラルネットワークの識別精度が低いときにはデータ変換部222aの出力を大きく変動させるために、当該ニューラルネットワークの識別率(正答率)や式(4)などの損失関数を変数に持つ数式としても良い。
図17は、第1の実施形態をベースにした本実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。図18は、第2の実施形態をベースにした本実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。なお、第1の実施形態、第2の実施形態の動作と同じ動作については、適宜説明を省略する。
本実施形態の動作では、図17及び図18に示すように、図7及び図12のステップS01、S02に代えて、学習部22は、ステップS1aとして、各部222a、222b、212のニューラルネットワークを学習させる。
(作用・効果)
本実施形態では、変換モデル学習部222cは、変換モデルを、学習用データと変換後データとの誤差、データ識別部222bの出力結果と不正解となるデータ種別との誤差、及び、異常原因識別部212の出力結果と正解となる異常原因種別との誤差が小さくなるように更新することでノイズ減衰モデルを生成するようにした。
これにより、ノイズ減衰部221の減衰済みデータについて、異常原因の識別に必要な特徴を強調させることができ、同じ学習回数であっても異常原因識別の精度を向上させることができる。また、少ない学習回数で異常原因識別の精度を向上させることができる。
すなわち、図19に示すように、変換モデル学習部222cは、データ変換部222aのニューラルネットワークの学習において、学習用データとデータ変換部222aの変換後のデータとの誤差、データ識別部222bが出力したデータ種別と、正解となる学習データのデータ種別を反転させたデータ種別との誤差だけでなく、異常原因識別部212が出力した異常原因種別と、正解となる学習用データの異常原因種別との誤差をも改善するようにしたので、データ変換部222aのニューラルネットワークが、異常原因識別部212の出力結果が正解となるように学習されるため、異常原因の識別に必要な特徴が強調させたデータをデータ変換部222aが出力できるようになり、結果として、異常原因種別の識別精度の向上又は学習速度の向上を図ることができる。
(第4の実施形態)
(構成)
第4の実施形態を説明する。第4の実施形態は、第1の実施形態、第2の実施形態又は第3の実施形態の基本構成と同じである。以下では、第3の実施形態と異なる点のみを説明し、第3の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態の学習部22は、異常原因識別部212の診断モデルを2以上生成する。例えば、第1又は第2の実施形態の診断モデル(以下、第1のモデルともいう。)と、第3の実施形態の診断モデル(以下、第2のモデルともいう。)とをそれぞれの手法によりそれぞれ生成する。
また、正答率算出部24は、第1のモデルによる異常原因識別部212の正答率、第2のモデルによる異常原因識別部212の正答率を算出する。この正答率は、上記の通り、(学習後の異常原因識別部212の識別結果が学習用データが示す異常原因種別と一致する数/学習データの数)×100で算出することができる。
異常原因識別部212は、正答率算出部24から各モデルの正答率を受け取り、各モデルの中から診断精度の良いモデルを自身の診断モデルとする。すなわち、正答率が最大となる診断モデルを採用する。
図20は、第4の実施形態に係る異常診断システム1の動作の一例を示す動作フローチャートである。なお、第1、第2、第3の実施形態の動作と同じ動作については、適宜説明を省略する。
図20に示すように、まず、学習部22は、データ変換部222a、データ識別部222bのニューラルネットワークを学習させ(ステップS01)、異常原因識別部212の機械学習モデルを学習させる(ステップS02)。次に、学習部22は、各部222a、222b、223のニューラルネットワークを学習させる(ステップS1a)。なお、ステップS01、S02とステップS1aとは同時並行しても良い。
次に、正答率算出部24により、各機械学習モデルによる異常原因識別部212の正答率をそれぞれ算出する(ステップS21)。異常原因識別部212は、正答率算出部24から各診断モデルの正答率を取得し、最大の正答率のモデルを選択し、異常原因種別を識別するための診断モデルとする(ステップS22)。そして、この異常原因識別部212により、診断対象データを診断し(ステップS03)、その診断結果を表示制御部23により表示部5に表示させる(ステップS04)。
(作用・効果)
本実施形態では、診断モデル学習部223は、診断モデルを2以上生成し、異常原因識別部212の診断モデルは、生成された2以上の診断モデルの中から診断精度の良いモデルとした。
