JP6956081B2 - ロボットシステム及びロボットシステムをバックドライブする方法 - Google Patents

ロボットシステム及びロボットシステムをバックドライブする方法 Download PDF

Info

Publication number
JP6956081B2
JP6956081B2 JP2018524212A JP2018524212A JP6956081B2 JP 6956081 B2 JP6956081 B2 JP 6956081B2 JP 2018524212 A JP2018524212 A JP 2018524212A JP 2018524212 A JP2018524212 A JP 2018524212A JP 6956081 B2 JP6956081 B2 JP 6956081B2
Authority
JP
Japan
Prior art keywords
joint
virtual
joints
controller
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018524212A
Other languages
English (en)
Other versions
JP2019500925A (ja
Inventor
ポスト,ニコラス・ジョン
Original Assignee
マコ サージカル コーポレーション
マコ サージカル コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マコ サージカル コーポレーション, マコ サージカル コーポレーション filed Critical マコ サージカル コーポレーション
Publication of JP2019500925A publication Critical patent/JP2019500925A/ja
Application granted granted Critical
Publication of JP6956081B2 publication Critical patent/JP6956081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/10Furniture specially adapted for surgical or diagnostic appliances or instruments
    • A61B50/13Trolleys, e.g. carts

Description

[関連出願の相互参照]
本出願は、2015年11月11日に出願された米国仮特許出願第62/253,994号及び2015年11月16日に出願された米国仮特許出願第62/255,610号の利益を主張し、各々の内容は引用することによりその全体が本明細書の一部をなすものとする。
本発明は、包括的には、ロボットシステム及びロボットシステムによって使用されるバックドライブの方法に関する。
ロボット工学における力制御は、従来、インピーダンス制御又はアドミタンス制御を用いて実施されている。図1に、インピーダンス制御フィードバックループの一例を示す。インピーダンス制御により、ロボットの関節の位置がコントローラに入力され、ロボットの移動を制御する関節トルクが出力され適用される。言い換えれば、インピーダンスコントローラは、位置を決定し、力/トルクを加える(又は指令する)。図1では、インピーダンスコントローラは、関節に特定の関節トルクを加える。ロボットが、例えば関節のうちの1つに作用している外力を受ける場合、インピーダンス制御システムは、こうした力を計算又は測定しない。代わりに、インピーダンスコントローラは、単に、ロボット位置を再度決定し、加えられる必要な力を再計算する。
従来のインピーダンス制御は、堅い環境と接触しているときは安定した制御を提供することができ、柔らかい環境と係合しているときは軽い感触を提供することができる。しかしながら、インピーダンス制御は、ロボットの動きを制限する、触覚境界線等、剛性仮想拘束と相互作用しているとき、ロボットに対して不安定な不正確な感触を与える可能性があり、誤りをもたらす可能性がある。
一方、アドミタンス制御は、インピーダンス制御の逆である。図2に、アドミタンス制御フィードバックループの一例を示す。アドミタンス制御では、位置を決定して力を指令するのではなく、代わりに、コントローラは、加えられる力/トルクを決定し、位置を指令する。システムに対する入力された力を検出するために、力−トルクセンサ又は関節トルク測定が使用される。アドミタンスコントローラは、検出された入力された力に基づき、かつ測定された関節角度に基づいて関節の現位置を知ることにより、それに従って関節を動かすために決定された関節トルクを加えることによって、関節の新たな位置を指令する。
従来のアドミタンス制御は、ロボットに対して安定した堅い感触を与えることができ、触覚境界線等の仮想拘束と相互作用しているときの誤りを低減させることができる。しかしながら、アドミタンス制御を受けるロボットは、ユーザに対して重く感じられる可能性があり、堅い環境と接触しているときに過剰反応する可能性がある。重要なことには、関節のうちの1つ以上に作用している外力(複数の場合もある)を測定するために力/トルクセンサ又は関節トルクを利用する単一アドミタンスコントローラを使用することにより、著しい難題がもたらされる。主に、ロボットがこうした外力を受ける場合、外力が加えられる位置(複数の場合もある)(例えば、関節(複数の場合もある))が未知であり、それにより、ロボットの望ましくない動的挙動がもたらされる可能性がある。
ロボット手術システムの一実施の形態が提供される。ロボット手術システムは、手術器具と、手術器具を支持するマニピュレータとを備える。マニピュレータは、複数の関節及び複数の関節アクチュエータを備える。コントローラが、マニピュレータと通信し、仮想シミュレーションにおいて、仮想質量を有する仮想剛体として手術器具を表すことにより、手術器具の動力学をシミュレートするように構成されている。仮想質量は、関節のうちの少なくとも1つの周りの慣性を有する。コントローラは、少なくとも1つの関節に対して予測関節トルクを求めるように構成される。コントローラは、少なくとも1つの関節の予測関節トルクを実際の関節トルクと比較して関節トルク差を求める。少なくとも1つの関節の周りの仮想質量の慣性が求められる。コントローラは、関節トルク差及び慣性を用いて少なくとも1つの関節の周りの角加速度を計算する。角加速度が仮想質量に投影されて外力が求められる。コントローラは、仮想シミュレーションにおいて外力に応じて手術器具の動力学をシミュレートする。関節アクチュエータの動作が、仮想シミュレーションに従って指令される。
ロボット手術システムを操作する方法の一実施の形態が提供される。ロボット手術システムは、手術器具と、手術器具を支持し、複数の関節及び複数のアクチュエータを備えるマニピュレータと、マニピュレータと通信するコントローラとを備える。仮想シミュレーションが、仮想質量を有する仮想剛体として手術器具を表す。仮想質量は、関節のうちの少なくとも1つの周りの慣性を有する。本方法は、コントローラにより、少なくとも1つの関節に対して予測関節トルクを求めることを含む。コントローラは、少なくとも1つの関節の予測関節トルクを実際の関節トルクと比較して関節トルク差を求める。少なくとも1つの関節の周りの仮想質量の慣性が求められる。コントローラは、関節トルク差及び慣性を用いて少なくとも1つの関節の周りの角加速度を計算する。角加速度が仮想質量に投影されて外力が求められる。コントローラは、仮想シミュレーションにおいて外力に応じて手術器具の動力学をシミュレートする。関節アクチュエータの動作が、仮想シミュレーションに従って指令される。
ロボットシステムをバックドライブする方法の一実施の形態が提供される。ロボットシステムは、器具と、器具を支持し、複数の関節及び複数のアクチュエータを備えるマニピュレータと、マニピュレータと通信するコントローラとを備える。仮想シミュレーションが、仮想質量を有する仮想剛体として器具を表す。仮想質量は、関節の各々の周りの慣性を有する。本方法は、コントローラにより、各関節に対して個々に、予測関節トルクを求めることを含む。コントローラは、各関節に対して個々に、予測関節トルクを実際の関節トルクと比較して関節トルク差を求める。コントローラは、各関節の周りの仮想質量の慣性を個々に求める。関節トルク差及び慣性を用いて、各関節の周りの角加速度が個々に計算される。複数の関節の角加速度を組み合わせて使用して、2自由度以上で仮想質量の加速度が取得される。コントローラは、2自由度以上で角加速度を仮想質量に投影して外力を求める。コントローラは、仮想シミュレーションにおいて外力に応じて手術器具の動力学をシミュレートする。関節アクチュエータの動作が、仮想シミュレーションに従って指令される。
本システム及び方法は、コントローラと互換性のある外力を求めることにより、少なくとも上述した問題を解決する。すなわち、本システム及び方法は、単一アドミタンスコントローラによって問題を解決する。主に、ロボットがこうした外力を受けるとき、関節トルクを使用して、外力が加えられる位置(例えば、関節)が求められる。本システム及び方法は、有利には、関節トルクを、ユーザが入力した力をシステムに提供する力/トルクセンサとともに使用される同じアドミタンスコントローラと互換性のある外力に変換する。したがって、本システム及び方法は、既存のアドミタンス制御方式と自然に統合する。さらに、仮想シミュレーションにおいて加えられた外力の位置を考慮することにより、ロボットの動的挙動はより予測可能となり、それにより、ロボットのロバスト性が向上し制御が強化される。ロボットシステムのユーザは、マニピュレータを、手術器具に力を加えることにより、かつマニピュレータに外力を加えることによってマニピュレータをバックドライブすることにより、制御することができる。これにより、ユーザは、マニピュレータを全体的に容易に位置決めすることができる。代替的に、仮想シミュレーションにおいて、加えられる外力を考慮することにより、本システム及び方法は、マニピュレータとマニピュレータに近接する物体との間の望ましくない衝突に反応することができる。さらに、各関節に対して本方法の記載されているステップを個々に行うことにより、ロボットの結果としての動きが自然であり、インピーダンス制御ロボットの動きをまねる。したがって、本システム及び方法は、有利に、インピーダンス制御システム及びアドミタンス制御システムの利益を提供する。
本発明の利点は、添付図面とともに考慮したときに、以下の詳細な説明を参照することで本発明がより良く理解されるにつれて、容易に理解される。
従来のインピーダンス制御ループの一例のフローチャートである。 従来のアドミタンス制御ループの一例のフローチャートである。 一実施形態による、マニピュレータ、コントローラ及び器具を備えるロボットシステムの斜視図である。 一実施形態によるロボットシステムのマニピュレータの正面図である。 一例による、コントローラとマニピュレータとの間の相互作用を示すロボットシステムのブロック図である。 本方法による改善されたアドミタンス制御ループの例示的なフローチャートである。 関節に加えられる外力が、器具に対応する仮想質量に関節の角加速度を投影して仮想質量の加速度を求めることによって計算される、本方法によって採用される計算の概念化の図である。 従来の技法による、外力の一例に応答する関節運動を示すグラフである。 従来の技法による、外力の別の例に応答する関節運動を示すグラフである。 本方法によって実行される計算の簡易化されたフローチャートである。 本方法のバックドライブ技法による、2つの姿勢の間のマニピュレータの動きの一例を示す、図4のマニピュレータの側面図である。 図8において加えられた外力の同じ例に応答する、本方法による関節運動を示すグラフである。 本方法のバックドライブ技法による2つの姿勢の間のマニピュレータの動きの別の例を示す、図4のマニピュレータの側面図である。 図9において加えられた外力の同じ例に応答する、本方法による関節運動を示すグラフである。
