JP6953824B2 - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
JP6953824B2
JP6953824B2 JP2017120775A JP2017120775A JP6953824B2 JP 6953824 B2 JP6953824 B2 JP 6953824B2 JP 2017120775 A JP2017120775 A JP 2017120775A JP 2017120775 A JP2017120775 A JP 2017120775A JP 6953824 B2 JP6953824 B2 JP 6953824B2
Authority
JP
Japan
Prior art keywords
group
general formula
compound
represented
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017120775A
Other languages
Japanese (ja)
Other versions
JP2019009156A (en
Inventor
啓 菅原
啓 菅原
額田 克己
克己 額田
廣瀬 英一
英一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2017120775A priority Critical patent/JP6953824B2/en
Publication of JP2019009156A publication Critical patent/JP2019009156A/en
Application granted granted Critical
Publication of JP6953824B2 publication Critical patent/JP6953824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機電界発光素子に関する。 The present invention relates to an organic electroluminescent device.

電子写真感光体、有機電界発光素子、有機トランジスタ、有機太陽電池などの電子デバイスが備える有機化合物層の1つとして、電荷輸送性能(正孔輸送性能とも呼ぶ)を有する膜、即ち「電荷輸送性膜」が、盛んに開発されている。 A film having charge transport performance (also called hole transport performance) as one of the organic compound layers of electronic devices such as electrophotographic photosensitive members, organic field light emitting devices, organic transistors, and organic solar cells, that is, "charge transport property". "Membrane" is being actively developed.

例えば、特許文献1には、一般式(I)で示される反応性化合物又は該反応性化合物に由来する構造を含む電荷輸送性膜が開示されている。
例えば、特許文献2には、一般式(I)で表される化合物の重合体を含有する電荷輸送性膜が開示されている。
例えば、特許文献3には、一般式(I)で表される化合物の重合体を含有する電荷輸送性膜が開示されている。
例えば、特許文献4には、一般式(I)で表される化合物を含有する組成物を硬化させた電荷輸送性膜が開示されている。
For example, Patent Document 1 discloses a reactive compound represented by the general formula (I) or a charge transporting membrane containing a structure derived from the reactive compound.
For example, Patent Document 2 discloses a charge-transporting membrane containing a polymer of a compound represented by the general formula (I).
For example, Patent Document 3 discloses a charge-transporting membrane containing a polymer of a compound represented by the general formula (I).
For example, Patent Document 4 discloses a charge-transporting film obtained by curing a composition containing a compound represented by the general formula (I).

特開2013−43841号公報Japanese Unexamined Patent Publication No. 2013-38441 特開2013−44819号公報Japanese Unexamined Patent Publication No. 2013-44819 特開2013−60422号公報Japanese Unexamined Patent Publication No. 2013-60422 特開2013−60572号公報Japanese Unexamined Patent Publication No. 2013-6057

ところで、有機電界発光素子には、重合性基を有する正孔輸送化合物の重合体を含む有機化合物層を備えているものがあるが、かかる有機化合物層は抵抗が高いことがある。
そこで、本発明の課題は、重合性基を有する正孔輸送化合物のみからなる重合体を含む場合に比べて、抵抗が低い有機化合物層を備える有機電界発光素子を提供することにある。
By the way, some organic electroluminescent devices include an organic compound layer containing a polymer of a hole transport compound having a polymerizable group, and the organic compound layer may have high resistance.
Therefore, an object of the present invention is to provide an organic electroluminescent element provided with an organic compound layer having a lower resistance than that containing a polymer composed only of a hole transport compound having a polymerizable group.

前記課題を解決するための具体的手段には、下記の態様が含まれる。 Specific means for solving the above problems include the following aspects.

に係る発明は、
少なくとも一方が透明である一対の電極と、該一対の電極に挟持された発光層を含む1つ又は複数の有機化合物層と、を有し、
前記有機化合物層の少なくとも1つが、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む有機電界発光素子。
The invention according to <1 > is
It has a pair of electrodes, at least one of which is transparent, and one or more organic compound layers, including a light emitting layer sandwiched between the pair of electrodes.
An organic electroluminescent device in which at least one of the organic compound layers contains a polymer of a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group.

に係る発明は、
前記重合性基を有する正孔輸送化合物が、下記一般式(1)で表される化合物であるに記載の有機電界発光素子。
The invention according to <2 > is
The organic electroluminescent device according to < 1 > , wherein the hole transport compound having a polymerizable group is a compound represented by the following general formula (1).

Figure 0006953824
Figure 0006953824

一般式(1)中、Fは正孔輸送性サブユニットを表し、Lはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、メタンから水素3原子を除いた3価基、及びエチレンから水素3原子を除いた3価基から選択される1種の連結基又は2種以上を組み合わせてなる(n+1)価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、mは1以上6以下の整数を表し、nは1以上3以下の整数を表す。 In the general formula (1), F represents a hole-transporting subunit, L is an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O-, -S. -, One type of linking group selected from a trivalent group obtained by removing 3 hydrogen atoms from methane and a trivalent group obtained by removing 3 hydrogen atoms from ethylene, or a (n + 1) valent linking group consisting of a combination of two or more types. , R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, m represents an integer of 1 or more and 6 or less, and n represents an integer of 1 or more and 3 or less.

に係る発明は、
前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物である、に記載の有機電界発光素子。
The invention according to <3 > is
The organic electroluminescent device according to < 2 > , wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).

Figure 0006953824
Figure 0006953824

一般式(2)中、Ar乃至Arはそれぞれ独立に置換若しくは無置換のアリール基を表し、Arは置換若しくは無置換のアリール基又は置換若しくは無置換のアリーレン基を表す。kは0又は1を表し、c1乃至c5はそれぞれ独立に0以上2以下の整数を表し、但しc1乃至c5の合計は1以上である。Dは一般式(3)で表される基を表し、一般式(3)中、Lはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、メタンから水素3原子を除いた3価基、及びエチレンから水素3原子を除いた3価基から選択される1種の連結基又は2種以上を組み合わせてなる(n+1)価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、nは1以上3以下の整数を表す。 In the general formula (2), Ar 1 to Ar 4 independently represent a substituted or unsubstituted aryl group, and Ar 5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted arylene group, respectively. k represents 0 or 1, c1 to c5 independently represent integers of 0 or more and 2 or less, but the total of c1 to c5 is 1 or more. D represents a group represented by the general formula (3), and in the general formula (3), L is an alkylene group, −C = C−, −C (= O) −, −N (R) −, −O. -, -S-, one linking group selected from a trivalent group obtained by removing 3 hydrogen atoms from methane, and a trivalent group obtained by removing 3 hydrogen atoms from ethylene, or a combination of two or more (n + 1). It represents a valent linking group, R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, and n represents an integer of 1 or more and 3 or less.

に係る発明は、
前記一般式(2)で表される化合物における前記一般式(3)で表される基が、下記一般式(4)で表される基である、に記載の有機電界発光素子。
The invention according to <4 > is
The organic electroluminescent device according to < 3 > , wherein the group represented by the general formula (3) in the compound represented by the general formula (2) is a group represented by the following general formula (4).

Figure 0006953824
Figure 0006953824

一般式(4)中、Xはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される1種又は2種以上を組み合わせてなる2価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、pは0又は1を表す。 In the general formula (4), X is one or more selected from an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O- and -S-. Represents a divalent linking group consisting of a combination of, R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, and p represents 0 or 1.

に係る発明は、
前記一般式(2)で表される化合物における前記一般式(3)で表される基が、下記一般式(5−1)で表される基又は下記一般式(5−2)で表される基である、に記載の有機電界発光素子。
The invention according to <5 > is
The group represented by the general formula (3) in the compound represented by the general formula (2) is represented by the group represented by the following general formula (5-1) or the following general formula (5-2). The organic electroluminescent device according to < 3 > , which is a base.

Figure 0006953824
Figure 0006953824

一般式(5−1)及び一般式(5−2)中、Xはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される1種又は2種以上を組み合わせてなる2価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、pは0又は1を表す。 In the general formula (5-1) and the general formula (5-2), X is an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O- and -S-. Represents a divalent linking group consisting of one or a combination of two or more selected from, R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, and p represents 0 or 1.

に係る発明は、
前記一般式(2)で表される化合物における前記一般式(3)で表される基が、下記一般式(6−1)で表される基又は下記一般式(6−2)で表される基である、に記載の有機電界発光素子。
The invention according to <6 > is
The group represented by the general formula (3) in the compound represented by the general formula (2) is represented by the group represented by the following general formula (6-1) or the group represented by the following general formula (6-2). The organic electroluminescent device according to < 3 > , which is a base.

Figure 0006953824
Figure 0006953824

一般式(6−1)及び一般式(6−2)中、Xはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される1種又は2種以上を組み合わせてなる2価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、pは0又は1を表す。 In the general formula (6-1) and the general formula (6-2), X is an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O- and -S-. Represents a divalent linking group consisting of one or a combination of two or more selected from, R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, and p represents 0 or 1.

に係る発明は、
前記重合性基を有する電子輸送化合物が、下記一般式(7)で表される化合物、下記一般式(8)で表される化合物、及び下記一般式(9)で表される化合物からなる群より選択される化合物である、のいずれか1項に記載の有機電界発光素子。
The invention according to <7 > is
The group in which the electron-transporting compound having a polymerizable group consists of a compound represented by the following general formula (7), a compound represented by the following general formula (8), and a compound represented by the following general formula (9). The organic electroluminescent element according to any one of < 1 > to < 6 > , which is a compound selected from the above.

Figure 0006953824
Figure 0006953824

一般式(7)中、R11、R12、R13、R14、R15、R16、R17及びR18は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R11、R12、R13、R14、R15、R16、R17及びR18中、−Y−(Z)で表される基は1以上4以下である。
一般式(8)中、R21、R22、R23、R24、R25、R26、R27及びR28は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R21、R22、R23、R24、R25、R26、R27及びR28中、−Y−(Z)で表される基は1以上4以下である。
一般式(9)中、R31、R32、R33、R34、R35、R36、R37及びR38は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R31、R32、R33、R34、R35、R36、R37及びR38中、−Y−(Z)で表される基は、1以上4以下である。
前記−Y−(Z)で表される基中、Yは、アルキレン基、アダマンタン基、−C=C−、−C(=O)−、−O−及びメタンから水素3原子を除いた3価基から選択される1種又は2種以上を組み合わせてなる(m+1)価の連結基を表し、Zは、アクリロイル基、メタクリロイル基又はスチレン基であり、mは1又は2である。
In the general formula (7), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, and aryl groups, respectively. , Aralkyl group or group represented by −YZ. However, among R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 , the number of groups represented by −Y− (Z) m is 1 or more and 4 or less.
In the general formula (8), R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 are independently hydrogen atom, halogen atom, alkyl group, alkoxy group and aryl group, respectively. , Aralkyl group or group represented by −YZ. However, among R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 , the number of groups represented by −Y− (Z) m is 1 or more and 4 or less.
In the general formula (9), R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 are independently hydrogen atom, halogen atom, alkyl group, alkoxy group and aryl group, respectively. , Aralkyl group or group represented by −YZ. However, among R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 , the group represented by −Y− (Z) m is 1 or more and 4 or less.
Among the groups represented by -Y- (Z) m , Y was obtained by removing 3 hydrogen atoms from the alkylene group, the adamantane group, -C = C-, -C (= O)-, -O- and methane. Represents a (m + 1) valent linking group consisting of one or a combination of two or more selected from trivalent groups, where Z is an acryloyl group, a methacryloyl group or a styrene group, and m is 1 or 2.

に係る発明は、
熱ラジカル発生剤及びその誘導体並びに光ラジカル発生剤及びその誘導体から選択される少なくとも1種を更に含有する、のいずれか1項に記載の有機電界発光素子。
The invention according to <8 > is
The organic electroluminescent device according to any one of < 1 > to < 7 > , further containing at least one selected from a thermal radical generator and a derivative thereof and a photoradical generator and a derivative thereof.

に係る発明は、
前記重合体中の、前記重合性基を有する正孔輸送化合物に由来する構造単位(C)と前記重合性基を有する電子輸送化合物に由来する構造単位(E)との質量比(C):(E)が10:1乃至1:20の範囲であるに記載の有機電界発光素子。
The invention according to <9 > is
The mass ratio (C) of the structural unit (C) derived from the hole transporting compound having a polymerizable group and the structural unit (E) derived from the electron transporting compound having a polymerizable group in the polymer: (E) is 10: 1 to a range 1:20 <1> to the organic electroluminescent device according to <8>.

10に係る発明は、
前記重合体中の、前記重合性基を有する正孔輸送化合物に由来する構造単位(C)と前記重合性基を有する電子輸送化合物に由来する構造単位(E)との質量比(C):(E)が1:1乃至1:15の範囲であるに記載の有機電界発光素子。
The invention according to <10 > is
The mass ratio (C) of the structural unit (C) derived from the hole transporting compound having a polymerizable group and the structural unit (E) derived from the electron transporting compound having a polymerizable group in the polymer: The organic electroluminescent element according to < 9 > , wherein (E) is in the range of 1: 1 to 1:15.

11に係る発明は、
重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む前記有機化合物層の体積抵抗率が1×10Ω・cm以上1×1015Ω・cm以下である、10のいずれか1項に記載の有機電界発光素子。
The invention according to <11 > is
When the volume resistivity of the organic compound layer containing the polymer of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group is 1 × 10 5 Ω · cm or more and 1 × 10 15 Ω · cm or less. The organic electric field light emitting element according to any one of < 1 > to < 10 >.

10、又は11に係る発明によれば、重合性基を有する正孔輸送化合物のみからなる重合体を含む場合に比べて、抵抗が低い有機化合物層を備える有機電界発光素子が提供される。
に係る発明によれば、重合性基を有する正孔輸送化合物のみからなる重合体と後述する化合物7、8又は9とを含む場合に比べて、抵抗変化が少ない有機化合物層を備えた有機電界発光素子が提供される。
に係る発明によれば、熱ラジカル発生剤及びその誘導体並びに光ラジカル発生剤及びその誘導体から選択される少なくとも1種を含有しない場合に比べて、機械的強度に優れた有機化合物層を備える有機電界発光素子が提供される。
According to the inventions relating to < 1 > , < 2 > , < 3 > , < 4 > , < 5 > , < 6 > , < 9 > , < 10 > , or < 11 > , holes having a polymerizable group. Provided is an organic electroluminescent element provided with an organic compound layer having a lower resistance than that of a polymer containing only a transport compound.
According to the invention according to < 7 > , an organic compound layer having a small resistance change as compared with the case where a polymer composed only of a hole transport compound having a polymerizable group and a compound 7, 8 or 9 described later is contained is provided. An organic electroluminescent element is provided.
According to the invention according to < 8 > , an organic compound layer having excellent mechanical strength as compared with the case where it does not contain at least one selected from a thermal radical generator and its derivative and a photoradical generator and its derivative. Provided is an organic electroluminescent element.

本実施形態に係る有機電界発光素子の一例の模式的断面図である。It is a schematic cross-sectional view of an example of the organic electroluminescent element which concerns on this embodiment. 本実施形態に係る有機電界発光素子の一例の模式的断面図である。It is a schematic cross-sectional view of an example of the organic electroluminescent element which concerns on this embodiment. 本実施形態に係る有機電界発光素子の一例の模式的断面図である。It is a schematic cross-sectional view of an example of the organic electroluminescent element which concerns on this embodiment. 本実施形態に係る有機電界発光素子の一例の模式的断面図である。It is a schematic cross-sectional view of an example of the organic electroluminescent element which concerns on this embodiment.

以下に、発明の実施形態を説明する。これらの説明及び実施例は実施形態を例示するものであり、発明の範囲を制限するものではない。 Hereinafter, embodiments of the invention will be described. These explanations and examples exemplify embodiments and do not limit the scope of the invention.

本明細書において、層中又は組成物中の各成分の量について言及する場合、層中又は組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、層中又は組成物中に存在する当該複数種の物質の合計量を意味する。 In the present specification, when the amount of each component in the layer or composition is referred to, when a plurality of substances corresponding to each component are present in the layer or composition, unless otherwise specified, in the layer. Alternatively, it means the total amount of the plurality of substances present in the composition.

<有機電界発光素子>
本実施形態に係る有機電界発光素子は、少なくとも一方が透明である一対の電極と、該一対の電極に挟持された発光層を含む1つ又は複数の有機化合物層と、を有し、有機化合物層の少なくとも1つが、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む。
<Organic electroluminescent device>
The organic electroluminescent element according to the present embodiment has a pair of electrodes whose at least one is transparent, and one or a plurality of organic compound layers including a light emitting layer sandwiched between the pair of electrodes, and is an organic compound. At least one of the layers contains a polymer of a hole-transporting compound having a polymerizable group and an electron-transporting compound having a polymerizable group.

本発明者らは、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物とを共重合させて得られた重合体を用いることで、該重合体を含む有機化合物層の抵抗が低くなることを見出した。
重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物とを共重合させて得られた重合体は、分子内に正孔輸送部位と電子輸送部位との両方が存在することとなるため、正孔輸送部位と電子輸送部位との間で部分的な電荷移動が起こり易く、その結果として、電荷を帯びた分子となる。そして、このような重合体を含む有機化合物層は、層中の電荷量が増加して抵抗が低下するものと推測される。
有機電界発光素子において有機化合物層の抵抗を低下させることは、電極からの電荷の注入性、電荷量の調整及び増加の観点から重要である。したがって、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む有機化合物層は、有機電界発光素子を構成する有機化合物層として有用であるといえる。
The present inventors use a polymer obtained by copolymerizing a hole-transporting compound having a polymerizable group and an electron-transporting compound having a polymerizable group to resist the organic compound layer containing the polymer. Was found to be low.
The polymer obtained by copolymerizing a hole-transporting compound having a polymerizable group and an electron-transporting compound having a polymerizable group has both a hole-transporting site and an electron-transporting site in the molecule. As a result, partial charge transfer is likely to occur between the hole transport site and the electron transport site, resulting in a charged molecule. Then, it is presumed that the amount of electric charge in the organic compound layer containing such a polymer increases and the resistance decreases.
Reducing the resistance of the organic compound layer in an organic electroluminescent device is important from the viewpoint of charge injectability from the electrode, adjustment and increase of the amount of charge. Therefore, it can be said that an organic compound layer containing a polymer of a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group is useful as an organic compound layer constituting an organic electric field light emitting element.

また、有機電界発光素子は、一対の電極に挟持された有機化合物層を含むが、この有機化合物層は、熱や他の層の形成時の溶剤等の外的要因により影響を受け、抵抗変化が起きてしまうことがある。
有機化合物層の抵抗変化は、1.有機化合物層中の成分(特に低分子化合物)が熱により層外へ移動してしまうこと(以下、「マイグレーション」と呼ぶ)、2.有機化合物層上に他の層を形成する際に使用される溶剤等によって、下層である有機化合物層中の成分が溶出してしまうこと、などにより起こると考えられる。
特に、重合性基を有する正孔輸送化合物の重合体を含むものの、重合性基を有しない電子輸送化合物が含まれている有機化合物層の場合、電子輸送化合物が移動し易い状態であるため、マイグレーションを起こしたり、溶剤に溶出したりして、抵抗変化が生じてしまうと考えられる。
本実施形態における有機化合物層は、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む。このような形態の重合体を有機化合物層に含ませることで、電子輸送化合物のマイグレーションや溶出が抑えられ、抵抗変化が抑制されるものと考えられる。
Further, the organic electroluminescent element includes an organic compound layer sandwiched between a pair of electrodes, and the organic compound layer is affected by external factors such as heat and a solvent when forming other layers, and the resistance changes. May occur.
The resistance change of the organic compound layer is 1. 2. The components in the organic compound layer (particularly low molecular weight compounds) move out of the layer due to heat (hereinafter referred to as "migration"). It is considered that this is caused by elution of components in the lower organic compound layer due to a solvent or the like used when forming another layer on the organic compound layer.
In particular, in the case of an organic compound layer containing a polymer of a hole transport compound having a polymerizable group but containing an electron transport compound having no polymerizable group, the electron transport compound is in a state of being easily moved. It is considered that the resistance changes due to migration or elution into the solvent.
The organic compound layer in the present embodiment contains a polymer of a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group. It is considered that by including the polymer in such a form in the organic compound layer, migration and elution of the electron transport compound are suppressed, and resistance change is suppressed.

〔重合体含有有機化合物層〕
まず、本実施形態に係る有機電界発光素子を構成する重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む有機化合物層(以下、適宜、「重合体含有有機化合物層」と称する。)について、説明する。
重合体含有有機化合物層は、以下に説明する、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物の他、必要に応じて、熱ラジカル発生剤及び光ラジカル発生剤からなるラジカル発生剤を用いることで得られる。
[Polymer-containing organic compound layer]
First, an organic compound layer containing a polymer of a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group constituting the organic electric field light emitting element according to the present embodiment (hereinafter, appropriately "containing a polymer"). "Organic compound layer") will be described.
The polymer-containing organic compound layer is composed of a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group, as described below, as well as a thermal radical generator and a photoradical generator, if necessary. It is obtained by using a radical generator.