これにより、診断精度を向上させることができる。異常原因識別部212の各診断モデルモデルは、いずれの識別精度が優れているかは、学習回数などの各種パラメータに依存し、実際に検証しなければ分からず、ここでは、正答率算出部24及び異常原因識別部212により検証するようにしたので、診断精度を向上させることができる。
(第5の実施形態)
(構成)
第5の実施形態を説明する。第5の実施形態は、第4の実施形態の基本構成と同じである。以下では、第4の実施形態と異なる点のみを説明し、第4の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態では、図21に示すように、表示制御部23は、診断モデル学習部223で生成された診断モデルに対し、当該診断モデルの正答率と、ノイズ減衰部221の減衰前後のデータ(変換前後のデータ)とを、表示部5に表示させる。表示制御部23は、正答率を例えば正答率算出部24から取得する。また、入力部4は、表示部5に表示された機械学習モデルのユーザによる選択を受け付ける。表示制御部23は、当該選択を受け付ける選択部SLを表示部5に表示させる。
図22は、第5の実施形態に係る異常診断システム1の動作の一例を示す動作フローチャートである。なお、第4の動作と同じ動作については、適宜説明を省略する。
本実施形態では、図22に示すように、図20のステップS22に代えて、診断モデル学習部223により生成された各診断モデルについて、表示制御部23により、正答率と、変換前後のデータとを表示部5に表示させる(ステップS31)。そして、入力部4によって、ユーザによる診断モデルの選択を受け付け(ステップS32)、異常原因識別部212の診断モデルを選択された診断モデルとし、この異常原因識別部212により、診断対象データを診断し(ステップS03)、その診断結果を表示制御部23により表示部5に表示させる(ステップS04)。
(作用・効果)
本実施形態では、診断モデル学習部223は、診断モデルを2以上生成し、表示制御部23は、表示部5に、各診断モデルについて、診断モデルの正答率とノイズ減衰部221による減衰前後のデータとを表示させるようにした。これにより、ユーザが診断モデルの妥当性を検討することができる。その上でより妥当性のある診断モデルを採用し、異常原因診断をすることができる。
(第6の実施形態)
第6の実施形態を説明する。第6の実施形態は、第1乃至第5の実施形態の何れかの基本構成と同じである。以下では、第5の実施形態と異なる点のみを説明し、第5の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
本実施形態の入力部4は、変換モデル学習部222cにおいてノイズ減衰モデルの生成で用いられるハイパーパラメータの入力を受け付ける。このハイパーパラメータは、変換モデルを構成するニューラルネットワークのパラメータであり、ここでは、変換モデル学習部222cで用いる式(3)又は式(5)の重みパラメータaである。入力部4は、この重みパラメータaの入力を学習用データが模擬データか実データかのデータ種別に応じて受け付ける。変換モデル学習部222cは、入力部4から入力された重みパラメータaを個別に設定する。
このように、本実施形態では、変換モデル学習部222cは、入力部4により受け付けたハイパーパラメータを、データ識別部222bの出力結果とその正解となる教師データとの誤差に乗算し、ノイズ減衰モデルを生成するようにした。
これにより、データ変換部222aの変換後データを、模擬データと実データのどちらに近い出力とするかを調整することができる。例えば、実データにのみノイズが含まれており、模擬データにノイズが含まれていない場合、実データに対する重みパラメータを0とすることで、データ変換部222aをノイズフィルタとして機能させ、ノイズを含む実データをデータ変換部222aにより変換した後のデータを入力とするデータ識別部222bによるデータ種別の識別を行わないようにし、ノイズを誤って学習することを防止することができる。すなわち、実データに含まれるノイズを異常原因識別部212の機械学習モデルの学習に反映させずに済む。そのため、異常原因の識別精度を向上させることができる。
また、表示制御部23により、表示部5に、ノイズ減衰部221の減衰前後のデータ(変換前後のデータ)を表示させるので、変換前後のデータからノイズが除去されていることを目視確認することができるため、異常原因識別部212の診断モデルがノイズの影響を受けずに識別することが判断でき、診断結果の信頼性を向上させることができる。
(第7の実施形態)
(構成)
第7の実施形態を説明する。第7の実施形態は、第6の実施形態の基本構成と同じである。以下では、第6の実施形態と異なる点のみを説明し、第6の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
図23は、第7の実施形態に係る異常診断システムの構成を示す図である。本実施形態の異常診断システム1は、調整部25を備える。調整部25は、CPUを含み構成され、ノイズ減衰モデルの生成で用いられるハイパーパラメータを調整する。変換モデル学習部222cは、調整部25により調整されたハイパーパラメータを用いて変換モデルを更新することでノイズ減衰モデルを生成する。