同様の数字がそれぞれの図を通して同様の又は対応する部分を示す、図を参照すると、全体を通してロボット手術システム(以下、「システム」)10及びそれを操作する方法が示されている。
図3に示すように、システム10は、手術処置中に骨又は軟組織等、患者の解剖学的構造から物質を切り取るロボット手術システムである。解剖学的構造は、大腿骨、脛骨、骨盤、又は患者の他の任意の解剖学的部分とすることができる。手術処置は、部分又は全膝関節又は股関節置換手術を含むことができる。システム10はまた、単顆、二顆又は全人工膝関節を含む、人工股関節及び人口膝関節等の外科用インプラントによって置換される物質を切り取るようにも設計することができる。本明細書に開示するシステム10及び方法は、代替的に、外科手術又は非外科手術の他の処置を行うために使用することができ、又は、産業応用若しくはロボットシステムが利用される他の応用で使用することができる。
図3に示すように、システム10はマニピュレータ14を備える。マニピュレータ14は、ベース16及びアーム(リンク機構)18を有する。マニピュレータ14は、手術部位の近くでマニピュレータ14を移動させるためのポータブルカート19に結合することができる。アーム18は、相互接続されている複数のリンク20を備えることができる。これらのリンク20は、直列に及び/又は並列に互いに接続することができる。したがって、マニピュレータは、直列腕構成又は並列腕構成を有することができる。
マニピュレータ14は、複数の関節22を備える。隣接するリンク20の各対は、関節22のうちの1つによって接続されている。各関節22において、隣接するリンク20の間に配置された関節モータ24等のアクチュエータがある。関節モータ24は、リンク20を回転させるように構成されている。したがって、リンク20の位置は、関節モータ24によって設定される。
各関節モータ24は、マニピュレータの内部の構造フレームに取り付けることができる。一例では、関節モータ24は、永久磁石ブラシレスモータ等のサーボモータである。しかしながら、関節モータ24は、同期モータ、ブラシ式DCモータ、ステッピングモータ、誘導モータ等、他の構成を有することができる。
各関節22は、関節モータ24のうちの1つによって能動的に駆動される。本明細書に記載する方法の利用は、時に、関節22のうちのいくつかが受動的であるという印象を与える場合があり、それは、関節22が、(ドア継手と同様に)ユーザによってかけられる力によって直接移動することを意味する。しかしながら、本明細書に記載する実施形態における関節22は、受動的ではない。システム10及び方法は、関節22を能動的に駆動し、それにより、マニピュレータ14に加えられる決定された力に応じてマニピュレータ14の制御を指令することにより、受動的挙動をまねる。この挙動について詳細に後述する。
関節モータ24は、以降関節角度と呼ぶ複数の角度位置のうちの1つに配置される。関節角度は、隣接するリンク20の間の関節22の角度である。各関節モータ24に位置センサ26を備えることができる。代替的に、その特定の関節モータ24によって駆動される各リンク20に、位置センサ26を備えることができる。位置センサ26の一例は、それぞれの関節22の関節角度を測定するエンコーダである。幾つかの実施形態では、関節モータ24用の1つと移動するリンク20用の1つとである2つのエンコーダを使用して、関節角度を平均すること等により、関節角度と、コンプライアンス伝達を通してのモータと関節との間の変位とを求めることができる。
各関節22は、関節トルクを受けるように構成されている。関節トルクは、関節22の回す又はひねる「力」であり、関節22の枢支点から或る長さにおいて加えられる力の関数である。関節22の関節トルクを測定するために、1つ以上の関節モータ24にトルクセンサ28を接続することができる。代替的に、関節モータ24に印加される電流を表す信号を使用して、関節トルクを測定することができる。
図3に示すように、手術器具等の器具30は、マニピュレータ14に結合し、手術環境、より具体的には解剖学的構造と相互作用するように、ベース16に対して移動可能である。マニピュレータ14は、器具30を支持する。器具30は、アーム18の遠位端に接続されている。マニピュレータ14は、器具30が患者に対して意図された医療/手術処置を行うように、器具30を位置付けかつ方向づける。器具30は、システム10の操作者によって把持される。器具30は、手術部位において患者の組織と接触するように設計されたエネルギーアプリケータ32を含む。エネルギーアプリケータ32は、ドリル、バー、矢状鋸刃、超音波振動チップ、プローブ、スタイラス等とすることができる。器具30及びマニピュレータ14は、座標系に対して物理的に移動する。一実施形態では、座標系は、マニピュレータ14の関節角度全てを含むベクトルを備えた関節空間である。マニピュレータ14及び器具30は、様々な構成で配置することができる。
図4に、マニピュレータ14の一例を示す。この例では、マニピュレータ14は、直列アーム構成を有する。より具体的には、マニピュレータ14は、5つのリンク20a、20b、20c、20d、20eを備え、そこでは、リンク20aがベース16に対して最近位であり、リンク20eがベース16に対して最遠位である。図4におけるマニピュレータ14はまた、以下J1、J2、J3、J4、J5、J6として識別する6つの関節22も備える。関節J1は、ベース16とリンク20aとの間に配置されている。関節J2は、リンク20aとリンク20bとの間に配置されている。関節J3は、リンク20bとリンク20cとの間に配置されている。関節J4は、リンク20cとリンク20dとの間に配置されている。関節J5は、リンク20dとリンク20eとの間に配置されている。関節J6は、リンク20eと器具30との間に配置されている。図4におけるマニピュレータ14が直列アームであるため、任意の1つの関節J1〜J6の移動により、下流の全てのリンク(すなわち、移動した関節からマニピュレータの遠位端までの全てのリンク)に対する移動がもたらされる。
各関節J1〜J6は、それぞれ、それ自体の個々の軸A1、A2、A3、A4、A5、A6を中心に回転するように構成されている。6つの関節J1〜J6を有することにより、図4のマニピュレータ14は、6DOFで自由に移動する。すなわち、マニピュレータ14は、全体として、3つの垂直軸において前方/後方、上/下及び左/右に自由に並進移動する。マニピュレータ14はまた、ピッチ、ヨー及びロールと呼ばれることが多い3つの垂直軸を中心とする回転運動を通して自由に向きを変えることも行う。当業者であれば、器具30がそれ自体の軸を中心に回転する必要があるか否かに応じて、マニピュレータ14が5DOFでの動きのみを必要とする場合があることを理解する。例えば、バー処置を行っているとき、バーは別個に回転するため、マニピュレータ14は5DOFで動作すればよい。こうした場合、必要なDOFの数より関節の数の方が大きいため、冗長性がある。しかしながら、鋸刃切断を行っているとき、マニピュレータ14は、5DOFで動作して、1冗長度を提供する。
ベース16に位置する関節J1は、ウエストの回転と同様の動きをもたらす。軸A1を中心に回転することにより、関節J1は、マニピュレータ14が左から右に回転するのを可能にする。関節J2は、肩の回転と同様の動きをもたらす。軸A2を中心に回転することにより、関節J2は、マニピュレータ14が前方及び後方に伸長するのを可能にする。関節J3は、肘の曲げに類似する動きをもたらす。軸A3を中心に回転することにより、関節J3は、マニピュレータ14が上昇及び下降するのを可能にする。関節J4は、手首のひねりに類似する動きをもたらす。軸A4を中心に回転することにより、関節J4は、マニピュレータ14が、円運動で上部リンク20d、20eを回転させ、それにより、器具30の向きを変更することができる。関節J5は、手首の曲げに類似する動きをもたらす。軸A5を中心に回転することにより、関節J5は、リンク20e及び手術器具30が、上下に傾くのを可能にし、ピッチ運動及びヨー運動に関与する。J4と同様に、関節J6は、手首のひねりに類似する動きをもたらす。しかしながら、関節J6は、軸A6を中心に回転して、器具30のより精密な制御を可能にする。
遠位リンク20eと器具30との間に、力−トルクセンサ等のセンサ34を取り付けることができる。力−トルクセンサ34は、操作者が器具30を把持する際に器具30がさらされる力及び/又はトルクに応じて可変信号を出力するように構成される。そうすることにより、力−トルクセンサ34は、器具30に加えられる入力された力を検知することができる。後述するように、入力された力は、マニピュレータ14の動きを制御するために利用される。一実施形態では、力−トルクセンサ34は6DOFセンサであり、それにより、力−トルクセンサ34は、3つの相互に直交する力と器具30に加えられる直交する力の軸を中心とする3つのトルクとを表す信号を出力するように構成される。さらに又は代替的に、器具26に加えられる入力された力は、詳細に後述するように、関節トルクを使用して求めることができる。
II.コントローラ及びシミュレーション概説
図3を参照すると、システム10はコントローラ40を備える。コントローラ40は、マニピュレータ14と通信し、マニピュレータ14を制御するための好適なソフトウェア及び/又はハードウェアを含む。一実施形態では、コントローラ40は、ポータブルカート19内に配置される。しかしながら、コントローラ40は、2つ以上の位置に配置されたサブコントローラを含む。コントローラ40は、ナビゲーションシステム等、本明細書には具体的に記載されていない他のシステムを制御し、それらと通信することができる。
図5に示すように、コントローラ40は、リンク20の移動及び位置を指令するために関節モータ24と通信する。コントローラ40は、位置センサ(例えば、エンコーダ)26に更に接続され、位置センサ26から受け取られる信号を使用して各それぞれの関節22の実際の関節角度を測定するように構成される。コントローラ40は、関節モータサブコントローラ等を通して、関節モータ24に指令して、指令関節角度まで移動させる。コントローラ40はまた、関節22の測定された関節トルクを示す信号を受け取るように、関節モータ24においてトルクセンサ(複数の場合もある)28にも接続される。コントローラ40は、器具30に加えられる入力された力を受け取るように力−トルクセンサ34に更に接続される。
図6に示すように、コントローラ40はアドミタンス型コントローラである。言い換えれば、コントローラ40は、力を決定し、位置を指令する。一例では、コントローラ40は、単に単一のアドミタンスコントローラを含み、それにより、全ての入力された力が、単一のコントローラ40によって力を決定するように単独で分析される。言い換えれば、この例では、異なる力に対する別個のアドミタンスコントローラは利用されない。他の実施形態では、追加のコントローラを使用することができる。
図5及び図6に示すように、コントローラ40は、仮想シミュレーション42において器具30の動力学をシミュレートするように構成される。仮想シミュレーション42は、エネルギーアプリケータ32があるか又はない器具30に基づくことができる。一実施形態では、仮想シミュレーション42は、剛体力学をシミュレートするコントローラ40によって実施されるコンピュータソフトウェアである、物理学エンジンを使用して実施される。仮想シミュレーション42は、実行可能プログラムが記憶されている非一時的コンピュータ可読記憶媒体を有するコンピューティングデバイスにおいて実施することができる。仮想シミュレーション42は、器具30の動力学を、器具30のこうした動力学が物理的に実行される前にシミュレートする。
