JP6950132B2 - A low dielectric loss insulating resin composition, an insulating film produced by the composition, and a printed circuit board provided with the insulating film. - Google Patents

A low dielectric loss insulating resin composition, an insulating film produced by the composition, and a printed circuit board provided with the insulating film. Download PDF

Info

Publication number
JP6950132B2
JP6950132B2 JP2016064437A JP2016064437A JP6950132B2 JP 6950132 B2 JP6950132 B2 JP 6950132B2 JP 2016064437 A JP2016064437 A JP 2016064437A JP 2016064437 A JP2016064437 A JP 2016064437A JP 6950132 B2 JP6950132 B2 JP 6950132B2
Authority
JP
Japan
Prior art keywords
curing agent
resin composition
insulating film
insulating
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064437A
Other languages
Japanese (ja)
Other versions
JP2017066360A (en
Inventor
キム キ−セオク
キム キ−セオク
シム ジ−ヒュ
シム ジ−ヒュ
ウー ジ−エウン
ウー ジ−エウン
カン ミュン−サム
カン ミュン−サム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2017066360A publication Critical patent/JP2017066360A/en
Application granted granted Critical
Publication of JP6950132B2 publication Critical patent/JP6950132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Insulating Bodies (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

本発明は、低誘電損失の絶縁樹脂組成物、その組成物で製造された絶縁フィルム及びその絶縁フィルムを備えたプリント回路基板に関する。 The present invention relates to an insulating resin composition having a low dielectric loss, an insulating film produced by the composition, and a printed circuit board provided with the insulating film.

近年、電子部品の軽薄短小化により、電子部品が実装されるプリント回路基板においては小さい面積に多数の電子部品を集積する必要があり、回路パターンの高密度化が要求されている。 In recent years, due to the miniaturization of electronic components, it is necessary to integrate a large number of electronic components in a small area in a printed circuit board on which electronic components are mounted, and a high density of circuit patterns is required.

プリント回路基板の回路パターンが微細化され、回路の層間間隔が細くなるにつれ、誘電損失やショートなどの不良、または回路と絶縁体との間の密着力が低減されて製品の信頼性が低下するという問題点が生じている。このため、プリント回路基板、半導体パッケージ基板、またはフレキシブルプリント回路基板等においては微細な開口パターンを形成できる感光性絶縁フィルムが用いられている。 As the circuit pattern of the printed circuit board becomes finer and the inter-layer spacing of the circuit becomes narrower, defects such as dielectric loss and short circuit, or the adhesion between the circuit and the insulator are reduced, and the reliability of the product is lowered. The problem has arisen. For this reason, a photosensitive insulating film capable of forming a fine opening pattern is used in a printed circuit board, a semiconductor package substrate, a flexible printed circuit board, or the like.

今まで知られている低誘電損失のための樹脂組成物は、熱硬化性樹脂とフェノール系硬化剤を使用し、シリカ等の無機フィラーを含む樹脂組成物に関する研究が一般的であった。 As the resin composition for low dielectric loss known so far, research on a resin composition containing an inorganic filler such as silica using a thermosetting resin and a phenolic curing agent has been generally conducted.

一般的にエポキシ樹脂としては、ビスフェノールA系エポキシが主に用いられており、この樹脂は、優れた熱的及び機械的特性、そして接着特性を有する。 Generally, as the epoxy resin, bisphenol A-based epoxy is mainly used, and this resin has excellent thermal and mechanical properties and adhesive properties.

しかし、硬化後に形成される多量の二次水酸基の存在のために、高い誘電率と誘電正接特性を有する短所があり、低誘電損失用のエポキシ樹脂としての使用には限界があった。 However, due to the presence of a large amount of secondary hydroxyl groups formed after curing, it has a disadvantage of having a high dielectric constant and dielectric loss tangent characteristics, and its use as an epoxy resin for low dielectric loss has been limited.

近年、構造的に疎水性の特性を有するビフェニル系エポキシ樹脂または新規硬化性樹脂としてシアネートエステル樹脂及びオレフイン系樹脂を用いた低誘電損失絶縁材料の開発に関する研究が行われている。 In recent years, research has been conducted on the development of a low dielectric loss insulating material using a cyanate ester resin and an olephine resin as a biphenyl epoxy resin having structurally hydrophobic properties or a novel curable resin.

しかし、シアネートエステル樹脂の場合、自体誘電特性に優れるものの、金属触媒の使用が必要であり、砕け(brittle)やすい短所や高価であるため、使用が困難であった。 However, although the cyanate ester resin itself has excellent dielectric properties, it is difficult to use because it requires the use of a metal catalyst, has the disadvantage of being easily brittle, and is expensive.

また、オレフイン系樹脂の場合は、熱可塑性樹脂としては優れた誘電特性を有するものの、高含量を使用する場合には、既存の熱硬化性樹脂との相溶性不足による物性低下及び湿式(wet)工程に不利であるという短所があった。 Further, in the case of an olephine-based resin, although it has excellent dielectric properties as a thermoplastic resin, when a high content is used, the physical properties are deteriorated due to insufficient compatibility with the existing thermosetting resin and wet (wet). There was a disadvantage that it was disadvantageous to the process.

