JP6950947B2 - Medical high frequency device with cooling function - Google Patents

Medical high frequency device with cooling function Download PDF

Info

Publication number
JP6950947B2
JP6950947B2 JP2017217145A JP2017217145A JP6950947B2 JP 6950947 B2 JP6950947 B2 JP 6950947B2 JP 2017217145 A JP2017217145 A JP 2017217145A JP 2017217145 A JP2017217145 A JP 2017217145A JP 6950947 B2 JP6950947 B2 JP 6950947B2
Authority
JP
Japan
Prior art keywords
tubular electrode
physiological saline
pressure
electrode
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217145A
Other languages
Japanese (ja)
Other versions
JP2019084296A (en
Inventor
恒雄 栗田
恒雄 栗田
晃司 三宅
晃司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017217145A priority Critical patent/JP6950947B2/en
Publication of JP2019084296A publication Critical patent/JP2019084296A/en
Application granted granted Critical
Publication of JP6950947B2 publication Critical patent/JP6950947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば電気メスのような医療用高周波デバイスに関し、特に生理食塩水による冷却機能を備えた医療用高周波デバイスに関する。 The present invention relates to a medical high frequency device such as an electric knife, and particularly to a medical high frequency device having a cooling function with a physiological saline solution.

手術中、電気メスを用いて組織の焼灼を行う際、過熱した電気メスが血管に接触すると、出血を伴う危険性があり、急激な温度上昇に伴って、組織の炭化、炭化物質の電極への付着が発生するおそれがある。
そこで、高周波デバイス電極の過熱を防止し、出血を伴うことなくタンパク質を凝固させて血管の封止を可能にするため、ポンプを用いて、電極に形成された小孔から生理的食塩水供給を行うことで電極の冷却を行うイリゲーション用の高周波電極が開発されている。
When ablation of tissue is performed using an electric knife during surgery, if the overheated electric knife comes into contact with a blood vessel, there is a risk of bleeding, and as the temperature rises sharply, the tissue is charred and the electrode of the charcoal substance is reached. May occur.
Therefore, in order to prevent overheating of the high-frequency device electrode and allow the protein to coagulate and seal the blood vessel without bleeding, a pump is used to supply physiological saline through the small pores formed in the electrode. High-frequency electrodes for irrigation have been developed to cool the electrodes by doing so.

特許文献1には、先端電極を取り付けた軸部に導水管を設置し、ポンプにより生理的食塩水を供給することが記載されている。
特許文献2には、電気メスが挿入される耐熱性チューブ本体の周壁に、軸方向に沿って注水用ルーメンを設けることが記載されている。
Patent Document 1 describes that a water pipe is installed on a shaft portion to which a tip electrode is attached, and physiological saline is supplied by a pump.
Patent Document 2 describes that a lumen for water injection is provided along the axial direction on the peripheral wall of the heat-resistant tube body into which the electric knife is inserted.

特開2016−087180号公報Japanese Unexamined Patent Publication No. 2016-087180 特開2014−100455号公報Japanese Unexamined Patent Publication No. 2014-400555

電極周辺に生理的食塩水を供給することで、高周波デバイス電極の過熱を防止し、組織の炭化を防止するとともに、タンパク質を凝固させて血管を封止することが可能になる。
しかし、生理食塩水の供給量が不十分であると本来の機能が損なわれ、一方供給量が過大となると、生理食塩水を介して焼灼点以外の組織に散逸するため、十分な焼灼速度が得られないことになる。
By supplying physiological saline around the electrodes, it becomes possible to prevent overheating of the high-frequency device electrode, prevent carbonization of tissues, and coagulate proteins to seal blood vessels.
However, if the amount of saline supply is insufficient, the original function is impaired, while if the amount of saline supply is excessive, it dissipates to tissues other than the cauterization point via the saline solution, resulting in a sufficient cauterization rate. You won't get it.

生理的食塩水の供給量を最適とするために、焼灼に合わせて生理的食塩水を供給することを想定した場合、焼灼タイミングなどをモニタリングするためのセンサが必要となるが、システムの大型化、複雑化を招くばかりでなく、応答性にも限界があり、微細な箇所を簡易に焼灼することが困難となる。
そこで、本発明の目的は、高周波電極の大型化を招くことなく、しかも、ポンプなど特別な機構を要することなく、高周波デバイス電極の温度に応じて自律的に最適量の生理的食塩水の供給を可能にすることにある。
Assuming that physiological saline is supplied in accordance with cauterization in order to optimize the supply of physiological saline, a sensor for monitoring the timing of cauterization is required, but the system becomes larger. Not only is it complicated, but there is also a limit to the responsiveness, making it difficult to easily cauterize minute parts.
Therefore, an object of the present invention is to autonomously supply an optimum amount of physiological saline according to the temperature of the high-frequency device electrode without inviting an increase in size of the high-frequency electrode and without requiring a special mechanism such as a pump. Is to enable.