図7に示すように、コントローラ40は、動的物体である仮想剛体44として器具30をモデル化する。したがって、コントローラ40は、器具30の剛体力学を有効にシミュレートする。仮想剛体44は、仮想シミュレーション42によって、デカルトタスク空間において6DOFに従って自由に移動する。図7において、仮想剛体44は、器具30の上に、中に、又は器具30を越えている場合がある、単一点としてモデル化することができる。質量/慣性行列が、6DOFで仮想質量を定義する。後述するように、質量/慣性行列は、バックドライブに関する計算ステップで使用される。
一例では、仮想剛体44は、器具30の質量中心に対応する。ここで、「質量中心」は、力が器具30の別の点に加えられ、器具30が本来は拘束されなかった、すなわちマニピュレータ14によって拘束されなかった場合に、器具30が回転する際の中心となる点であると理解される。仮想剛体44の質量中心は、器具30の実際の質量中心に近接することができるが、同じである必要はない。仮想剛体44の質量中心は経験的に求めることができる。器具30がマニピュレータ14に取り付けられると、個々の医師の選好に適応するように、質量中心の位置をリセットすることができる。他の実施形態では、仮想剛体44は、重心等、器具30の他の特徴に対応することができる。
この仮想剛体44は、仮想質量(M)を有するものとみなされる。仮想質量は、関節22のうちの少なくとも1つの周りの慣性(I)を有する。場合により、仮想質量は、関節22(J1〜J6)のうちの各々1つの周りの慣性を有する。慣性は、仮想質量が速度の変化に対して有していなければならない抵抗の大きさ(measure)である。慣性は、仮想質量の特性であると理解することができる。したがって、仮想質量は、仮想剛体44の質量及び慣性の両方を指すことができる。仮想剛体44の仮想質量は、通常、器具30の実際の質量と同じ桁の範囲内にある。しかしながら、仮想質量は、器具30の実際の質量より大きいか又は小さいように設計することができる。
一例では、仮想剛体44は、仮想シミュレーション42の各反復の開始時に第1の姿勢にある。コントローラ40は、力−トルクセンサ34からのユーザが加えた入力された力、及び/又は他の拘束によってモデル化される他の入力された力を受け取る。入力された力は、仮想シミュレーション42において仮想剛体44が第1の姿勢にあるときに仮想剛体44に加えられる。入力された力により、仮想剛体44が、仮想経路に沿って、デカルト空間内の異なる位置及び異なる向きを有する第2の姿勢まで進むことになる。
仮想シミュレーション42は、仮想剛体44の視覚的表現又はグラフィカル表現なしに計算的に実行することができる。仮想シミュレーション42が、(図7に示すような)仮想剛体44の動力学を仮想表示することは必要ではない。言い換えれば、仮想剛体44は、処理ユニットにおいて実行されるグラフィックスアプリケーション内でモデル化される必要はない。場合により、実際の器具30によって追跡される仮想器具の動きを手術部位において表示して、処置の作業中に仮想支援を提供することができる。しかしながら、こうした場合、表示される器具は、仮想シミュレーション42の直接の結果ではない。
仮想シミュレーション42に基づいて仮想剛体44の第2の姿勢を知ることにより、コントローラ40は、仮想シミュレーション42に従って関節22の動作を指令する。すなわち、コントローラ40は、デカルト空間における仮想剛体44の動力学を変換して、マニピュレータ14の動きを指示し、関節空間における器具30の向きを制御する。第2の姿勢をもたらす力は、ヤコビ計算器に適用され、ヤコビ計算器は、デカルト空間内の動きを関節空間内の動きに関連付けるヤコビ行列を計算する。
一実施形態では、図6に示すように、コントローラ40は、仮想シミュレーション42の出力に基づいて関節22に指令するために適切な関節角度を求めるように構成される。すなわち、コントローラ40は、入力された力に応じて、関節22の各々に対する指令関節角度を計算する。
ここから、コントローラ40は、各関節22の関節角度を調節し、各関節モータ24が出力するトルクを、関節モータ24が関連する関節22を指令関節角度に駆動するのを可能な限り厳密に確実にするように連続的に調整する。バックドライブトルクを識別するために、コントローラ40は、逆動力学モジュールを使用して各関節22に対して予測関節トルク「τexpected」を求める。予測関節トルクは、外力及びトルクが存在しない場合に関節モータ24が出力するべきトルクである。したがって、予測関節トルクは、関節22の各々に対する計算された関節角度、関節速度及び関節加速度に関連する。
コントローラ40は、各関節モータ24が関連する関節22を指令関節角度に駆動するように、各関節モータ24に信号を与えるように構成される。コントローラ40は、指令関節角度に基づいて関節22の位置決めを制御する任意の好適な位置制御アルゴリズムを使用することができる。コントローラ40は、能動的な、すなわち仮想シミュレーション42の出力に基づいて移動するように予期される関節22に対してのみ、指令関節角度を生成することができる。
幾つかの実施形態では、図5に表すように、コントローラ40は、関節22の各々に対して別個にかつ個々に(例えば、各能動関節毎に)指令関節角度を生成する。例えば、関節22は、J1に対する指令関節角度が最初に生成され、J6に対する指令関節角度が最後に生成され、又はその逆であるように連続的に考慮することができる。
関節モータ24が関節を指令関節角度に駆動するように通電されると、マニピュレータ14は、図6において「ロボット動力学」ブロックによって表されているように、動的に動かされる。コントローラ40は、少なくとも1つの関節22の指令動作と少なくとも1つの関節22の実際の動作とをモニタリングするように構成される。より具体的には、コントローラ40は、予測関節トルクをモニタリングし、それを、少なくとも1つの関節22の実際の(測定された)関節トルク「τactual」と比較する。
実際の関節トルクを求めることは、関節モータ24においてトルクセンサ28を用いて実施することができる。代替的に、コントローラ40は、関節22の位置決め中に少なくとも1つの関節モータ24によって消費される電流を測定するように構成される。トルクは消費電流に直接関連するため、コントローラ40は、関節モータ24の測定された消費電流を分析して関節22の実際の関節トルクを求めることができる。任意の好適な検知技術を利用して消費電流を測定することができる。例えば、電源と関節モータ24との間に電流センサを配置することができる。コントローラ40によって直接、又はコントローラ40とは別個に、電流検知に関連するフィードバックを実施することができる。コントローラ40は、消費電流を計算するときに重力を有効にすることができる。
予測される関節トルクは、実際の関節トルクに対応しない場合がある。主に、関節22は、外力を受ける可能性がある。こうした外力は、ユーザがリンク20のうちの1つ以上に力を加えることによってもたらされる可能性がある。代替的に、マニピュレータ14と物体又は障害物との間の衝突により、こうした外力がもたらされる可能性がある。当業者であれば、他の環境によりこうした外力がもたらされる可能性があることが理解される。外力により、実際の関節トルクは予測関節トルクから逸脱する。マニピュレータ14がアーム18に加えられる外力に応答することができることを、本明細書では「バックドライバビリティ(backdrivability)」と呼ぶ。外力がベース16とアームの遠位端との間でアーム18に加えられた場合、マニピュレータ14をバックドライブすることができる。したがって、バックドライブ制御は、力−トルクセンサ34によって検知される入力された力に基づく制御とは異なる。
外力は、本明細書に記載されるように、周囲の物体又は条件、例えば、操作者の相互作用、衝突等から発生する可能性があるが、周囲の物体自体(例えば、操作者自身)は、マニピュレータ14を意図された位置まで物理的にかつ直接動かしていないことが明らかにされるべきである。代わりに、本明細書に記載する多くの実施形態では、外力は、マニピュレータ14を動かすために所望のコマンド及び動きを導出するように計算されかつシミュレートされ、それにより、周囲の物体自体が物理的にかつ直接マニピュレータ14を動かしているかのように(実際にはそうではない場合に)見える。したがって、システム10及び方法により、マニピュレータ14の全ての動きが計算されるため、マニピュレータ14の全ての動きが望ましいと言うことができる。
図6に示すように、コントローラ40は、予測関節トルクを少なくとも1つの関節22の実際の関節トルクと比較して、関節トルク差Δτを求める。一実施形態では、任意の所与の関節「i」に対する関節トルク差は、以下のように計算される。
Figure 0006956081
関節トルク差は、過剰な関節トルクであると理解することができる。幾つかの実施形態では、コントローラ40は、関節22の各々に対して予測関節トルクを実際の関節トルクと別個にかつ個々に比較する。上述したように、例えば、各関節22に対して連続して、かつ一度に1つ、指令関節トルク及び実際の関節トルクを比較することができる。関節トルク差は、1つの関節22に対して、又は複数の関節22に対して存在する可能性がある。したがって、このステップは、1DOFで実施することができる。
コントローラ40は、関節トルク差を知ることにより、関節22のうちの少なくとも1つに加えられる外力を求めるように構成される。コントローラ40は、各関節22に対する関節トルク差(存在する場合)を仮想質量に適用される6DOF力/トルクベクトルに変換する。言い換えれば、関節トルク差をもたらす外力は、デカルト空間に変換され、仮想シミュレーション42において考慮される。仮想剛体44の動力学は、外力に基づいて反応するようにシミュレートされる。
コントローラ40は、入力された力に加えて求められた外力を更に考慮することにより、上述したように仮想シミュレーションにおいて器具30の動力学を再度シミュレートするように構成される。言い換えれば、過剰な関節トルクは、力−トルクセンサ34を利用するアドミタンスコントローラに互換性のある力に変換される。同様に、コントローラ40は、入力された力及び外力の両方を考慮する仮想シミュレーション24に従って、所望の姿勢に対する関節22の動作を再度指令するように構成される。
上述したように、コントローラ40は、関節トルク差から直接関節22のうちの少なくとも1つに加えられた外力を求めるように構成される。上述した技法は、外力を考慮するが、予測されない関節運動をもたらす可能性がある。主に、関節トルク差から外力を直接求めることは、外力が関節空間において分解されないため、マニピュレータ14に対する加えられた外力の位置を完全には捉えない。言い換えれば、コントローラ40は、外力がマニピュレータ14に加えられている場所を認識しない。
図8及び図9は、関節トルク差のみに基づいて外力が直接求められる場合の関節運動を示すグラフである。図8では、J2に対して、−1.5Nmの関節トルク差が与えられる。しかしながら、それに応じて、J3及びJ5は予想外に動く。したがって、J2が、外力からトルクの変化を受けている唯一の関節であるが、他の2つの関節(すなわち、J3及びJ5)が動く。同様に、図9において、J2及びJ3に、−0.5Nmの関節トルク差が与えられる。これに応じて、J2は間違った方向に動き、J5は予想外に動く。言い換えれば、J2及びJ3が外力からトルクの変化を受けている唯一の関節であるが、別の関節(すなわち、J5)が動く。さらに、外力からトルクの変化を受けている関節のうちの1つ(J2)は、外力と反対に応答する。