(重合性基を有する正孔輸送化合物)
本実施形態における重合性基を有する正孔輸送化合物は、正孔輸送性能を有する骨格に、重合性基が直接又は連結基を介して結合した化合物であればよい。
重合性基を有する正孔輸送化合物としては、正孔輸送性能を有する骨格の種類、重合性基の種類、重合性基の数、連結基の有無等の異なる種々の化合物があるが、重合体含有有機化合物層に求められる性能に応じて、選択されればよい。
正孔輸送性能を有する骨格としては、正孔輸送性能を有する化合物に由来する骨格であればよく、具体的には、後述する正孔輸送性能を有する化合物に由来するサブユニットが挙げられる。
重合性基としては、ラジカル重合し得る官能基であることが好ましく、例えば、少なくとも炭素二重結合を含有する基を有する官能基が挙げられる。具体的には、重合性基としては、ビニル基、ビニルエーテル基、ビニルチオエーテル基、スチレン基、アクリロイル基、メタクリロイル基、及びそれらの誘導体から選択される少なくも1つを含有する基等が挙げられる。
連結基としては、上記の正孔輸送性能を有する骨格と重合性基とを連結しうる基であればよく、直鎖状、分岐状、環状、及びこれらを組み合わせた構造のいずれであってもよい。
(Hole transport compound having a polymerizable group)
The hole-transporting compound having a polymerizable group in the present embodiment may be a compound in which a polymerizable group is directly bonded to a skeleton having a hole-transporting performance or via a linking group.
Examples of the hole transporting compound having a polymerizable group include various compounds having different types of skeletons having hole transporting performance, types of polymerizable groups, number of polymerizable groups, presence or absence of linking groups, and the like. It may be selected according to the performance required for the contained organic compound layer.
The skeleton having the hole transporting performance may be a skeleton derived from a compound having the hole transporting performance, and specific examples thereof include subunits derived from the compound having the hole transporting performance described later.
The polymerizable group is preferably a functional group capable of radical polymerization, and examples thereof include a functional group having a group containing at least a carbon double bond. Specifically, examples of the polymerizable group include a vinyl group, a vinyl ether group, a vinyl thioether group, a styrene group, an acryloyl group, a methacryloyl group, and a group containing at least one selected from derivatives thereof. ..
The linking group may be any group that can link the above-mentioned skeleton having hole transporting performance and the polymerizable group, and may be linear, branched, cyclic, or a structure combining these. good.

重合性基を有する正孔輸送化合物としては、正孔輸送性能、重合性能、耐溶剤性、塗布適性等の点から、下記一般式(1)で表される化合物が好ましい。 As the hole transport compound having a polymerizable group, a compound represented by the following general formula (1) is preferable from the viewpoints of hole transport performance, polymerization performance, solvent resistance, coating suitability and the like.

下記一般式(1)で表される化合物は、Fで表される正孔輸送性サブユニットに、連結基Lを介して、連鎖重合性基であるスチレン基が結合した化合物である。
一般的に、正孔輸送化合物の正孔輸送性能は、正孔輸送化合物の架橋部位数(重合性基の数)を多くするほど、低下する傾向がある。これは、正孔輸送化合物の架橋部位数(重合性基の数)を多くすると、重合させた際に、正孔輸送性サブユニットに歪みが生じる故と考えられる。
これに対して、一般式(1)で表される化合物は、正孔輸送性サブユニットFに、連結基Lを介して、連鎖重合性基であるスチレン基が結合した構造であるため、連結基Lの存在により重合させた際に正孔輸送性サブユニットに歪みを発生させにくく、重合性能と正孔輸送性能との両立が可能となる。
また、一般式(1)で表される化合物の重合体は正孔輸送性能に優れることから、電子輸送部位との間での電荷移動がより起こり易く、その結果として、一般式(1)で表される化合物の重合体を含む有機化合物層は、層中の電荷量が増加して抵抗が低下するものと推測される。したがって、一般式(1)で表される化合物は、有機電界発光素子の重合体含有有機化合物層に用いる材料として有用である。
また、連鎖重合性基としてスチレン基を有する正孔輸送化合物は、連鎖重合性基として(メタ)アクリル基のみを有する正孔輸送化合物に比べて、連鎖重合性基の耐溶剤性及び化合物の塗布適性に優れると考えられる。本観点からも、一般式(1)で表される化合物は、重合体含有有機化合物層に用いる材料として有用である。
The compound represented by the following general formula (1) is a compound in which a styrene group, which is a chain-growth group, is bonded to a hole-transporting subunit represented by F via a linking group L.
In general, the hole transport performance of a hole transport compound tends to decrease as the number of crosslinked sites (number of polymerizable groups) of the hole transport compound increases. It is considered that this is because when the number of cross-linked sites (the number of polymerizable groups) of the hole-transporting compound is increased, the hole-transporting subunit is distorted when polymerized.
On the other hand, the compound represented by the general formula (1) has a structure in which a styrene group, which is a chain-growth polymerizable group, is bonded to the hole-transporting subunit F via a linking group L, and thus is linked. Due to the presence of the group L, the hole transporting subunit is less likely to be distorted when polymerized, and both the polymerization performance and the hole transporting performance can be achieved at the same time.
Further, since the polymer of the compound represented by the general formula (1) is excellent in hole transport performance, charge transfer to and from the electron transport site is more likely to occur, and as a result, the general formula (1) is used. It is presumed that the amount of charge in the organic compound layer containing the polymer of the represented compound increases and the resistance decreases. Therefore, the compound represented by the general formula (1) is useful as a material used for the polymer-containing organic compound layer of the organic electroluminescent device.
Further, the hole transport compound having a styrene group as the chain polymerizable group has the solvent resistance of the chain polymerizable group and the coating of the compound as compared with the hole transport compound having only the (meth) acrylic group as the chain polymerizable group. It is considered to be excellent in aptitude. From this viewpoint as well, the compound represented by the general formula (1) is useful as a material used for the polymer-containing organic compound layer.

Figure 0006953824
Figure 0006953824

一般式(1)中、Fは正孔輸送性サブユニットを表し、Lはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、メタンから水素3原子を除いた3価基、及びエチレンから水素3原子を除いた3価基から選択される1種の連結基又は2種以上を組み合わせてなる(n+1)価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、mは1以上6以下の整数を表し、nは1以上3以下の整数を表す。
なお、分子内に「L」が複数個存在する場合、「L」は互いに同じでもよく異なっていてもよい。
In the general formula (1), F represents a hole-transporting subunit, L is an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O-, -S. -, One type of linking group selected from a trivalent group obtained by removing 3 hydrogen atoms from methane and a trivalent group obtained by removing 3 hydrogen atoms from ethylene, or a (n + 1) valent linking group consisting of a combination of two or more types. , R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, m represents an integer of 1 or more and 6 or less, and n represents an integer of 1 or more and 3 or less.
When a plurality of "L" s are present in the molecule, the “L” may be the same or different from each other.

Fで表される正孔輸送性サブユニットとしては、正孔輸送性能を有する化合物に由来するサブユニットであればよく、具体的には、フタロシアニン系化合物、ポルフィリン系化合物、アゾベンゼン系化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物、キノン系化合物、フルオレノン系化合物等の正孔輸送性能を有する化合物に由来するサブユニットが挙げられる。中でも、電荷移動度、酸化安定性等に優れる、トリアリールアミン系化合物に由来するサブユニットが好ましい。 The hole transporting subunit represented by F may be a subunit derived from a compound having hole transporting performance, and specifically, a phthalocyanine compound, a porphyrin compound, an azobenzene compound, or a triaryl. Derived from compounds having hole transport performance such as amine compounds, benzidine compounds, arylalcan compounds, aryl-substituted ethylene compounds, stillben compounds, anthracene compounds, hydrazone compounds, quinone compounds, and fluorenone compounds. Subunits can be mentioned. Of these, subunits derived from triarylamine compounds, which are excellent in charge mobility, oxidative stability, etc., are preferable.

Lで表される連結基は、2価、3価又は4価であり、2価又は3価がより好ましい。 The linking group represented by L is divalent, trivalent or tetravalent, with divalent or trivalent being more preferred.

Lで表される2価の連結基としては、アルキレン基と、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される少なくとも1種と、を組み合わせてなる2価の連結基が好ましく、アルキレン基としては、炭素数1以上6以下の直鎖アルキレン基が好ましく、炭素数1以上4以下の直鎖アルキレン基がより好ましい。 The divalent linking group represented by L is selected from an alkylene group and at least -C = C-, -C (= O)-, -N (R)-, -O- and -S-. A divalent linking group formed by combining one of the above is preferable, and as the alkylene group, a linear alkylene group having 1 or more and 6 or less carbon atoms is preferable, and a linear alkylene group having 1 or more and 4 or less carbon atoms is more preferable.

Lで表される2価の連結基としては、以下の基が挙げられる。下記の連結基中、「*」はFと連結する部位であり、a、b及びcはメチレン基の繰り返し数を表す。 Examples of the divalent linking group represented by L include the following groups. Among the following linking groups, "*" is a site to be linked to F, and a, b and c represent the number of repetitions of the methylene group.

*−(CH)a−O−(CH)b−
*−(CH)a−O−(CH)c−O−(CH)b−
*−(CH)a−C(=O)−O−(CH)b−
*−(CH)a−C(=O)−N(R)−(CH)b−
*−(CH)a−C(=O)−S−(CH)b−
*−(CH)a−N(R)−(CH)b−
*−(CH)a−S−(CH)b−
*−O−(CH)a−O−(CH)b−
*−CH=CH−(CH)a−O−(CH)b−
*−CH=CH−C(=O)−O−(CH)b−
*-(CH 2 ) a-O- (CH 2 ) b-
*-(CH 2 ) a-O- (CH 2 ) c-O- (CH 2 ) b-
*-(CH 2 ) a-C (= O) -O- (CH 2 ) b-
*-(CH 2 ) a-C (= O) -N (R)-(CH 2 ) b-
*-(CH 2 ) a-C (= O) -S- (CH 2 ) b-
*-(CH 2 ) a-N (R)-(CH 2 ) b-
*-(CH 2 ) a-S- (CH 2 ) b-
* -O- (CH 2 ) a-O- (CH 2 ) b-
* -CH = CH- (CH 2 ) a-O- (CH 2 ) b-
* -CH = CH-C (= O) -O- (CH 2 ) b-

Lで表される3価の連結基としては、以下の基が挙げられる。下記の連結基中、「*」はFと連結する部位であり、a、b、c、d、e及びfはメチレン基の繰り返し数を表す。 Examples of the trivalent linking group represented by L include the following groups. Among the following linking groups, "*" is a site to be linked to F, and a, b, c, d, e and f represent the number of repetitions of the methylene group.

*−(CH)a−CH[−C(=O)−O−(CH)b−]
*−(CH)a−CH[−CH−O−(CH)b−]
*−CH=C[−C(=O)−O−(CH)b−]
*−CH=C[−(CH)c−O−(CH)b−]
*−(CH)a−CH[−C(=O)−N(R)−(CH)b−]
*−(CH)a−CH[−C(=O)−S−(CH)b−]
*−(CH)a−CH[−(CH)c−N(R)−(CH)b−]
*−(CH)a−CH[−(CH)c−S−(CH)b−]
*−O−(CH)d−CH[−(CH)c−O−(CH)b−]
*−(CH)f−O−(CH)d−CH[−(CH)c−O−(CH)b−]
*-(CH 2 ) a-CH [-C (= O) -O- (CH 2 ) b-] 2
*-(CH 2 ) a-CH [-CH 2- O- (CH 2 ) b-] 2
* -CH = C [-C (= O) -O- (CH 2 ) b-] 2
* -CH = C [-(CH 2 ) c-O- (CH 2 ) b-] 2
*-(CH 2 ) a-CH [-C (= O) -N (R)-(CH 2 ) b-] 2
*-(CH 2 ) a-CH [-C (= O) -S- (CH 2 ) b-] 2
*-(CH 2 ) a-CH [-(CH 2 ) c-N (R)-(CH 2 ) b-] 2
*-(CH 2 ) a-CH [-(CH 2 ) c-S- (CH 2 ) b-] 2
* -O- (CH 2 ) d-CH [-(CH 2 ) c-O- (CH 2 ) b-] 2
*-(CH 2 ) f-O- (CH 2 ) d-CH [-(CH 2 ) c-O- (CH 2 ) b-] 2

Figure 0006953824
Figure 0006953824

Lで表される4価の連結基としては、以下の基が挙げられる。下記の連結基中、「*」はFと連結する部位であり、b、c及びgはメチレン基の繰り返し数を表す。 Examples of the tetravalent linking group represented by L include the following groups. Among the following linking groups, "*" is a site to be linked to F, and b, c and g represent the number of repetitions of the methylene group.

Figure 0006953824
Figure 0006953824

一般式(1)で表される化合物としては、正孔輸送性サブユニットとしてトリアリールアミン系化合物に由来するサブユニットを有する化合物が好ましく、具体的には、一般式(2)で表される化合物が好ましい。 As the compound represented by the general formula (1), a compound having a subunit derived from a triarylamine-based compound as the hole transporting subunit is preferable, and specifically, it is represented by the general formula (2). Compounds are preferred.

Figure 0006953824
Figure 0006953824

一般式(2)中、Ar乃至Arはそれぞれ独立に置換若しくは無置換のアリール基を表し、Arは置換若しくは無置換のアリール基又は置換若しくは無置換のアリーレン基を表す。kは0又は1を表し、c1乃至c5はそれぞれ独立に0以上2以下の整数を表し、但しc1乃至c5の合計は1以上である。Dは一般式(3)で表される基を表し、一般式(3)中、Lはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−、−S−、メタンから水素3原子を除いた3価基、及びエチレンから水素3原子を除いた3価基から選択される1種の連結基又は2種以上を組み合わせてなる(n+1)価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、nは1以上3以下の整数を表す。 In the general formula (2), Ar 1 to Ar 4 independently represent a substituted or unsubstituted aryl group, and Ar 5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted arylene group, respectively. k represents 0 or 1, c1 to c5 independently represent integers of 0 or more and 2 or less, but the total of c1 to c5 is 1 or more. D represents a group represented by the general formula (3), and in the general formula (3), L is an alkylene group, −C = C−, −C (= O) −, −N (R) −, −O. -, -S-, one linking group selected from a trivalent group obtained by removing 3 hydrogen atoms from methane, and a trivalent group obtained by removing 3 hydrogen atoms from ethylene, or a combination of two or more (n + 1). It represents a valent linking group, R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, and n represents an integer of 1 or more and 3 or less.

一般式(2)において、c1乃至c5の合計が2以上である場合、分子内に複数個存在する「D」(つまり、一般式(3)で表される基)は、互いに同じでもよく異なっていてもよい。 In the general formula (2), when the total of c1 to c5 is 2 or more, a plurality of "D" (that is, groups represented by the general formula (3)) existing in the molecule may be the same or different from each other. You may be.

一般式(2)中、Ar乃至Arで表される置換若しくは無置換のアリール基は、互いに同じでもよく異なっていてもよい。 In the general formula (2), the substituted or unsubstituted aryl groups represented by Ar 1 to Ar 4 may be the same or different from each other.

Ar乃至Arにおける「D」(つまり、一般式(3)で表される基)以外の置換基としては、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子等が挙げられる。 Substituents other than "D" (that is, the group represented by the general formula (3)) in Ar 1 to Ar 4 include an alkyl group having 1 to 4 carbon atoms and an alkoxy group having 1 to 4 carbon atoms. Examples thereof include an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or a phenyl group substituted with an alkoxy group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom.

Ar乃至Arとしては、構造式(11)乃至(17)のいずれかであることが好ましい。構造式(11)乃至(17)は、Ar乃至Arに連結される「−(D)C1」乃至「−(D)C4」を総括的に示した「−(D)」と共に示す。 Ar 1 to Ar 4 are preferably any of the structural formulas (11) to (17). Structural formulas (11) to (17) are shown together with "-(D) C " which collectively indicates "-(D) C1 " to "-(D) C4 " connected to Ar 1 to Ar 4. ..

Figure 0006953824
Figure 0006953824

構造式(11)中、R11は、水素原子、炭素数1以上4以下のアルキル基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、及び炭素数7以上10以下のアラルキル基から選択される1種を表す。 In the structural formula (11), R 11 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or a phenyl group substituted with an alkoxy group, and a phenyl group. Represents one selected from alkoxy groups having 7 or more and 10 or less carbon atoms.

構造式(12)中、R12及びR13はそれぞれ独立に、水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子から選択される1種を表す。 In the structural formula (12), R 12 and R 13 are independently hydrogen atoms, alkyl groups having 1 or more and 4 or less carbon atoms, alkoxy groups having 1 or more and 4 or less carbon atoms, unsubstituted phenyl groups, and 1 or more carbon atoms. It represents one selected from a phenyl group substituted with an alkyl group or an alkoxy group of 4 or less, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom.

構造式(13)中、R14は、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子から選択される1種を表す。tは0以上4以下の整数を表す。 In the structural formula (13), R 14 is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. It represents one selected from a substituted phenyl group, an alkoxy group having 7 or more and 10 or less carbon atoms, and a halogen atom. t represents an integer of 0 or more and 4 or less.

構造式(17)中、Arは置換又は無置換のアリーレン基を表す。Arは、構造式(18)又は(19)であることが好ましい。 In structural formula (17), Ar represents a substituted or unsubstituted arylene group. Ar is preferably structural formula (18) or (19).

Figure 0006953824
Figure 0006953824

構造式(18)及び構造式(19)中、R15は、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子から選択される1種を表し、tは0以上4以下の整数を表す。 In the structural formulas (18) and structural formula (19), R 15 is 1 or more and 4 or less carbon atoms an alkyl group, having 1 to 4 carbon atoms in the alkoxy group, a substituted or unsubstituted phenyl group, having 1 to 4 carbon It represents one selected from a phenyl group substituted with an alkyl group or an alkoxy group, an aralkyl group having 7 or more and 10 or less carbon atoms, and a halogen atom, and t represents an integer of 0 or more and 4 or less.

構造式(17)中、Zは2価の連結基を表し、sは0又は1を表す。Zは、構造式(21)乃至(28)のいずれかであることが好ましい。 In structural formula (17), Z represents a divalent linking group and s represents 0 or 1. Z is preferably any of the structural formulas (21) to (28).

Figure 0006953824
Figure 0006953824

構造式(21)中、sは1以上10以下の整数を表す。 In the structural formula (21), s represents an integer of 1 or more and 10 or less.

構造式(22)中、sは1以上10以下の整数を表す。 In the structural formula (22), s represents an integer of 1 or more and 10 or less.

構造式(27)及び(28)中、R21は、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子から選択される1種を表し、tは0以上4以下の整数を表し、Wは2価の連結基を表す。Wとしては、構造式(31)乃至(39)のいずれかであることが好ましい。構造式(38)中、sは0以上3以下の整数を表す。 In the structural formulas (27) and (28), R 21 is 1 or more and 4 or less carbon atoms alkyl group, having 1 to 4 carbon atoms in the alkoxy group, an unsubstituted phenyl group, 1 to 4 alkyl group having a carbon number Alternatively, it represents one selected from a phenyl group substituted with an alkoxy group, an aralkyl group having 7 or more and 10 or less carbon atoms, and a halogen atom, t represents an integer of 0 or more and 4 or less, and W represents a divalent linking group. Represents. W is preferably any of the structural formulas (31) to (39). In the structural formula (38), s represents an integer of 0 or more and 3 or less.

Figure 0006953824
Figure 0006953824

一般式(2)中のArは、kが0のときは置換若しくは無置換のアリール基であり、kが1のときは、置換若しくは無置換のアリーレン基である。 Ar 5 in the general formula (2) is a substituted or unsubstituted aryl group when k is 0, and is a substituted or unsubstituted arylene group when k is 1.

Arで表される置換若しくは無置換のアリール基としては、Ar乃至Arについて例示したアリール基が挙げられる。アリール基における置換基としては、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子等が挙げられる。 Examples of the substituted or unsubstituted aryl group represented by Ar 5 include the aryl groups exemplified for Ar 1 to Ar 4. The substituent in the aryl group was substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Examples thereof include a phenyl group, an aralkyl group having 7 or more and 10 or less carbon atoms, and a halogen atom.

Arが置換若しくは無置換のアリーレン基の場合、C5は0であることが好ましく、即ち、Arには「D」(つまり、一般式(3)で表される基)が結合していないことが好ましい。Arで表される置換若しくは無置換のアリーレン基としては、構造式(41)乃至(46)が挙げられる。 When Ar 5 is a substituted or unsubstituted arylene group, C 5 is preferably 0, that is, "D" (that is, a group represented by the general formula (3)) is not bonded to Ar 5. Is preferable. Examples of the substituted or unsubstituted arylene group represented by Ar 5 include structural formulas (41) to (46).