特開2003−147052号公報Japanese Unexamined Patent Publication No. 2003-147052

本発明の一実施例に係る絶縁樹脂組成物は、一つ以上のシリル基を含むエポキシ樹脂、硬化剤、及びフィラーを含むことができる。 The insulating resin composition according to an embodiment of the present invention may contain an epoxy resin containing one or more silyl groups, a curing agent, and a filler.

上記エポキシ樹脂は、一つ以上のシリル基を含むビフェニル系エポキシ樹脂またはビスフェノールA系エポキシ樹脂であることができる。 The epoxy resin can be a biphenyl-based epoxy resin or a bisphenol A-based epoxy resin containing one or more silyl groups.

上記フィラーは、上記エポキシ樹脂及び硬化剤の総量の70から90重量部で含まれることができる。 The filler can be contained in 70 to 90 parts by weight of the total amount of the epoxy resin and the curing agent.

上記エポキシ樹脂及び硬化剤は、当量比が1:0.5から1:1の範囲で含まれることができる。 The epoxy resin and the curing agent can be contained in an equivalent ratio of 1: 0.5 to 1: 1.

上記組成物はシリル基を含まないエポキシ樹脂をさらに含むことができる。 The composition may further contain an epoxy resin that does not contain a silyl group.

上記硬化剤は、活性エステル硬化剤、アミノトリアジンノボラック硬化剤、アミド系硬化剤、ポリアミン系硬化剤、酸無水物硬化剤、フェノールノボラック型硬化剤、ポリメルカプタン硬化剤、第3アミン硬化剤、及びイミダゾール硬化剤から1種以上を選択することができる。 The curing agents include active ester curing agent, aminotriazine novolac curing agent, amide curing agent, polyamine curing agent, acid anhydride curing agent, phenol novolac type curing agent, polymercaptan curing agent, tertiary amine curing agent, and One or more can be selected from the imidazole curing agents.

上記硬化剤は、活性エステル及びアミノトリアジンのうちの1種以上であってもよい。 The curing agent may be one or more of active ester and aminotriazine.

本発明の一実施例に係る絶縁フィルムは、上記絶縁樹脂組成物を基材上に塗布及び半硬化させて製造することができる。 The insulating film according to an embodiment of the present invention can be produced by applying the above insulating resin composition on a substrate and semi-curing it.

上記絶縁フィルムの誘電正接特性(Df:Dissipation factor)は、 0.0050tangentδ以下であってもよい。 The dielectric loss tangent property (Df: Dissipation factor) of the insulating film may be 0.0050 tangent δ or less.

本発明の一実施例に係るプリプレグは、上記絶縁樹脂組成物を含むワニスに無機繊維または有機繊維を含浸及び乾燥させて製造することができる。 The prepreg according to an embodiment of the present invention can be produced by impregnating a varnish containing the above insulating resin composition with inorganic fibers or organic fibers and drying the varnish.

本発明の一実施例に係るプリント回路基板は、上記絶縁フィルムを回路パターンが形成された基材上にラミネーションすることで製造することができる。 The printed circuit board according to an embodiment of the present invention can be manufactured by laminating the insulating film on a base material on which a circuit pattern is formed.

本発明の一実施例に係る絶縁樹脂組成物の製造方法は、シリレートエポキシに導入されるシリル基の数を調整することで絶縁樹脂組成物の熱膨脹係数及び誘電正接特性を調整することができる。 In the method for producing an insulating resin composition according to an embodiment of the present invention, the coefficient of thermal expansion and the dielectric loss tangent property of the insulating resin composition can be adjusted by adjusting the number of silyl groups introduced into the silicate epoxy. ..

本発明の一実施例に係る絶縁フィルムが積層されたプリント回路基板を概略的に示す断面図である。It is sectional drawing which shows typically the printed circuit board which was laminated with the insulating film which concerns on one Example of this invention. 本発明の実施例に用いられたシリレートエポキシ樹脂の1例の構造図である。It is a structural drawing of one example of the sililate epoxy resin used in the Example of this invention. 本発明の実施例に用いられたシリレートエポキシ樹脂の他の例の構造図である。It is a structural drawing of another example of the sililate epoxy resin used in the Example of this invention. 本発明の実施例に用いられたシリレートエポキシ樹脂のまた他の例の構造図である。It is a structural drawing of another example of the sililate epoxy resin used in the Example of this invention. 本発明の実施例に用いられたシリレートエポキシ樹脂のまた他の例の構造図である。It is a structural drawing of another example of the sililate epoxy resin used in the Example of this invention.

本発明をより具体的に説明する前に、本明細書及び特許請求の範囲に使用された用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的思想に符合する意味や概念で解釈されなければならない。 Prior to describing the present invention more specifically, the terms and words used herein and in the scope of the patent claims should not be construed in a general or lexical sense, and the invention is best described. It must be interpreted with meanings and concepts that are consistent with the technical ideas of the invention in accordance with the principle that the concepts of terms can be properly defined to explain in a way.

したがって、本明細書に記載された実施例の構成は本発明の一つの例に過ぎず、本発明の技術的思想をすべて代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解しなければならない。 Therefore, the configurations of the examples described herein are merely one example of the present invention and do not represent all the technical ideas of the present invention, and therefore, various alternatives can be made at the time of the present application. It must be understood that there can be equivalents and variants.