III.バックドライブ法概説
このセクションに記載するロボットシステム10及び方法は、関節空間における加えられた外力を分解してマニピュレータ14に対する外力の位置を完全に捉えることによって、予測可能な関節運動をもたらすバックドライブ技法を提供することにより、上述した技法を改善する。システム10及び方法は、図6におけるブロック48においてこの改善されたバックドライブ法を実施する。本質的に、後述する方法は、外力がいかに計算されるかに関する改善を提供する。
図10は、後述するバックドライブ法の入力及び出力を示す計算フローチャートを示す。ステップ60に示すように、関節トルク差Δτは、上述したように各個々の関節「i」に対して別個に計算される。したがって、関節トルク差は1DOFで計算される。
次に、ブロック62において、コントローラ40は、少なくとも1つの関節22の周りの、より具体的には、少なくとも1つの関節22の軸の周りの仮想質量の慣性を求める。一実施形態では、コントローラ40は、関節22の各々1つに対して仮想質量の慣性を別個にかつ個々に求める。したがって、各関節の慣性は1DOFで計算することができる。このステップを概念化するために、図7は、別個に考慮される1つの関節、すなわちJ1に対する仮想質量の慣性の間の関係を示す。しかしながら、任意の所与の関節の周りの仮想質量の慣性は、以下のように表される。
Figure 0006956081
式[2]において、Iは関節iの周りの仮想質量の慣性であり、mvm、Ivmは、質量/慣性行列によって定義されるような関節iの軸の周りの仮想剛体44の質量及び慣性であり、Rは、関節の軸Aと仮想質量との間の半径である。
各関節の周りの仮想質量の慣性は、代替的に、関節軸iの周りの仮想質量の有効な慣性として、概して以下のように、
Figure 0006956081
より具体的には、以下のように、
Figure 0006956081
表すことができる。
式[4]において、
Figure 0006956081
は、仮想質量運動の変化を関節角度の変化に写像するヤコビ転置行列であり、Mvmは、質量/慣性行列によって定義されるような仮想剛体44の質量であり、
Figure 0006956081
は、関節角度の変化を仮想質量運動の変化に写像するヤコビ行列である。式[3]及び[4]において、Mは、大文字で書かれ、それが行列であって(式[2]におけるように)スカラではないことを示す。式[3]及び[4]を用いて、6DOFのJ及び6DOFのMvmから1DOFの慣性Ieffが計算される。ヤコビ行列及び6DOFのMvmの使用は、困難である可能性がある式[2]において任意の軸の周りの1DOFのIvmを計算することより、好都合である。
ステップ64において、コントローラ40は、関節トルク差及び慣性を使用して少なくとも1つの関節22の周りの角加速度
Figure 0006956081
を計算するように構成される。図7に、J1の軸A1の周りの角加速度
Figure 0006956081
を示す。一実施形態では、コントローラ40は、1DOFでの各関節iの周りの角加速度
Figure 0006956081
を計算する。言い換えれば、コントローラ40は、過剰なトルクを使用して、関節角度がいかに加速するかを求める。所与の関節iに対する関節トルク差Δτ及び慣性Iは、角加速度
Figure 0006956081
を以下のように計算することができるように、以下の式に入力される。
Figure 0006956081
ステップ66において、コントローラ40は、各関節22に関連する角加速度を仮想質量に投影するように構成される。1DOFで計算ステップを実行する前述のステップとは異なり、コントローラ40は、好ましくは、関節22を組み合わせて使用して角加速度を仮想質量に投影する。主に、コントローラは、多DOF又は6DOFで複数の関節22の角加速度を結合する。
コントローラ40は、角加速度を投影することにより、ステップ68において、多DOF又は6DOFで仮想質量の加速度
Figure 0006956081
を取得する。図7は、一実施形態による仮想質量の加速度
Figure 0006956081
を概念的に示す。コントローラ40は、関節空間からの関節角度情報をデカルト空間における仮想質量運動に投影することによって仮想質量の加速度を取得する。より具体的には、多DOF又は6DOFでの仮想質量の加速度は、1DOFで各関節軸に対して計算される角加速度から導出される。
一例では、仮想質量の加速度は、以下のように計算され、
Figure 0006956081
式中、
Figure 0006956081
は、仮想質量の加速度であり、
Figure 0006956081
は、関節角度の変化を仮想質量運動の変化に写像するヤコビ行列であり、
Figure 0006956081
は、各関節iの周りの角加速度である。
違った方法で理解すると、コントローラは、関節22の各々に対して指令関節角度を実際の関節角度と比較して、関節22の各々に対して1DOFで関節角度差を求める。コントローラ40は、関節22の各々に対して仮想質量の第1の運動を仮想質量の第2の運動と更に比較して、関節22の各々に対して1DOFで運動差を求める。そして、コントローラ40は、ヤコビ行列において、関節の各々に対する関節角度差と多自由度又は6自由度での関節の各々に対する運動差を写像して、多DOF又は6DOFで仮想質量の加速度
Figure 0006956081
を取得する。
ステップ70において、コントローラ40は、多DOF又は6DOFでの仮想質量の加速度
Figure 0006956081
を、多DOF又は6DOFで仮想質量を定義する質量/慣性行列に入力する。質量/慣性行列を用いて、多DOF又は6DOFで仮想質量に適用する力/トルクを求めて、計算された加速度
Figure 0006956081
に対応する外力を生成する。6DOFの力/トルクベクトルは、
Figure 0006956081
であるように(式中、FVMはVMFに等しい)、6DOF質量行列Mvmと6DOF加速度ベクトルとを乗算することによって計算される。
ステップ72において、外力VMが、多DOF又は6DOFでの仮想質量の加速度
Figure 0006956081
を質量/慣性行列に入力したものの出力として計算される。上述したように、コントローラ40は、その後、仮想シミュレーション42において、外力及び存在する場合は力−トルクセンサ又は関節22からの入力された力(複数の場合もある)に応じて、器具30の動力学をシミュレートする。コントローラ40は、外力及び存在する場合は入力された力(複数の場合もある)を考慮する仮想シミュレーション42に従って、所望の姿勢に対する関節22の動作を再度指令する。
一実施形態では、力加算器が外力及び入力された力(複数の場合もある)を加算し、その後、コントローラ40は、加算された全体の力Ftotalに基づいて、
Figure 0006956081
を解いて
Figure 0006956081
を見つけることにより、器具30の指令位置を計算することができる。加速度
Figure 0006956081
が解かれた後、
Figure 0006956081
を2回積分して次の指令位置を計算することができる。デカルト空間における指令位置は、関節空間における指令関節角度に変換される。
システム10及び方法は、幾つかの異なる応用又は状況に対して本明細書に記載するバックドライブ技法を利用することができる。一例では、ロボットシステム10のユーザは、マニピュレータ14を、手術器具30に力を加えることにより、かつ任意の所与の関節(複数の場合もある)22又はリンク(複数の場合もある)22に外力を加えることによってマニピュレータ14をバックドライブすることにより、制御することができる。これにより、ユーザは、マニピュレータ14を全体として容易に位置決めすることができる。こうした応用は、現場でマニピュレータ14をセットアップする場合に特に有用である可能性がある。他の場合では、ユーザは、快適さ又は空間を考慮して1つ以上のリンク22を再配置するために、細かい位置決め中にマニピュレータ14を制御している間に外力を加えることができる。いずれの場合も、コントローラ40は、マニピュレータ14に指令を与えているときに、加えられた外力を考慮し、それにより、マニピュレータの完全なバックドライブ制御が可能になる。
代替的に、仮想シミュレーションにおいて加えられた外力を考慮することにより、システム10及び方法は、マニピュレータ14と、マニピュレータ14に近接する物体又はマニピュレータ14の移動の経路を妨げる物体との間の望ましくない衝突に反応することができる。こうした場合、マニピュレータ14が外力に反応するのを可能にすることは望ましくない可能性がある。したがって、こうした場合、コントローラ40は、加えられた外力を考慮するが、外力を無効にするか、又は予防措置としてマニピュレータ14を完全に停止させることができる。
他の例では、バックドライブ技法は、動作の手動モード中に利用することができる。手動モード中、器具30の動きを、操作者は手動で指示し、マニピュレータ14が制御する。操作者は、器具30に物理的に接触して、器具30の移動をもたらす。マニピュレータ14は、力−トルクセンサ34を使用して器具30にかけられた力及びトルクをモニタリングする。操作者は任意の所与の関節をバックドライブすることができ、一方で、コントローラ40は、力−トルクセンサ34によって検出された力及びトルクに応じてマニピュレータ14を制御する。
別の応用では、マニピュレータ14は、動作の自律モードで器具30の自律運動を指示する。ここでは、マニピュレータ14は、操作者の補助なしに器具30を動かすことができる。操作者の補助がないことは、操作者が器具30を動かすように力を加えるように器具30と物理的に接触しないことを意味することができる。代わりに、操作者は、何らかの形態の制御を使用して、移動の開始及び停止をリモートで管理することができる。例えば、操作者は、リモート制御のボタンを押下して器具30の動きを開始し、ボタンを解除して器具30の動きを停止することができる。
一例では、器具30の位置決めは、自律モード中に現場で維持することができる。しかしながら、操作者は、器具30の向きを変えたい場合がある。位置を維持しながら器具30の向きを変えることは、更に下流リンク20の向きを変える必要がある可能性がある。本明細書に記載するバックドライブ技法を利用して、自律モードで器具30の向きを変えるようにリンク20に加えられた外力を考慮することができる。当業者であれば、他の様々な応用又は状況が本明細書に記載したバックドライブ技法を利用することができることが理解されよう。
このセクションに記載したバックドライブ技法は、マニピュレータ14に対する外力の位置を考慮する。本方法は、関節空間における外力を各個々の関節に分解することにより、仮想シミュレーション42において、加えられた外力の位置を考慮する。このように、コントローラ40が外力を考慮することによってマニピュレータ14に指令を与えると、マニピュレータ14の関節22は、予測可能な動きを示す。マニピュレータ14の動的挙動は、より予測可能となり、それにより、マニピュレータ14のロバスト性が向上し制御が強化される。上述した技法を使用して、システム10及び方法は、有利に、関節トルクを、入力される力を提供する力/トルクセンサ34と使用される同じアドミタンスコントローラ40と互換性がある外力に変換する。その間、各関節22に対して本方法の記載したステップを個々に実行することにより、マニピュレータ14の結果としての動きは自然であり、インピーダンス制御ロボットの動きをまねる。