Figure 0006953824
Figure 0006953824

構造式(41)乃至(43)中、R41は、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、無置換のフェニル基、炭素数1以上4以下のアルキル基若しくはアルコキシ基で置換されたフェニル基、炭素数7以上10以下のアラルキル基、及びハロゲン原子から選択される1種を表し、xは0以上4以下の整数を表す。構造式(43)中、Yは2価の連結基を表し、Yは構造式(51)乃至(60)のいずれかであることが好ましい。構造式(51)中、yは1以上4以下の整数を表す。 In the structural formulas (41) to (43), R 41 is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, and an alkyl group having 1 to 4 carbon atoms. Alternatively, it represents one selected from a phenyl group substituted with an alkoxy group, an aralkyl group having 7 or more and 10 or less carbon atoms, and a halogen atom, and x represents an integer of 0 or more and 4 or less. In the structural formula (43), Y represents a divalent linking group, and Y is preferably any of the structural formulas (51) to (60). In the structural formula (51), y represents an integer of 1 or more and 4 or less.

Figure 0006953824
Figure 0006953824

一般式(2)中のc1乃至c5はそれぞれ独立に0以上2以下の整数であり、但しc1乃至c5の合計は1以上である。つまり、一般式(2)で表される化合物は、一般式(3)で表される基を1個以上有する。分子内における一般式(3)で表される基の総数は、1以上4以下が好ましく、1以上3以下がより好ましく、2が更に好ましい。一般式(3)におけるL及びnは、一般式(1)におけるL及びnと同義である。 C1 to c5 in the general formula (2) are independently integers of 0 or more and 2 or less, but the total of c1 to c5 is 1 or more. That is, the compound represented by the general formula (2) has one or more groups represented by the general formula (3). The total number of groups represented by the general formula (3) in the molecule is preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, and further preferably 2. L and n in the general formula (3) are synonymous with L and n in the general formula (1).

一般式(3)で表される基としては、一般式(4)で表される基、一般式(5−1)で表される基、一般式(5−2)で表される基、一般式(6−1)で表される基、及び一般式(6−2)で表される基が、正孔輸送性、成膜性の観点から好ましい。 The groups represented by the general formula (3) include a group represented by the general formula (4), a group represented by the general formula (5-1), and a group represented by the general formula (5-2). The group represented by the general formula (6-1) and the group represented by the general formula (6-2) are preferable from the viewpoint of hole transportability and film forming property.

Figure 0006953824
Figure 0006953824

一般式(4)中、Xはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される1種又は2種以上を組み合わせてなる2価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、pは0又は1を表す。Xとしては、アルキレン基と、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される少なくとも1種と、を組み合わせてなる2価の連結基が好ましく、アルキレン基としては、炭素数1以上6以下の直鎖アルキレン基が好ましく、炭素数1以上4以下の直鎖アルキレン基がより好ましい。分子内に一般式(4)で表される基が複数個存在する場合、一般式(4)で表される基は互いに同じでもよく異なっていてもよい。 In the general formula (4), X is one or more selected from an alkylene group, -C = C-, -C (= O)-, -N (R)-, -O- and -S-. Represents a divalent linking group consisting of a combination of, R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, and p represents 0 or 1. X is a combination of an alkylene group and at least one selected from −C = C−, −C (= O) −, −N (R) −, −O− and −S− 2 A valent linking group is preferable, and as the alkylene group, a linear alkylene group having 1 or more and 6 or less carbon atoms is preferable, and a linear alkylene group having 1 or more and 4 or less carbon atoms is more preferable. When a plurality of groups represented by the general formula (4) are present in the molecule, the groups represented by the general formula (4) may be the same or different from each other.

一般式(4)で表される基としては、一般式(4−1)で表される基又は一般式(4−2)で表される基がより好ましい。 As the group represented by the general formula (4), the group represented by the general formula (4-1) or the group represented by the general formula (4-2) is more preferable.

Figure 0006953824
Figure 0006953824

一般式(4−1)及び一般式(4−2)中、qは0以上6以下の整数を表し、1以上4以下の整数が好ましい。 In the general formula (4-1) and the general formula (4-2), q represents an integer of 0 or more and 6 or less, and an integer of 1 or more and 4 or less is preferable.

Figure 0006953824
Figure 0006953824

一般式(5−1)、一般式(5−2)、一般式(6−1)及び一般式(6−2)中、Xはアルキレン基、−C=C−、−C(=O)−、−N(R)−、−O−及び−S−から選択される1種又は2種以上を組み合わせてなる2価の連結基を表し、Rは水素原子、アルキル基、アリール基又はアラルキル基を表し、pは0又は1を表す。分子内に一般式(5−1)、一般式(5−2)、一般式(6−1)又は一般式(6−2)表される基が複数個存在する場合、これら基は互いに同じでもよく異なっていてもよい。 In the general formula (5-1), general formula (5-2), general formula (6-1) and general formula (6-2), X is an alkylene group, -C = C-, -C (= O). Represents a divalent linking group consisting of one or a combination of one or more selected from −, −N (R) −, −O− and −S−, where R represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl. It represents a group and p represents 0 or 1. When there are a plurality of groups represented by the general formula (5-1), the general formula (5-2), the general formula (6-1) or the general formula (6-2) in the molecule, these groups are the same as each other. But it can be very different.

Xとしては、アルキレン基が好ましく、アルキレン基としては、炭素数1以上6以下の直鎖アルキレン基が好ましく、炭素数1以上3以下の直鎖アルキレン基がより好ましく、炭素数1又は2の直鎖アルキレン基が更に好ましい。 As X, an alkylene group is preferable, as the alkylene group, a linear alkylene group having 1 or more and 6 or less carbon atoms is preferable, a linear alkylene group having 1 or more and 3 or less carbon atoms is more preferable, and a direct alkylene group having 1 or 2 carbon atoms is preferable. Chain alkylene groups are more preferred.

以下に、重合性基を有する正孔輸送化合物(一般式(1)で表される化合物)の具体例を示す。
詳細には、以下に、一般式(1)中のFで表される正孔輸送性サブユニットの具体例と、Fに連結する基(即ち、一般式(3)で表される基)の具体例と、を例示し、これらの組み合わせを表1に示して、重合性基を有する正孔輸送化合物(一般式(1)で表される化合物)の具体例を示す。
一般式(1)で表される化合物は、これらにより何ら限定されるものではない。以下に示す構造式において、「*」は連結部位を意味する。
Specific examples of the hole transport compound having a polymerizable group (compound represented by the general formula (1)) are shown below.
Specifically, the specific examples of the hole-transporting subunit represented by F in the general formula (1) and the group linked to F (that is, the group represented by the general formula (3)) are described below. Specific examples and examples thereof are illustrated, and combinations thereof are shown in Table 1 to show specific examples of hole transport compounds having a polymerizable group (compounds represented by the general formula (1)).
The compound represented by the general formula (1) is not limited thereto. In the structural formula shown below, "*" means a connecting site.

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

例えば、CTM−1は、Fで表される正孔輸送性サブユニット(表1中「母核」と記載)が(1)−1であり、一般式(3)で表される基(表1中「官能基」と記載)が(III)−1であり、両者が「*」で連結した化合物であって、下記の構造を有する。 For example, in CTM-1, the hole-transporting subunit represented by F (described as “matrix” in Table 1) is (1) -1, and the group represented by the general formula (3) (Table). (Described as "functional group" in 1) is (III) -1, and both are linked by "*" and have the following structure.

Figure 0006953824
Figure 0006953824

一般式(1)で表される化合物の合成方法としては、特開2013−43841号公報の[0126]、特開2013−60422号公報の[0070]、特開2013−60572号公報の[0099]〜[0101]等に記載の合成方法が挙げられる。 Examples of the method for synthesizing the compound represented by the general formula (1) include [0126] of JP2013-43841A, [0070] of JP2013-60422A, and [0099] of JP2013-60572A. ] To [0101] and the like.

本実施形態における重合体含有有機化合物層中の重合体は、重合性基を有する正孔輸送化合物を1種単独で使用して得られたものであってもよいし、2種以上を使用して得られたものであってもよい。 The polymer in the polymer-containing organic compound layer in the present embodiment may be obtained by using one type of hole transport compound having a polymerizable group alone, or two or more types may be used. It may be obtained by

(重合性基を有する電子輸送化合物)
本実施形態における重合性基を有する電子輸送化合物は、電子輸送性能を有する骨格に、重合性基が直接又は連結基を介して結合した化合物であればよい。
重合性基を有する電子輸送化合物としては、電子輸送性能を有する骨格の種類、重合性基の種類、重合性基の数、連結基の有無等の異なる種々の化合物があるが、重合体含有有機化合物層に求められる性能に応じて、選択されればよい。
電子輸送性能を有する骨格としては、電子輸送性能を有する化合物に由来する骨格であればよく、具体的には、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン等のフルオレノン化合物;キサントン系化合物;ベンゾフェノン系化合物;シアノビニル系化合物;エチレン系化合物等に由来する骨格が挙げられる。
重合性基としては、ラジカル重合し得る官能基であることが好ましく、例えば、少なくとも炭素二重結合を含有する基を有する官能基が挙げられる。具体的には、重合性基としては、ビニル基、ビニルエーテル基、ビニルチオエーテル基、スチレン基、アクリロイル基、メタクリロイル基、及びそれらの誘導体から選択される少なくも1つを含有する基等が挙げられる。
連結基としては、上記の電子輸送性能を有する骨格と重合性基とを連結しうる基であればよく、直鎖状、分岐状、環状、及びこれらを組み合わせた構造のいずれであってもよい。
(Electron transport compound having a polymerizable group)
The electron-transporting compound having a polymerizable group in the present embodiment may be a compound in which a polymerizable group is directly bonded to a skeleton having electron-transporting performance or via a linking group.
Examples of the electron-transporting compound having a polymerizable group include various compounds having different skeletons having electron-transporting performance, types of polymerizable groups, number of polymerizable groups, presence or absence of linking groups, etc., but polymer-containing organic compounds. It may be selected according to the performance required for the compound layer.
The skeleton having electron transport performance may be any skeleton derived from a compound having electron transport performance, and specifically, quinone compounds such as p-benzoquinone, chloranil, bromanyl, and anthraquinone; tetracyanoquinodimethane. Compounds; fluorenone compounds such as 2,4,7-trinitrofluorenone; xanthone-based compounds; benzophenone-based compounds; cyanovinyl-based compounds; skeletons derived from ethylene-based compounds and the like can be mentioned.
The polymerizable group is preferably a functional group capable of radical polymerization, and examples thereof include a functional group having a group containing at least a carbon double bond. Specifically, examples of the polymerizable group include a vinyl group, a vinyl ether group, a vinyl thioether group, a styrene group, an acryloyl group, a methacryloyl group, and a group containing at least one selected from derivatives thereof. ..
The linking group may be any group as long as it can link the skeleton having the above-mentioned electron transport performance and the polymerizable group, and may have a linear, branched, cyclic, or a structure in which these are combined. ..

重合性基を有する電子輸送化合物としては、電子輸送性能、重合性能、耐溶剤性、塗布適性等の点から、下記一般式(7)で表される化合物、下記一般式(8)で表される化合物、及び下記一般式(9)で表される化合物からなる群より選択されることが好ましい。 Examples of the electron-transporting compound having a polymerizable group include a compound represented by the following general formula (7) and a following general formula (8) from the viewpoints of electron transport performance, polymerization performance, solvent resistance, coating suitability and the like. It is preferable to select from the group consisting of the following compounds and the compounds represented by the following general formula (9).

Figure 0006953824
Figure 0006953824

一般式(7)中、R11、R12、R13、R14、R15、R16、R17及びR18は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R11、R12、R13、R14、R15、R16、R17及びR18中、−Y−(Z)で表される基は1以上4以下である。
一般式(8)中、R21、R22、R23、R24、R25、R26、R27及びR28は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R21、R22、R23、R24、R25、R26、R27及びR28中、−Y−(Z)で表される基は1以上4以下である。
一般式(9)中、R31、R32、R33、R34、R35、R36、R37及びR38は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R31、R32、R33、R34、R35、R36、R37及びR38中、−Y−(Z)で表される基は、1以上4以下である。
前記−Y−(Z)で表される基中、Yは、アルキレン基、アダマンタン基、−C=C−、−C(=O)−、−O−及びメタンから水素3原子を除いた3価基から選択される1種又は2種以上を組み合わせてなる(m+1)価の連結基を表し、Zは、アクリロイル基、メタクリロイル基又はスチレン基であり、mは1又は2である。
In the general formula (7), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, and aryl groups, respectively. , Aralkyl group or group represented by −YZ. However, among R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 , the number of groups represented by −Y− (Z) m is 1 or more and 4 or less.
In the general formula (8), R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 are independently hydrogen atom, halogen atom, alkyl group, alkoxy group and aryl group, respectively. , Aralkyl group or group represented by −YZ. However, among R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 , the number of groups represented by −Y− (Z) m is 1 or more and 4 or less.
In the general formula (9), R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 are independently hydrogen atom, halogen atom, alkyl group, alkoxy group and aryl group, respectively. , Aralkyl group or group represented by −YZ. However, among R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 , the group represented by −Y− (Z) m is 1 or more and 4 or less.
Among the groups represented by -Y- (Z) m , Y was obtained by removing 3 hydrogen atoms from the alkylene group, the adamantane group, -C = C-, -C (= O)-, -O- and methane. Represents a (m + 1) valent linking group consisting of one or a combination of two or more selected from trivalent groups, where Z is an acryloyl group, a methacryloyl group or a styrene group, and m is 1 or 2.

一般式(7)〜(9)において、アルキル基、アルコキシ基、アリール基及びアラルキル基の好ましい態様を以下に示す。
アルキル基としては、炭素数1以上4以下のアルキル基が好ましく、また、直鎖状、分岐状のいずれであってもよいが、合成容易性、塗布適性の点から、直鎖状のアルキル基が好ましい。
アルコキシ基としては、炭素数1以上4以下のアルコキシ基が好ましい。
アリール基としては、無置換のフェニル基、又は炭素数1以上4以下のアルキル基で置換されたフェニル基が好ましい。
アラルキル基としては、炭素数7以上10以下のアラルキル基が好ましい。
In the general formulas (7) to (9), preferred embodiments of an alkyl group, an alkoxy group, an aryl group and an aralkyl group are shown below.
The alkyl group is preferably an alkyl group having 1 or more carbon atoms and 4 or less carbon atoms, and may be linear or branched. However, from the viewpoint of ease of synthesis and coating suitability, a linear alkyl group is used. Is preferable.
As the alkoxy group, an alkoxy group having 1 or more and 4 or less carbon atoms is preferable.
As the aryl group, an unsubstituted phenyl group or a phenyl group substituted with an alkyl group having 1 or more and 4 or less carbon atoms is preferable.
As the aralkyl group, an aralkyl group having 7 or more and 10 or less carbon atoms is preferable.

一般式(7)〜(9)において、−Y−(Z)で表される基の好ましい態様を以下に示す。
Yで表される(m+1)価の連結基としては、合成容易性、耐溶剤性、成膜性等の点から、−C(=O)−及び−O−を含むことが好ましい。
また、合成容易性、成膜性等の点からは、Yで表される(m+1)価の連結基に、直鎖のアルキレン基を含むことが好ましい。
Yで表される(m+1)価の連結基には、合成容易性、耐溶剤性、成膜性等の点から、アダマンタン基が含まれることが好ましい。
Yで表される(m+1)価の連結基は、置換基を有していてもよく、導入可能な置換基としては、置換又は無置換のアルキル基、フェニル基、更には、置換若しくは無置換のアルキル基又はフェニル基と−C(=O)−、−N(R)−、−O−、及び−S−から選択される1種又は2種以上とを組み合わせてなる基等が挙げられる。
In the general formulas (7) to (9), preferred embodiments of the group represented by −Y− (Z) m are shown below.
The (m + 1) valent linking group represented by Y preferably contains −C (= O) − and −O− from the viewpoints of ease of synthesis, solvent resistance, film forming property and the like.
Further, from the viewpoint of ease of synthesis, film forming property, etc., it is preferable that the (m + 1) valent linking group represented by Y contains a linear alkylene group.
The (m + 1) valent linking group represented by Y preferably contains an adamantane group from the viewpoints of ease of synthesis, solvent resistance, film forming property and the like.
The (m + 1) valent linking group represented by Y may have a substituent, and the substituents that can be introduced include a substituted or unsubstituted alkyl group, a phenyl group, and further substituted or unsubstituted. Examples of a group composed of a combination of an alkyl group or a phenyl group of the above and one or more selected from -C (= O)-, -N (R)-, -O-, and -S-. ..

Zで表される重合性基としては、重合性能、耐溶剤性、成膜性等の点からは、スチレン基、アクリロイル基、又はメタクリロイル基が好ましい。
また、成膜性、耐溶剤性等の点からは、Zで表される重合性基は、スチレン基が好ましい。
mは、1又は2であるが、耐溶剤性の点からは、1が好ましい。
As the polymerizable group represented by Z, a styrene group, an acryloyl group, or a methacryloyl group is preferable from the viewpoint of polymerization performance, solvent resistance, film forming property, and the like.
Further, from the viewpoint of film forming property, solvent resistance and the like, the polymerizable group represented by Z is preferably a styrene group.
m is 1 or 2, but 1 is preferable from the viewpoint of solvent resistance.

一般式(7)で表される化合物としては、重合性能、耐溶剤性、塗布適性等の点から、R11、R12、R13、R14、R15、R16、R17及びR18のうち、1つが−Y−(Z)で表される基であり、残りが水素原子又は炭素数1以上3以下のアルキル基であることが好ましく、中でも、耐溶剤性の点から、炭素数1以上3以下のアルキル基が1つ以上4つ以下で含まれることがより好ましい。 The compounds represented by the general formula (7) include R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17, and R 18 from the viewpoints of polymerization performance, solvent resistance, coating suitability, and the like. Of these, one is preferably a group represented by −Y− (Z) m , and the rest is preferably a hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms. Among them, carbon is preferable from the viewpoint of solvent resistance. It is more preferable that the number of alkyl groups of 1 or more and 3 or less is 1 or more and 4 or less.

一般式(8)で表される化合物としては、重合性能、耐溶剤性、塗布適性等の点から、R21、R22、R23、R24、R25、R26、R27及びR28のうち、1つが−Y−(Z)で表される基であり、残りが水素原子又は炭素数1以上3以下のアルキル基であることが好ましく、中でも、耐溶剤性の点から、炭素数1以上3以下のアルキル基が1つ以上4つ以下で含まれることがより好ましい。 The compounds represented by the general formula (8) include R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 from the viewpoints of polymerization performance, solvent resistance, coating suitability and the like. Of these, one is preferably a group represented by −Y− (Z) m , and the rest is preferably a hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms. Among them, carbon is preferable from the viewpoint of solvent resistance. It is more preferable that the number of alkyl groups of 1 or more and 3 or less is 1 or more and 4 or less.

一般式(9)で表される化合物としては、重合性能、耐溶剤性、塗布適性等の点から、R31、R32、R33、R34、R35、R36、R37及びR38のうち、1つが−Y−(Z)で表される基であり、残りが水素原子又は炭素数1以上3以下のアルキル基であることが好ましく、中でも、耐溶剤性の点から、炭素数1以上3以下のアルキル基が1つ以上4つ以下で含まれることがより好ましい。 The compounds represented by the general formula (9) include R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 from the viewpoints of polymerization performance, solvent resistance, coating suitability and the like. Of these, one is preferably a group represented by −Y− (Z) m , and the rest is preferably a hydrogen atom or an alkyl group having 1 or more and 3 or less carbon atoms. Among them, carbon is preferable from the viewpoint of solvent resistance. It is more preferable that the number of alkyl groups of 1 or more and 3 or less is 1 or more and 4 or less.

以下に、重合性基を有する電子輸送化合物(一般式(7)で表される化合物、一般式(8)で表される化合物、及び一般式(9)で表される化合物)の具体例を示す。
詳細には、以下に、一般式(7)で表される化合物の母核の具体例と、一般式(8)で表される化合物の母核の具体例と、一般式(9)で表される化合物の母核の具体例と、−Y−(Z)で表される官能基の具体例と、を例示し、これらの組み合わせを表2に示して、重合性基を有する電子輸送化合物(一般式(7)で表される化合物、一般式(8)で表される化合物、及び一般式(9)で表される化合物)の具体例を示す。
一般式(7)で表される化合物、一般式(8)で表される化合物、及び一般式(9)で表される化合物は、これらにより何ら限定されるものではない。
以下に示す構造式において、「*」は連結部位を意味し、「C」はn−プロピル基を意味する。
The following are specific examples of electron-transporting compounds having a polymerizable group (compounds represented by the general formula (7), compounds represented by the general formula (8), and compounds represented by the general formula (9)). show.
Specifically, the specific examples of the mother nuclei of the compound represented by the general formula (7), the specific examples of the mother nuclei of the compound represented by the general formula (8), and the general formula (9) are shown below. Specific examples of the mother nucleus of the compound to be used and specific examples of the functional group represented by −Y− (Z) m are illustrated, and the combinations thereof are shown in Table 2 for electron transport having a polymerizable group. Specific examples of the compound (the compound represented by the general formula (7), the compound represented by the general formula (8), and the compound represented by the general formula (9)) are shown.
The compound represented by the general formula (7), the compound represented by the general formula (8), and the compound represented by the general formula (9) are not limited thereto.
In the structural formula shown below, "*" means a connecting site and "C 3 H 7 " means an n-propyl group.