以下、本発明が属する技術分野で通常の知識を有する者が本発明を容易に実施できるように、本発明の一実施例を詳細に説明する。また、本発明を説明するに当たって、本発明の要旨をかえって不明にすると判断される公知技術に関する詳細な説明は省略する。 Hereinafter, an embodiment of the present invention will be described in detail so that a person having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the present invention. Further, in explaining the present invention, detailed description of the publicly known technique which is determined to obscure the gist of the present invention will be omitted.

<シリレートエポキシ樹脂>
本発明の一実施例に係る絶縁樹脂組成物は、エポキシ樹脂内にSiグループが含まれたシリレートエポキシ樹脂を含むことができる。
<Sililate epoxy resin>
The insulating resin composition according to an embodiment of the present invention can contain a silylate epoxy resin containing a Si group in the epoxy resin.

上記シリレートエポキシ樹脂は、様々な構造のエポキシにシリレートグループが1つ以上置換されたエポキシ樹脂を含むことができる。 The silicate epoxy resin can include an epoxy resin in which one or more silicate groups are substituted with epoxies having various structures.

本発明において、エポキシ樹脂は、2つ以上のエポキシ基を有し、上記絶縁樹脂組成物100重量部に対して、1から30重量部で含まれることができ、ナフタレン系エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ゴム変性型エポキシ樹脂、及びリン(phosphorous)系エポキシ樹脂から1種以上を選択することができ、必ずしもこれに限定されるものではない。 In the present invention, the epoxy resin has two or more epoxy groups and can be contained in an amount of 1 to 30 parts by weight with respect to 100 parts by weight of the insulating resin composition, and is a naphthalene-based epoxy resin, bisphenol A type. One or more types can be selected from, but are not limited to, epoxy resins, phenol novolac epoxy resins, cresol novolac epoxy resins, rubber-modified epoxy resins, and phosphorus-based epoxy resins.

上記シリレートエポキシ樹脂は、下記化学式で表示されるシリレートエポキシ樹脂を1種以上含むことができる。

Figure 0006950132
Figure 0006950132
The silicate epoxy resin may contain one or more silicate epoxy resins represented by the following chemical formulas.
Figure 0006950132
Figure 0006950132

<硬化剤>
本発明の一実施例に係る絶縁樹脂組成物は、シリレートエポキシ樹脂及び硬化剤を含むことができる。上記硬化剤は、通常的にエポキシ樹脂に含まれたエポキシ基と反応可能な硬化剤を含むことができ、特に制限されることはない。
<Hardener>
The insulating resin composition according to an embodiment of the present invention may contain a silylate epoxy resin and a curing agent. The curing agent can include a curing agent capable of reacting with an epoxy group usually contained in an epoxy resin, and is not particularly limited.

上記硬化剤は、上記絶縁樹脂組成物100重量部に対して、0.5から30重量部で含まれることができ、活性エステル硬化剤、アミノトリアジンノボラック硬化剤、アミド系硬化剤、ポリアミン系硬化剤、酸無水物硬化剤、フェノールノボラック型硬化剤、ポリメルカプタン硬化剤、第3アミン硬化剤、またはイミダゾール硬化剤から1種以上を選択することができ、必ずしもこれに限定されることはない。 The curing agent can be contained in an amount of 0.5 to 30 parts by weight with respect to 100 parts by weight of the insulating resin composition, and is an active ester curing agent, an aminotriazine novolac curing agent, an amide-based curing agent, and a polyamine-based curing agent. One or more can be selected from, but is not limited to, an agent, an acid anhydride curing agent, a phenol novolac type curing agent, a polymercaptan curing agent, a tertiary amine curing agent, or an imidazole curing agent.

上記エポキシ樹脂及び硬化剤は、当量比が1:05から1:1範囲で含まれることができる。 The epoxy resin and the curing agent can be contained in an equivalent ratio in the range of 1:05 to 1: 1.

本発明によるエポキシ樹脂組成物は、硬化時間及び硬化温度を調整するなどの目的で硬化促進剤をさらに含むことができる。上記硬化促進剤としてはイミダゾール系が挙げられ、これに限定されないが、2−エチル−4メチルイミダゾール、1−(2−シアノエチル)−2−アルキルイミダゾール、2−フェニルイミダゾール、及びこれらの混合物からなる群より選択される少なくとも1種を用いることができる。 The epoxy resin composition according to the present invention may further contain a curing accelerator for the purpose of adjusting the curing time and the curing temperature. Examples of the curing accelerator include, but are not limited to, 2-ethyl-4 methylimidazole, 1- (2-cyanoethyl) -2-alkylimidazole, 2-phenylimidazole, and a mixture thereof. At least one selected from the group can be used.

<無機充填剤>
本発明の一実施例に係る絶縁樹脂組成物は、熱膨脹係数の向上のために無機充填剤をさらに含むことができる。
<Inorganic filler>
The insulating resin composition according to an embodiment of the present invention may further contain an inorganic filler in order to improve the coefficient of thermal expansion.