この改善された挙動を概念化するために、図11は、(実線で示す)第1の姿勢にあるマニピュレータ14の側面図を示す。外力は、関節J2に加えられる。システム10及び方法は、上述したステップを実行して、仮想シミュレーション42において外力を有効に補償する。コントローラ40は、(想像線で示す)所望の第2の姿勢への関節J2の動作を指令する。図11におけるマニピュレータ14の動きに関連する図12は、(外力が関節トルク差のみに基づいて求められる場合の関節運動を示す図8と比較して)外力がこのセクションに記載したステップを使用して求められる場合の関節運動を示すグラフである。図11において、J2に対して、−1.5Nmの関節トルク差が与えられる。比較の目的で、これは、図8においてJ2に与えられたものと同じ関節トルク差である。これに応じて、(同様に図11に示すように)関節J2のみが動く。図8の関節とは異なり、他の関節は予想外に動かない。言い換えれば、J2が外力からトルクの変化を受けている唯一の関節であるため、他の関節(例えば、J3及びJ5)が移動しない。再び図11を参照すると、マニピュレータ14の動きは図12の結果と一貫しており、関節J2のみが外力に応じて動く。
図13は、実線を使用して第1の姿勢にあるマニピュレータ14の側面図を示す。この例では、関節J2及びJ3に外力が加えられる。システム10及び方法は、上述したステップを実行して、仮想シミュレーション42において外力を有効に補償する。コントローラ40は、加えられたトルクの方向において(想像線で示す)所望の第2の姿勢への関節J2及びJ3の動作を指令する。図13におけるマニピュレータ14の動きに対応する図14は、(外力が関節トルク差のみに基づいて求められる場合の関節運動を示す図9と比較して)外力がこのセクションに記載したステップを使用して求められる場合の関節運動を示すグラフである。図13において、J2及びJ3に−0.5Nmの関節トルク差が与えられる。比較の目的で、これは、図9においてJ2及びJ3に与えられたものと同じ関節トルク差である。これに応じて、関節J2及びJ3のみが動く。図9における関節とは異なり、他の関節は予想外に動かず、いかなる関節も間違った方向に動かない。言い換えれば、J2及びJ3が外力からトルクの変化を受けている唯一の関節であるため、他の関節(例えば、J5)が動かない。さらに、J2及びJ3は、(他の方向ではなく)加えられたトルクの方向において動く。再び図13を参照すると、マニピュレータ14の動きは図13の結果と一貫し、関節J2及びJ3のみが外力に応じて動く。
いくつかの実施形態が上記の説明で論じられた。しかし、本明細書で論じる実施形態は、網羅的であるか又は本発明を任意の特定の形態に限定することを意図されない。使用された用語は、制限的であるのではなく、説明の言葉(words of description)の性質内にあることを意図される。多くの変更及び変形が、上記教示を考慮して可能であり、本発明は、具体的に述べられる以外の方法で実施することができる。
詳述された明細書から本発明の数多くの特徴及び利点が明らかであり、それゆえ、添付の特許請求の範囲が、本発明の真の趣旨及び範囲に入る本発明の全てのそのような特徴及び利点に及ぶことを意図している。さらに、当業者には数多くの変更及び変形が容易に思い浮かぶことになるので、本発明を図示及び説明されたのと全く同じ構成及び動作に限定することは望ましくなく、それゆえ、本発明の範囲内に入る、全ての適切な変更形態及び均等物が採用される場合がある。
なお、出願当初の特許請求の範囲の記載は以下の通りである。
請求項1:
手術器具と、
前記手術器具を支持し、複数の関節及び複数の関節アクチュエータを備えるマニピュレータと、
前記マニピュレータと通信し、仮想シミュレーションにおいて、仮想質量を有し、該仮想質量が前記関節のうちの少なくとも1つの周りの慣性を有する仮想剛体として前記手術器具を表すことにより、該手術器具の動力学をシミュレートするように構成されているコントローラと、
を備え、
前記コントローラは、(1)前記少なくとも1つの関節に対して予測関節トルクを求め、(2)前記少なくとも1つの関節の前記予測関節トルクを実際の関節トルクと比較して関節トルク差を求め、(3)前記少なくとも1つの関節の周りの前記仮想質量の前記慣性を求め、(4)前記関節トルク差及び前記慣性を用いて前記少なくとも1つの関節の周りの角加速度を計算し、(5)該角加速度を前記仮想質量に投影して外力を求め、(6)前記仮想シミュレーションにおいて前記外力に応じて前記手術器具の動力学をシミュレートし、(7)前記仮想シミュレーションに従って前記関節アクチュエータの動作を指令するように構成されている、ロボット手術システム。
請求項2:
前記コントローラは、前記関節の各々1つに対して個々に、(1)前記予測関節トルクを求め、(2)前記予測関節トルクを前記実際の関節トルクと比較し、(3)前記仮想質量の前記慣性を求め、(4)前記角加速度を計算するように更に構成されている、請求項1に記載のロボット手術システム。
請求項3:
前記コントローラは、前記複数の関節を組み合わせて使用することにより、(5)前記角加速度を前記仮想質量に投影し、(6)前記手術器具の動力学をシミュレートするように更に構成されている、請求項1に記載のロボット手術システム。
請求項4:
前記コントローラは、前記複数の関節の前記角加速度を結合して6自由度(6DOF)で前記仮想質量の加速度を取得することにより、(5)前記角加速度を前記仮想質量に投影して前記外力を求めるように更に構成されている、請求項1〜3のいずれか一項に記載のロボット手術システム。
請求項5:
前記コントローラは、前記関節の各々に対して指令関節角度を実際の関節角度と比較して該関節の各々に対する関節角度差を求めることにより、前記仮想質量の前記加速度を取得するように更に構成されている、請求項4に記載のロボット手術システム。
請求項6:
前記コントローラは、前記関節の各々に対して前記仮想質量の第1の運動を前記仮想質量の第2の運動と比較して該関節の各々に対する運動差を求めることにより、前記仮想質量の前記加速度を取得するように更に構成されている、請求項5に記載のロボット手術システム。
請求項7:
前記コントローラは、前記関節の各々に対する前記関節角度差と該関節の各々に対する前記運動差とをヤコビ行列において写像することにより、前記仮想質量の前記加速度を取得するように更に構成されている、請求項6に記載のロボット手術システム。
請求項8:
前記コントローラは、6DOFでの前記仮想質量の前記加速度を6DOFで前記仮想質量を定義する質量/慣性行列に入力して前記外力を求めることにより、(5)前記角加速度を前記仮想質量に投影して前記外力を求めるように更に構成されている、請求項4〜7のいずれか一項に記載のロボット手術システム。
請求項9:
前記手術器具に加えられた入力された力を検知する力−トルクセンサを更に備える、請求項1〜8のいずれか一項に記載のロボット手術システム。
請求項10:
前記コントローラは、前記仮想シミュレーションにおいて前記入力された力及び前記外力の両方に応じて前記手術器具の動力学を再度シミュレートし、前記入力された力及び前記外力の両方を考慮する前記仮想シミュレーションに従って前記関節アクチュエータの動作を再度指令するように更に構成されている、請求項9に記載のロボット手術システム。
請求項11:
手術器具と、該手術器具を支持し、複数の関節及び複数の関節アクチュエータを備えるマニピュレータと、該マニピュレータと通信するコントローラとを備えるロボット手術システムを操作する方法であって、仮想シミュレーションが、前記関節のうちの少なくとも1つの周りの慣性を有する仮想質量を有する仮想剛体として前記手術器具を表し、該方法は、前記コントローラが、
前記少なくとも1つの関節に対して予測関節トルクを求めるステップと、
前記少なくとも1つの関節の前記予測関節トルクを実際の関節トルクと比較して関節トルク差を求めるステップと、
前記少なくとも1つの関節の周りの前記仮想質量の前記慣性を求めるステップと、
前記関節トルク差及び前記慣性を用いて前記少なくとも1つの関節の周りの角加速度を計算するステップと、
前記角加速度を前記仮想質量に投影して外力を求めるステップと、
前記仮想シミュレーションにおいて前記外力に応じて前記手術器具の動力学をシミュレートするステップと、
前記仮想シミュレーションに従って前記関節アクチュエータの動作を指令するステップと、
を行うことを含む、方法。
請求項12:
前記予測関節トルクを求めるステップ、該予測関節トルクを前記実際の関節トルクと比較するステップ、前記仮想質量の前記慣性を求めるステップ、及び前記角加速度を計算するステップは、各々、前記関節の各々1つに対して個々に実行される、請求項11に記載の方法。
請求項13:
前記角加速度を前記仮想質量に投影するステップ、及び前記手術器具の動力学をシミュレートするステップは、各々、前記複数の関節を組み合わせて使用することにより実行される、請求項11に記載の方法。
請求項14:
前記角加速度を前記仮想質量に投影して前記外力を求めるステップは、前記複数の関節の前記角加速度を結合して6自由度(6DOF)で前記仮想質量の加速度を取得するステップを更に含む、請求項11〜13のいずれか一項に記載の方法。
請求項15:
前記仮想質量の前記加速度を取得するステップは、前記関節の各々に対して指令関節角度を実際の関節角度と比較して該関節の各々に対する関節角度差を求めるステップを更に含む、請求項14に記載の方法。
請求項16:
前記仮想質量の前記加速度を取得するステップは、前記関節の各々に対して前記仮想質量の第1の運動を前記仮想質量の第2の運動と比較して該関節の各々に対する運動差を求めるステップを更に含む、請求項15に記載の方法。
請求項17:
前記仮想質量の前記加速度を取得するステップは、前記関節の各々に対する前記関節角度差と該関節の各々に対する前記運動差とをヤコビ行列において写像するステップを更に含む、請求項16に記載の方法。
請求項18:
前記角加速度を前記仮想質量に投影して前記外力を求めるステップは、6DOFでの前記仮想質量の前記加速度を6DOFで前記仮想質量を定義する質量/慣性行列に入力して前記外力を求めるステップを更に含む、請求項14〜17のいずれか一項に記載の方法。
請求項19:
力−トルクセンサから、前記手術器具に加えられた入力された力を検知するステップを更に含む、請求項11〜18のいずれか一項に記載の方法。
請求項20:
前記コントローラにより、前記仮想シミュレーションにおいて前記入力された力及び前記外力の両方に応じて前記手術器具の動力学を再度シミュレートするステップと、前記入力された力及び前記外力の両方を考慮する前記仮想シミュレーションに従って前記関節アクチュエータの動作を再度指令するステップとを更に含む、請求項19に記載の方法。
請求項21:
器具と、該器具を支持し、複数の関節及び複数の関節アクチュエータを備えるマニピュレータと、該マニピュレータと通信するコントローラとを備えるロボットシステムをバックドライブする方法であって、仮想シミュレーションが、前記関節の各々の周りの慣性を有する仮想質量を有する仮想剛体として前記器具を表し、該方法は、前記コントローラが、
各関節に対して個々に、予測関節トルクを求めるステップと、
各関節に対して個々に前記予測関節トルクを実際の関節トルクと比較して関節トルク差を求めるステップと、
各関節の周りの前記仮想質量の前記慣性を個々に求めるステップと、
前記関節トルク差及び前記慣性を用いて各関節の周りの角加速度を個々に計算するステップと、
前記複数の関節の前記角加速度を組み合わせて使用して、2自由度以上で前記仮想質量の加速度を取得するステップと、
2自由度以上で前記角加速度を前記仮想質量に投影して外力を求めるステップと、
前記仮想シミュレーションにおいて前記外力に応じて前記器具の動力学をシミュレートするステップと、
前記仮想シミュレーションに従って前記関節アクチュエータの動作を指令するステップと、
を行うことを含む、方法。