上記の課題を解決するため、本発明では、電気メスで組織片を焼灼する際に発生する熱量により、微小孔を備えた生理的食塩水容器(円筒部)内の圧力が高まる現象を利用して、微小孔から生理的食塩水を吐出させる。これにより、組織温度をタンパク質凝固温度以上に維持した上で、生理食塩水の蒸発潜熱により切除部を100℃以下にして炭化を防止する。 In order to solve the above problems, the present invention utilizes a phenomenon in which the pressure inside a physiological saline container (cylindrical portion) having micropores increases due to the amount of heat generated when a tissue piece is cauterized with an electric knife. Then, the physiological saline solution is discharged from the micropores. As a result, the tissue temperature is maintained above the protein coagulation temperature, and the excised portion is kept below 100 ° C. by the latent heat of vaporization of the physiological saline to prevent carbonization.

本発明によれば、電気メスで組織片を焼灼する際に発生する熱量を利用して生理的食塩水を吐出させることにより、切除部を自律的に、しかも確実に100℃以下に維持することができるので、高周波電極の大型化、コストアップを招くことなく、医療用高周波デバイスの安全性、信頼性を飛躍的に向上することが可能となる。 According to the present invention, the excised part is autonomously and surely maintained at 100 ° C. or lower by discharging physiological saline using the amount of heat generated when the tissue piece is cauterized with an electric knife. Therefore, it is possible to dramatically improve the safety and reliability of medical high-frequency devices without increasing the size and cost of high-frequency electrodes.

図1は、本発明の基本原理を示す図である。FIG. 1 is a diagram showing the basic principle of the present invention. 図2は、生理的食塩水の管内部への付加圧力(圧力Pa:横軸)と空気の漏れ量(mL/min:縦軸)の関係を小孔の径毎に計測した結果を示す図である。FIG. 2 is a diagram showing the results of measuring the relationship between the applied pressure (pressure Pa: horizontal axis) and the amount of air leakage (mL / min: vertical axis) inside the physiological saline pipe for each diameter of the small hole. Is. 図3は、管状電極の構造を示す図である。FIG. 3 is a diagram showing the structure of the tubular electrode. 図4は、管状電極を備える医療用高周波デバイスを用いた切開時の作動を示す図である。FIG. 4 is a diagram showing operation at the time of incision using a medical high frequency device provided with a tubular electrode. 図5は、管状電極を案内する挿入管の回転機構、直動機構を示す図である。FIG. 5 is a diagram showing a rotation mechanism and a linear motion mechanism of an insertion tube that guides a tubular electrode. 図6は、挿入管を移動する際のフローチャートの一例を示す図である。FIG. 6 is a diagram showing an example of a flowchart when moving the insertion tube.

[実施例1]
図1は、本発明の基本原理を示す図である。
本発明の冷却機構は、電気メスのような医療用高周波デバイスの管状電極1、その底面側周面に形成された小孔1a、および、生理的食塩水の供給源から管状電極1の内部に向けて生理的食塩水の流通させる逆止弁2から構成される。
管状電極1は、例えば、医療用高周波デバイスとして広く採用されているステンレスで成形されているが、薄肉であり、質量に対し生理的食塩水と接する表面積を十分確保することができる。このため、医療用高周波デバイスの電極で発生する熱量により、管状電極1の内部に充填された生理的食塩水が局所的に瞬時に加熱される。これに伴って、生理的食塩水の熱膨張が発生するが、逆止弁2により生理的食塩水の供給源への逆流が防止されており、生理的食塩水の粘性により、小孔1aの周辺において管状電極1の内部圧力(以下「管内圧力」という。)が局所的に急激に高まる。これにより、管状電極1の周囲に形成された小孔1aから生理的食塩水が吐出して電極周辺に供給されることになる。
[Example 1]
FIG. 1 is a diagram showing the basic principle of the present invention.
The cooling mechanism of the present invention is provided inside the tubular electrode 1 from a tubular electrode 1 of a medical high-frequency device such as an electric knife, a small hole 1a formed on the peripheral surface of the bottom surface thereof, and a source of physiological saline. It is composed of a check valve 2 for circulating physiological saline toward the patient.
The tubular electrode 1 is made of stainless steel, which is widely used as a medical high-frequency device, for example, but has a thin wall surface and can sufficiently secure a surface area in contact with physiological saline with respect to the mass. Therefore, the amount of heat generated at the electrodes of the medical high-frequency device locally and instantly heats the physiological saline solution filled inside the tubular electrode 1. Along with this, thermal expansion of the physiological saline occurs, but the check valve 2 prevents the backflow of the physiological saline to the source, and the viscosity of the physiological saline prevents the small holes 1a from flowing back. The internal pressure of the tubular electrode 1 (hereinafter referred to as "in-pipe pressure") rapidly increases locally in the periphery. As a result, physiological saline is discharged from the small holes 1a formed around the tubular electrode 1 and supplied to the periphery of the electrode.