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

一般式(7)で表される化合物、一般式(8)で表される化合物、及び一般式(9)で表される化合物の合成方法としては、例えば、以下の方法が挙げられる。 Examples of the method for synthesizing the compound represented by the general formula (7), the compound represented by the general formula (8), and the compound represented by the general formula (9) include the following methods.

一般式(7)で表される化合物の合成方法の一例としては、以下のスキームが挙げられる。 The following scheme can be mentioned as an example of the method for synthesizing the compound represented by the general formula (7).

Figure 0006953824
Figure 0006953824

三つ口フラスコに、9-Fluorenone-4-carboxylic Acid(上記構造、東京化成工業社製)12.3g(0.055mol)及びマロン酸ニトリル7.07g(0.107mol)をトルエン300mlに溶解し、ピペリジン0.5mlを加え、窒素気流下、110℃で5時間攪拌する。室温まで、放冷後、ヘキサン500mlを加え、析出した沈殿を濾取し、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:酢酸エチル/ヘキサン=3/7)にて精製する。
酢酸エチル/ヘキサンより再結晶し、中間体8.0gを得る。
続いて、この中間体に対し、塩化チオニル等を用いて、カルボキシ基の塩素化を行った後、目的とする「−Y−(Z)で表される官能基」を導入するための、重合性基及びヒドロキシ基を有する化合物を反応させる。
In a three-necked flask, 12.3 g (0.055 mol) of 9-Fluorenone-4-carboxylic acid (the above structure, manufactured by Tokyo Chemical Industry Co., Ltd.) and 7.07 g (0.107 mol) of nitrile malonic acid were dissolved in 300 ml of toluene. , 0.5 ml of piperidine is added, and the mixture is stirred at 110 ° C. for 5 hours under a nitrogen stream. After allowing to cool to room temperature, 500 ml of hexane is added, and the precipitated precipitate is collected by filtration and purified by column chromatography (adsorbent: silica gel, solvent: ethyl acetate / hexane = 3/7).
Recrystallize from ethyl acetate / hexane to give 8.0 g of intermediate.
Subsequently, the intermediate is chlorinated with a carboxy group using thionyl chloride or the like, and then the target “functional group represented by −Y− (Z) m” is introduced. The compound having a polymerizable group and a hydroxy group is reacted.

一般式(8)で表される化合物の合成方法の一例としては、以下のスキームが挙げられる。
即ち、9-Fluorenone-4-carboxylic Acid(下記構造、東京化成工業社製)を用い、これに対し、塩化チオニル等を用いて、カルボキシ基の塩素化を行った後、目的とする「−Y−(Z)で表される官能基」を導入するための、重合性基及びヒドロキシ基を有する化合物を反応させる。
The following scheme can be mentioned as an example of the method for synthesizing the compound represented by the general formula (8).
That is, 9-Fluorenone-4-carboxylic Acid (the following structure, manufactured by Tokyo Chemical Industry Co., Ltd.) is used, and thionyl chloride or the like is used to chlorinate the carboxy group, and then the target "-Y" is used. A compound having a polymerizable group and a hydroxy group for introducing a “functional group represented by − (Z) m” is reacted.

Figure 0006953824
Figure 0006953824

一般式(9)で表される化合物の合成方法の一例としては、以下のスキームが挙げられる。
即ち、Anthraquinone-2-carbonyl Chloride(下記構造、東京化成工業社製)を用い、これに対し、目的とする「−Y−(Z)で表される官能基」を導入するための、重合性基及びヒドロキシ基を有する化合物を反応させる。
The following scheme can be mentioned as an example of the method for synthesizing the compound represented by the general formula (9).
That is, using Anthraquinone-2-carbonyl Chloride (structure below, manufactured by Tokyo Chemical Industry Co., Ltd.), polymerization for introducing the desired "functional group represented by -Y- (Z) m". The compounds having a sex group and a hydroxy group are reacted.

Figure 0006953824
Figure 0006953824

本実施形態における重合体含有有機化合物層中の重合体は、重合性基を有する電子輸送化合物を1種単独で使用して得られたものであってもよいし、2種以上を使用して得られたものであってもよい。 The polymer in the polymer-containing organic compound layer in the present embodiment may be obtained by using one type of electron transport compound having a polymerizable group alone, or by using two or more types. It may be obtained.

(熱ラジカル発生剤、光ラジカル発生剤)
本実施形態における重合体含有有機化合物層は、熱ラジカル発生剤及びその誘導体並びに光ラジカル発生剤及びその誘導体から選択される少なくとも1種を更に含有していてもよい。
ここで、「熱ラジカル発生剤の誘導体」とは、熱ラジカル発生剤がラジカルを発生した後の生成物、又は熱ラジカル発生剤が重合体の末端に結合したものを意味する。
また、「光ラジカル発生剤の誘導体」とは、光ラジカル発生剤がラジカルを発生した後の生成物、又は光ラジカル発生剤が重合体の末端に結合したものを意味する。
重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を、熱ラジカル発生剤及び光ラジカル発生剤からなる群より選択される少なくとも1種を用いて得ることにより、重合体含有有機化合物層中に、熱ラジカル発生剤及びその誘導体並びに光ラジカル発生剤及びその誘導体から選択される少なくとも1種が導入される。
このような重合体含有有機化合物層は、機械的強度に優れることから、積層化される際に好適である。
(Heat radical generator, photo radical generator)
The polymer-containing organic compound layer in the present embodiment may further contain at least one selected from a thermal radical generator and its derivative, and a photoradical generator and its derivative.
Here, the "derivative of the thermal radical generator" means a product after the thermal radical generator generates a radical, or a product in which the thermal radical generator is bound to the end of the polymer.
Further, the “derivative of the photoradical generator” means a product after the photoradical generator generates a radical, or a product in which the photoradical generator is bound to the end of the polymer.
By obtaining a polymer of a hole transporting compound having a polymerizable group and an electron transporting compound having a polymerizable group using at least one selected from the group consisting of a thermal radical generator and a photoradical generator. At least one selected from a thermal radical generator and a derivative thereof and a photoradical generator and a derivative thereof is introduced into the polymer-containing organic compound layer.
Such a polymer-containing organic compound layer is suitable for laminating because it has excellent mechanical strength.

熱ラジカル発生剤としては、例えば、アゾ化合物、有機過酸化物が挙げられる。 Examples of the thermal radical generator include azo compounds and organic peroxides.

熱ラジカル発生剤の市販品としては、V−30(10時間半減期温度:104℃)、V−40(同:88℃)、V−59(同:67℃)、V−601(同:66℃)、V−65(同:51℃)、V−70(同:30℃)、VF−096(同:96℃)、Vam−110(同:111℃)、Vam−111(同:111℃)(以上、和光純薬工業製)、OTAZO−15(同:61℃)、OTAZO−30、AIBN(同:65℃)、AMBN(同:67℃)、ADVN(同:52℃)、ACVA(同:68℃)(以上、大塚化学社製)等のアゾ系開始剤;パーテトラA、パーヘキサHC、パーヘキサC、パーヘキサV、パーヘキサ22、パーヘキサMC、パーブチルH、パークミルH、パークミルP、パーメンタH、パーオクタH、パーブチルC、パーブチルD、パーヘキシルD、パーロイルIB、パーロイル355、パーロイルL、パーロイルSA、ナイパーBW、ナイパーBMT−K40/M、パーロイルIPP、パーロイルNPP、パーロイルTCP、パーロイルOPP、パーロイルSBP、パークミルND、パーオクタND、パーヘキシルND、パーブチルND、パーブチルNHP、パーヘキシルPV、パーブチルPV、パーヘキサ250、パーオクタO、パーヘキシルO、パーブチルO、パーブチルL、パーブチル355、パーヘキシルI、パーブチルI、パーブチルE、パーヘキサ25Z、パーブチルA、パーへヘキシルZ、パーブチルZT、パーブチルZ(以上、日油化学社製)、カヤケタールAM−C55、トリゴノックス36−C75、ラウロックス、パーカドックスL−W75、パーカドックスCH−50L、トリゴノックスTMBH、カヤクメンH、カヤブチルH−70、ペルカドックスBC−FF、カヤヘキサAD、パーカドックス14、カヤブチルC、カヤブチルD、カヤヘキサYD−E85、パーカドックス12−XL25、パーカドックス12−EB20、トリゴノックス22−N70、トリゴノックス22−70E、トリゴノックスD−T50、トリゴノックス423−C70、カヤエステルCND−C70、カヤエステルCND−W50、トリゴノックス23−C70、トリゴノックス23−W50N、トリゴノックス257−C70、カヤエステルP−70、カヤエステルTMPO−70、トリゴノックス121、カヤエステルO、カヤエステルHTP−65W、カヤエステルAN、トリゴノックス42、トリゴノックスF−C50、カヤブチルB、カヤカルボンEH−C70、カヤカルボンEH−W60、カヤカルボンI−20、カヤカルボンBIC−75、トリゴノックス117、カヤレン6−70(以上、化薬アクゾ社製)、ルペロックスLP(同:64℃)、ルペロックス610(同:37℃)、ルペロックス188(同:38℃)、ルペロックス844(同:44℃)、ルペロックス259(同:46℃)、ルペロックス10(同:48℃)、ルペロックス701(同:53℃)、ルペロックス11(同:58℃)、ルペロックス26(同:77℃)、ルペロックス80(同:82℃)、ルペロックス7(同:102℃)、ルペロックス270(同:102℃)、ルペロックスP(同:104℃)、ルペロックス546(同:46℃)、ルペロックス554(同:55℃)、ルペロックス575(同:75℃)、ルペロックスTANPO(同:96℃)、ルペロックス555(同:100℃)、ルペロックス570(同:96℃)、ルペロックスTAP(同:100℃)、ルペロックスTBIC(同:99℃)、ルペロックスTBEC(同:100℃)、ルペロックスJW(同:100℃)、ルペロックスTAIC(同:96℃)、ルペロックスTAEC(同:99℃)、ルペロックスDC(同:117℃)、ルペロックス101(同:120℃)、ルペロックスF(同:116℃)、ルペロックスDI(同:129℃)、ルペロックス130(同:131℃)、ルペロックス220(同:107℃)、ルペロックス230(同:109℃)、ルペロックス233(同:114℃)、ルペロックス531(同:93℃)(以上、アルケマ吉富社製)などが挙げられる。 Commercially available thermal radical generators include V-30 (10-hour half-life temperature: 104 ° C.), V-40 (same as above: 88 ° C.), V-59 (same as above: 67 ° C.), V-601 (same as above:: 66 ° C.), V-65 (same as above: 51 ° C.), V-70 (same as above: 30 ° C.), VF-096 (same as above: 96 ° C.), Vam-110 (same as above: 111 ° C.), Vam-111 (same as above:: 111 ° C.) (above, manufactured by Wako Pure Chemical Industries, Ltd.), OT AZO- 15 (same as above: 61 ° C.), OT AZO- 30, AIBN (same as above: 65 ° C.), AMBN (same as above: 67 ° C.), ADVN (same as above: 52 ° C.) ° C.), ACVA (same as above: 68 ° C.) (all manufactured by Otsuka Chemical Co., Ltd.) and other azo-based initiators; P, Permenta H, Perocta H, Perbutyl C, Perbutyl D, Perhexyl D, Parloyl IB, Parloyl 355, Parloyl L, Parloyl SA, Niper BW, Niper BMT-K40 / M, Parloyl IPP, Parloyl NPP, Parloyl TCP, Parloyl OPP , Perloyl SBP, Park Mill ND, Perocta ND, Perhexyl ND, Perbutyl ND, Perbutyl NHP, Perhexyl PV, Perbutyl PV, Perhexa 250, Perocta O, Perhexyl O, Perbutyl O, Perbutyl L, Perbutyl 355, Perhexyl I, Perbutyl I, Perbutyl E, Perhexa 25Z, Perbutyl A, Perhexyl Z, Perbutyl ZT, Perbutyl Z (all manufactured by Nichiyu Kagaku Co., Ltd.), Kayaquetal AM-C55, Trigonox 36-C75, Laurox, Percadox L-W75, Percadox CH- 50L, Trigonox TMBH, Kayakumen H, Kayabutyl H-70, Percadox BC-FF, Kayahexa AD, Parkadox 14, Kayabutyl C, Kayabutyl D, Kayahexa YD-E85, Parkadox 12-XL25, Parkadox 12-EB20, Trigonox 22 -N70, Trigonox 22-70E, Trigonox D-T50, Trigonox 423-C70, Kayaester CND-C70, Kayaester CND-W50, Trigonox 23-C70, Trigonox 23-W50N, Trigonox 257-C70, Kayaester P-70 , Kayaester TMPO-70, Trigonox 121, Kayaester O, Kayaester HTP-65W, Kayaeste LUAN, Trigonox 42, Trigonox F-C50, Kayabutyl B, Kayacarboxylic EH-C70, Kayacarboxylic EH-W60, Kayacarboxylic I-20, Kayacarboxylic BIC-75, Trigonox 117, Kayalen 6-70 (all manufactured by Kayaku Akzo) , Luperox LP (same: 64 ° C), Luperox 610 (same: 37 ° C), Luperox 188 (same: 38 ° C), Luperox 844 (same: 44 ° C), Luperox 259 (same: 46 ° C), Luperox 10 (same: same: 46 ° C). : 48 ° C), Luperox 701 (same: 53 ° C), Luperox 11 (same: 58 ° C), Luperox 26 (same: 77 ° C), Luperox 80 (same: 82 ° C), Luperox 7 (same: 102 ° C), Luperox 270 (same: 102 ° C), Luperox P (same: 104 ° C), Luperox 546 (same: 46 ° C), Luperox 554 (same: 55 ° C), Luperox 575 (same: 75 ° C), Luperox TANPO (same:: 96 ° C), Luperox 555 (same: 100 ° C), Luperox 570 (same: 96 ° C), Luperox TAP (same: 100 ° C), Luperox TBIC (same: 99 ° C), Luperox TBEC (same: 100 ° C), Luperox JW (same: 100 ° C), Luperox TAIC (same: 96 ° C), Luperox TAEC (same: 99 ° C), Luperox DC (same: 117 ° C), Luperox 101 (same: 120 ° C), Luperox F (same: 116 ° C) ° C), Luperox DI (same: 129 ° C), Luperox 130 (same: 131 ° C), Luperox 220 (same: 107 ° C), Luperox 230 (same: 109 ° C), Luperox 233 (same: 114 ° C), Luperox 531 (Same as above: 93 ° C.) (above, manufactured by Alchema Yoshitomi Co., Ltd.) and the like.

光ラジカル発生剤としては、例えば、芳香族ケトン類、アシルフォスフィンオキサイド化合物、芳香族オニウム塩、有機過酸化物、チオ化合物(チオキサントン化合物、チオフェニル基含有化合物等)、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、アルキルアミン化合物等が挙げられる。 Examples of the photoradical generator include aromatic ketones, acylphosphine oxide compounds, aromatic onium salts, organic peroxides, thio compounds (thioxanthone compounds, thiophenyl group-containing compounds, etc.), hexaarylbiimidazole compounds, and keto. Examples thereof include oxime ester compounds, borate compounds, azinium compounds, metallocene compounds, active ester compounds, compounds having a carbon halogen bond, alkylamine compounds and the like.

光ラジカル発生剤として具体例には、例えば、アセトフェノン、アセトフェノンベンジルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−2−フェニルアセトフェノン、キサントン、フルオレノン、べンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4'−ジメトキシベンゾフェノン、4,4'−ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、チオキサントン、ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、2,4−ジエチルチオキサントン、及びビス−(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキサイド等が挙げられる。 Specific examples of the photoradical generator include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexylphenyl ketone, 2,2-dimethoxy-2-phenyl acetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, and triphenyl. Amin, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, Michler ketone, benzoin propyl ether, benzoin ethyl ether, benzyl dimethyl ketal, 1- (4-isopropyl) Phenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropane-1-one, thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2- Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl Examples thereof include −phosphine oxide, 2,4-diethylthioxanthone, and bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide.

本実施形態における重合体含有有機化合物層は、更に、発光材料、色素化合物、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料から選択される少なくとも1種を含有していてもよい。
これらの材料の具体例については後述する。
The polymer-containing organic compound layer in the present embodiment may further contain at least one selected from a light emitting material, a dye compound, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material. good.
Specific examples of these materials will be described later.

(重合体含有有機化合物層の形成)
本実施形態における重合体含有有機化合物層は、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含めばよいが、より抵抗が低い有機電界発光素子を得るためには、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物とを含む組成物を硬化した硬化膜であることが好ましい。
なお、重合体含有有機化合物層(硬化膜)中には、重合性基を有する正孔輸送化合物、重合性基を有する電子輸送化合物が、未反応の状態で含まれていてもよい。
(Formation of polymer-containing organic compound layer)
The polymer-containing organic compound layer in the present embodiment may include a polymer of a hole-transporting compound having a polymerizable group and an electron-transporting compound having a polymerizable group, but an organic electroluminescent element having a lower resistance can be obtained. For this purpose, a cured film obtained by curing a composition containing a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group is preferable.
The polymer-containing organic compound layer (cured film) may contain a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group in an unreacted state.

また、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物とを含む組成物において、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との含有比は、重合体含有有機化合物層(硬化膜)に求められる、抵抗値、正孔輸送性能、電子輸送性能、及びそれらのバランス、更には、重合性能等に応じて決定されればよい。
例えば、重合体含有有機化合物層を、正孔輸送性能を有する層とする場合には、重合性基を有する正孔輸送化合物を、重合性基を有する電子輸送化合物よりも多く含む組成物を用いて、層を形成すればよい。
また、重合体含有有機化合物層を、電子輸送性能を有する層とする場合には、重合性基を有する電子輸送化合物を、重合性基を有する正孔輸送化合物よりも多く含む組成物を用いて、層を形成すればよい。
Further, in the composition containing the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group, the content ratio of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group is , The resistance value, the hole transport performance, the electron transport performance, their balance, and the polymerization performance required for the polymer-containing organic compound layer (cured film) may be determined.
For example, when the polymer-containing organic compound layer is a layer having hole transport performance, a composition containing more hole transport compounds having a polymerizable group than an electron transport compound having a polymerizable group is used. And a layer may be formed.
When the polymer-containing organic compound layer is used as a layer having electron transporting performance, a composition containing more electron transporting compounds having a polymerizable group than a hole transporting compound having a polymerizable group is used. , Layers may be formed.

重合性基を有する正孔輸送化合物や重合性基を有する電子輸送化合物の入手容易性の他、耐溶剤性、成膜性、電荷注入性の点から、重合体含有有機化合物層(硬化膜)は正孔輸送性能を有する層とすることが好ましい。
このように、正孔輸送性能を有する層とする場合、重合性基を有する電子輸送化合物よりも重合性基を有する正孔輸送化合物を多く含む組成物を用いればよい。
具体的には、例えば、重合性基を有する電子輸送化合物を、重合性基を有する正孔輸送化合物に対して、0.1質量%以上20質量%以下(好ましくは1質量%以上15質量%以下、より好ましくは2質量%以上10質量%以下)で用いた組成物を用いることで、有機電界発光素子を構成する正孔輸送性能を有する層が得られる。
Polymer-containing organic compound layer (cured film) from the viewpoints of easy availability of hole-transporting compounds having a polymerizable group and electron-transporting compounds having a polymerizable group, as well as solvent resistance, film-forming property, and charge injection property. Is preferably a layer having hole transport performance.
As described above, when the layer has a hole transporting performance, a composition containing more hole transporting compounds having a polymerizable group than an electron transporting compound having a polymerizable group may be used.
Specifically, for example, the electron-transporting compound having a polymerizable group is 0.1% by mass or more and 20% by mass or less (preferably 1% by mass or more and 15% by mass or less) with respect to the hole-transporting compound having a polymerizable group. Hereinafter, by using the composition used in a proportion of 2% by mass or more and 10% by mass or less), a layer having a hole transporting performance constituting the organic electroluminescent element can be obtained.

本実施形態において、重合体含有有機化合物層が正孔輸送性能を有する層である場合、かかる層に含まれる重合体は、重合性基を有する正孔輸送化合物に由来する構造単位(C)と重合性基を有する電子輸送化合物に由来する構造単位(E)との質量比(C):(E)が10:1乃至1:20の範囲であることが好ましく、1:1乃至1:15の範囲であることがより好ましく、1:2乃至1:10の範囲が更に好ましい。
構造単位(C)及び構造単位(E)は、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物の量比を変えることで調整される。
In the present embodiment, when the polymer-containing organic compound layer is a layer having hole transporting performance, the polymer contained in such a layer is a structural unit (C) derived from a hole transporting compound having a polymerizable group. The mass ratio (C): (E) with the structural unit (E) derived from the electron-transporting compound having a polymerizable group is preferably in the range of 10: 1 to 1:20, and is preferably 1: 1 to 1:15. Is more preferable, and the range of 1: 2 to 1:10 is even more preferable.
The structural unit (C) and the structural unit (E) are adjusted by changing the amount ratio of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group.