上記無機充填剤の使用量は、特に制限されず、上記樹脂組成物100重量部に対して、1から100重量部を含むことができる。上記エポキシ樹脂及び硬化剤の総量の70から90重量部を含むことができる。上記無機充填剤の使用量が70重量部未満であると、上記樹脂組成物の熱膨脹係数及び誘電特性が高くて、低誘電損失用基板材料として使用しにくくなることがあり、90重量部を超過すると、金属層との剥離強度が低減して基板工程に適用しにくくなることがある。 The amount of the inorganic filler used is not particularly limited, and may include 1 to 100 parts by weight with respect to 100 parts by weight of the resin composition. It can contain 70 to 90 parts by weight of the total amount of the epoxy resin and the curing agent. If the amount of the inorganic filler used is less than 70 parts by weight, the thermal expansion coefficient and dielectric properties of the resin composition are high, which may make it difficult to use as a substrate material for low dielectric loss, and exceeds 90 parts by weight. Then, the peel strength from the metal layer may be reduced, making it difficult to apply to the substrate process.

上記無機充填剤としては、シリカ(SiO)、アルミナ(Al)、硫酸バリウム(BaSO)、水酸化アルミニウム(AlOH)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、酸化マグネシウム(MgO)、窒化ホウ素(BN)、炭化ケイ素(SiC)、ホウ酸アルミニウム(AlBO)、チタン酸バリウム(BaTiO)、及びジルコン酸カルシウム(CaZrO)から1種以上を選択することができ、これに限定されない。 Examples of the inorganic filler include silica (SiO 2 ), alumina (Al 2 O 3 ), barium sulfate (BaSO 4 ), aluminum hydroxide (AlOH 3 ), magnesium hydroxide (Mg (OH) 2 ), and calcium carbonate (Mg (OH) 2). CaCO 3 ), Magnesium Carbonate (MgCO 3 ), Magnesium Oxide (MgO), Boron Nitride (BN), Silicon Carbide (SiC), Aluminum Borate (AlBO 3 ), Barium Titanate (BaTIO 3 ), and Calcium Zirconate (BaTIO 3) One or more types can be selected from CaZrO 3 ), and the present invention is not limited to this.

上記無機充填剤は、表面処理されたシリカを含むことができ、上記シリカは、アミノフェニルシランにより表面処理されたシリカであることができる。上記シリカの粒径は、0.5から2μmであってもよい。 The inorganic filler can contain surface-treated silica, which can be surface-treated silica with aminophenylsilane. The particle size of the silica may be 0.5 to 2 μm.

<絶縁フィルム、プリプレグ、及びプリント回路基板>
本発明の一実施例に係る絶縁樹脂組成物は、当該技術分野で公知のいずれの一般的な方法を用いて半固相状態のフィルムを製造することができる。例えば、ロールコーター(roll coater)、カーテンコーター(curtain coater)、またはコンマコーター(comma coater)等を用いてフィルム状に製造して乾燥させた後、これを基板上に適用してビルドアップ方式による多層プリント基板を製造する時に絶縁フィルムまたはプリプレグとして用いることができる。このような絶縁フィルムまたはプリプレグは、耐熱性、熱膨脹係数、誘電率及び誘電損失の特性を向上させることができる。
<Insulation film, prepreg, and printed circuit board>
The insulating resin composition according to an embodiment of the present invention can produce a film in a semi-solid phase state by using any general method known in the art. For example, it is produced in the form of a film using a roll coater, a curtain coater, a comma coater, or the like, dried, and then applied onto a substrate by a build-up method. It can be used as an insulating film or prepreg when manufacturing a multilayer printed circuit board. Such an insulating film or prepreg can improve the properties of heat resistance, coefficient of thermal expansion, dielectric constant and dielectric loss.

このように、本発明の一実施例に係る絶縁樹脂組成物を含むワニスに無機繊維または有機繊維等を含浸させた後、硬化させてプリプレグを製造し、これに片面または両面に銅箔を付着して銅張積層板を製造することができる。 As described above, the varnish containing the insulating resin composition according to the embodiment of the present invention is impregnated with inorganic fibers, organic fibers, or the like and then cured to produce a prepreg, to which copper foil is attached to one or both sides. The copper-clad laminate can be manufactured.

上記無機繊維または有機繊維は、ガラス繊維、炭素繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、サーモトロピック(thermotropic)液晶高分子繊維、リオトロピック液晶高分子繊維 、アラミド繊維、ポリピリドビスイミダゾール繊維、ポリベンゾチアゾール繊維、及びポリアリレート繊維から1種以上選択することができ、これに限定されない。 The inorganic fibers or organic fibers include glass fibers, carbon fibers, polyparaphenylene benzobisoxazole fibers, thermotropic liquid crystal polymer fibers, liotropic liquid crystal polymer fibers, aramid fibers, polypyridobis imidazole fibers, and polybenzo. One or more can be selected from the thiazole fiber and the polyarylate fiber, and the present invention is not limited thereto.