小孔1aの径は、生理的食塩水の管内圧力が大気圧レベルであれば、生理的食塩水の表面張力、粘性などにより生理的食塩水が吐出されることがなく、管内圧力が所定の圧力以上に上昇したときのみ、生理的食塩水が最適量吐出されるよう定められている。すなわち、小孔1aの径、個数、配置は、冷却が必要なタイミングで、最適量の生理的食塩水が、必要な箇所に適量供給され、管状電極1の過熱が確実に防止されるよう、実験などにより、管状電極の発熱量に基づいて最適値に選定されている。
このように小孔1aの径、個数、配置を選定することで、管状電極1に高電圧が印加された瞬間には組織片の焼灼が効率よく行われるとともに、小孔1aの周辺温度、圧力が上昇し、小孔1aから生理的食塩水が吐出することで過熱を確実に防止することができる。
As for the diameter of the small hole 1a, if the pressure inside the pipe of the physiological saline is at the atmospheric pressure level, the physiological saline is not discharged due to the surface tension, viscosity, etc. of the physiological saline, and the pressure inside the pipe is predetermined. It is stipulated that the optimum amount of physiological saline should be discharged only when the pressure rises above the pressure. That is, the diameter, number, and arrangement of the small holes 1a are such that the optimum amount of physiological saline is supplied to the required place at the timing when cooling is required, and the tubular electrode 1 is surely prevented from overheating. The optimum value is selected based on the calorific value of the tubular electrode by experiments and the like.
By selecting the diameter, number, and arrangement of the small holes 1a in this way, the tissue pieces are efficiently cauterized at the moment when a high voltage is applied to the tubular electrode 1, and the ambient temperature and pressure of the small holes 1a are selected. Is raised, and physiological saline is discharged from the small hole 1a, so that overheating can be reliably prevented.

図2は、管状電極1として、内径2mm、厚さ0.012mmのステンレス銅管を用いた場合において、管内部への付加圧力(圧力Pa:横軸)と空気の漏れ量(mL/min:縦軸)の関係を小孔の径毎に計測した結果例を示している。なお、水色に着色された領域は空気を生理食塩水とした場合に水滴以上の漏れとなる領域を、桃色に着色された領域は空気は漏れるが、生理食塩水とした場合は漏れがない領域を示している。 FIG. 2 shows the applied pressure (pressure Pa: horizontal axis) and the amount of air leakage (mL / min: vertical axis) inside the tube when a stainless steel copper tube having an inner diameter of 2 mm and a thickness of 0.012 mm is used as the tubular electrode 1. An example of the result of measuring the relationship of the shaft) for each diameter of the small hole is shown. The area colored in light blue is the area where air leaks more than water droplets when the air is used as physiological saline, and the area colored in pink is the area where air leaks but does not leak when used as physiological saline. Is shown.

この例では、ステンレス銅管の底面から軸方向の長さ1mmの範囲で100個の小孔1aが形成されており、図2は、1時間観測して水の吐出を確認できなかった場合を白抜きで、吐出が0.01ml/分以下の場合を薄い色で、吐出が大量の場合を塗りつぶしで表している。
管状電極1の底面から逆止弁2に到る空間(以下、「管内空間」という。)には、12.58μlの水が存在するが、図2の結果から明らかなように、小孔の径が1μあるいは5μでは、管内圧力が10kpa(水深1m相当)となるまで生理的食塩水の吐出は発生せず(0.01ml/min以下)であり、管内圧力が10kpaを超えると、漏れ量が徐々に増加していく。
In this example, 100 small holes 1a are formed in a range of 1 mm in axial length from the bottom surface of the stainless copper tube, and FIG. 2 shows a case where water discharge cannot be confirmed by observing for 1 hour. In white, the case where the discharge is 0.01 ml / min or less is shown in light color, and the case where the discharge is large is shown in filled.
12.58 μl of water exists in the space from the bottom surface of the tubular electrode 1 to the check valve 2 (hereinafter referred to as “intra-pipe space”), but as is clear from the result of FIG. 2, the diameter of the small hole When the pressure is 1μ or 5μ, the physiological saline is not discharged (0.01 ml / min or less) until the pressure in the pipe reaches 10 kpa (equivalent to a depth of 1 m), and when the pressure in the pipe exceeds 10 kpa, the amount of leakage gradually increases. Will increase to.