Claims (15)

  1. 器具と、
    前記器具を支持し、複数の関節及び複数の関節アクチュエータを備えるマニピュレータと、
    前記マニピュレータと通信し、仮想シミュレーションにおいて、仮想質量を有し、該仮想質量が前記関節のうちの少なくとも1つの周りの慣性を有する仮想剛体として前記器具を表すことにより、該器具の動力学をシミュレートするように構成されているコントローラ
    備え、前記コントローラは
    記少なくとも1つの関節に対して予測関節トルクを求め
    記少なくとも1つの関節の前記予測関節トルクを実際の関節トルクと比較して関節トルク差を求め
    記少なくとも1つの関節の周りの前記仮想質量の前記慣性を求め
    記関節トルク差及び前記慣性を用いて前記少なくとも1つの関節の周りの角加速度を計算し
    前記複数の関節の前記角加速度を結合して6自由度(6DOF)で前記仮想質量の加速度を取得することにより、該角加速度を前記仮想質量に投影して外力を求め
    記仮想シミュレーションにおいて前記外力に応じて前記器具の動力学をシミュレートし
    記仮想シミュレーションに従って前記関節アクチュエータの動作を指令するように構成されている、ロボットシステム。
  2. 前記コントローラは、前記関節の各々に対して、前記予測関節トルクを求め、前記予測関節トルクを前記実際の関節トルクと比較し、前記仮想質量の前記慣性を求め、前記角加速度を計算するように更に構成されている、請求項1に記載のロボットシステム。
  3. 前記コントローラは、前記複数の関節を組み合わせて使用することにより、前記器具の動力学をシミュレートするように更に構成されている、請求項1に記載のロボットシステム。
  4. 前記コントローラは、
    前記関節の各々に対して指令関節角度を実際の関節角度と比較して該関節の各々に対する関節角度差を求め、
    前記関節の各々に対して前記仮想質量の第1の運動を、該第1の運動と異なる前記仮想質量の第2の運動と比較して該関節の各々に対する運動差を求め、
    前記関節の各々に対する前記関節角度差と該関節の各々に対する前記運動差とをヤコビ行列において写像することにより、前記仮想質量の前記加速度を取得するように更に構成されている、請求項に記載のロボットシステム。
  5. 前記コントローラは、6DOFでの前記仮想質量の前記加速度を6DOFで前記仮想質量を定義する質量/慣性行列に入力することにより、前記角加速度を前記仮想質量に投影して前記外力を求めるように更に構成されている請求項又はに記載のロボットシステム。
  6. 前記器具に入力された力を検知する力−トルクセンサを更に備える、請求項1〜のいずれか一項に記載のロボットシステム。
  7. 前記コントローラは、前記仮想シミュレーションにおいて前記入力された力及び前記外力の両方に応じて前記器具の動力学を再度シミュレートし、前記入力された力及び前記外力の両方を考慮する前記仮想シミュレーションに従って前記関節アクチュエータの動作を再度指令するように更に構成されている、請求項に記載のロボットシステム。
  8. 器具と、該器具を支持し、複数の関節及び複数の関節アクチュエータを備えるマニピュレータと、該マニピュレータと通信するコントローラとを備えるロボットシステムを操作する方法であって、仮想シミュレーションが、前記関節のうちの少なくとも1つの周りの慣性を有する仮想質量を有する仮想剛体として前記器具を表し、該方法は、前記コントローラが、
    前記少なくとも1つの関節に対して予測関節トルクを求めるステップと、
    前記少なくとも1つの関節の前記予測関節トルクを実際の関節トルクと比較して関節トルク差を求めるステップと、
    前記少なくとも1つの関節の周りの前記仮想質量の前記慣性を求めるステップと、
    前記関節トルク差及び前記慣性を用いて前記少なくとも1つの関節の周りの角加速度を計算するステップと、
    前記複数の関節の前記角加速度を結合して6自由度(6DOF)で前記仮想質量の加速度を取得することにより、前記角加速度を前記仮想質量に投影して外力を求めるステップと、
    前記仮想シミュレーションにおいて前記外力に応じて前記器具の動力学をシミュレートするステップと、
    前記仮想シミュレーションに従って前記関節アクチュエータの動作を指令するステップ
    行うことを含む、方法。
  9. 前記予測関節トルクを求めるステップ、該予測関節トルクを前記実際の関節トルクと比較するステップ、前記仮想質量の前記慣性を求めるステップと、前記角加速度を計算するステップは、各々、前記関節の各々に対して実行される、請求項に記載の方法。
  10. 記器具の動力学をシミュレートするステップは、前記複数の関節を組み合わせて使用することにより実行される、請求項に記載の方法。
  11. 前記仮想質量の前記加速度を取得するステップは、
    前記関節の各々に対して指令関節角度を実際の関節角度と比較して該関節の各々に対する関節角度差を求めるステップと、
    前記関節の各々に対して前記仮想質量の第1の運動を、該第1の運動と異なる前記仮想質量の第2の運動と比較して該関節の各々に対する運動差を求めるステップと、
    前記関節の各々に対する前記関節角度差と該関節の各々に対する前記運動差とをヤコビ行列において写像するステップ
    更に含む、請求項に記載の方法。
  12. 前記角加速度を前記仮想質量に投影して前記外力を求めるステップは、6DOFでの前記仮想質量の前記加速度を6DOFで前記仮想質量を定義する質量/慣性行列に入力して前記外力を求めるステップを更に含む、請求項又は11に記載の方法。
  13. 力−トルクセンサから、前記手術器具に入力された力を検知するステップを更に含む、請求項12のいずれか一項に記載の方法。
  14. 前記コントローラにより、前記仮想シミュレーションにおいて前記入力された力及び前記外力の両方に応じて前記器具の動力学を再度シミュレートするステップと、前記入力された力及び前記外力の両方を考慮する前記仮想シミュレーションに従って前記関節アクチュエータの動作を再度指令するステップとを更に含む、請求項13に記載の方法。
  15. 器具と、該器具を支持し、複数の関節及び複数の関節アクチュエータを備えるマニピュレータと、該マニピュレータと通信するコントローラとを備えるロボットシステムをバックドライブする方法であって、仮想シミュレーションが、前記関節の各々の周りの慣性を有する仮想質量を有する仮想剛体として前記器具を表し、該方法は、前記コントローラが、
    各関節に対して個々に、予測関節トルクを求めるステップと、
    各関節に対して個々に前記予測関節トルクを実際の関節トルクと比較して関節トルク差を求めるステップと、
    各関節の周りの前記仮想質量の前記慣性を個々に求めるステップと、
    前記関節トルク差及び前記慣性を用いて各関節の周りの角加速度を個々に計算するステップと、
    前記複数の関節の前記角加速度を組み合わせて使用して、2自由度以上で前記仮想質量の加速度を取得するステップと、
    2自由度以上で前記角加速度を前記仮想質量に投影して外力を求めるステップと、
    前記仮想シミュレーションにおいて前記外力に応じて前記器具の動力学をシミュレートするステップと、
    前記仮想シミュレーションに従って前記関節アクチュエータの動作を指令するステップ
    行うことを含む、方法。
JP2018524212A 2015-11-11 2016-11-03 ロボットシステム及びロボットシステムをバックドライブする方法 Active JP6956081B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562253994P 2015-11-11 2015-11-11
US62/253,994 2015-11-11
US201562255610P 2015-11-16 2015-11-16
US62/255,610 2015-11-16
PCT/US2016/060269 WO2017083163A1 (en) 2015-11-11 2016-11-03 Robotic system and method for backdriving the same