また、上記樹脂組成物で製造された絶縁フィルムは、多層プリント回路基板の製造の際に、内層として用いられる銅張積層板上に積層して多層プリント回路基板の製造に用いられることができる。 Further, the insulating film produced by the above resin composition can be laminated on a copper-clad laminate used as an inner layer at the time of producing a multilayer printed circuit board and used for producing a multilayer printed circuit board.

例えば、上記樹脂組成物で製造された絶縁フィルムをパターン加工した内層回路基板上に積層した後、約80から110℃の温度で約30分間硬化させ、デスミア(desmear)工程を行った後、無電解メッキ及び電気メッキ工程を用いて回路層を形成することで多層プリント回路基板を製造することができる。 For example, an insulating film produced of the above resin composition is laminated on a patterned inner layer circuit board, cured at a temperature of about 80 to 110 ° C. for about 30 minutes, and subjected to a desmere step, and then electroless. A multilayer printed circuit board can be manufactured by forming a circuit layer using an electrolytic plating and an electroplating process.

図1は、本発明の一実施例に係る絶縁フィルムが積層されたプリント回路基板を概略的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a printed circuit board on which an insulating film according to an embodiment of the present invention is laminated.

図1を参照すると、本発明の実施例に係るプリント回路基板は、絶縁層11、12、13を含み、上記絶縁層11、12、13は、本発明による絶縁樹脂組成物を用いて製造されたものである。 Referring to FIG. 1, the printed circuit board according to the embodiment of the present invention includes insulating layers 11, 12, and 13, and the insulating layers 11, 12, and 13 are manufactured by using the insulating resin composition according to the present invention. It is a thing.

上記回路基板に含まれる絶縁層11、12、13の誘電正接特性(Df:Dissipation factor)は、0.0050tangentδであって熱膨脹係数特性が改善される。 The dielectric loss tangent characteristic (Df: Dissipation factor) of the insulating layers 11, 12, and 13 included in the circuit board is 0.0050 tangent δ, and the coefficient of thermal expansion characteristic is improved.

また、本発明の一実施例に係る絶縁樹脂組成物の製造方法は、シリレートエポキシに導入されるシリルグループの数を調整することで絶縁樹脂組成物の熱膨脹係数及び誘電正接特性を調整することができる。 Further, in the method for producing an insulating resin composition according to an embodiment of the present invention, the coefficient of thermal expansion and the dielectric loss tangent property of the insulating resin composition are adjusted by adjusting the number of silyl groups introduced into the silicate epoxy. Can be done.

<絶縁樹脂組成物の製造>
[実施例1]
エポキシ樹脂と硬化剤の当量比は、1:(0.7:0.15)に固定した。図2aに示すように、シリレートエポキシとしては、シリルグループが2つ置換された樹脂を用い、フィラーとしてのシリカは、アミノフェニルシランで表面処理されて表面にアミングループを含む1μmのシリカを用いた。シリカの含量は、樹脂と硬化剤の総量の80重量%となるようにし、添加剤として熱可塑性高分子であるポリビニルブチラールを用い、硬化触媒としてイミダゾール系を用いた。フィルムレベリング特性の向上のためにPDMS系レベリング物質を用いた。すべての成分を撹拌により均一に混合して絶縁フィルム用樹脂組成物1を製造した。
<Manufacturing of insulating resin composition>
[Example 1]
The equivalent ratio of the epoxy resin to the curing agent was fixed at 1: (0.7: 0.15). As shown in FIG. 2a, a resin in which two silyl groups are substituted is used as the silylate epoxy, and 1 μm silica having an amine group on the surface treated with aminophenylsilane is used as the filler silica. board. The content of silica was set to 80% by weight of the total amount of the resin and the curing agent, polyvinyl butyral, which is a thermoplastic polymer, was used as an additive, and an imidazole system was used as a curing catalyst. A PDMS-based leveling substance was used to improve the film leveling characteristics. All the components were uniformly mixed by stirring to produce a resin composition 1 for an insulating film.

[実施例2]
シリレートエポキシ樹脂として、図2bに示すように、シリルグループが2つ及び1つ置換された樹脂を50:50で用いたことを除き、実施例1と同様の方法を用いて絶縁フィルム用樹脂組成物2を製造した。
[Example 2]
As the silicate epoxy resin, as shown in FIG. 2b, a resin for an insulating film was used in the same manner as in Example 1 except that a resin in which two or one silyl group was substituted was used at 50:50. Composition 2 was produced.

[実施例3]
シリレートエポキシ樹脂として、図2cに示すようにシリルグループが1つ置換された樹脂を用いたことを除き、実施例1と同様の方法を用いて絶縁フィルム用樹脂組成物3を製造した。
[Example 3]
As the silicate epoxy resin, a resin composition 3 for an insulating film was produced by the same method as in Example 1 except that a resin in which one silyl group was substituted was used as shown in FIG. 2c.

[実施例4]
シリレートエポキシ樹脂として、図2dに示すようにシリルグループが1つ置換された樹脂と置換されなかった樹脂を50:50に用いたことを除き、実施例1と同様の方法を用いて絶縁フィルム用樹脂組成物4を製造した。
[Example 4]
As the silicate epoxy resin, an insulating film was used in the same manner as in Example 1 except that a resin in which one silyl group was substituted and a resin in which the silyl group was not substituted were used at 50:50 as shown in FIG. 2d. Resin composition 4 for use was produced.