一方、小孔が10μあるいは15μでは生理的食塩水の管内圧力が5kpa(水深50cm相当)以上で大量の吐出が発生した。なお、小孔が25μmを超えると、管内圧力がわずかに上昇しただけで大量の吐出が発生した。
このように、小孔に応じて、生理的食塩水の管内圧力に対する吐出量を選定することができ、医療用高周波デバイスの管状電極1で発生する熱量、管内空間の大きさ、医療用高周波デバイスの管状電極を所定温度以下に冷却するのに必要な生理的食塩水の供給量との関係で、小孔1aの径および個数を選定することができる。
なお、一般的な医療用高周波デバイスでは、小孔表面のぬれ性、穴深さ、液体の粘性などに応じた変化量を加味して、小孔の個数を100としたとき、小孔の径を1μm以上、100μm以下の範囲で選定すれば、適切な冷却を実現することができる。
On the other hand, when the small pores were 10μ or 15μ, a large amount of discharge occurred when the pressure in the pipe of the physiological saline was 5 kpa (equivalent to a water depth of 50 cm) or more. When the small holes exceeded 25 μm, a large amount of discharge occurred even if the pressure inside the pipe increased slightly.
In this way, the discharge amount of the physiological saline solution with respect to the in-tube pressure can be selected according to the small holes, and the amount of heat generated in the tubular electrode 1 of the medical high-frequency device, the size of the in-tube space, and the medical high-frequency device. The diameter and number of the small holes 1a can be selected in relation to the amount of physiological saline supplied to cool the tubular electrode of the above to a predetermined temperature or lower.
In a general medical high-frequency device, the diameter of the small holes is the diameter when the number of small holes is 100, taking into account the amount of change depending on the wettability of the small hole surface, the hole depth, the viscosity of the liquid, and the like. Appropriate cooling can be achieved by selecting in the range of 1 μm or more and 100 μm or less.

一般に、医療用高周波デバイスが電気メス(電気手術器:electro surgical unit)の場合、300kHz〜5MHzの高周波電流を生体に通電させ、このとき発生する熱によって組織を切開、凝固させるようにしている。管状電極間にこのような高電圧を印加すると、管状電極の先端部からは、0.5A程度の高周波電流が集中して生体に流れることになる。これにより、電気メスの管状電極周辺で細胞内の水が急激に蒸発し、細胞膜もろとも爆発的に壊れるので、組織は切開される。なお、高周波電流の印加に伴って発生する熱は周辺の組織にも作用し、この部分が熱によって凝固し、組織を収縮させ、毛細血管や微小血管が閉塞され出血が抑止される。 Generally, when a medical high-frequency device is an electrosurgical unit, a high-frequency current of 300 kHz to 5 MHz is applied to a living body, and the heat generated at this time is used to incise and coagulate the tissue. When such a high voltage is applied between the tubular electrodes, a high-frequency current of about 0.5 A is concentrated and flows into the living body from the tip of the tubular electrodes. As a result, intracellular water evaporates rapidly around the tubular electrode of the electrosurgical knife, and the cell membrane and the cell membrane are explosively broken, so that the tissue is incised. The heat generated by the application of the high-frequency current also acts on the surrounding tissues, and this portion is coagulated by the heat, the tissues are contracted, the capillaries and microvessels are occluded, and bleeding is suppressed.