表示制御部23は、表示部5に、調整部25の調整を受け付けるための調整受付画像と、診断モデルの正答率、又は、ノイズ減衰部221による減衰前後のデータを含む調整結果とを、表示部5の同一の表示画面に表示させる。調整受付画像は、図24に示すように、例えば、スライドバー51とスライドバー51上のつまみ52とから構成され、ユーザは、マウスなどの入力部4を介してつまみ52をスライドバー51上にスライドさせ、重みパラメータaを調整する。つまみ52の位置をx(0≦x≦1)としたとき、調整部25は、学習用データが模擬データの場合の重みパラメータaをx倍、学習データが実データの場合の重みパラメータaを(1−x)倍とする。
図25は、第7の実施形態の異常診断システム1の動作の一例を示す動作フローチャートである。なお、第6の実施形態の動作と同じ動作については、適宜説明を省略する。
図25に示すように、調整部25により、重みパラメータaを調整する(ステップS41)。学習部22は、調整後の重みパラメータaを用いて各部222a、222bのニューラルネットワークを学習させ(ステップS42)、更に、その学習の完了後、学習後のデータ変換部222aの変換後データ、すなわちノイズ減衰部221の減衰済みデータを用いて、異常原因識別部212の機械学習モデルを学習させることで診断モデルを生成する(ステップS43)。
そして、表示制御部23により、表示部5の調整受付画面が表示された画面と同一の表示画面に、診断モデルの正答率、又は、ノイズ減衰部221の減衰前後のデータ(データ変換部222aによる変換前後のデータ)を含む調整結果を表示させる(ステップS44)。
次に、入力部4により、表示部5に表示された異常診断開始ボタンSが押下されていない場合(ステップS45のNO)、つまり、ユーザにより調整結果が妥当でないと判断される場合は、異常診断を開始せず、ステップS41に戻り、重みパラメータaを調整する。一方、入力部4により、表示部5に表示された異常診断開始ボタンSが押下された場合(ステップS45のYES)、つまり、ユーザにより調整結果が妥当と判断される場合は、異常診断を開始し、異常原因識別部212により診断対象データを診断し(ステップS03)、表示制御部23により診断結果を表示部5に表示する(ステップS04)。
なお、図26に示すように、図25のステップS42及びS43に代えて、第3の実施形態と同様に、学習部22は、調整部25による調整後の重みパラメータaを用いて各部222a、222b、223のニューラルネットワークを学習させても良い(ステップS45a)。
(作用・効果)
本実施形態の異常診断システム1は、重みパラメータaを調整する調整部25を備え、変換モデル学習部222cは、調整された重みパラメータaを用いて変換モデルを更新することで診断モデルを生成するようにした。そして、表示制御部23は、調整部23の調整を受け付けるための調整受付画像と、診断モデルの正答率、又は、ノイズ減衰部221による減衰前後のデータを含む調整結果とを、表示部5の同一の表示画面に表示させるようにした。
これにより、調整結果を見ながら、ユーザが重みパラメータaを調整できるため、利便性が向上する。すなわち、重みパラメータaの調整のための画面と、その調整結果である正答率や減衰前後のデータ(変換前後のデータ)との表示画面とを切り替えて重みパラメータaを調整する煩雑な作業をせずに済む。
本実施形態の変形例1として、図27に示すように、表示制御部23は、正答率と、データ番号及び減衰前後のデータ(変換前後のデータ)、学習データの異常原因種別、異常原因の識別結果を含む個別のデータ情報とを模擬データ、実データ毎に並べて、表示部5の調整受付画像が表示される表示画面に表示させるようにしても良い。これにより、ユーザは、模擬データを用いた学習の妥当性と、実データを用いた学習の妥当性を比較しながら診断モデルの妥当性を確認することができる。
変形例2として、図28に示すように、表示制御部23は、正答率と上記個別のデータ情報とを模擬データ、実データ毎、且つ異常原因種別毎に並べて、表示部5の調整受付画像が表示される表示画面に表示させるようにしても良い。これにより、ユーザは、診断モデルの妥当性について、異常原因種別毎に模擬データを用いた学習の妥当性、実データを用いた学習の妥当性を比較して確認することができ、より信頼度の高い異常診断を行うことができる。
(他の実施形態)
本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
第1乃至第7の実施形態では、異常診断システム1が表示部5を備えるようにしたが、表示部5は必ずしも備えていなくても良い。例えば、異常診断システム1は、外部からの要求に応じて、異常原因識別部212の識別結果や、正答率、データ変換部222aによる変換前後のデータなどを出力し、外部の表示装置に表示させるようにしても良い。このような異常診断システム1は、例えば単一又はコンピュータで構成されたサーバである。
1 異常診断システム