上記の硬化膜は、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物とを含む組成物を、熱、光、電子線などのエネルギーにより硬化させることで得られる。
硬化の際、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物とを含む組成物に、使用するエネルギーに応じて、熱ラジカル発生剤や光ラジカル発生剤を用いることが、硬化性が上がり、機械的強度に優れる硬化膜が得られる点から、好ましい。
硬化膜の電気特性、機械的強度等の特性のバランスを取るためには、硬化膜を得るためには熱硬化が望ましい。
The cured film is obtained by curing a composition containing a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group with energy such as heat, light, and an electron beam.
At the time of curing, a thermal radical generator or a photoradical generator may be used in a composition containing a hole transporting compound having a polymerizable group and an electron transporting compound having a polymerizable group, depending on the energy used. It is preferable because a cured film having improved curability and excellent mechanical strength can be obtained.
In order to balance the characteristics such as electrical characteristics and mechanical strength of the cured film, thermosetting is desirable to obtain the cured film.

熱ラジカル発生剤の使用量は、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物の量に応じて、適宜、決定されればよい。
例えば、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物を含む組成物において、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物の総量:100質量部に対して、0.1質量部以上25質量部以下が望ましく、1質量部以上20質量部以下がより望ましく、5質量部以上18質量部以下が更に望ましい。
The amount of the thermal radical generator to be used may be appropriately determined according to the amount of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group.
For example, in a composition containing a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group, the total amount of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group: 100 parts by mass. On the other hand, 0.1 part by mass or more and 25 parts by mass or less is preferable, 1 part by mass or more and 20 parts by mass or less is more preferable, and 5 parts by mass or more and 18 parts by mass or less is further desirable.

光ラジカル発生剤の使用量は、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物の量に応じて、適宜、決定されればよい。
例えば、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物を含む組成物において、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物の総量:100質量部に対して、0.001質量部以上10質量部以下が望ましく、0.01質量部以上5質量部以下がより望ましく、0.1質量部以上3質量部以下が更に望ましい。
The amount of the photoradical generator to be used may be appropriately determined according to the amount of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group.
For example, in a composition containing a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group, the total amount of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group: 100 parts by mass. On the other hand, 0.001 parts by mass or more and 10 parts by mass or less is desirable, 0.01 parts by mass or more and 5 parts by mass or less is more desirable, and 0.1 parts by mass or more and 3 parts by mass or less is further desirable.

本実施形態に係る重合体含有有機化合物層中の、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体の含有量は、用途に応じて設定されればよく、一般的には、全固形分の50質量%以上99質量%以下の範囲である。 The content of the polymer of the hole transporting compound having a polymerizable group and the electron transporting compound having a polymerizable group in the polymer-containing organic compound layer according to the present embodiment may be set according to the intended use. Generally, the total solid content is in the range of 50% by mass or more and 99% by mass or less.

本実施形態に係る重合体含有有機化合物層は、体積抵抗率が1×10Ω・cm以上1×1015Ω・cm以下であることが好ましく、1×10Ω・cm以上1×1013Ω・cm以下であることがより好ましく、1×10Ω・cm以上1×1010Ω・cm以下であることが更に好ましい。 The polymer-containing organic compound layer according to the present embodiment preferably has a volume resistivity of 1 × 10 5 Ω · cm or more and 1 × 10 15 Ω · cm or less, and 1 × 10 5 Ω · cm or more and 1 × 10 It is more preferably 13 Ω · cm or less, and further preferably 1 × 10 5 Ω · cm or more and 1 × 10 10 Ω · cm or less.

〔有機電界発光素子〕
有機電界発光素子は、少なくとも一方が透明である一対の電極と、該一対の電極に挟持された、発光層を含む1つ又は複数の有機化合物層とから構成されるデバイスである。
本実施形態に係る有機電界発光素子は、有機化合物層の少なくとも1つが、前述した重合体含有有機化合物層である。
[Organic electroluminescent device]
An organic electroluminescent device is a device composed of a pair of electrodes whose at least one is transparent and one or a plurality of organic compound layers including a light emitting layer sandwiched between the pair of electrodes.
In the organic electroluminescent device according to the present embodiment, at least one of the organic compound layers is the polymer-containing organic compound layer described above.

本実施形態に係る有機電界発光素子において、有機化合物層が単層の場合は、この有機化合物層が正孔輸送性能を有する発光層であり、この正孔輸送性能を有する発光層が本実施形態における前述した重合体含有有機化合物層となる。 In the organic electroluminescent element according to the present embodiment, when the organic compound layer is a single layer, the organic compound layer is a light emitting layer having a hole transporting performance, and the light emitting layer having this hole transporting performance is the present embodiment. It becomes the above-mentioned polymer-containing organic compound layer in.

有機電界発光素子において、有機化合物層が複数層の場合(即ち、各層が異なる機能を有する機能分離型の場合)は、少なくともいずれか1層が発光層であり、例えば、下記の層構成(1)〜(3)が挙げられる。層構成(1)〜(3)において、本実施形態に係る有機電界発光素子では、少なくとも1層が、前述した重合体含有有機化合物層となる。 In the organic electroluminescent device, when the organic compound layers are a plurality of layers (that is, when each layer is a function-separated type having different functions), at least one of the layers is a light emitting layer, and for example, the following layer structure (1). ) To (3). In the layer structure (1) to (3), in the organic electroluminescent device according to the present embodiment, at least one layer is the polymer-containing organic compound layer described above.

層構成(1):正孔輸送層と、発光層と、を有する機能分離型の層構成。本構成においては、正孔輸送層及び発光層の少なくとも一方が重合体含有有機化合物層であればよく、正孔輸送層が重合体含有有機化合物層であることが好ましい。 Layer structure (1): A function-separated layer structure having a hole transport layer and a light emitting layer. In this configuration, at least one of the hole transport layer and the light emitting layer may be a polymer-containing organic compound layer, and the hole transport layer is preferably a polymer-containing organic compound layer.

層構成(2):正孔輸送層と、発光層と、電子輸送層と、を有する機能分離型の層構成。本構成においては、正孔輸送層、発光層及び電子輸送層の少なくとも1層が重合体含有有機化合物層であればよく、正孔輸送層が重合体含有有機化合物層であることが好ましい。 Layer structure (2): A function-separated layer structure having a hole transport layer, a light emitting layer, and an electron transport layer. In this configuration, at least one of the hole transport layer, the light emitting layer and the electron transport layer may be a polymer-containing organic compound layer, and the hole transport layer is preferably a polymer-containing organic compound layer.

層構成(3):発光層と、電子輸送層と、を有する機能分離型の層構成。本構成においては、発光層及び電子輸送層の少なくとも一方が重合体含有有機化合物層であればよく、発光層が重合体含有有機化合物層であることが好ましい。 Layer structure (3): A function-separated layer structure having a light emitting layer and an electron transport layer. In this configuration, at least one of the light emitting layer and the electron transporting layer may be a polymer-containing organic compound layer, and the light emitting layer is preferably a polymer-containing organic compound layer.

以下、図面を参照しつつ、本実施形態に係る有機電界発光素子を説明するが、本実施形態はこれに限定されるわけではない、 Hereinafter, the organic electroluminescent device according to the present embodiment will be described with reference to the drawings, but the present embodiment is not limited to this.

図1乃至図4は、本実施形態に係る有機電界発光素子の層構成を説明するための模式的断面図であって、図1、図2、図3は、有機化合物層が複数層からなる場合の一例であり、図4は、有機化合物層が単層からなる場合の一例である。図1乃至図4において、同様の機能を有する層には同じ符号を付して説明する。 1 to 4 are schematic cross-sectional views for explaining the layer structure of the organic electroluminescent element according to the present embodiment, and FIGS. 1, 2, and 3 are composed of a plurality of organic compound layers. FIG. 4 shows an example of the case where the organic compound layer is composed of a single layer. In FIGS. 1 to 4, layers having the same function will be described with the same reference numerals.

図1は、前記の層構成(1)を示す。
図1に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、正孔輸送層3、発光層4、背面電極7がこの順に積層された素子である。透明電極2と正孔輸送層3との間には、正孔注入層が配置されていてもよい。図1に示す形態例においては、正孔輸送層3を、本実施形態における重合体含有有機化合物層とすることが好ましく、更に、正孔注入層が配置されていれば、この正孔注入層を本実施形態における重合体含有有機化合物層としてもよい。
FIG. 1 shows the layer structure (1).
The organic electroluminescent device shown in FIG. 1 is an element in which a transparent electrode 2, a hole transport layer 3, a light emitting layer 4, and a back electrode 7 are laminated in this order on a transparent insulator substrate 1. A hole injection layer may be arranged between the transparent electrode 2 and the hole transport layer 3. In the embodiment shown in FIG. 1, it is preferable that the hole transport layer 3 is the polymer-containing organic compound layer of the present embodiment, and if the hole injection layer is further arranged, the hole injection layer is formed. May be used as the polymer-containing organic compound layer in the present embodiment.

図2は、前記の層構成(2)を示す。
図2に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、正孔輸送層3、発光層4、電子輸送層5、背面電極7がこの順に積層された素子である。透明電極2と正孔輸送層3との間には、正孔注入層が配置されていてもよい。電子輸送層5と背面電極7との間には、電子注入層が配置されていてもよい。図2に示す形態例においては、正孔輸送層3を、本実施形態における重合体含有有機化合物層とすることが好ましく、更に、正孔注入層が配置されていれば、この正孔注入層を本実施形態における重合体含有有機化合物層としてもよい。
FIG. 2 shows the layer structure (2).
The organic electroluminescent device shown in FIG. 2 is an element in which a transparent electrode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a back electrode 7 are laminated in this order on a transparent insulator substrate 1. A hole injection layer may be arranged between the transparent electrode 2 and the hole transport layer 3. An electron injection layer may be arranged between the electron transport layer 5 and the back electrode 7. In the embodiment shown in FIG. 2, it is preferable that the hole transport layer 3 is the polymer-containing organic compound layer of the present embodiment, and if the hole injection layer is further arranged, the hole injection layer is formed. May be used as the polymer-containing organic compound layer in the present embodiment.

図3は、前記の層構成(3)を示す。
図3に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、発光層6、電子輸送層5、背面電極7がこの順に積層された素子である。電子輸送層5と背面電極7との間には、電子注入層が配置されていてもよい。図3に示す形態例においては、発光層6を、本実施形態における重合体含有有機化合物層とすることが好ましい。この場合、本実施形態における重合体含有有機化合物層には、発光材料を少なくとも1種含有させる。
FIG. 3 shows the layer structure (3).
The organic electroluminescent device shown in FIG. 3 is an element in which a transparent electrode 2, a light emitting layer 6, an electron transport layer 5, and a back electrode 7 are laminated in this order on a transparent insulator substrate 1. An electron injection layer may be arranged between the electron transport layer 5 and the back electrode 7. In the embodiment shown in FIG. 3, it is preferable that the light emitting layer 6 is the polymer-containing organic compound layer in the present embodiment. In this case, at least one kind of light emitting material is contained in the polymer-containing organic compound layer in the present embodiment.

図4は、単層型の層構成を示す。図4に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、正孔輸送性能を有する発光層6、背面電極7がこの順に積層された素子である。図4に示す形態例においては、発光層6を、本実施形態における重合体含有有機化合物層とする。この場合、本実施形態における重合体含有有機化合物層には、発光材料を少なくとも1種含有させる。 FIG. 4 shows a single-layer type layer structure. The organic electroluminescent device shown in FIG. 4 is an element in which a transparent electrode 2, a light emitting layer 6 having hole transporting performance, and a back electrode 7 are laminated in this order on a transparent insulator substrate 1. In the embodiment shown in FIG. 4, the light emitting layer 6 is the polymer-containing organic compound layer in the present embodiment. In this case, at least one kind of light emitting material is contained in the polymer-containing organic compound layer in the present embodiment.

図1乃至図4に示す各有機電界発光素子において、背面電極7上には、水分や酸素による有機電界発光素子の劣化を防ぐ目的で、保護層を設けてもよい。 In each of the organic electroluminescent devices shown in FIGS. 1 to 4, a protective layer may be provided on the back electrode 7 for the purpose of preventing deterioration of the organic electroluminescent device due to moisture or oxygen.

トップエミッション構造とする場合、又は、2つの電極を共に透明電極とする場合は、図1乃至図4に示される層構成を複数段積み重ねた構造とすることも可能である。 When the top emission structure is used, or when the two electrodes are both transparent electrodes, the layer structure shown in FIGS. 1 to 4 can be stacked in a plurality of stages.

以下、図1乃至図4における各層をより詳細に説明する。 Hereinafter, each layer in FIGS. 1 to 4 will be described in more detail.

透明絶縁体基板1について透明とは、可視領域の光の透過率が10%以上であることを意味し、透過率が75%以上であることが好ましい。
透明絶縁体基板1としては、例えば、ガラス板、石英板、金属箔、樹脂製フィルムが用いられる。樹脂製フィルムの材料としては、ポリメチルメタクリレート(PMMA)等のメタクリル樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリカーボネート樹脂が挙げられる。
透明絶縁体基板1は、透水性や透ガス性を抑える目的で、表面処理を行なってもよく、積層構造にしてもよい。
Regarding the transparent insulator substrate 1, "transparency" means that the light transmittance in the visible region is 10% or more, and the transmittance is preferably 75% or more.
As the transparent insulator substrate 1, for example, a glass plate, a quartz plate, a metal foil, or a resin film is used. Examples of the material of the resin film include methacrylic resin such as polymethylmethacrylate (PMMA), polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polycarbonate resin.
The transparent insulator substrate 1 may be surface-treated or may have a laminated structure for the purpose of suppressing water permeability and gas permeability.

透明電極2は、透明絶縁体基板1と同様に発光を取り出すため透明であって、かつ正孔の注入を行うため仕事関数の大きな電極が好ましく、仕事関数が4eV以上の電極が好ましい。 Similar to the transparent insulator substrate 1, the transparent electrode 2 is transparent because it extracts light emission, and is preferably an electrode having a large work function because holes are injected, and an electrode having a work function of 4 eV or more is preferable.

透明電極2について透明とは、可視領域の光の透過率が10%以上であることを意味し、透過率が75%以上であることが好ましい。
透明電極2の材料としては、酸化スズインジウム(ITO)、酸化スズ、酸化インジウム、酸化亜鉛、酸化インジウム亜鉛等の金属酸化物;アルミニウム、ニッケル、金、銀、白金、パラジウム等の金属;ヨウ化銅等のハロゲン化金属;カーボンブラック、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子;が挙げられる。
透明電極2のシート抵抗は、低いほど望ましく、数百Ω/□以下が好ましく、100Ω/□以下がより好ましい。
Regarding the transparent electrode 2, transparency means that the transmittance of light in the visible region is 10% or more, and the transmittance is preferably 75% or more.
As the material of the transparent electrode 2, metal oxides such as indium tin oxide (ITO), tin oxide, indium oxide, zinc oxide and zinc oxide; metals such as aluminum, nickel, gold, silver, platinum and palladium; iodide Examples thereof include metal halides such as copper; conductive polymers such as carbon black, poly (3-methylthiophene), polypyrrole, and polyaniline;
The lower the sheet resistance of the transparent electrode 2, the more desirable it is, preferably several hundred Ω / □ or less, and more preferably 100 Ω / □ or less.

有機化合物層(図1乃至図4において、符号3乃至6で示される層)は、その機能に応じて、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、及び発光材料から選択される材料を含む。
有機化合物層が本実施形態における重合体含有有機化合物層である場合には、これら材料と共に、重合性基を有する正孔輸送化合物及び重合性基を有する電子輸送化合物を混合した組成物を用いて層形成してもよい。
The organic compound layer (layer represented by reference numerals 3 to 6 in FIGS. 1 to 4) is composed of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and a light emitting material, depending on its function. Includes selected materials.
When the organic compound layer is the polymer-containing organic compound layer in the present embodiment, a composition obtained by mixing a hole transport compound having a polymerizable group and an electron transport compound having a polymerizable group together with these materials is used. Layers may be formed.

正孔輸送材料としては、テトラフェニレンジアミン誘導体、トリフェニルアミン誘導体、カルバゾール誘導体、スチルベン誘導体、アリールヒドラゾン誘導体、ポルフィリン系化合物が挙げられ、テトラフェニレンジアミン誘導体、スピロフルオレン誘導体、トリフェニルアミン誘導体が挙げられる。 Examples of the hole transporting material include tetraphenylenediamine derivatives, triphenylamine derivatives, carbazole derivatives, stylben derivatives, arylhydrazone derivatives, and porphyrin-based compounds, and tetraphenylenediamine derivatives, spirofluorene derivatives, and triphenylamine derivatives. ..

正孔注入材料としては、フェニレンジアミン誘導体、フタロシアニン誘導体、インダンスレン誘導体、ポリアルキレンジオキシチオフェン誘導体等が挙げられ、これらには、ルイス酸、スルホン酸等の有機酸、塩化鉄等の無機酸を混合してもよい。 Examples of the hole injection material include a phenylenediamine derivative, a phthalocyanine derivative, an indanslen derivative, a polyalkylenedioxythiophene derivative and the like, and these include organic acids such as Lewis acid and sulfonic acid, and inorganic acids such as iron chloride. May be mixed.

電子輸送材料としては、オキサジアゾール誘導体、ニトロ置換フルオレノン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、シロール誘導体、キレート型有機金属錯体、多核又は縮合芳香環化合物、ペリレン誘導体、トリアゾール誘導体、フルオレニリデンメタン誘導体等が挙げられる。 Examples of the electron transporting material include oxadiazole derivatives, nitro-substituted fluorenone derivatives, diphenoquinone derivatives, thiopyrandioxide derivatives, silol derivatives, chelated organic metal complexes, polynuclear or condensed aromatic ring compounds, perylene derivatives, triazole derivatives, and fluorenylidene. Examples include methane derivatives.

電子注入材料としては、Li、Ca、Sr等の金属やLiF、MgF等の金属フッ化物、MgO、Al、LiO等の金属酸化物が挙げられる。 As the electron injecting material, Li, Ca, a metal or LiF in or Sr, metal fluorides MgF like, MgO, Al 2 O 3, metal oxides, such as LiO and the like.

発光材料としては、固体状態で高い発光量子効率を示す化合物が望ましい。発光材料は、低分子化合物及び高分子化合物のいずれでもよい。
有機低分子化合物としては、キレート型有機金属錯体、多核又は縮合芳香環化合物、ペリレン誘導体、クマリン誘導体、スチリルアリーレン誘導体、シロール誘導体、オキサゾール誘導体、オキサチアゾール誘導体、オキサジアゾール誘導体が挙げられる。
有機高分子化合物としては、ポリパラフェニレン誘導体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリアセチレン誘導体が挙げられる。
As the light emitting material, a compound showing high light emission quantum efficiency in the solid state is desirable. The light emitting material may be either a low molecular weight compound or a high molecular weight compound.
Examples of the organic low molecular weight compound include a chelated organic metal complex, a polynuclear or condensed aromatic ring compound, a perylene derivative, a coumarin derivative, a styrylarylene derivative, a silol derivative, an oxazole derivative, an oxathiazole derivative, and an oxadiazole derivative.
Examples of the organic polymer compound include polyparaphenylene derivatives, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyacetylene derivatives.

発光材料の具体例として、下記例示化合物(VI−1)乃至(VI−17)が挙げられる。
なお、下記例示化合物(VI−1)乃至(VI−17)は、電子輸送材料として用いることもできる。
Specific examples of the luminescent material include the following exemplified compounds (VI-1) to (VI-17).
The following exemplified compounds (VI-1) to (VI-17) can also be used as electron transport materials.

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

Figure 0006953824
Figure 0006953824

例示化合物(VI−13)乃至(VI−17)中、n及びgはそれぞれ独立に1以上の整数であり、Vは2価の連結基である。Vとしては、例えば、下記の2価の基が挙げられる。
下記の2価の基において、gは1以上の整数を表し、hは0以上5以下の整数を表す。
In the exemplified compounds (VI-13) to (VI-17), n and g are independently integers of 1 or more, and V is a divalent linking group. Examples of V include the following divalent groups.
In the following divalent group, g represents an integer of 1 or more, and h represents an integer of 0 or more and 5 or less.

Figure 0006953824
Figure 0006953824

有機電界発光素子の耐久性の向上又は発光効率の向上を目的に、発光材料の中に、発光材料とは異なる色素化合物をゲスト材料としてドーピングしてもよい。
色素化合物のドーピング量は、ホスト100質量部に対して、0.001質量部以上40質量部以下が好ましく、0.01質量部以上10質量部以下がより好ましい。
For the purpose of improving the durability or the luminous efficiency of the organic electroluminescent element, a dye compound different from the light emitting material may be doped as a guest material in the light emitting material.
The doping amount of the dye compound is preferably 0.001 part by mass or more and 40 parts by mass or less, and more preferably 0.01 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the host.

ドーピング用の色素化合物としては、クマリン誘導体、DCM誘導体、キナクリドン誘導体、ペリミドン誘導体、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、ルブレン誘導体、ポルフィリン誘導体;ルテニウム、ロジウム、パラジウム、銀、レニウム、オスニウム、イリジウム、白金、及び金等の金属錯体化合物;などが挙げられる。
ドーピング用の色素化合物の具体例として、例示化合物(VII−1)〜(VII−6)が挙げられる。
Dye compounds for doping include coumarin derivatives, DCM derivatives, quinacridone derivatives, perimidone derivatives, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, rubrene derivatives, porphyrin derivatives; ruthenium, rhodium, palladium, silver, renium, osnium, iridium. , Platinum, and metal complex compounds such as gold; and the like.
Specific examples of the dye compound for doping include exemplary compounds (VII-1) to (VII-6).