このとき、メス先となる管状電極外周面では、高周波電流が火花柱となって生体へ流れ、接触部の抵抗は200〜1,000Ωと大きな値となる。ここで、接触部の抵抗を200Ω、流れ込む電流を0.5Aとすると、ジュールの法則にしたがい、1秒間にI2R=50[J]の熱量が発生する。
直径1mm、深さ1mmの円筒状の生体表面積部分にこの熱が作用すると仮定すると、この部分の体積は8×10-4cm3となるので、100℃以上に加熱するのに必要な熱量は0.3Jとなる。
一方、気化に要する熱量は2263J/cm3であるので、結果として、0.5Aの通電を行ったとき、0.04秒でこの部分が蒸発する。
生理的食塩水の気化に伴って管内空間の圧力が上昇すると、生理的食塩水が小孔1aから吐出し、管状電極周辺を冷却する。これにより管状電極周辺が所定温度以下になると、管内圧力の低下に伴い、逆止弁2が開放され、内部に発生した気泡が小孔1aから排出され、生理的食塩水供給源から管内空間に生理的食塩水が補填される。
At this time, on the outer peripheral surface of the tubular electrode, which is the tip of the scalpel, a high-frequency current acts as a spark column and flows to the living body, and the resistance of the contact portion becomes a large value of 200 to 1,000 Ω. Here, assuming that the resistance of the contact portion is 200Ω and the flowing current is 0.5A, the amount of heat of I 2 R = 50 [J] is generated per second according to Joule's law.
Assuming that this heat acts on a cylindrical living surface area portion with a diameter of 1 mm and a depth of 1 mm, the volume of this portion is 8 × 10 -4 cm 3 , so the amount of heat required to heat to 100 ° C or higher is It will be 0.3J.
On the other hand, the amount of heat required for vaporization is 2263 J / cm 3 , and as a result, when 0.5 A is energized, this part evaporates in 0.04 seconds.
When the pressure in the tube space increases with the vaporization of the physiological saline solution, the physiological saline solution is discharged from the small hole 1a to cool the periphery of the tubular electrode. As a result, when the temperature around the tubular electrode falls below a predetermined temperature, the check valve 2 is opened as the pressure inside the pipe decreases, air bubbles generated inside are discharged from the small hole 1a, and the physiological saline supply source enters the space inside the pipe. Saline is supplemented.

例えば、上記のプロセスにより、軸方向の長さ1mmの領域で温度が室温(20℃)から80℃まで上昇したと仮定すると、水の体積膨張率を0.021%/℃、銅の体積膨張率を0.0051%/℃としたとき、水、管の膨張、水の粘性低下、管熱膨張による小孔系拡張などにより吐出速度は変化するが、銅の体積膨張率と水の体積膨張率の差だけ吐出すると仮定すると、0.0159%/℃吐出されることになる。
すなわち、直径1mm、深さ(軸方向の長さ)の空間を持つ銅電極の中に水が満たされていると仮定すると、温度が60℃上昇したとすると水は、
0.5*0.5*3.14*0.021/100*60=0.009891mm3
すなわち、0.009891μl 膨張する。
一方銅は、
0.5*0.5*3.14*0.0051/100*60=0.0024021mm3
すなわち0.0024021μl 膨張する。
両者の差が漏洩量に相当するので、漏洩量は0.0074889μlとなる。
図2より、1.0kPaの付加圧力下で直径0.001mmの穴ひとつから毎秒1.7μlの気体を排出することができ、気体の排出速度で水が充填されるとすれば、100個の小孔から44μsで吐出した分の水が充填されることになる。
For example, assuming that the above process raises the temperature from room temperature (20 ° C) to 80 ° C in the axial length region of 1 mm, the coefficient of thermal expansion of water is 0.021% / ° C and the coefficient of thermal expansion of copper is 0.021% / ° C. At 0.0051% / ° C, the discharge rate changes due to water, expansion of the pipe, decrease in viscosity of water, expansion of the small pore system due to thermal expansion of the pipe, etc., but only the difference between the volume expansion coefficient of copper and the volume expansion coefficient of water. Assuming that it is discharged, 0.0159% / ° C will be discharged.
That is, assuming that the copper electrode having a diameter of 1 mm and a depth (length in the axial direction) is filled with water, if the temperature rises by 60 ° C, the water will be.
0.5 * 0.5 * 3.14 * 0.021 / 100 * 60 = 0.00091mm 3
That is, it expands by 0.009891 μl.
On the other hand, copper
0.5 * 0.5 * 3.14 * 0.0051 / 100 * 60 = 0.0024021mm 3
That is, it expands by 0.0024021 μl.
Since the difference between the two corresponds to the amount of leakage, the amount of leakage is 0.0074889 μl.
From Fig. 2, 1.7 μl of gas can be discharged per second from one hole with a diameter of 0.001 mm under an applied pressure of 1.0 kPa, and if water is filled at the gas discharge rate, it is possible to discharge water from 100 small holes. The amount of water discharged at 44 μs will be filled.