2 処理部
21 診断部
211 データ処理部
212 異常原因識別部
22 学習部
221 ノイズ減衰部
222 ノイズ減衰モデル生成部
222a データ変換部
222b データ識別部
222c 変換モデル学習部
222d 識別モデル学習部
223 診断モデル学習部
23 表示制御部
24 正答率算出部
25 調整部
3 記憶部
4 入力部
5 表示部
51 スライドバー
52 つまみ
100 データ取得部
200 学習データ格納部

Claims (13)

  1. 診断対象の異常原因を診断する異常診断システムであって、
    モデルに基づいて前記診断対象の異常原因の種類を識別する診断部と、
    前記モデルを機械学習により生成する学習部と、
    を備え、
    前記診断部は、
    前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理部と、
    前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別部と、
    を有し、
    前記診断モデルが機械学習モデルであり、
    前記学習部は、
    前記診断モデルを機械学習により生成する診断モデル学習部と、
    入力されたデータから前記ノイズを除去するノイズ減衰モデルに基づいて、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰部と、
    前記ノイズ減衰モデルを生成するノイズ減衰モデル生成部と、
    を有し、
    前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、
    前記診断モデル学習部は、
    前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成し、
    前記ノイズ減衰モデル生成部は、
    前記学習用データを変換する変換モデルに基づいて、前記学習用データを変換して変換後データを出力するデータ変換部と、
    前記変換後データが入力されることで前記学習用データのデータ種別を識別する識別モデルに基づいて、前記学習用データが前記模擬データか前記実データかを示すデータ種別を識別するデータ識別部と、
    前記変換モデルを機械学習により更新することで、前記学習用データが入力されると前記減衰済みデータを出力するノイズ減衰モデルを生成する変換モデル学習部と、
    前記識別モデルを機械学習により更新する識別モデル学習部と、
    を有し、
    前記識別モデル及び前記変換モデルは、ニューラルネットワークであり、
    前記識別モデル学習部は、
    前記識別モデルが前記変換後データから前記学習用データのデータ種別を正しく識別するモデルとなるように前記識別モデルを生成し、
    前記変換モデル学習部は、
    前記変換モデルを、前記学習用データに類似しているが、前記データ識別部が正しく識別できないように前記変換後データを出力するよう更新することにより、前記ノイズ減衰モデルを生成し、
    前記データ処理部は、
    前記変換モデル学習部により生成された前記ノイズ減衰モデルに基づいて、前記診断対象から出力されたデータから前記前処理済みデータを生成する、
    常診断システム。
  2. 前記変換モデル学習部は、前記変換モデルを、前記データ識別部の出力した前記データ種別が前記学習用データのデータ種別と反転するように更新する、
    請求項2記載の異常診断システム。
  3. 前記変換モデル学習部は、
    前記変換モデルを、
    前記学習用データと前記変換後データとの誤差、及び、
    前記データ識別部の出力結果と不正解となる前記データ種別との誤差が小さくなるように更新することで前記ノイズ減衰モデルを生成する、
    請求項2又は3記載の異常診断システム。
  4. 前記変換モデル学習部は、
    前記変換モデルを、
    前記学習用データと前記変換後データとの誤差、
    前記データ識別部の出力結果と不正解となる前記データ種別との誤差、及び、
    前記異常原因識別部の出力結果と正解となる前記異常原因種別との誤差が小さくなるように更新することで前記ノイズ減衰モデルを生成する、
    請求項2〜4の何れか記載の異常診断システム。
  5. 前記診断モデル学習部は、前記診断モデルを2以上生成し、
    前記異常原因識別部の前記診断モデルは、前記生成された2以上の前記診断モデルの中から診断精度の良いモデルである、
    請求項2〜5の何れか記載の異常診断システム。
  6. 前記ノイズ減衰モデルの生成で用いられるハイパーパラメータの入力を受け付ける入力部を備え、
    前記ハイパーパラメータは、前記学習用データが前記模擬データか前記実データかのデータ種別に応じたパラメータであり、
    前記変換モデル学習部は、
    前記ハイパーパラメータを、前記データ識別部の出力結果とその正解となる教師データとの誤差に乗算し、前記ノイズ減衰モデルを生成する、