Figure 0006953824
Figure 0006953824

各有機化合物層は、結着樹脂を含有していてもよい。
結着樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、ポリススチレン樹脂、ポリビニルアセテート樹脂、スチレンブタジエン共重合体、塩化ビニルデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコン樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリシラン樹脂、ポリチオフェン、ポリピロール等の導電性樹脂が挙げられる。
各有機化合物層は、必要に応じて、公知の酸化防止剤、紫外線吸収剤、可塑剤等を含有していてもよい。
Each organic compound layer may contain a binder resin.
As the binder resin, polycarbonate resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, cellulose resin, urethane resin, epoxy resin, police styrene resin, polyvinyl acetate resin, styrene butadiene copolymer, vinyl chloride den-acrylonitrile Examples thereof include copolymers, vinyl chloride-vinyl acetate-maleic anhydride copolymers, silicon resins, poly-N-vinylcarbazole resins, polysilane resins, polythiophene, and conductive resins such as polypyrrole.
Each organic compound layer may contain a known antioxidant, ultraviolet absorber, plasticizer and the like, if necessary.

背面電極7の材料としては、真空蒸着可能で、電子注入を行なうため仕事関数の小さな材料が好ましく、金属、金属酸化物、金属フッ化物が好ましい。
金属としては、マグネシウム、アルミニウム、金、銀、インジウム、リチウム、カルシウム及びこれらの合金が挙げられる。
金属酸化物としては、酸化リチウム、酸化マグネシウム、酸化アルミニウム、酸化スズインジウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化インジウム亜鉛が挙げられる。
金属フッ化物としては、フッ化リチウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化カルシウム、フッ化アルミニウムが挙げられる。
As the material of the back electrode 7, a material that can be vacuum-deposited and has a small work function for performing electron injection is preferable, and a metal, a metal oxide, and a metal fluoride are preferable.
Examples of the metal include magnesium, aluminum, gold, silver, indium, lithium, calcium and alloys thereof.
Examples of the metal oxide include lithium oxide, magnesium oxide, aluminum oxide, indium oxide, tin oxide, indium oxide, zinc oxide, and zinc indium oxide.
Examples of the metal fluoride include lithium fluoride, magnesium fluoride, strontium fluoride, calcium fluoride, and aluminum fluoride.

背面電極7上には、保護層を設けてもよい。
保護層の材料としては、インジウム、スズ、鉛、金、銀、銅、アルミニウム等の金属;酸化マグネシウム、二酸化ケイ素、酸化チタン等の金属酸化物;ポリエチレン樹脂、ポリウレア樹脂、ポリイミド樹脂等の樹脂;が挙げられる。
A protective layer may be provided on the back electrode 7.
As the material of the protective layer, metals such as indium, tin, lead, gold, silver, copper and aluminum; metal oxides such as magnesium oxide, silicon dioxide and titanium oxide; resins such as polyethylene resin, polyurea resin and polyimide resin; Can be mentioned.

透明電極2、各有機化合物層、背面電極7、及び保護層の厚さは、一般的に、0.001μm以上10μm以下であり、0.001μm以上5μm以下が好ましい。 The thickness of the transparent electrode 2, each organic compound layer, the back electrode 7, and the protective layer is generally 0.001 μm or more and 10 μm or less, preferably 0.001 μm or more and 5 μm or less.

図1乃至図4に示される有機電界発光素子は、透明絶縁体基板1上に、透明電極2、各有機化合物層、及び背面電極7を順次形成することで作製される。
透明電極2、各有機化合物層、及び背面電極7は、例えば、真空蒸着法、スパッタ法、塗布法等により形成できる。
塗布法は、材料を適切な溶媒に溶解又は分散した塗布液を透明電極2上に塗布し、塗布膜を乾燥させる成膜法である。
塗布液の塗布方法としては、スピンコーティング法、ダイコート法、インクジェット法、キャスト法、ディップ法等が挙げられる。
The organic electroluminescent device shown in FIGS. 1 to 4 is manufactured by sequentially forming a transparent electrode 2, each organic compound layer, and a back electrode 7 on a transparent insulator substrate 1.
The transparent electrode 2, each organic compound layer, and the back electrode 7 can be formed by, for example, a vacuum vapor deposition method, a sputtering method, a coating method, or the like.
The coating method is a film forming method in which a coating liquid in which a material is dissolved or dispersed in an appropriate solvent is applied onto the transparent electrode 2 and the coating film is dried.
Examples of the coating method of the coating liquid include a spin coating method, a die coating method, an inkjet method, a casting method, a dip method and the like.

有機化合物層における各材料の含有状態は、分子が分散した状態(分子分散状態)でもよく、粒子を形成して分散した状態(粒子分散状態)でもよい。
塗布液を用いた成膜法において分子分散状態にするためには、塗布液の溶媒を、各材料の分散性及び溶解性を考慮して選択する。
塗布液を用いた成膜法において粒子分散状態にするためには、ボールミル、サンドミル、ペイントシェイカー、アトライター、ホモジナイザー、超音波のいずれかを利用して塗布液を調製する。
The content state of each material in the organic compound layer may be a state in which molecules are dispersed (molecular dispersion state) or a state in which particles are formed and dispersed (particle dispersion state).
In order to obtain a molecularly dispersed state in a film forming method using a coating liquid, the solvent of the coating liquid is selected in consideration of the dispersibility and solubility of each material.
In order to obtain a particle-dispersed state in a film forming method using a coating liquid, a coating liquid is prepared using any one of a ball mill, a sand mill, a paint shaker, an attritor, a homogenizer, and ultrasonic waves.

本実施形態に係る有機電界発光素子を、マトリクス状又はセグメント状に配置して画像表示媒体が構成される。
有機電界発光素子をマトリクス状に配置する場合、電極のみをマトリクス状に配置する形態であってもよいし、電極及び有機化合物層をマトリクス状に配置する形態であってもよい。
有機電界発光素子をセグメント状に配置する場合、電極のみをセグメント状に配置する形態であってもよいし、電極及び有機化合物層をセグメント状に配置する形態であってもよい。
マトリクス状又はセグメント状の有機化合物層は、インクジェット法により形成可能である。
The organic electroluminescent elements according to the present embodiment are arranged in a matrix or segment to form an image display medium.
When the organic electroluminescent elements are arranged in a matrix, only the electrodes may be arranged in a matrix, or the electrodes and the organic compound layer may be arranged in a matrix.
When the organic electroluminescent device is arranged in a segment shape, only the electrode may be arranged in a segment shape, or the electrode and the organic compound layer may be arranged in a segment shape.
The matrix-like or segment-like organic compound layer can be formed by an inkjet method.

マトリクス状の有機電界発光素子及びセグメント状の有機電界発光素子の駆動装置及び駆動方法としては、特開平2−148687号公報、特開平6−301355号公報、特開平5−29080号、特開平7−134558号公報、特開平8−234685号公報、特開平8−241047号公報、特許第2784615号公報、米国特許5828429号明細書、米国特許6023308号明細書などに記載の駆動装置及び駆動方法を適用し得る。 Examples of the driving device and driving method for the matrix-shaped organic electroluminescent element and the segmented organic electroluminescent element are JP-A-2-148678, JP-A-6-301355, JP-A5-29800, and JP-A-7. The driving device and driving method described in JP-A-134558, JP-A-8-234685, JP-A-8-241047, Patent No. 2784615, US Pat. No. 5,284,229, US Pat. No. 6,023,308, etc. Applicable.

以下実施例によって本実施形態を更に具体的に説明するが、本実施形態はこれらに限定されるものではない。なお、特に断りのない限り、「%」は「質量%」を表す。 Hereinafter, the present embodiment will be described in more detail with reference to Examples, but the present embodiment is not limited thereto. Unless otherwise specified, "%" represents "mass%".

<一般式(1)で表される化合物の合成>
[合成例1:CTM−11の合成]
表1に示すCTM−11を、以下のスキームにて合成した。
<Synthesis of compound represented by general formula (1)>
[Synthesis Example 1: Synthesis of CTM-11]
CTM-11 shown in Table 1 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三つ口フラスコに、化合物(1)25g、トルエン250ml、マロン酸ジエチル12.8gを採取し、溶解させた。次いで、ピペリジン3.4g、酢酸3.6gを加え130℃で2時間撹拌した。次いで、ピペリジン0.68g、酢酸0.72gを加え130℃で1時間撹拌した。次いで、室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=10/1)にて精製し、オイル状の化合物(2)33.3gを得た。
次いで、ナス型フラスコに、オイル状の化合物(2)33.3gを採取し、テトラヒドロフラン200mlに溶解させ、エタノール50ml、10%Pd/C2gを加え、水素ガス供給元につなぎ24時間撹拌し、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物(3)32.3gを得た。
次いで、ナス型フラスコに、オイル状の化合物(3)25gを採取し、テトラヒドロフラン200ml、エタノール50mlに溶解させ、水酸化ナトリウム8.7gを蒸留水25mlに溶解させた溶液を、0℃にて徐々に滴下し、室温にて2時間撹拌した。析出した固体をトルエン100mlで2回洗浄した。次いで、個体、ジメチルホルムアミド200ml、クロロメチルスチレン40gを室温で15分間、70℃で7時間撹拌した。次いで、室温まで冷却し、トルエン500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物CTM−11を27.1g得た。
In a three-necked flask, 25 g of compound (1), 250 ml of toluene, and 12.8 g of diethyl malonate were collected and dissolved. Then, 3.4 g of piperidine and 3.6 g of acetic acid were added, and the mixture was stirred at 130 ° C. for 2 hours. Then, 0.68 g of piperidine and 0.72 g of acetic acid were added, and the mixture was stirred at 130 ° C. for 1 hour. Then, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 10/1) to obtain 33.3 g of the oily compound (2).
Next, 33.3 g of the oily compound (2) was collected in a eggplant-shaped flask, dissolved in 200 ml of tetrahydrofuran, 50 ml of ethanol and 2 g of 10% Pd / C were added, connected to a hydrogen gas supply source, stirred for 24 hours, and depressurized. The lower solvent was distilled off. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 32.3 g of the oily compound (3).
Next, 25 g of the oily compound (3) was collected in a eggplant-shaped flask, dissolved in 200 ml of tetrahydrofuran and 50 ml of ethanol, and a solution of 8.7 g of sodium hydroxide dissolved in 25 ml of distilled water was gradually added at 0 ° C. Was added dropwise to the mixture, and the mixture was stirred at room temperature for 2 hours. The precipitated solid was washed twice with 100 ml of toluene. Then, the solid, 200 ml of dimethylformamide and 40 g of chloromethylstyrene were stirred at room temperature for 15 minutes and at 70 ° C. for 7 hours. Then, the mixture was cooled to room temperature, 500 ml of toluene was added, the organic layer was washed 3 times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 27.1 g of the oily compound CTM-11.

[合成例2:CTM−12の合成]
表1に示すCTM−12を、以下のスキームにて合成した。
[Synthesis Example 2: Synthesis of CTM-12]
CTM-12 shown in Table 1 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

合成例1と同様の方法で合成した化合物(3)25gを、テトラヒドロフラン250mlに溶解し水素化アルミニウムリチウム8.9gを加え室温にて2時間撹拌した。次いで、水500ml、トルエン1Lを加え、セライトを敷いた濾紙で固形分を濾別した。次いで、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、ヘキサン20ml、酢酸エチル30mlから再結晶し淡桃色の固体状の化合物(4)18.5gを得た。
次いで、固体状の化合物(4)16.5gをテトラヒドロフラン200mlに溶解し4−クロロメチルスチレン18g、カリウムtert−ブトキシド11.9gを徐々に加え、70℃で16時間撹拌した。次いで、室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状のCTM−12を20.3g得た。
25 g of compound (3) synthesized by the same method as in Synthesis Example 1 was dissolved in 250 ml of tetrahydrofuran, 8.9 g of lithium aluminum hydride was added, and the mixture was stirred at room temperature for 2 hours. Next, 500 ml of water and 1 L of toluene were added, and the solid content was filtered off with a filter paper lined with Celite. Next, the organic layer was washed 3 times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was recrystallized from 20 ml of hexane and 30 ml of ethyl acetate to obtain 18.5 g of a pale pink solid compound (4).
Then, 16.5 g of the solid compound (4) was dissolved in 200 ml of tetrahydrofuran, 18 g of 4-chloromethylstyrene and 11.9 g of potassium tert-butoxide were gradually added, and the mixture was stirred at 70 ° C. for 16 hours. Then, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 20.3 g of oily CTM-12.

[合成例3:CTM−15の合成]
表1に示すCTM−15を、以下のスキームにて合成した。
[Synthesis Example 3: Synthesis of CTM-15]
CTM-15 shown in Table 1 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三つ口フラスコに、化合物(5)25g、トルエン250ml、マロン酸ジエチル12.8gを採取し、溶解させた。次いで、ピペリジン3.4g、酢酸3.6gを加え130℃で2時間撹拌した。次いで、ピペリジン0.68g、酢酸0.72gを加え130℃で1時間撹拌した。次いで、室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物(6)31.2gを得た。
次いで、ナス型フラスコにオイル状の化合物(6)31.2gを採取し、テトラヒドロフラン200mlに溶解させ、エタノール50ml、10%Pd/C2gを加え、水素ガス供給元につなぎ24時間撹拌し、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物(7)29.8gを得た。
次いで、ナス型フラスコにオイル状の化合物(7)25gを採取し、テトラヒドロフラン200ml、エタノール50mlに溶解させ、水酸化ナトリウム8.7gを蒸留水25mlに溶解させた溶液を、0℃にて徐々に滴下し、室温にて2時間撹拌した。析出した固体をトルエン100mlで2回洗浄した。次いで、個体、ジメチルホルムアミド200ml、クロロメチルスチレン40gを室温で15分間、70℃で7時間撹拌した。次いで、室温まで冷却し、トルエン500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物CTM−15を25.3g得た。
In a three-necked flask, 25 g of compound (5), 250 ml of toluene, and 12.8 g of diethyl malonate were collected and dissolved. Then, 3.4 g of piperidine and 3.6 g of acetic acid were added, and the mixture was stirred at 130 ° C. for 2 hours. Then, 0.68 g of piperidine and 0.72 g of acetic acid were added, and the mixture was stirred at 130 ° C. for 1 hour. Then, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 31.2 g of an oily compound (6).
Next, 31.2 g of the oily compound (6) was collected in a eggplant-shaped flask, dissolved in 200 ml of tetrahydrofuran, 50 ml of ethanol and 2 g of 10% Pd / C were added, and the mixture was connected to a hydrogen gas supply source and stirred for 24 hours under reduced pressure. The solvent was distilled off. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 29.8 g of an oily compound (7).
Next, 25 g of the oily compound (7) was collected in a eggplant-shaped flask, dissolved in 200 ml of tetrahydrofuran and 50 ml of ethanol, and a solution of 8.7 g of sodium hydroxide dissolved in 25 ml of distilled water was gradually added at 0 ° C. The mixture was added dropwise, and the mixture was stirred at room temperature for 2 hours. The precipitated solid was washed twice with 100 ml of toluene. Then, the solid, 200 ml of dimethylformamide and 40 g of chloromethylstyrene were stirred at room temperature for 15 minutes and at 70 ° C. for 7 hours. Then, the mixture was cooled to room temperature, 500 ml of toluene was added, the organic layer was washed 3 times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 25.3 g of the oily compound CTM-15.

[合成例4:CTM−16の合成]
表1に示すCTM−16を、以下のスキームにて合成した。
[Synthesis Example 4: Synthesis of CTM-16]
CTM-16 shown in Table 1 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

合成例3と同様の方法で合成した化合物(7)25gをテトラヒドロフラン250mlに溶解し水素化アルミニウムリチウム9.2gを加え室温にて2時間撹拌した。次いで、水500ml、トルエン1Lを加え、セライトを敷いた濾紙で固形分を濾別した。次いで、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=2/1)にて精製し、オイル状の化合物(8)17.8gを得た。
次いで、オイル状の化合物(8)16.0gをテトラヒドロフラン200mlに溶解し4−クロロメチルスチレン17.5g、カリウムtert−ブトキシド11.2gを徐々に加え、70℃で16時間撹拌した。次いで、室温まで冷却しトルエン250mlを加え、有機層を蒸留水250mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状のCTM−16を18.7g得た。
25 g of compound (7) synthesized in the same manner as in Synthesis Example 3 was dissolved in 250 ml of tetrahydrofuran, 9.2 g of lithium aluminum hydride was added, and the mixture was stirred at room temperature for 2 hours. Next, 500 ml of water and 1 L of toluene were added, and the solid content was filtered off with a filter paper lined with Celite. Next, the organic layer was washed 3 times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 2/1) to obtain 17.8 g of an oily compound (8).
Then, 16.0 g of the oily compound (8) was dissolved in 200 ml of tetrahydrofuran, 17.5 g of 4-chloromethylstyrene and 11.2 g of potassium tert-butoxide were gradually added, and the mixture was stirred at 70 ° C. for 16 hours. Then, the mixture was cooled to room temperature, 250 ml of toluene was added, the organic layer was washed 3 times with 250 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 18.7 g of oily CTM-16.

[合成例5:CTM−17の合成]
表1に示すCTM−17を、以下のスキームにて合成した。
[Synthesis Example 5: Synthesis of CTM-17]
CTM-17 shown in Table 1 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

合成例3と同様にして化合物(5)から化合物(6)を合成した。次いで、ナス型フラスコにオイル状の化合物(6)27.5gを採取し、テトラヒドロフラン200ml、エタノール50mlに溶解させ、水酸化ナトリウム8.7gを蒸留水25mlに溶解させた溶液を、0℃にて徐々に滴下し、室温にて2時間撹拌した。二層に分離した下層をトルエン100mlで2回洗浄した。次いで、下層、ジメチルホルムアミド200ml、クロロメチルスチレン40gを室温で15分間、70℃で7時間撹拌した。次いで、室温まで冷却し、酢酸エチル500mlを加え、有機層を蒸留水500mlで3回洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶剤を留去した。次いで、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:トルエン/酢酸エチル=20/1)にて精製し、オイル状の化合物CTM−17を18.4g得た。 Compound (6) was synthesized from compound (5) in the same manner as in Synthesis Example 3. Next, 27.5 g of the oily compound (6) was collected in a eggplant-shaped flask, dissolved in 200 ml of tetrahydrofuran and 50 ml of ethanol, and a solution prepared by dissolving 8.7 g of sodium hydroxide in 25 ml of distilled water at 0 ° C. The mixture was gradually added dropwise, and the mixture was stirred at room temperature for 2 hours. The lower layer separated into two layers was washed twice with 100 ml of toluene. Then, the lower layer, 200 ml of dimethylformamide and 40 g of chloromethylstyrene were stirred at room temperature for 15 minutes and at 70 ° C. for 7 hours. Then, the mixture was cooled to room temperature, 500 ml of ethyl acetate was added, the organic layer was washed 3 times with 500 ml of distilled water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Then, it was purified by column chromatography (adsorbent: silica gel, solvent: toluene / ethyl acetate = 20/1) to obtain 18.4 g of the oily compound CTM-17.

[合成例6:ETM−3の合成]
表2に示すETM−3を、以下のスキームにて合成した。
[Synthesis Example 6: Synthesis of ETM-3]
The ETM-3 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三つ口フラスコにて、化合物(9)12.3g(0.055mol)及びマロン酸ニトリル7.07g(0.107mol)を、トルエン300mlに溶解し、ピペリジン0.5mlを加え、窒素気流下、110℃で5時間攪拌した。室温まで、放冷後、ヘキサン500mlを加え、析出した沈殿を濾取し、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製した。塩化メチレン/ヘキサンより再結晶し、化合物(10)を8.0g得た。
次いで、三口フラスコにて、化合物(10)8.0g(0.025mol)をトルエン20mlに溶解し、ピリジン0.1mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル2ml(0.028)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン5mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサン20mlを加え、再結晶し、化合物(11)を6.2g得た。
次いで、三口フラスコにて、ピリジン3ml(0.037mol)、ハイドロキノン0.020g、及び塩化メチレン20mlの混合物を、窒素気流下で5℃に冷却した後、1−(アクリロイルオキシ)−3−(メタクリロイルオキシ)−2−プロパノール3.86g(0.018mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(11)6.2g(0.018mol)を塩化メチレン50mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水200mlで洗浄、次いで希塩酸200ml、最後に炭酸カリウム水溶液(0.1%)200mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−3を5.1g得た。
In a three-necked flask, 12.3 g (0.055 mol) of compound (9) and 7.07 g (0.107 mol) of nitrile malonic acid were dissolved in 300 ml of toluene, 0.5 ml of piperidine was added, and the mixture was subjected to a nitrogen stream. The mixture was stirred at 110 ° C. for 5 hours. After allowing to cool to room temperature, 500 ml of hexane was added, and the precipitated precipitate was collected by filtration and purified by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7). It was recrystallized from methylene chloride / hexane to obtain 8.0 g of compound (10).
Next, in a three-necked flask, 8.0 g (0.025 mol) of compound (10) was dissolved in 20 ml of toluene, 0.1 ml of pyridine was added, and 2 ml of thionyl chloride (0.028) was cooled with water and stirred under a nitrogen stream. ) Was gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 5 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then 20 ml of hexane was added and recrystallized to obtain 6.2 g of compound (11).
Then, in a three-necked flask, a mixture of 3 ml (0.037 mol) of pyridine, 0.020 g of hydroquinone, and 20 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 1- (acryloyloxy) -3- (methacryloyl). Dissolve 3.86 g (0.018 mol) of oxy) -2-propanol and dissolve 6.2 g (0.018 mol) of compound (11) in 50 ml of methylene chloride while stirring this solution at 5 ° C. over 2 hours. And dropped. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 200 ml of water, then with 200 ml of dilute hydrochloric acid, and finally with 200 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 5.1 g of ETM-3.