なお、44μsより十分長い100μsサイクル(10kHz)で高周波電源をパルス状に稼働させた場合、管状電極の内部が室温から80℃に加熱したとすると、総吐出量は、
0.0074889*10000=75μl/s=4500μl/min=4.5ml/minとなる。
市販されているイリゲーションポンプの送液流量は毎分1〜30mlであることから、本実施例によれば、イリゲーションポンプや特別な駆動源を使用することなく、同等の生理的食塩水を供給することが可能となることが分かる。
さらに高周波メスを高出力で用いると、生理的食塩水の一部が沸騰する場合があるが、これに応答して吐出量が飛躍的に増加するため、吐出性能を向上させ、発生した熱量に見合う冷却が可能となる。
If the high-frequency power supply is operated in a pulse shape in a 100 μs cycle (10 kHz) that is sufficiently longer than 44 μs, and the inside of the tubular electrode is heated from room temperature to 80 ° C, the total discharge amount will be.
0.0074889 * 10000 = 75 μl / s = 4500 μl / min = 4.5 ml / min.
Since the flow rate of a commercially available irrigation pump is 1 to 30 ml per minute, according to this embodiment, an equivalent physiological saline solution is supplied without using an irrigation pump or a special drive source. It turns out that it is possible.
Furthermore, when a high-frequency scalpel is used at high output, a part of the physiological saline may boil, but in response to this, the discharge amount increases dramatically, so the discharge performance is improved and the amount of heat generated is reduced. It enables commensurate cooling.

一方、管状電極の大きさに対して加熱源が小さい場合、管内の液体の温度勾配が無視できなくなる。この場合加熱源から遠ざかると液体の温度が低くなるため、膨張量が小さくなる。さらに短時間で加熱される場合は周辺の液体の慣性により膨張量に応じた圧力が液体内部に発生する。その反力で吐出した場合、温度に応じて吐出量が自律的に変化する。 On the other hand, when the heat source is small with respect to the size of the tubular electrode, the temperature gradient of the liquid in the tube cannot be ignored. In this case, as the distance from the heating source increases, the temperature of the liquid decreases, so that the amount of expansion decreases. When heated in a shorter time, pressure is generated inside the liquid according to the amount of expansion due to the inertia of the surrounding liquid. When discharged by the reaction force, the discharge amount changes autonomously according to the temperature.

なお、急激な温度変化が生じるような医療用高周波デバイスに用いる場合は、液体の膨張や蒸発圧と液体の慣性力により吐出圧を得ることできるので、生理的食塩水が常時小孔1aを超える水位に維持するよう充填されていれば、必ずしも逆止弁を設ける必要はない。
なお、生理的食塩水は、補助タンクから重力や表面張力を利用して補充すればよく、もちろん簡易型ポンプを用いて補充してもよい。
When used in a medical high-frequency device in which a sudden temperature change occurs, the discharge pressure can be obtained by the expansion and evaporation pressure of the liquid and the inertial force of the liquid, so that the physiological saline solution always exceeds the small hole 1a. It is not always necessary to provide a check valve as long as it is filled to maintain the water level.
The physiological saline solution may be replenished from the auxiliary tank by using gravity or surface tension, and of course, it may be replenished by using a simple pump.

図3に本実施例の管状電極を示す。生理食塩水が内部に満たされた管状電極1の表面には、加工進行方向に向けて小孔1aが空けられている。
図4は、管状電極1を備える医療用高周波デバイスを用いた切開時の作動を示している。管状電極1と組織が接触すると、接触部分は高周波と組織電気抵抗により昇温され、組織の水分が蒸発し、空間が生まれる。
一方管状電極1は加熱され、内部の生理食塩水の熱膨張圧、蒸発の伴う場合は蒸気圧により生理食塩水が小孔1aから吐出される。生理食塩水が吐出されることで、組織の冷却作用が働き、従来医療技術である高周波メスの凝固モードに近い状態で切開が行われる。凝固モードは止血に用いられているため、切断血管の封止により出血のない状態で切開を進めることができる。このように、組織の冷却と同時に管状電極1が冷却され、吐出量と同等の生理的食塩水が管内空間に水が充填される。
FIG. 3 shows the tubular electrode of this embodiment. Small holes 1a are formed on the surface of the tubular electrode 1 filled with physiological saline in the processing progress direction.
FIG. 4 shows the operation at the time of incision using a medical high frequency device including the tubular electrode 1. When the tubular electrode 1 and the tissue come into contact with each other, the temperature of the contact portion is raised by the high frequency and the electrical resistance of the tissue, the water content of the tissue evaporates, and a space is created.
On the other hand, the tubular electrode 1 is heated, and the physiological saline solution is discharged from the small hole 1a due to the thermal expansion pressure of the internal physiological saline solution and the vapor pressure when evaporation is accompanied. By discharging the physiological saline solution, the tissue cooling action works, and the incision is performed in a state close to the coagulation mode of the high-frequency scalpel, which is a conventional medical technique. Since the coagulation mode is used for hemostasis, the incision can be advanced without bleeding by sealing the cut blood vessel. In this way, the tubular electrode 1 is cooled at the same time as the tissue is cooled, and the space inside the pipe is filled with physiological saline equivalent to the discharge amount.