    請求項2〜6の何れか記載の異常診断システム。
  7. 前記異常原因識別部の識別結果を表示部に表示させる表示制御部を備える、
    請求項2〜7の何れか記載の異常診断システム。
  8. 前記表示制御部は、前記診断対象の異常原因を診断する前に、前記表示部に、前記診断モデルの正答率、又は、前記ノイズ減衰部による減衰前後のデータを表示させる、
    請求項8記載の異常診断システム。
  9. 前記表示制御部は、前記表示部に、前記識別結果と前記ノイズ減衰部による前記減衰前後のデータを表示させる、
    請求項8又は9記載の異常診断システム。
  10. 前記診断モデル学習部は、前記診断モデルを2以上生成し、
    前記表示制御部は、前記表示部に、各前記診断モデルについて、前記診断モデルの正答率と前記ノイズ減衰部による減衰前後のデータとを表示させる、
    請求項8〜10の何れか記載の異常診断システム。
  11. 前記ノイズ減衰モデルの生成で用いられるハイパーパラメータを調整する調整部を備え、
    前記変換モデル学習部は、前記調整された前記ハイパーパラメータを用いて前記変換モデルを更新することで診断モデルを生成し、
    前記表示制御部は、
    前記調整部の前記調整を受け付けるための調整受付画像と、
    前記診断モデルの正答率、又は、前記ノイズ減衰部による減衰前後のデータを含む調整結果とを、
    前記表示部の同一の表示画面に表示させる、
    請求項8〜11の何れか記載の異常診断システム。
  12. 診断対象の異常原因を診断する異常診断方法であって、
    モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、
    前記モデルを機械学習により生成する学習ステップと、
    を備え、
    前記診断ステップは、
    前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、
    前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、
    を有し、
    前記診断モデルが機械学習モデルであり、
    前記学習ステップは、
    前記診断モデルを機械学習により生成する診断モデル学習ステップと、
    入力されたデータから前記ノイズを除去するノイズ減衰モデルに基づいて、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、
    前記ノイズ減衰モデルを生成するノイズ減衰モデル生成ステップと、
    を有し、
    前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、
    前記診断モデル学習ステップは、
    前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成し、
    前記ノイズ減衰モデル生成ステップは、
    前記学習用データを変換する変換モデルに基づいて、前記学習用データを変換して変換後データを出力するデータ変換ステップと、
    前記変換後データが入力されることで前記学習用データのデータ種別を識別する識別モデルに基づいて、前記学習用データが前記模擬データか前記実データかを示すデータ種別を識別するデータ識別ステップと、
    前記変換モデルを機械学習により更新することで、前記学習用データが入力されると前記減衰済みデータを出力するノイズ減衰モデルを生成する変換モデル学習ステップと、
    前記識別モデルを機械学習により更新する識別モデル学習ステップと、
    を有し、
    前記識別モデル及び前記変換モデルは、ニューラルネットワークであり
    前記識別モデル学習ステップは、
    前記識別モデルが前記変換後データから前記学習用データのデータ種別を正しく識別するモデルとなるように前記識別モデルを生成し、
    前記変換モデル学習ステップは、
    前記変換モデルを、前記学習用データに類似しているが、前記データ識別ステップが正しく識別できないように前記変換後データを出力するよう更新することにより、前記ノイズ減衰モデルを生成し、
    前記データ処理ステップは、
    前記変換モデル学習ステップにより生成された前記ノイズ減衰モデルに基づいて、前記診断対象から出力されたデータから前記前処理済みデータを生成する、
    異常診断方法。
  13. 診断対象の異常原因を診断する異常診断プログラムであって、
    コンピュータに、
    モデルに基づいて前記診断対象の異常原因の種類を識別する診断ステップと、
    前記モデルを機械学習により生成する学習ステップと、
    を実行させ、
    前記診断ステップは、
    前記診断対象から出力されたデータが入力されると、当該データから前記異常原因の種類を識別可能にする特徴部分以外の特徴部分であるノイズが減衰された前処理済みデータを生成するデータ処理ステップと、