[合成例7:ETM−5の合成]
表2に示すETM−5を、以下のスキームにて合成した。
[Synthesis Example 7: Synthesis of ETM-5]
The ETM-5 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三つ口フラスコに、化合物(12)13.8g(0.055mol)及びマロン酸ニトリル7.07g(0.107mol)を、トルエン250mlに溶解し、ピペリジン0.5mlを加え、窒素気流下、110℃で5時間攪拌した。室温まで、放冷後、ヘキサン400mlを加え、析出した沈殿を濾取し、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製した。塩化メチレン/ヘキサンより再結晶し、化合物(13)を7.5g得た。
次いで、三口フラスコにて、化合物(13)7.5g(0.025mol)をトルエン20mlに溶解し、ピリジン0.1mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル2ml(0.028mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン5mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサン25mlを加え、再結晶し、化合物(14)を6.2g得た。
次いで、三口フラスコにて、ピリジン3ml(0.037mol)、ハイドロキノン0.020g、及び塩化メチレン20mlの混合物を、窒素気流下で5℃に冷却した後、アリル2−メチル−3−ヒドロキシプロピオン酸3.86g(0.018mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(14)5.7g(0.018mol)を塩化メチレン50mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水200mlで洗浄、次いで希塩酸200ml、最後に炭酸カリウム水溶液(0.1%)200mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−5を4.4g得た。
In a three-necked flask, 13.8 g (0.055 mol) of compound (12) and 7.07 g (0.107 mol) of nitrile malonic acid were dissolved in 250 ml of toluene, 0.5 ml of piperidine was added, and 110 under a nitrogen stream. The mixture was stirred at ° C. for 5 hours. After allowing to cool to room temperature, 400 ml of hexane was added, and the precipitated precipitate was collected by filtration and purified by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7). Recrystallization from methylene chloride / hexane gave 7.5 g of compound (13).
Next, in a three-necked flask, 7.5 g (0.025 mol) of compound (13) was dissolved in 20 ml of toluene, 0.1 ml of pyridine was added, and 2 ml (0.028 mol) of thionyl chloride was cooled with water under a nitrogen stream and stirred. ) Was gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 5 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then 25 ml of hexane was added and recrystallized to obtain 6.2 g of compound (14).
Then, in a three-necked flask, a mixture of 3 ml (0.037 mol) of pyridine, 0.020 g of hydroquinone, and 20 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then allyl 2-methyl-3-hydroxypropionic acid 3 .86 g (0.018 mol) was dissolved, and 5.7 g (0.018 mol) of compound (14) was dissolved in 50 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 200 ml of water, then with 200 ml of dilute hydrochloric acid, and finally with 200 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 4.4 g of ETM-5.

[合成例8:ETM−10の合成]
表2に示すETM−10を、以下のスキームにて合成した。
[Synthesis Example 8: Synthesis of ETM-10]
The ETM-10 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三つ口フラスコに、化合物(15)13.8g(0.055mol)及びマロン酸ニトリル7.07g(0.107mol)を、トルエン250mlに溶解し、ピペリジン0.5mlを加え、窒素気流下、110℃で5時間攪拌した。室温まで、放冷後、ヘキサン400mlを加え、析出した沈殿を濾取し、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製した。塩化メチレン/ヘキサンより再結晶し、化合物(16)を7.5g得た。
次いで、三口フラスコにて、化合物(16)7.5g(0.025mol)をトルエン20mlに溶解し、ピリジン0.1mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル2ml(0.028mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン5mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサン25mlを加え、再結晶し、化合物(17)を6.2g得た。
次いで、三口フラスコにて、ピリジン3ml(0.037mol)、ハイドロキノン0.020g、及び塩化メチレン20mlの混合物を、窒素気流下で5℃に冷却した後、2−ヒドロキシプロピルエステル2.34g(0.018mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(17)5.7g(0.018mol)を塩化メチレン50mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水200mlで洗浄、次いで希塩酸200ml、最後に炭酸カリウム水溶液(0.1%)200mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−10を4.1g得た。
In a three-necked flask, 13.8 g (0.055 mol) of compound (15) and 7.07 g (0.107 mol) of nitrile malonic acid were dissolved in 250 ml of toluene, 0.5 ml of piperidine was added, and 110 under a nitrogen stream. The mixture was stirred at ° C. for 5 hours. After allowing to cool to room temperature, 400 ml of hexane was added, and the precipitated precipitate was collected by filtration and purified by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7). Recrystallization from methylene chloride / hexane gave 7.5 g of compound (16).
Next, in a three-necked flask, 7.5 g (0.025 mol) of compound (16) was dissolved in 20 ml of toluene, 0.1 ml of pyridine was added, and 2 ml (0.028 mol) of thionyl chloride was cooled with water under a nitrogen stream and stirred. ) Was gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 5 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then 25 ml of hexane was added and recrystallized to obtain 6.2 g of compound (17).
Then, in a three-necked flask, a mixture of 3 ml (0.037 mol) of pyridine, 0.020 g of hydroquinone, and 20 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 2.34 g (0.34 g (0.34 mol) of 2-hydroxypropyl ester). 018 mol) was dissolved, and 5.7 g (0.018 mol) of the compound (17) was dissolved in 50 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 200 ml of water, then with 200 ml of dilute hydrochloric acid, and finally with 200 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 4.1 g of ETM-10.

[合成例9:ETM−15の合成]
表2に示すETM−15を、以下のスキームにて合成した。
[Synthesis Example 9: Synthesis of ETM-15]
The ETM-15 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三つ口フラスコに、化合物(18)13.8g(0.055mol)及びマロン酸ニトリル7.07g(0.107mol)を、トルエン300mlに溶解し、ピペリジン0.5mlを加え、窒素気流下、110℃で5時間攪拌した。室温まで、放冷後、ヘキサン500mlを加え、析出した沈殿を濾取し、カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製した。塩化メチレン/ヘキサンより再結晶し、化合物(19)を7.5g得た。
次いで、三口フラスコにて、化合物(19)7.5g(0.025mol)をトルエン20mlに溶解し、ピリジン0.1mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル2ml(0.028mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン5mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサン25mlを加え、再結晶し、化合物(20)を6.2g得た。
次いで、三口フラスコにて、ピリジン3ml(0.037mol)、ハイドロキノン0.020g、及び塩化メチレン20mlの混合物を、窒素気流下、5℃に冷却した後、1−(アクリロイルオキシ)−3−(メタクリロイルオキシ)−2−プロパノール3.85g(0.018mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(20)5.7g(0.018mol)を塩化メチレン50mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水200mlで洗浄、次いで希塩酸200ml、最後に炭酸カリウム水溶液(0.1%)200mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−15を4.8g得た。
In a three-necked flask, 13.8 g (0.055 mol) of compound (18) and 7.07 g (0.107 mol) of nitrile malonic acid were dissolved in 300 ml of toluene, 0.5 ml of piperidine was added, and 110 under a nitrogen stream. The mixture was stirred at ° C. for 5 hours. After allowing to cool to room temperature, 500 ml of hexane was added, and the precipitated precipitate was collected by filtration and purified by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7). Recrystallization from methylene chloride / hexane gave 7.5 g of compound (19).
Next, in a three-necked flask, 7.5 g (0.025 mol) of compound (19) was dissolved in 20 ml of toluene, 0.1 ml of pyridine was added, and 2 ml (0.028 mol) of thionyl chloride was cooled with water under a nitrogen stream and stirred. ) Was gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 5 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then 25 ml of hexane was added and recrystallized to obtain 6.2 g of compound (20).
Then, in a three-necked flask, a mixture of 3 ml (0.037 mol) of pyridine, 0.020 g of hydroquinone, and 20 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 1- (acryloyloxy) -3- (methacryloyl). Dissolve 3.85 g (0.018 mol) of oxy) -2-propanol and dissolve 5.7 g (0.018 mol) of compound (20) in 50 ml of methylene chloride while stirring this solution at 5 ° C. over 2 hours. And dropped. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 200 ml of water, then with 200 ml of dilute hydrochloric acid, and finally with 200 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 4.8 g of ETM-15.

[合成例10:ETM−18の合成]
表2に示すETM−18を、以下のスキームにて合成した。
[Synthesis Example 10: Synthesis of ETM-18]
The ETM-18 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三口フラスコにて、化合物(21)18.1g(0.059mol)をトルエン50mlに溶解し、ピリジン0.2mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル4ml(0.056mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン10mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサンを加え、再結晶し、化合物(22)を14g得た。
次いで、三口フラスコにて、ピリジン6ml(0.074mol)、ハイドロキノン0.040g、及び塩化メチレン40mlの混合物を、窒素気流下で5℃に冷却した後、アクリル酸4−ヒドロキシブチル6.34g(0.044mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(22)12g(0.044mol)を塩化メチレン80mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水300mlで洗浄、次いで希塩酸300ml、最後に炭酸カリウム水溶液(0.1%)300mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−18を9.6g得た。
In a three-necked flask, 18.1 g (0.059 mol) of compound (21) was dissolved in 50 ml of toluene, 0.2 ml of pyridine was added, and 4 ml (0.056 mol) of thionyl chloride was added while water-cooling and stirring under a nitrogen stream. Gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 10 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then hexane was added and recrystallized to obtain 14 g of compound (22).
Then, in a three-necked flask, a mixture of 6 ml (0.074 mol) of pyridine, 0.040 g of hydroquinone, and 40 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 6.34 g (0) of 4-hydroxybutyl acrylate. .044 mol) was dissolved, and 12 g (0.044 mol) of compound (22) was dissolved in 80 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 300 ml of water, then with 300 ml of dilute hydrochloric acid, and finally with 300 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 9.6 g of ETM-18.

[合成例11:ETM−22の合成]
表2に示すETM−22を、以下のスキームにて合成した。
[Synthesis Example 11: Synthesis of ETM-22]
The ETM-22 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三口フラスコにて、化合物(23)15g(0.059mol)をトルエン50mlに溶解し、ピリジン0.2mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル4ml(0.056mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン10mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサンを加え、再結晶し、化合物(24)を12g得た。
次いで、三口フラスコにて、ピリジン6ml(0.074mol)、ハイドロキノン0.040g、及び塩化メチレン40mlの混合物を、窒素気流下で5℃に冷却した後、2−ヒドロキシプロピルエステル5.72g(0.044mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(24)12g(0.044mol)を塩化メチレン80mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水300mlで洗浄、次いで希塩酸300ml、最後に炭酸カリウム水溶液(0.1%)300mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−22を8.2g得た。
In a three-necked flask, 15 g (0.059 mol) of compound (23) was dissolved in 50 ml of toluene, 0.2 ml of pyridine was added, and 4 ml (0.056 mol) of thionyl chloride was gradually added while being water-cooled and stirred under a nitrogen stream. Added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 10 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then hexane was added and recrystallized to obtain 12 g of compound (24).
Then, in a three-necked flask, a mixture of 6 ml (0.074 mol) of pyridine, 0.040 g of hydroquinone, and 40 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 5.72 g (0.72 g) of 2-hydroxypropyl ester (0.72 g). 044 mol) was dissolved, and 12 g (0.044 mol) of the compound (24) was dissolved in 80 ml of methylene chloride while stirring the solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 300 ml of water, then with 300 ml of dilute hydrochloric acid, and finally with 300 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 8.2 g of ETM-22.

[合成例12:ETM−28の合成]
表2に示すETM−28を、以下のスキームにて合成した。
[Synthesis Example 12: Synthesis of ETM-28]
ETM-28 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三口フラスコにて、化合物(25)15.7g(0.059mol)をトルエン50mlに溶解し、ピリジン0.2mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル4ml(0.056mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン10mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサンを加え、再結晶し、化合物(26)を12.5g得た。
次いで、三口フラスコにて、ピリジン6ml(0.074mol)、ハイドロキノン0.040g、及び塩化メチレン40mlの混合物を、窒素気流下で5℃に冷却した後、メタクリル酸3−クロロ−2−ヒドロキシプロピル7.14g(0.044mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(26)12.5g(0.044mol)を塩化メチレン80mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水300mlで洗浄、次いで希塩酸300ml、最後に炭酸カリウム水溶液(0.1%)300mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−28を9.1g得た。
In a three-necked flask, 15.7 g (0.059 mol) of compound (25) was dissolved in 50 ml of toluene, 0.2 ml of pyridine was added, and 4 ml (0.056 mol) of thionyl chloride was added while water-cooling and stirring under a nitrogen stream. Gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 10 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then hexane was added and recrystallized to obtain 12.5 g of compound (26).
Then, in a three-necked flask, a mixture of 6 ml (0.074 mol) of pyridine, 0.040 g of hydroquinone, and 40 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 3-chloro-2-hydroxypropyl methacrylate 7 .14 g (0.044 mol) was dissolved, and 12.5 g (0.044 mol) of compound (26) was dissolved in 80 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 300 ml of water, then with 300 ml of dilute hydrochloric acid, and finally with 300 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 9.1 g of ETM-28.

[合成例13:ETM−30の合成]
表2に示すETM−30を、以下のスキームにて合成した。
[Synthesis Example 13: Synthesis of ETM-30]
The ETM-30 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三口フラスコにて、化合物(27)14.8g(0.059mol)をトルエン50mlに溶解し、ピリジン0.2mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル4ml(0.056mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン10mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサンを加え、再結晶し、化合物(28)を11.9g得た。
次いで、三口フラスコにて、ピリジン6ml(0.074mol)、ハイドロキノン0.040g、及び塩化メチレン40mlの混合物を、窒素気流下で5℃に冷却した後、アクリル酸4−ヒドロキシブチル6.34g(0.044mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(28)11.9g(0.044mol)を塩化メチレン80mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水300mlで洗浄、次いで希塩酸300ml、最後に炭酸カリウム水溶液(0.1%)300mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−30を8.3g得た。
In a three-necked flask, 14.8 g (0.059 mol) of compound (27) was dissolved in 50 ml of toluene, 0.2 ml of pyridine was added, and 4 ml (0.056 mol) of thionyl chloride was added while water-cooling and stirring under a nitrogen stream. Gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 10 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then hexane was added and recrystallized to obtain 11.9 g of compound (28).
Then, in a three-necked flask, a mixture of 6 ml (0.074 mol) of pyridine, 0.040 g of hydroquinone, and 40 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 6.34 g (0) of 4-hydroxybutyl acrylate. .044 mol) was dissolved, and 11.9 g (0.044 mol) of compound (28) was dissolved in 80 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 300 ml of water, then with 300 ml of dilute hydrochloric acid, and finally with 300 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 8.3 g of ETM-30.

[合成例14:ETM−32の合成]
表2に示すETM−32を、以下のスキームにて合成した。
[Synthesis Example 14: Synthesis of ETM-32]
ETM-32 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三口フラスコにて、化合物(29)14.0g(0.059mol)をトルエン50mlに溶解し、ピリジン0.2mlを加え、窒素気流下で水冷、攪拌しながら、塩化チオニル4ml(0.056mol)を徐々に添加した。添加終了後、混合物を徐々に加熱し、120℃で2時間攪拌した。反応終了後、放冷し、ヘキサンを加え、結晶を析出させた。得た結晶を塩化メチレン10mlに加熱溶解、不要物を濾過し、濃縮した後、ヘキサンを加え、再結晶し、化合物(30)を11.2g得た。
次いで、三口フラスコにて、ピリジン6ml(0.074mol)、ハイドロキノン0.040g、及び塩化メチレン40mlの混合物を、窒素気流下で5℃に冷却した後、メタクリル酸2−ヒドロキシエチル5.72g(0.044mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(30)11.2g(0.044mol)を塩化メチレン80mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水300mlで洗浄、次いで希塩酸300ml、最後に炭酸カリウム水溶液(0.1%)300mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−32を7.4g得た。
In a three-necked flask, 14.0 g (0.059 mol) of compound (29) was dissolved in 50 ml of toluene, 0.2 ml of pyridine was added, and 4 ml (0.056 mol) of thionyl chloride was added while being water-cooled and stirred under a nitrogen stream. Gradually added. After completion of the addition, the mixture was gradually heated and stirred at 120 ° C. for 2 hours. After completion of the reaction, the mixture was allowed to cool, hexane was added, and crystals were precipitated. The obtained crystals were dissolved by heating in 10 ml of methylene chloride, unnecessary substances were filtered and concentrated, and then hexane was added and recrystallized to obtain 11.2 g of compound (30).
Then, in a three-necked flask, a mixture of 6 ml (0.074 mol) of pyridine, 0.040 g of hydroquinone, and 40 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 5.72 g (0) of 2-hydroxyethyl methacrylate. .044 mol) was dissolved, and 11.2 g (0.044 mol) of compound (30) was dissolved in 80 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 300 ml of water, then with 300 ml of dilute hydrochloric acid, and finally with 300 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. bottom. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 7.4 g of ETM-32.

[合成例15:ETM−38の合成]
表2に示すETM−38を、以下のスキームにて合成した。
[Synthesis Example 15: Synthesis of ETM-38]
ETM-38 shown in Table 2 was synthesized by the following scheme.

Figure 0006953824
Figure 0006953824

三口フラスコにて、ピリジン6ml(0.074mol)、ハイドロキノン0.040g、及び塩化メチレン50mlの混合物を、窒素気流下で5℃に冷却した後、3−ヒドロキシ−1−メタクリロイルオキシアダマン11g(0.047mol)を溶解し、この溶液を5℃で攪拌しながら、化合物(31)15g(0.047mol)を塩化メチレン120mlに溶かし、2時間かけて滴下した。5℃で30分攪拌した後、混合物を水400mlで洗浄、次いで、希塩酸400ml、最後に炭酸カリウム水溶液(0.1%)400mlで洗浄し、無水硫酸ナトリウムで乾燥後、減圧下、溶剤を留去した。カラムクロマトグラフィー(吸着剤:シリカゲル、溶剤:塩化メチレン/ヘキサン=3/7)にて精製し、ETM−38を12.3g得た。 In a three-necked flask, a mixture of 6 ml (0.074 mol) of pyridine, 0.040 g of hydroquinone, and 50 ml of methylene chloride was cooled to 5 ° C. under a nitrogen stream, and then 11 g of 3-hydroxy-1-methacryloyloxyadaman (0. 047 mol) was dissolved, and 15 g (0.047 mol) of compound (31) was dissolved in 120 ml of methylene chloride while stirring this solution at 5 ° C., and the solution was added dropwise over 2 hours. After stirring at 5 ° C. for 30 minutes, the mixture was washed with 400 ml of water, then with 400 ml of dilute hydrochloric acid, and finally with 400 ml of aqueous potassium carbonate solution (0.1%), dried with anhydrous sodium sulfate, and the solvent was retained under reduced pressure. I left. Purification by column chromatography (adsorbent: silica gel, solvent: methylene chloride / hexane = 3/7) gave 12.3 g of ETM-38.

<有機電界発光素子の作製>
[実施例1]
ガラス基板上に形成されたITO(ジオマテック社製)を短冊状のフォトマスクを用いてフォトリソグラフィによりパターニングし、更にエッチング処理することにより短冊状のITO電極(幅2mm)を形成した。次いで、ITOガラス基板を、中性洗剤、水、アセトン(電子工業用、関東化学社製)及びイソプロパノール(電子工業用、関東化学社製)の順に、各液に浸して超音波を各5分間印加して洗浄した後、スピンコーターで乾燥させた。
<Manufacturing of organic electroluminescent device>
[Example 1]
An ITO (manufactured by Geomatec Co., Ltd.) formed on a glass substrate was patterned by photolithography using a strip-shaped photomask, and further etched to form a strip-shaped ITO electrode (width 2 mm). Next, the ITO glass substrate is immersed in each liquid in the order of neutral detergent, water, acetone (for the electronics industry, manufactured by Kanto Chemical Co., Inc.) and isopropanol (for the electronics industry, manufactured by Kanto Chemical Co., Inc.), and ultrasonic waves are applied for 5 minutes each. After applying and washing, it was dried with a spin coater.