従来、高周波メス等を用いた手術では、医師が切開部の状態を確認しながら、切開モードと凝固モードを断続的に切り換えることで、出血量を最小限に抑えながら、可能な限り迅速な切開を実現するという高度な熟練技術が求められている。
これに対し、本実施例によれば、自律的に管状電極1の切開領域を冷却することが可能なため、アクチュエータにより管状電極1を移動させる移動機構を付加したとしても、止血機能を維持した状態で自律的に電極を移動させることが可能である。
すなわち、図5に示すように、管状電極1は挿入管先端の電極ガイド2により案内され、回転機構3、直動機構4により、回転方向、軸方向に移動することができる。その際、上述の生理的食塩水の吐出により、電極周辺の温度が適切に維持されていることから、回転機構、直動機構の制御を優先することができる。
Conventionally, in surgery using a high-frequency scalpel, the doctor intermittently switches between the incision mode and the coagulation mode while checking the condition of the incision, so that the incision is made as quickly as possible while minimizing the amount of bleeding. Highly skilled technology is required to realize.
On the other hand, according to this embodiment, since the incision region of the tubular electrode 1 can be autonomously cooled, the hemostatic function is maintained even if a moving mechanism for moving the tubular electrode 1 by an actuator is added. It is possible to move the electrodes autonomously in the state.
That is, as shown in FIG. 5, the tubular electrode 1 is guided by the electrode guide 2 at the tip of the insertion tube, and can be moved in the rotation direction and the axial direction by the rotation mechanism 3 and the linear motion mechanism 4. At that time, since the temperature around the electrode is appropriately maintained by the discharge of the physiological saline solution described above, the control of the rotation mechanism and the linear motion mechanism can be prioritized.

図6に、回転機構3、直動機構4により挿入管を移動する際のフローチャート例を示す。
電流があるレベルまで流れなくなったら再度直動移動させることを繰り返す。これにより、過度な電流供給による組織へのダメージを最小限に維持することができる。
その際、高周波エネルギーは連続的に出力されてもよいし、間欠的に出力されてもよい。
FIG. 6 shows an example of a flowchart when the insertion tube is moved by the rotation mechanism 3 and the linear motion mechanism 4.
When the current stops flowing to a certain level, the linear motion is repeated again. As a result, damage to the tissue due to excessive current supply can be kept to a minimum.
At that time, the high frequency energy may be output continuously or intermittently.

なお、生理食塩水を介して管状電極1から加工点以外に流れる散逸電流は最小限に止めることが望ましいので、臓器指定位置までの経路において、指定位置に近づく方向、回転して組織を切除する場合は回転方向先端のみに電流が導通するようにすることが望ましい。そこで、先端以外に対してセラミックなどを用いたコーティング、または先端のみを導電材、その他を絶縁材とした電極を用いてもよい。 Since it is desirable to minimize the dissipated current that flows from the tubular electrode 1 to other than the processing point via physiological saline, the tissue is excised by rotating in the direction approaching the designated position in the path to the designated position of the organ. In this case, it is desirable that the current conducts only at the tip in the rotation direction. Therefore, a coating using ceramic or the like for other than the tip, or an electrode in which only the tip is a conductive material and the other is an insulating material may be used.

以上説明したように、本発明の冷却構造を備えた医療用高周波デバイスによれば、組織焼灼の際、組織温度をタンパク質凝固温度以上に自律的に維持した上で、蒸発潜熱により切除部を100℃以下にして炭化を確実に防止することができるので、高度な熟練技術を要することなく、安全性を飛躍的に高めた医療用高周波デバイスとして広く採用されることが期待される。 As described above, according to the medical high-frequency device provided with the cooling structure of the present invention, during tissue ablation, the tissue temperature is autonomously maintained above the protein coagulation temperature, and the excised portion is cut by latent heat of evaporation. Since carbonization can be reliably prevented at a temperature of ℃ or lower, it is expected to be widely adopted as a medical high-frequency device with dramatically improved safety without requiring advanced skill.