[実施例5]
エポキシ樹脂として、ビスフェノールA樹脂、O−クレゾールノボラック樹脂、及び図2aに示すシリルグル−ムが2つ置換されたシリレートエポキシを用い、硬化剤としてアミノトリアジンを用いた。ここで、エポキシ樹脂の当量比は、ビスフェノールA樹脂、O−クレゾールノボラック樹脂、シリレートエポキシが、0.4:0.1:0.5であった。またエポキシ樹脂と硬化剤の当量比は、1:0.6に固定した。フィラーとしてのシリカは、アミノフェニルシランで表面処理されて表面にアミングループを含む1μmのシリカを用いた。
[Example 5]
As the epoxy resin, a bisphenol A resin, an o-cresol novolak resin, and a silylate epoxy in which two silyl glumes shown in FIG. 2a were substituted were used, and aminotriazine was used as a curing agent. Here, the equivalent ratio of the epoxy resin was 0.4: 0.1: 0.5 for the bisphenol A resin, the O-cresol novolak resin, and the silylate epoxy. The equivalent ratio of the epoxy resin and the curing agent was fixed at 1: 0.6. As the silica as the filler, 1 μm silica having been surface-treated with aminophenylsilane and containing an amine group on the surface was used.

シリカの含量は、樹脂と硬化剤の総量の80重量部となるようにした。添加剤として熱可塑性高分子であるポリビニルブチラールを用い、硬化触媒としてイミダゾール系を用いた。フィルムレベリング特性の向上のために、PDMS系レベリング物質を用いた。すべての成分を撹拌により均一に混合して絶縁フィルム用樹脂組成物5を製造した。 The silica content was adjusted to 80 parts by weight of the total amount of the resin and the curing agent. Polyvinyl butyral, which is a thermoplastic polymer, was used as an additive, and an imidazole type was used as a curing catalyst. A PDMS-based leveling substance was used to improve the film leveling characteristics. All the components were uniformly mixed by stirring to produce a resin composition 5 for an insulating film.

[比較例1]
エポキシ樹脂として、シリレートされなかったビスフェノールA樹脂、O−クレゾールノボラック樹脂を0.5:0.5の当量比で用い、シリカの含量を樹脂と硬化剤の総量の75重量%となるようにしたことを除き、実施例1と同様の方法を用いて比較例の組成物を製造した。
[Comparative Example 1]
As the epoxy resin, unsilylated bisphenol A resin and o-cresol novolak resin were used at an equivalent ratio of 0.5: 0.5 so that the silica content was 75% by weight of the total amount of the resin and the curing agent. Except for this, the composition of Comparative Example was produced using the same method as in Example 1.

[実施例6から実施例10]
実施例1から実施例5で得られた絶縁フィルム用樹脂組成物1から5を、20μmにフィルム化した。得られたフィルムを3ステップの硬化工程により硬化して絶縁フィルム1から5を製造した。
[Examples 6 to 10]
The resin compositions 1 to 5 for insulating films obtained in Examples 1 to 5 were filmed to 20 μm. The obtained film was cured by a three-step curing step to produce insulating films 1 to 5.

上記3ステップの硬化工程は、120℃/30分、180℃/30分、及び230℃/60分で行った。 The three-step curing step was performed at 120 ° C./30 minutes, 180 ° C./30 minutes, and 230 ° C./60 minutes.

[比較例2]
比較例1の組成物を用いたことを除き、実施例6と同様の方法を用いて比較例の絶縁フィルムを製造した。
[Comparative Example 2]
An insulating film of Comparative Example was produced using the same method as in Example 6 except that the composition of Comparative Example 1 was used.

[実験例]
実施例6から実施例10で得られた絶縁フィルム1から5、及び比較例2で得られた比較例の絶縁フィルムを対象にして熱膨脹係数及び誘電正接特性を測定し、その結果を表1に示した。熱膨脹係数は、dynamic mechanical analyzer(DMA)を使用して測定した(測定サンプル規格:長さ4cm、幅4mm、厚さ100μm)。誘電特性は、Agilent E8362 PNA装備を使用し、cavity methodを用いて測定した(測定サンプル規格:長さ8cm、幅3mm、厚さ100μm)。

Figure 0006950132
[Experimental example]
The coefficient of thermal expansion and the dielectric loss tangent characteristics were measured for the insulating films 1 to 5 obtained in Examples 6 to 10 and the insulating films of Comparative Examples obtained in Comparative Example 2, and the results are shown in Table 1. Indicated. The coefficient of thermal expansion was measured using a dynamic mechanical analysis (DMA) (measurement sample standard: length 4 cm, width 4 mm, thickness 100 μm). Dielectric properties were measured using Agilent E8632 PNA equipment and a capacity method (measurement sample standard: length 8 cm, width 3 mm, thickness 100 μm).
Figure 0006950132

上述した実施例6から実施例10で得られた絶縁フィルム1から5を用いて、図1に示すようなプリント回路基板を製造することができる。 The printed circuit board as shown in FIG. 1 can be manufactured by using the insulating films 1 to 5 obtained in Examples 6 to 10 described above.