Publications (2)

Publication Number Publication Date
JP2019500925A JP2019500925A (ja) 2019-01-17
JP6956081B2 true JP6956081B2 (ja) 2021-10-27

Family

ID=57530806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524212A Active JP6956081B2 (ja) 2015-11-11 2016-11-03 ロボットシステム及びロボットシステムをバックドライブする方法

Country Status (8)

Country Link
US (1) US10327849B2 (ja)
EP (1) EP3373837B8 (ja)
JP (1) JP6956081B2 (ja)
KR (1) KR102584754B1 (ja)
CN (1) CN108430375B (ja)
AU (1) AU2016351584B2 (ja)
CA (1) CA3005038A1 (ja)
WO (1) WO2017083163A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3656317A1 (en) 2011-09-02 2020-05-27 Stryker Corporation Surgical system including an instrument and method for using the instrument
US10384347B2 (en) 2016-03-25 2019-08-20 Seiko Epson Corporation Robot control device, robot, and simulation device
EP3554414A1 (en) 2016-12-16 2019-10-23 MAKO Surgical Corp. Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site
WO2019075572A1 (en) * 2017-10-19 2019-04-25 Kinova Inc. SYSTEM AND METHOD FOR ADMISSION MODE CONTROL FOR A ROBOTIC ARM
US10786317B2 (en) 2017-12-11 2020-09-29 Verb Surgical Inc. Active backdriving for a robotic arm
EP3743004A1 (en) 2018-01-26 2020-12-02 Mako Surgical Corp. End effectors, systems, and methods for impacting prosthetics guided by surgical robots
EP3793465A4 (en) 2018-05-18 2022-03-02 Auris Health, Inc. CONTROL DEVICES FOR ROBOTIC ACTIVATION REMOTE CONTROL SYSTEMS
EP3890643A2 (en) 2018-12-04 2021-10-13 Mako Surgical Corporation Mounting system with sterile barrier assembly for use in coupling surgical components
CN109620410B (zh) * 2018-12-04 2021-01-26 微创(上海)医疗机器人有限公司 机械臂防碰撞的方法及系统、医疗机器人
US10976728B2 (en) * 2018-12-10 2021-04-13 Raytheon Technologies Corporation Automatic process planning for robotic deburring operations
KR102149008B1 (ko) * 2018-12-13 2020-08-31 (주)미래컴퍼니 수술용 로봇의 충돌을 완화시키는 방법 및 시스템
CN109625118B (zh) * 2018-12-29 2020-09-01 深圳市优必选科技有限公司 双足机器人阻抗控制方法及装置
US11618135B2 (en) 2019-03-05 2023-04-04 K2M, Inc. Automatic ratcheting screwdriver
EP3730079B1 (en) 2019-03-06 2023-08-30 K2M, Inc. Bone screws and instrumentation
CN113891786A (zh) * 2019-04-17 2022-01-04 优傲机器人公司 基于自适应摩擦来控制机器人臂的方法
EP3975907A4 (en) * 2019-06-03 2023-06-21 Covidien LP EXTERNAL TORQUE OBSERVATION AND COMPENSATION SYSTEM AND APPARATUS FOR SURGICAL ROBOTIC ARM
CN110308727A (zh) * 2019-07-12 2019-10-08 沈阳城市学院 一种消除双足机器人上身姿态晃动的控制方法
CN111683796A (zh) * 2019-09-03 2020-09-18 上海非夕机器人科技有限公司 机械臂和机器人
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
AU2020359626A1 (en) * 2019-09-30 2022-04-14 Mako Surgical Corp. Systems and methods for guiding movement of a tool
WO2021067597A1 (en) 2019-10-01 2021-04-08 Mako Surgical Corp. Surgical systems for guiding robotic manipulators
US11559315B2 (en) 2019-10-04 2023-01-24 K2M, Inc. Tools for insertion of a spinal implant and methods of using same
KR102079122B1 (ko) * 2019-10-31 2020-02-19 주식회사 뉴로메카 로봇을 위한 동역학 시뮬레이션 기반 제어 프레임 워크
US20210137535A1 (en) 2019-11-07 2021-05-13 K2M, Inc. Incision Tools And Methods Of Use
USD941470S1 (en) 2019-11-07 2022-01-18 K2M, Inc. Surgical blade
US20210268649A1 (en) * 2020-02-28 2021-09-02 Ati Industrial Automation, Inc. Controlling Contact Force in a Machine Tool
CN111358563B (zh) * 2020-03-11 2021-09-03 上海交通大学 基于协作型机械臂的髋关节镜辅助机器人系统及控制方法
CN111329591A (zh) * 2020-03-11 2020-06-26 上海盼研机器人科技有限公司 具有人机协同功能的开颅手术机器人系统
CN111251305B (zh) * 2020-03-13 2023-02-07 南方科技大学 机器人力控制方法、装置、系统、机器人及存储介质
EP3886056A1 (en) 2020-03-16 2021-09-29 Stryker Australia PTY LTD Automated cut planning for removal of diseased regions
GB2593740A (en) * 2020-03-31 2021-10-06 Cmr Surgical Ltd Control system of a surgical robot
CN111862141B (zh) * 2020-06-16 2024-03-08 库卡机器人(广东)有限公司 Agv装置运动精度的评估方法、装置、介质及电子设备
GB2596812A (en) * 2020-07-06 2022-01-12 Cmr Surgical Ltd Joint control in a mechanical system
CN116710017A (zh) 2020-12-31 2023-09-05 马科外科公司 减轻运动学部件的不期望定向运动的机器人系统和方法
CN112947439A (zh) * 2021-02-05 2021-06-11 深圳市优必选科技股份有限公司 位置调整方法、装置、终端设备及可读存储介质
WO2023167906A1 (en) 2022-03-02 2023-09-07 Mako Surgical Corp. Robotic system including a link tracker
US20230329813A1 (en) 2022-04-18 2023-10-19 Mako Surgical Corp. Systems And Methods For Guided Placement Of A Robotic Manipulator
CN114770511B (zh) * 2022-05-09 2023-06-23 上海傅利叶智能科技有限公司 基于物理触觉的机器人控制方法、装置及机器人
CN116000916B (zh) * 2022-10-20 2023-08-22 重庆金山医疗机器人有限公司 一种手术机器人的关节扭矩控制方法、装置及手术机器人