1:管状電極
1a:小孔
2:電極ガイド
3:回転機構
4:直動機構

1: Tubular electrode 1a: Small hole 2: Electrode guide 3: Rotation mechanism 4: Linear mechanism

Claims (3)

医療用高周波デバイスの冷却構造であって、
管状電極と、
前記管状電極の内部に生理的食塩水を充填する生理的食塩水供給装置とを備え、
前記管状電極には、切開進行方向に向けて開口する小孔が形成されており、
組織切開時におい前記管状電極が加熱されると、前記管状電極の内部空間にある生理的食塩水が膨張して所定の圧力を超えた場合、その圧力の増加によって前記小孔を通じて前記生理的食塩水を吐出して前記管状電極冷却し、
前記管状電極が加熱されない場合は、前記管状電極の内部空間にある生理的食塩水が前記小孔を通じて吐出されないように前記小孔の径が設定されてなる、前記冷却構造。
It is a cooling structure for medical high-frequency devices.
Tubular electrodes and
And a saline supply device for filling the saline inside the tubular electrode,
The tubular electrode is formed with a small hole that opens in the direction of incision.
When the tubular electrode Te tissue dissection during odor is heated, if the saline in the interior space of the tubular electrode exceeds a predetermined pressure expands, the physiological through the small holes by an increase in the pressure and discharging brine cooling the tubular electrode,
The cooling structure in which the diameter of the small hole is set so that the physiological saline solution in the internal space of the tubular electrode is not discharged through the small hole when the tubular electrode is not heated.
前記管状電極は、その内部空間にある生理的食塩水が、前記膨張に加えて蒸発が生じて前記圧力が増加することにより前記小孔を通じて前記生理的食塩水を吐出する、請求項1記載の冷却構造。The tubular electrode according to claim 1, wherein the physiological saline solution in the internal space of the tubular electrode discharges the physiological saline solution through the small pores due to evaporation in addition to the expansion and an increase in the pressure. Cooling structure. 前記管状電極の内部に、逆止弁を介して生理的食塩水を補充する請求項1または2記載の冷却構造。
The cooling structure according to claim 1 or 2 , wherein the inside of the tubular electrode is replenished with physiological saline via a check valve.
JP2017217145A 2017-11-10 2017-11-10 Medical high frequency device with cooling function Active JP6950947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217145A JP6950947B2 (en) 2017-11-10 2017-11-10 Medical high frequency device with cooling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217145A JP6950947B2 (en) 2017-11-10 2017-11-10 Medical high frequency device with cooling function

Publications (2)

Publication Number Publication Date
JP2019084296A JP2019084296A (en) 2019-06-06
JP6950947B2 true JP6950947B2 (en) 2021-10-13

Family

ID=66762028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217145A Active JP6950947B2 (en) 2017-11-10 2017-11-10 Medical high frequency device with cooling function

Country Status (1)

Country Link
JP (1) JP6950947B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835703B2 (en) * 1995-05-01 2006-10-18 ボストン サイエンティフィック リミテッド System for sensing subsurface temperature of body tissue during ablation with actively cooled electrodes
US5843152A (en) * 1997-06-02 1998-12-01 Irvine Biomedical, Inc. Catheter system having a ball electrode
JP2015077391A (en) * 2013-09-11 2015-04-23 セイコーエプソン株式会社 Liquid injection device and medical device
JP2016087180A (en) * 2014-11-06 2016-05-23 フォルテ グロウ メディカル株式会社 Water supply device of electric knife

Also Published As

Publication number Publication date
JP2019084296A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US11207118B2 (en) Medical system and method of use
US7115139B2 (en) Fluid-assisted medical devices, fluid delivery systems and controllers for such devices, and methods
RU2489984C1 (en) Destruction catheter with balloon and system of destruction catheter with balloon
JP6753561B2 (en) Ablation system
US8323276B2 (en) Method for plasma-mediated thermo-electrical ablation with low temperature electrode
US20050033278A1 (en) Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US8313485B2 (en) Method for performing lung volume reduction
US6780184B2 (en) Quantum energy surgical device and method
JP2020151566A (en) Tissue resecting system
US20050070894A1 (en) Fluid-assisted medical devices, systems and methods
JP2010540028A (en) Hand-held thermal ablation device
KR20210033443A (en) Inferred maximum temperature monitoring for irrigation ablation therapy
JP6950947B2 (en) Medical high frequency device with cooling function
JPH08322847A (en) Blood vessel coagulation and hemostasis device
JP2005287804A (en) Therapeutic heating apparatus, and abnormality notification method for therapeutic heating apparatus
US20130172876A1 (en) Apparatus, System, and Method for Performing Surface Tissue Desiccation Having an Internal Cooling system
JP2004008581A (en) Electrosurgical instrument
Pai et al. Haemostasis in liver surgery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6950947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150