    前記前処理済みデータが入力されると前記診断対象の異常原因種別を出力する診断モデルに基づいて、前記診断対象の異常原因の種類を識別する異常原因識別ステップと、
    を有し、
    前記診断モデルが機械学習モデルであり、
    前記学習ステップは、
    前記診断モデルを機械学習により生成する診断モデル学習ステップと、
    入力されたデータから前記ノイズを除去するノイズ減衰モデルに基づいて、前記診断モデルの機械学習のための学習用データから前記ノイズが減衰された減衰済みデータを生成するノイズ減衰ステップと、
    前記ノイズ減衰モデルを生成するノイズ減衰モデル生成ステップと、
    を有し、
    前記学習用データは、前記診断対象の異常を模擬した模擬データ又は前記診断対象の異常を示す実データであり、
    前記診断モデル学習ステップは、
    前記減衰済みデータを学習データとし、前記異常原因種別を教師データとして機械学習により前記診断モデルを生成し、
    前記ノイズ減衰モデル生成ステップは、
    前記学習用データを変換する変換モデルに基づいて、前記学習用データを変換して変換後データを出力するデータ変換ステップと、
    前記変換後データが入力されることで前記学習用データのデータ種別を識別する識別モデルに基づいて、前記学習用データが前記模擬データか前記実データかを示すデータ種別を識別するデータ識別ステップと、
    前記変換モデルを機械学習により更新することで、前記学習用データが入力されると前記減衰済みデータを出力するノイズ減衰モデルを生成する変換モデル学習ステップと、
    前記識別モデルを機械学習により更新する識別モデル学習ステップと、
    を有し、
    前記識別モデル及び前記変換モデルは、ニューラルネットワークであり、
    前記識別モデル学習ステップは、
    前記識別モデルが前記変換後データから前記学習用データのデータ種別を正しく識別するモデルとなるように前記識別モデルを生成し、
    前記変換モデル学習ステップは、
    前記変換モデルを、前記学習用データに類似しているが、前記データ識別ステップが正しく識別できないように前記変換後データを出力するよう更新することにより、前記ノイズ減衰モデルを生成し、
    前記データ処理ステップは、
    前記変換モデル学習ステップにより生成された前記ノイズ減衰モデルに基づいて、前記診断対象から出力されたデータから前記前処理済みデータを生成する、
    異常診断プログラム。
JP2020539935A 2018-08-29 2018-08-29 異常診断システム、方法及びプログラム Active JP6957762B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032026 WO2020044477A1 (ja) 2018-08-29 2018-08-29 異常診断システム、方法及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2020044477A1 JPWO2020044477A1 (ja) 2021-08-10
JP6957762B2 true JP6957762B2 (ja) 2021-11-02

Family

ID=69643523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539935A Active JP6957762B2 (ja) 2018-08-29 2018-08-29 異常診断システム、方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6957762B2 (ja)
WO (1) WO2020044477A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220142614A1 (en) * 2020-11-09 2022-05-12 Siemens Medical Solutions Usa, Inc. Ultrasound-derived proxy for physical quantity
JP2024009613A (ja) * 2022-07-11 2024-01-23 株式会社日本製鋼所 推定方法、推定装置及びコンピュータプログラム
JP7214176B1 (ja) 2022-07-29 2023-01-30 国立大学法人茨城大学 建物の健全性評価方法及びシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259054A (ja) * 1991-02-13 1992-09-14 Ono Sokki Co Ltd パターン認識方法及び装置
JPH09166483A (ja) * 1995-12-19 1997-06-24 Hitachi Ltd 機器監視方法及びその装置