図1は、プリント回路基板を概略的に示す断面図(11〜13:絶縁フィルム、21:水平配線、22:ビア電極)であり、回路基板に含まれる絶縁層11、12、13の誘電正接特性(Df:Dissipation factor)が0.0050tangentδ以下の優れた特性を有するプリント回路基板を提供することができる。 FIG. 1 is a cross-sectional view (11 to 13: insulating film, 21: horizontal wiring, 22: via electrode) schematically showing a printed circuit board, and is dielectrically tangent to the insulating layers 11, 12, and 13 included in the circuit board. It is possible to provide a printed circuit board having excellent characteristics having a characteristic (Df: Division factor) of 0.0050 tangent δ or less.

上述した実施例6から実施例10によれば、シリレートエポキシに導入されるシリルグループの数を調整することで絶縁樹脂組成物の熱膨脹係数の誘電正接特性を調整することができる。 According to Examples 6 to 10 described above, the dielectric loss tangent characteristic of the coefficient of thermal expansion of the insulating resin composition can be adjusted by adjusting the number of silyl groups introduced into the silicate epoxy.

以上本発明を具体的な実施例を参照して詳細に説明したが、これは本発明を具体的に説明するためのものに過ぎず、本発明がこれらに限定されることはなく、本発明の技術的思想内で当分野の通常の知識を有する者によりその変形や改良が可能であることは明らかである。 The present invention has been described in detail with reference to specific examples, but this is merely for explaining the present invention in detail, and the present invention is not limited thereto, and the present invention is not limited thereto. It is clear that it can be modified or improved by a person who has ordinary knowledge in the field within the technical idea of.

本発明の単純な変形や変更はすべて本発明の範囲に属するものであり、本発明の具体的な保護範囲は添付された特許請求の範囲により明確になるであろう。 All simple modifications and modifications of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention will be clarified by the appended claims.

Claims (9)

1つ以上のトリエトキシシリル基および2−プロペニル基を含むビスフェノールA系エポキシ樹脂と、
硬化剤と、
フィラーと、
を含む絶縁樹脂組成物。
A bisphenol A-based epoxy resin containing one or more triethoxysilyl groups and 2-propenyl groups,
Hardener and
With filler
Insulating resin composition containing.
前記フィラーは、前記ビスフェノールA系エポキシ樹脂及び硬化剤の総量の70から90重量部含まれる請求項1に記載の絶縁樹脂組成物。 The insulating resin composition according to claim 1, wherein the filler contains 70 to 90 parts by weight of the total amount of the bisphenol A epoxy resin and the curing agent. 前記ビスフェノールA系エポキシ樹脂及び硬化剤は、当量比が1:0.5から1:1の範囲で含まれる請求項1または請求項2に記載の絶縁樹脂組成物。 The insulating resin composition according to claim 1 or 2, wherein the bisphenol A-based epoxy resin and the curing agent have an equivalent ratio in the range of 1: 0.5 to 1: 1. シリル基を含まないエポキシ樹脂をさらに含む請求項1から請求項3のいずれか1項に記載の絶縁樹脂組成物。 The insulating resin composition according to any one of claims 1 to 3, further comprising an epoxy resin containing no silyl group. 前記硬化剤は、活性エステル硬化剤、アミノトリアジンノボラック硬化剤、アミド系硬化剤、ポリアミン系硬化剤、酸無水物硬化剤、フェノールノボラック型硬化剤、ポリメルカプタン硬化剤、第3アミン硬化剤、及びイミダゾール硬化剤から1種以上選択される請求項1から請求項4のいずれか1項に記載の絶縁樹脂組成物。 The curing agents include an active ester curing agent, an aminotriazine novolak curing agent, an amide curing agent, a polyamine curing agent, an acid anhydride curing agent, a phenol novolac type curing agent, a polymercaptan curing agent, a third amine curing agent, and a third amine curing agent. The insulating resin composition according to any one of claims 1 to 4, wherein one or more of the imidazole curing agents are selected. 請求項1から請求項5のいずれか1項に記載の絶縁樹脂組成物により基材上に形成された絶縁フィルム。 An insulating film formed on a substrate by the insulating resin composition according to any one of claims 1 to 5. 前記絶縁フィルムは、誘電正接特性(Df:Dissipation factor)が0.0050tangentδ以下である請求項6に記載の絶縁フィルム。 The insulating film according to claim 6, wherein the insulating film has a dielectric loss tangent property (Df: Dissipation factor) of 0.0050 tangent δ or less. 請求項1から請求項5のいずれか1項に記載の絶縁樹脂組成物を含むワニスに無機繊維または有機繊維を含浸及び乾燥させて製造されたプリプレグ。 A prepreg produced by impregnating a varnish containing the insulating resin composition according to any one of claims 1 to 5 with inorganic fibers or organic fibers and drying the varnish. 請求項6または請求項7に記載の絶縁フィルムが、回路パターンの形成された基材上にラミネーションされたプリント回路基板。 A printed circuit board in which the insulating film according to claim 6 or 7 is laminated on a base material on which a circuit pattern is formed.
JP2016064437A 2015-10-01 2016-03-28 A low dielectric loss insulating resin composition, an insulating film produced by the composition, and a printed circuit board provided with the insulating film. Active JP6950132B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150138704A KR102483625B1 (en) 2015-10-01 2015-10-01 Resin composition having low dielectric constant, insulating film using the same and printed circuit board comprising the film
KR10-2015-0138704 2015-10-01

Publications (2)

Publication Number Publication Date
JP2017066360A JP2017066360A (en) 2017-04-06
JP6950132B2 true JP6950132B2 (en) 2021-10-13

Family

ID=58491761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064437A Active JP6950132B2 (en) 2015-10-01 2016-03-28 A low dielectric loss insulating resin composition, an insulating film produced by the composition, and a printed circuit board provided with the insulating film.