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
CA2167304C (en) 1993-07-16 1998-04-21 Louis B. Rosenberg Multi degree of freedom human-computer interface with tracking and forcefeedback
AU5391999A (en) 1998-08-04 2000-02-28 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6451027B1 (en) 1998-12-16 2002-09-17 Intuitive Surgical, Inc. Devices and methods for moving an image capture device in telesurgical systems
US8004229B2 (en) 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
JP4756618B2 (ja) * 2001-03-21 2011-08-24 株式会社ダイヘン 多関節ロボットにおける衝突検出・停止制御法
US7623944B2 (en) 2001-06-29 2009-11-24 Honda Motor Co., Ltd. System and method of estimating joint loads in a three-dimensional system
US7212886B2 (en) 2002-12-12 2007-05-01 Kabushiki Kaisha Yaskawa Denki Robot control apparatus and method
JP4682791B2 (ja) 2005-10-12 2011-05-11 ソニー株式会社 操作空間物理量算出装置及び操作空間物理量算出方法、並びにコンピュータ・プログラム
DE102005054575B3 (de) 2005-11-16 2007-04-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Regelung eines Roboterarms sowie Roboter zur Durchführung des Verfahrens
US7741802B2 (en) * 2005-12-20 2010-06-22 Intuitive Surgical Operations, Inc. Medical robotic system with programmably controlled constraints on error dynamics
US8876899B2 (en) 2007-11-14 2014-11-04 G. Patrick Maxwell Breast implant assembly
DE102007062108A1 (de) 2007-12-21 2009-07-02 Kuka Roboter Gmbh Industrieroboter und Verfahren zum Programmieren eines Industrieroboters
US9895813B2 (en) 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
JP5242342B2 (ja) 2008-10-31 2013-07-24 株式会社東芝 ロボット制御装置
US8770905B2 (en) 2008-11-04 2014-07-08 King Fahd University Of Petroleum And Minerals Anthropomorphic force-reflective master arm
KR101474765B1 (ko) 2008-12-05 2014-12-22 삼성전자 주식회사 로봇 팔 및 그 제어방법
WO2010088959A1 (en) 2009-02-06 2010-08-12 Abb Technology Ab Method for programming an industrial robot by lead-through
WO2011021375A1 (ja) 2009-08-21 2011-02-24 パナソニック株式会社 ロボットアームの制御装置及び制御方法、組立ロボット、ロボットアームの制御プログラム、及び、ロボットアームの制御用集積電子回路
WO2011036750A1 (ja) 2009-09-24 2011-03-31 株式会社 東芝 ロボット制御装置
CN105193506B (zh) 2009-10-01 2018-01-02 马科外科公司 用于安放假体组件和/或限制手术工具移动的手术系统
US20120283747A1 (en) 2009-11-16 2012-11-08 Koninklijke Philips Electronics N.V. Human-robot shared control for endoscopic assistant robot
US8321076B2 (en) * 2009-12-18 2012-11-27 The Boeing Company On-line inertia estimation for use in controlling an aerospace vehicle
WO2011109041A1 (en) 2010-03-04 2011-09-09 Mako Surgical Corp. System with brake to limit manual movement of member and control system for same
JP5311294B2 (ja) * 2010-04-28 2013-10-09 株式会社安川電機 ロボットの接触位置検出装置
US8644988B2 (en) 2010-05-14 2014-02-04 Intuitive Surgical Operations, Inc. Drive force control in medical instrument providing position measurements
EP2586577A4 (en) 2010-06-22 2013-12-04 Toshiba Kk ROBOT CONTROL DEVICE
US8740882B2 (en) 2010-07-30 2014-06-03 Lg Electronics Inc. Medical robotic system and method of controlling the same
EP2572838A1 (en) 2010-08-31 2013-03-27 Kabushiki Kaisha Yaskawa Denki Robot, robot system, robot control device, and state determining method
JP2012081568A (ja) * 2010-10-14 2012-04-26 Sony Corp ロボットの制御装置及び制御方法、並びにコンピューター・プログラム
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
FR2978844B1 (fr) * 2011-08-04 2014-03-21 Aldebaran Robotics Robot a articulations de rigidite variable et methode de calcul de ladite rigidite optimisee
KR101901580B1 (ko) 2011-12-23 2018-09-28 삼성전자주식회사 수술 로봇 및 그 제어 방법
KR20130080909A (ko) 2012-01-06 2013-07-16 삼성전자주식회사 수술 로봇 및 그 제어 방법
US8843236B2 (en) 2012-03-15 2014-09-23 GM Global Technology Operations LLC Method and system for training a robot using human-assisted task demonstration
US9092698B2 (en) 2012-06-21 2015-07-28 Rethink Robotics, Inc. Vision-guided robots and methods of training them
US9434073B2 (en) * 2012-08-02 2016-09-06 Toshiba Kikai Kabushiki Kaisha Robot apparatus and control method therefor
US9820818B2 (en) * 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
CN107198567B (zh) * 2012-08-03 2021-02-09 史赛克公司 用于机器人外科手术的系统和方法
CN107961076B (zh) 2012-08-15 2020-07-07 直观外科手术操作公司 使用者启动的手术安装平台的断开式离合
KR102147826B1 (ko) 2012-08-15 2020-10-14 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 로봇 암의 수동식 운동에 의해 제어되는 이동가능한 수술용 장착 플랫폼
JP6312264B2 (ja) 2012-09-17 2018-04-18 リシンク ロボティクス インコーポレイテッド 冗長自由度を伴うロボットマニピュレータの制約
US9199376B2 (en) 2013-03-14 2015-12-01 GM Global Technology Operations LLC Intuitive grasp control of a multi-axis robotic gripper
WO2014146119A1 (en) 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. Systems and methods for facilitating access to edges of cartesian-coordinate space using the null space
CN105338920B (zh) 2013-03-15 2018-01-26 直观外科手术操作公司 用于利用零空间跟踪路径的系统和方法
JP2016516487A (ja) 2013-03-15 2016-06-09 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ゼロ空間運動と同時にゼロ直交空間内でのクラッチングによりマニピュレータアームを位置決めするためのシステム及び方法
DE102013010290A1 (de) 2013-06-19 2014-12-24 Kuka Laboratories Gmbh Überwachen eines kinematisch redundanten Roboters
KR102206198B1 (ko) 2013-07-10 2021-01-22 삼성전자주식회사 수술 로봇 시스템 및 그 제어 방법
US9182242B2 (en) 2013-08-11 2015-11-10 Noam Brand Systems and methods for time management and multipoint navigation
DE102013218823A1 (de) 2013-09-19 2015-04-02 Kuka Laboratories Gmbh Verfahren zum manuell geführten Verstellen der Pose eines Manipulatorarms eines Industrieroboters und zugehöriger Industrieroboter
JP6272885B2 (ja) * 2013-09-24 2018-01-31 ソニー・オリンパスメディカルソリューションズ株式会社 医療用ロボットアーム装置、医療用ロボットアーム制御システム、医療用ロボットアーム制御方法及びプログラム
DE102013222456A1 (de) 2013-11-05 2015-05-07 Kuka Laboratories Gmbh Verfahren zum Programmieren von Bewegungsabläufen eines redundanten Industrieroboters und zugehöriger Industrieroboter
JP6559691B2 (ja) 2014-02-20 2019-08-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ロボットアームの手動の動きによって制御される外科取付けプラットフォームの限定的な移動
EP3120979A4 (en) 2014-03-14 2017-11-08 Sony Corporation Robot arm device, robot arm control method and program

Also Published As

Publication number Publication date
CA3005038A1 (en) 2017-05-18
EP3373837B1 (en) 2023-12-20
AU2016351584B2 (en) 2021-09-23
EP3373837B8 (en) 2024-01-24
WO2017083163A1 (en) 2017-05-18
CN108430375B (zh) 2021-05-07
AU2016351584A1 (en) 2018-05-17
CN108430375A (zh) 2018-08-21
US10327849B2 (en) 2019-06-25
KR20180082476A (ko) 2018-07-18
EP3373837A1 (en) 2018-09-19
KR102584754B1 (ko) 2023-10-05
JP2019500925A (ja) 2019-01-17
US20170128136A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6956081B2 (ja) ロボットシステム及びロボットシステムをバックドライブする方法
US11679499B2 (en) Systems and methods for controlling a robotic manipulator or associated tool
US11712798B2 (en) Systems and methods for controlling a robotic manipulator or associated tool
KR102252641B1 (ko) 모드 전환 시의 진동을 감쇠시키기 위한 명령 성형
US11850014B2 (en) Control system, control method, and surgical arm system
US9037295B2 (en) Dynamic physical constraint for hard surface emulation
KR102530836B1 (ko) 로봇 수술을 위한 시스템 및 방법
EP3473202B1 (en) Robotic system for minimally invasive surgery
KR20160132896A (ko) 원격조작 수술 시스템 및 역기구학을 이용한 조인트 한계에서의 제어 방법
EP3463160A1 (en) Multi-input robotic surgical system control scheme
JP7400494B2 (ja) 医療用アームシステム、制御装置、制御方法、及びプログラム
Wang et al. A robotic system with force feedback for micro-surgery
CN115916093A (zh) 用于引导手持医疗机器人器械的移动的系统和方法
JP2007054543A (ja) マッサージ機
EP3406407A1 (en) Robot system with adaptive motion performance
WO2023023186A1 (en) Techniques for following commands of an input device using a constrained proxy
Lis et al. RobinHand Haptic Device
WO2023220291A1 (en) Techniques for controlling a computer-assisted system
Lee et al. The preliminary results of a force feedback control for Sensorized Medical Robotics

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6956081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150