CTM−11:3質量部とETM−3:0.05質量部とをトルエン:77質量部に溶解させ、更に熱ラジカル発生剤V−601:0.5質量部を溶解させた溶液を、孔径0.1μmのPTFEフィルターで濾過し塗布液を得た。塗布液をディップ法によりITOガラス基板に塗布し、酸素濃度200ppm以下のグローブボックス中で温度145℃、35分間にて成膜し、厚さ約0.03μmの正孔輸送層を得た。 A solution prepared by dissolving 11: 3 parts by mass of CTM and 0.05 parts by mass of ETM-3 in 77 parts by mass of toluene and further dissolving 0.5 parts by mass of the thermal radical generator V-601: 0.5 parts by mass is prepared. A coating solution was obtained by filtering with a 0.1 μm PTFE filter. The coating liquid was applied to an ITO glass substrate by a dip method, and a film was formed in a glove box having an oxygen concentration of 200 ppm or less at a temperature of 145 ° C. for 35 minutes to obtain a hole transport layer having a thickness of about 0.03 μm.

正孔輸送層の上に、発光材料として例示化合物(VI−1)を蒸着して、厚さ0.055μmの発光層を形成した。 An exemplary compound (VI-1) was deposited on the hole transport layer as a light emitting material to form a light emitting layer having a thickness of 0.055 μm.

発光層の上に、短冊状の穴が設けられている金属製マスクを設置して、Mg−Ag合金を共蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。 A metal mask with strip-shaped holes is installed on the light emitting layer, and Mg-Ag alloy is co-deposited so that the back electrode having a width of 2 mm and a thickness of 0.15 μm intersects the ITO electrode. Formed in. The effective area of the formed organic electroluminescent device was 0.04 cm 2 .

[実施例2〜5]
実施例1において、CTM−11を下記表3に記載の正孔輸送化合物にそれぞれ変更した以外は実施例1と同様にして、実施例2〜5の有機電界発光素子を作製した。
[Examples 2 to 5]
In Example 1, the organic electroluminescent devices of Examples 2 to 5 were produced in the same manner as in Example 1 except that CTM-11 was changed to the hole transport compounds shown in Table 3 below.

[実施例6〜15]
実施例1において、ETM−3:0.05質量部を下記表3に記載の電子輸送化合物及び量にそれぞれ変更した以外は、実施例1と同様にして、実施例6〜15の有機電界発光素子を作製した。
[Examples 6 to 15]
In Example 1, the organic electroluminescence of Examples 6 to 15 was carried out in the same manner as in Example 1 except that ETM-3: 0.05 parts by mass was changed to the electron transporting compounds and amounts shown in Table 3 below. The device was manufactured.

[比較例1]
実施例1において、電子輸送化合物を用いずに正孔輸送層を得た以外は、実施例1と同様にして、比較例1の有機電界発光素子を作製した。
[Comparative Example 1]
An organic electroluminescent device of Comparative Example 1 was produced in the same manner as in Example 1 except that a hole transport layer was obtained without using an electron transport compound in Example 1.

[比較例2〜4]
実施例1において、ETM−3:0.05質量部を下記表3に記載の電子輸送化合物及び量にそれぞれ変更した以外は、実施例1と同様にして、比較例2〜4の有機電界発光素子を作製した。
比較例2〜4に用いた電子輸送化合物(化合物7、化合物8、及び化合物9)の構造を以下に示す。
[Comparative Examples 2 to 4]
In Example 1, the organic electroluminescence of Comparative Examples 2 to 4 was carried out in the same manner as in Example 1 except that ETM-3: 0.05 parts by mass was changed to the electron transporting compounds and amounts shown in Table 3 below. The device was manufactured.
The structures of the electron-transporting compounds (Compound 7, Compound 8, and Compound 9) used in Comparative Examples 2 to 4 are shown below.

Figure 0006953824
Figure 0006953824

<性能評価>
[重合性有機化合物層(正孔輸送層)の抵抗]
金電極上に上記実施例と同様な方式で成膜し、硬化させた。
この単層膜について、対向電極として100nmの金電極を1cmで真空スパッタ法により装着し、抵抗率測定用試料とした。測定方法は、電源としてSI 1287 Electrochemical Interface(東陽テクニカ製)、電流計としてSI 1260 Inpedance/Gain Phase Analyzer(東陽テクニカ製)、電流アンプとして1296 Dielectric Interface(東陽テクニカ製)を用い、1Vの交流電圧を周波数1MHzから1mHzまでの範囲で高周波側から印加し、各試料の交流インピーダンスを測定し、この測定より得られたCole ColeプロットのグラフをRC並列の等価回路にフィッティングすることで体積抵抗率(Ω・cm)を得た。
得られた値を結果を表3に示す。なお、ここで得られた値は、加熱前及びリンス前の抵抗とした。
また、金電極上に上記実施例と同様な方式で成膜し、硬化させて、単層膜を得た後、単層膜に対し、40℃40%RHの環境下に3時間保管した。保管後の単層膜に対し、対向電極として100nmの金電極を1cmで真空スパッタ法により装着して、抵抗率測定用試料を作製し、この試料について上記と同様の方法で体積抵抗率を測定した。得られた値を加熱後の抵抗とし、結果を表3に示す。
別に、金電極上に上記実施例と同様な方式で成膜し、硬化させて、単層膜を得た後、単層膜を有する金電極をトルエン溶剤に30秒間浸漬させ、その後、取り出して、窒素でブロー乾燥させた。乾燥後の単層膜に対し、対向電極として100nmの金電極を1cmで真空スパッタ法により装着して、抵抗率測定用試料を作製し、この試料について上記と同様の方法で体積抵抗率を測定した。得られた値をリンス後の抵抗とし、結果を表3に示す。
<Performance evaluation>
[Resistance of polymerizable organic compound layer (hole transport layer)]
A film was formed on the gold electrode in the same manner as in the above embodiment and cured.
A gold electrode having a diameter of 100 nm was attached to this monolayer film at 1 cm 2 as a counter electrode by a vacuum sputtering method to prepare a sample for resistivity measurement. The measurement method uses SI 1287 Electrochemical Interface (manufactured by Toyo Technica) as the power supply, SI 1260 Inpedance / Gain Phase Analyzer (manufactured by Toyo Technica) as the current meter, and 1296 Dielectric Interface (manufactured by Toyo Technica) as the current amplifier, and 1V AC voltage. Is applied from the high frequency side in the frequency range of 1 MHz to 1 MHz, the AC impedance of each sample is measured, and the graph of the Core Core plot obtained from this measurement is fitted to the RC parallel equivalent circuit to obtain the volume resistance ( Ω · cm) was obtained.
The results are shown in Table 3 for the obtained values. The values obtained here were the resistance before heating and before rinsing.
Further, a film was formed on the gold electrode by the same method as in the above example and cured to obtain a monolayer film, and then the monolayer film was stored in an environment of 40 ° C. and 40% RH for 3 hours. A gold electrode of 100 nm as a counter electrode was attached to the monolayer film after storage at 1 cm 2 by the vacuum sputtering method to prepare a sample for resistivity measurement, and the volume resistivity of this sample was determined by the same method as described above. It was measured. The obtained value is used as the resistance after heating, and the results are shown in Table 3.
Separately, a film is formed on the gold electrode in the same manner as in the above embodiment and cured to obtain a monolayer film, and then the gold electrode having the monolayer film is immersed in a toluene solvent for 30 seconds and then taken out. , Blow-dried with toluene. A 100 nm gold electrode as a counter electrode was attached to the dried monolayer film at 1 cm 2 by the vacuum sputtering method to prepare a sample for resistivity measurement, and the volume resistivity of this sample was determined by the same method as described above. It was measured. The obtained value is used as the resistance after rinsing, and the results are shown in Table 3.

[発光寿命]
有機電界発光素子のITO電極をプラス、Mg−Ag背面電極をマイナスとして、発光寿命の測定を行った。測定条件は、乾燥窒素中、室温、直流駆動方式(DC駆動)、初期輝度1000cd/mとした。
表3の「相対時間」は、比較例1の素子の輝度(L)が初期輝度(L)の半分(即ち、L/L=0.5)となった時点の駆動時間を1.00とし、その相対時間を示す。
表3の「電圧上昇」は、各素子の輝度(L)が初期輝度(L)の半分(即ち、L/L=0.5)となった時点での電圧上昇 (=電圧−初期駆動電圧)(単位:V)を示す。
[Luminescent life]
The emission lifetime was measured with the ITO electrode of the organic electroluminescent device as positive and the Mg-Ag back electrode as negative. The measurement conditions were dry nitrogen, room temperature, DC drive method (DC drive), and initial brightness of 1000 cd / m 2 .
The “relative time” in Table 3 is the drive time at the time when the brightness (L) of the element of Comparative Example 1 becomes half of the initial brightness (L 0 ) (that is, L / L 0 = 0.5). Let it be 00 and indicate the relative time.
The “voltage rise” in Table 3 is the voltage rise (= voltage-initial) when the brightness (L) of each element becomes half of the initial brightness (L 0 ) (that is, L / L 0 = 0.5). Drive voltage) (unit: V) is shown.

Figure 0006953824
Figure 0006953824

1 透明絶縁体基板、2 透明電極、3 正孔輸送層、4 発光層、5 電子輸送層、6 発光層、7 背面電極 1 Transparent insulator substrate, 2 Transparent electrode, 3 Hole transport layer, 4 Light emitting layer, 5 Electron transport layer, 6 Light emitting layer, 7 Back electrode

Claims (8)

少なくとも一方が透明である一対の電極と、該一対の電極に挟持された発光層を含む1つ又は複数の有機化合物層と、を有し、
前記有機化合物層の少なくとも1つが、重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含み、
前記重合性基を有する正孔輸送化合物が、下記一般式(2)で表される化合物であり、
前記重合性基を有する電子輸送化合物が、下記一般式(7)で表される化合物、下記一般式(8)で表される化合物、及び下記一般式(9)で表される化合物からなる群より選択される化合物である、有機電界発光素子。
Figure 0006953824

一般式(2)中、Ar 乃至Ar はそれぞれ独立に置換若しくは無置換のフェニル基を表し、Ar は無置換のビフェニル基又は置換若しくは無置換のジベンジル基を表す。kは1を表し、c1乃至c4はそれぞれ独立に0以上1以下の整数を表し、c5は0の整数を表し、但しc1乃至c5の合計は1以上である。Dは一般式(3)で表される基を表し、一般式(3)中、Lはアルキレン基、メタンから水素3原子を除いた3価基、及びエチレンから水素3原子を除いた3価基から選択される1種の連結基又は2種以上を組み合わせてなる(n+1)価の連結基を表す
Figure 0006953824

一般式(7)中、R11、R12、R13、R14、R15、R16、R17及びR18は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R11、R12、R13、R14、R15、R16、R17及びR18中、−Y−(Z)で表される基は1以上4以下である。
一般式(8)中、R21、R22、R23、R24、R25、R26、R27及びR28は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R21、R22、R23、R24、R25、R26、R27及びR28中、−Y−(Z)で表される基は1以上4以下である。
一般式(9)中、R31、R32、R33、R34、R35、R36、R37及びR38は、各々独立に、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アラルキル基又は−Y−Zで表される基を示す。但し、R31、R32、R33、R34、R35、R36、R37及びR38中、−Y−(Z)で表される基は、1以上4以下である。
前記−Y−(Z)で表される基中、Yは、アルキレン基、アダマンタン基、−C=C−、−C(=O)−、−O−及びメタンから水素3原子を除いた3価基から選択される1種又は2種以上を組み合わせてなる(m+1)価の連結基を表し、Zは、アクリロイル基、メタクリロイル基又はスチレン基であり、mは1又は2である。
It has a pair of electrodes, at least one of which is transparent, and one or more organic compound layers, including a light emitting layer sandwiched between the pair of electrodes.
Wherein at least one organic compound layer, seen containing a polymer of an electron transport compound having a hole-transporting compound and a polymerizable group having a polymerizable group,
The hole transporting compound having a polymerizable group is a compound represented by the following general formula (2).
The group in which the electron-transporting compound having a polymerizable group consists of a compound represented by the following general formula (7), a compound represented by the following general formula (8), and a compound represented by the following general formula (9). An organic electroluminescent element , which is a more selected compound.
Figure 0006953824

In the general formula (2), Ar 1 to Ar 4 independently represent a substituted or unsubstituted phenyl group, and Ar 5 represents an unsubstituted biphenyl group or a substituted or unsubstituted dibenzyl group. k represents 1, c1 to c4 independently represent an integer of 0 or more and 1 or less, c5 represents an integer of 0, and the total of c1 to c5 is 1 or more. D represents a group represented by the general formula (3), and in the general formula (3), L is an alkylene group, a trivalent group obtained by removing 3 hydrogen atoms from methane, and a trivalent group obtained by removing 3 hydrogen atoms from ethylene. Represents a (n + 1) -valent linking group consisting of one type of linking group selected from the groups or a combination of two or more types .
Figure 0006953824

In the general formula (7), R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, and aryl groups, respectively. , Aralkyl group or group represented by −YZ. However, among R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 , the number of groups represented by −Y− (Z) m is 1 or more and 4 or less.
In the general formula (8), R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 are independently hydrogen atom, halogen atom, alkyl group, alkoxy group and aryl group, respectively. , Aralkyl group or group represented by −YZ. However, among R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 and R 28 , the number of groups represented by −Y− (Z) m is 1 or more and 4 or less.
In the general formula (9), R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 are independently hydrogen atom, halogen atom, alkyl group, alkoxy group and aryl group, respectively. , Aralkyl group or group represented by −YZ. However, among R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 and R 38 , the group represented by −Y− (Z) m is 1 or more and 4 or less.
Among the groups represented by -Y- (Z) m , Y was obtained by removing 3 hydrogen atoms from the alkylene group, the adamantane group, -C = C-, -C (= O)-, -O- and methane. Represents a (m + 1) valent linking group consisting of one or a combination of two or more selected from trivalent groups, where Z is an acryloyl group, a methacryloyl group or a styrene group, and m is 1 or 2.
前記一般式(2)で表される化合物における前記一般式(3)で表される基が、下記一般式(4)で表される基である、請求項に記載の有機電界発光素子。
Figure 0006953824

一般式(4)中、Xはアルキレン基を表し、pは0又は1を表す。
The organic electroluminescent device according to claim 1 , wherein the group represented by the general formula (3) in the compound represented by the general formula (2) is a group represented by the following general formula (4).
Figure 0006953824

In the general formula (4), X and table an alkylene group, p is 0 or 1.
前記一般式(2)で表される化合物における前記一般式(3)で表される基が、下記一般式(5−1)で表される基又は下記一般式(5−2)で表される基である、請求項に記載の有機電界発光素子。
Figure 0006953824

一般式(5−1)及び一般式(5−2)中、Xはアルキレン基を表し、pは0又は1を表す。
The group represented by the general formula (3) in the compound represented by the general formula (2) is represented by the group represented by the following general formula (5-1) or the following general formula (5-2). that is a group, the organic electroluminescent device according to claim 1.
Figure 0006953824

In the general formula (5-1) and the general formula (5-2), X represents an alkylene group and p represents 0 or 1.
前記一般式(2)で表される化合物における前記一般式(3)で表される基が、下記一般式(6−1)で表される基又は下記一般式(6−2)で表される基である、請求項に記載の有機電界発光素子。
Figure 0006953824

一般式(6−1)及び一般式(6−2)中、Xはアルキレン基を表し、pは0又は1を表す。
The group represented by the general formula (3) in the compound represented by the general formula (2) is represented by the group represented by the following general formula (6-1) or the group represented by the following general formula (6-2). that is a group, the organic electroluminescent device according to claim 1.
Figure 0006953824

In the general formula (6-1) and the general formula (6-2), X represents an alkylene group and p represents 0 or 1.
熱ラジカル発生剤及びその誘導体並びに光ラジカル発生剤及びその誘導体から選択される少なくとも1種を更に含有する、請求項1〜請求項のいずれか1項に記載の有機電界発光素子。 The organic electroluminescent device according to any one of claims 1 to 4 , further containing at least one selected from a thermal radical generator and a derivative thereof and a photoradical generator and a derivative thereof. 前記重合体中の、前記重合性基を有する正孔輸送化合物に由来する構造単位(C)と前記重合性基を有する電子輸送化合物に由来する構造単位(E)との質量比(C):(E)が10:1乃至1:20の範囲である請求項1〜請求項5のいずれか1項に記載の有機電界発光素子。 The mass ratio (C) of the structural unit (C) derived from the hole transporting compound having a polymerizable group and the structural unit (E) derived from the electron transporting compound having a polymerizable group in the polymer: The organic electroluminescent element according to any one of claims 1 to 5, wherein (E) is in the range of 10: 1 to 1:20. 前記重合体中の、前記重合性基を有する正孔輸送化合物に由来する構造単位(C)と前記重合性基を有する電子輸送化合物に由来する構造単位(E)との質量比(C):(E)が1:1乃至1:15の範囲である請求項に記載の有機電界発光素子。 The mass ratio (C) of the structural unit (C) derived from the hole transporting compound having a polymerizable group and the structural unit (E) derived from the electron transporting compound having a polymerizable group in the polymer: The organic electroluminescent element according to claim 6 , wherein (E) is in the range of 1: 1 to 1:15. 重合性基を有する正孔輸送化合物と重合性基を有する電子輸送化合物との重合体を含む前記有機化合物層の体積抵抗率が1×10Ω・cm以上1×1015Ω・cm以下である、請求項1〜請求項のいずれか1項に記載の有機電界発光素子。 When the volume resistivity of the organic compound layer containing the polymer of the hole transport compound having a polymerizable group and the electron transport compound having a polymerizable group is 1 × 10 5 Ω · cm or more and 1 × 10 15 Ω · cm or less. The organic electric field light emitting element according to any one of claims 1 to 7.
JP2017120775A 2017-06-20 2017-06-20 Organic electroluminescent device Active JP6953824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017120775A JP6953824B2 (en) 2017-06-20 2017-06-20 Organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017120775A JP6953824B2 (en) 2017-06-20 2017-06-20 Organic electroluminescent device

Publications (2)

Publication Number Publication Date
JP2019009156A JP2019009156A (en) 2019-01-17
JP6953824B2 true JP6953824B2 (en) 2021-10-27

Family

ID=65025984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017120775A Active JP6953824B2 (en) 2017-06-20 2017-06-20 Organic electroluminescent device

Country Status (1)

Country Link
JP (1) JP6953824B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015266A1 (en) * 2019-07-25 2021-01-28 出光興産株式会社 Mixture, organic electroluminescent element, and electronic device
JP7327028B2 (en) * 2019-09-18 2023-08-16 富士フイルムビジネスイノベーション株式会社 ELECTRONIC DEVICE, CHARGE-TRANSPORTING MEMBRANE, AND AMINE COMPOUND

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206838B2 (en) * 2000-06-12 2012-06-26 Sumitomo Chemical Co., Ltd. Polymer matrix electroluminescent materials and devices
EP2272906B1 (en) * 2000-06-12 2020-05-20 Sumitomo Chemical Company Limited Compositions for electroluminescent material and their devices
CN101689615B (en) * 2007-06-28 2012-02-01 昭和电工株式会社 Phosphorescent polymer compounds and organic electroluminescent devices manufactured therewith
JP5410679B2 (en) * 2008-01-24 2014-02-05 昭和電工株式会社 Organic electroluminescence device and method for producing the same
JP5415035B2 (en) * 2008-07-24 2014-02-12 株式会社船井電機新応用技術研究所 Luminescent composition and method for producing organic electroluminescent device
JP6035994B2 (en) * 2011-08-22 2016-11-30 富士ゼロックス株式会社 Novel compound, charge transport film, and photoelectric conversion device

Also Published As

Publication number Publication date
JP2019009156A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
TWI327159B (en)
JP6035994B2 (en) Novel compound, charge transport film, and photoelectric conversion device
WO2006100896A1 (en) Aromatic amine derivative and organic electroluminescence device utilizing the same
WO2006114949A1 (en) Aromatic amine derivative and organic electroluminescent device using same
DE10345583A1 (en) Synthesis of phenyl-substituted fluoranthenes by Diels-Alder reaction and their use
JP6953824B2 (en) Organic electroluminescent device
JP7055486B2 (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP4883032B2 (en) Organic electroluminescent device and display medium
CN102952030A (en) Compound, charge transporting film, photoelectric conversion device, and electrophotographic photoreceptor
JP2001081090A (en) Pyran derivative
EP2576487A1 (en) Novel organic compound and organic light-emitting device including the same
JP2012144459A (en) Organic compound, organic light emitting device, and image display
JP2009238890A (en) Charge transport film, and organic electroluminescence element
US20190230766A1 (en) Organic electroluminescent device
JP6946657B2 (en) Compositions for organic electroluminescent devices, charge transport films, and organic electroluminescent devices
JP2003257669A (en) Organic electroluminescence element
JP7367416B2 (en) Electronic devices, charge transport films, and compounds
JP7327028B2 (en) ELECTRONIC DEVICE, CHARGE-TRANSPORTING MEMBRANE, AND AMINE COMPOUND
JP3483979B2 (en) New monomers, new polymer compounds and organic thin film devices using them
JP5879817B2 (en) Novel reactive compound, charge transport film and photoelectric conversion device
JP2020536148A (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP4518167B2 (en) Organic electroluminescent device and display medium
JP4321012B2 (en) Organic electroluminescence device
JP2001220577A (en) Pyrane derivative
JP4535107B2 (en) Organic electroluminescence device using new amino compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6953824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150