Country Status (2)

Country Link
JP (1) JP6950132B2 (en)
KR (1) KR102483625B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991083B2 (en) 2018-03-20 2022-01-12 住友化学株式会社 Liquid crystal polyester liquid composition, manufacturing method of liquid crystal polyester film and liquid crystal polyester film
JP7390127B2 (en) 2019-02-15 2023-12-01 住友化学株式会社 Liquid crystal polyester composition, film manufacturing method, and laminate manufacturing method
US11879041B2 (en) 2019-02-15 2024-01-23 Sumitomo Chemical Company, Limited Film and laminate
JP7210401B2 (en) 2019-02-15 2023-01-23 住友化学株式会社 Films and laminates
CN116888196A (en) 2021-02-02 2023-10-13 住友化学株式会社 Liquid crystal polyester powder, composition, method for producing film, and method for producing laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055435A (en) * 2001-08-16 2003-02-26 Arakawa Chem Ind Co Ltd Electrical insulating resin composition, insulating material for electronic material and process for producing it
JP2003147052A (en) 2001-11-12 2003-05-21 Nec Corp Flame-retardant epoxy resin composition
JP4013118B2 (en) * 2002-02-27 2007-11-28 荒川化学工業株式会社 Epoxy resin composition, resin composition for electronic material, resin for electronic material, coating agent, and method for producing coating agent cured film
KR101252063B1 (en) * 2011-08-25 2013-04-12 한국생산기술연구원 Epoxy Compound Having Alkoxysilyl Group, Preparing Method Thereof, Composition Comprising the Same and Cured Product and Use Thereof
WO2014129877A1 (en) * 2013-02-25 2014-08-28 한국생산기술연구원 Epoxy compound having alkoxysilyl group, method for manufacturing same, composition and cured product including same, and use thereof

Also Published As

Publication number Publication date
KR102483625B1 (en) 2023-01-02
JP2017066360A (en) 2017-04-06
KR20170039495A (en) 2017-04-11

Similar Documents

Publication Publication Date Title
JP6950132B2 (en) A low dielectric loss insulating resin composition, an insulating film produced by the composition, and a printed circuit board provided with the insulating film.
TWI410442B (en) A resin composition for an insulating layer of a multilayer printed circuit board
KR101397221B1 (en) Insulation resin composition for printed circuit board having thermal conductivity and improved electrical properties, insulating film, prepreg and printed circuit board
KR101987310B1 (en) Insulating resin composition for printed circuit board and products manufactured by using the same
JP6205692B2 (en) Thermosetting epoxy resin composition, insulating film forming adhesive film and multilayer printed wiring board
KR20150006713A (en) Insulating film for printed circuit board and products having the same
KR20200106983A (en) Insulation sheet, laminate, and substrate
JP2024009109A (en) Resin material and multilayer printed wiring board
JP2012087250A (en) Heat-conductive resin composition, resin sheet, prepreg, metal laminated plate, and print wiring board
US20140187112A1 (en) Prepreg, method for manufacturing the same, and copper clad laminate using the same
JP5798155B2 (en) Insulating resin composition for printed circuit board having low coefficient of thermal expansion and dielectric loss, prepreg and printed circuit board using the same
KR102401053B1 (en) Polyolefin based adhesive composition having excellent low dielectric feature, bonding sheet, printed circuit board and method for preparing the same
KR20140035623A (en) Insulation composition for multilayered printed circuit board, method for preparing thereof, and multilayered printed circuit board comprising insulation layer thereof
JP6422230B2 (en) Insulating resin composition for printed circuit board and product using the same
JP7441928B2 (en) Thermosetting resin filler, its cured product and multilayer printed wiring board
KR101254035B1 (en) Adhesive composition of metal copper clad laminate for high efficiency radiating pcb
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
KR20110080419A (en) Resin composition for insulating film, insulating film using the same and manufacturing method thereof
KR101513350B1 (en) Insulating film for printed circuit board and products having the same
KR20090085249A (en) Epoxy composition for adhesion strengthening of prepreg and copper, epoxy adhesive
WO2011161902A1 (en) Resin composition used to form resin layer of metal base substrate, metal base substrate, and method for producing metal base substrate
JPH0360862B2 (en)
KR20140002354A (en) Composition, insulating film made therefrom, and multilayer printed circuit boards having the same
JP6763788B2 (en) Thermosetting epoxy resin composition, adhesive film for forming an insulating layer and multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R150 Certificate of patent or registration of utility model

Ref document number: 6950132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150