JP2005140707A (ja) * 2003-11-07 2005-06-02 Matsushita Electric Works Ltd 特徴音抽出装置、特徴音抽出方法、製品評価システム
JP2009146149A (ja) * 2007-12-13 2009-07-02 Panasonic Electric Works Co Ltd 信号識別方法及び信号識別装置
JP6766374B2 (ja) * 2016-02-26 2020-10-14 沖電気工業株式会社 分類装置、分類方法、プログラム、及びパラメータ生成装置

Also Published As

Publication number Publication date
WO2020044477A1 (ja) 2020-03-05
JPWO2020044477A1 (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6957762B2 (ja) 異常診断システム、方法及びプログラム
Jonassen et al. Learning to troubleshoot: A new theory-based design architecture
CN110389969A (zh) 提供定制的学习内容的系统和方法
US10957216B2 (en) Assessing a training activity performed by a user in an interactive computer simulation
US10991262B2 (en) Performance metrics in an interactive computer simulation
US20180100894A1 (en) Automatic Generation of Test Sequences
JP6730340B2 (ja) 因果推定装置、因果推定方法、及びプログラム
JP6989860B2 (ja) 画像検査装置、画像検査方法及びプログラム
US20200409823A1 (en) Method and apparatus for optimal distribution of test cases among different testing platforms
Taylor et al. Verification and validation of neural networks: a sampling of research in progress
WO2021195970A1 (zh) 工业系统的预测模型学习方法、装置和系统
Perry ‘Phantom’compositional effects in English school value-added measures: the consequences of random baseline measurement error
CN108628265A (zh) 用于运行自动化装置的方法和自动化装置
US20210216901A1 (en) Estimation system, estimation method, and estimation program
JP2019206041A5 (ja) 情報処理装置、ロボット制御装置、情報処理方法及びプログラム
CN117836638A (zh) 具有机器学习波形生成的数字孪生,包括用于被测设备仿真的参数控制
KR102156931B1 (ko) 블록 코딩된 프로그램 코드의 평가 장치, 시스템, 방법 및 기록 매체에 저장된 프로그램
TW202006652A (zh) 具輔助判斷功能之產品測試系統及應用於其上的產品測試輔助方法
JP2019091367A (ja) 情報処理装置、情報処理方法及び情報処理プログラム
CN117319223A (zh) 一种基于数字孪生技术的领导驾驶舱可视化方法及系统
US20230134186A1 (en) Machine learning data generation device, machine learning model generation method, and storage medium
CN110322098B (zh) 交互式计算机模拟期间的标准操作程序反馈
US20140039867A1 (en) Information processing apparatus and method thereof
US11922827B2 (en) Learning management systems and methods therefor
JP6249803B2 (ja) インバータ試験システム

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20201217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6957762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150