JP6948170B2 - Core for current limiting reactor and current limiting reactor - Google Patents

Core for current limiting reactor and current limiting reactor Download PDF

Info

Publication number
JP6948170B2
JP6948170B2 JP2017123900A JP2017123900A JP6948170B2 JP 6948170 B2 JP6948170 B2 JP 6948170B2 JP 2017123900 A JP2017123900 A JP 2017123900A JP 2017123900 A JP2017123900 A JP 2017123900A JP 6948170 B2 JP6948170 B2 JP 6948170B2
Authority
JP
Japan
Prior art keywords
core
current
embedded
current limiting
limiting reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017123900A
Other languages
Japanese (ja)
Other versions
JP2019009289A (en
Inventor
羽田 正二
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2017123900A priority Critical patent/JP6948170B2/en
Publication of JP2019009289A publication Critical patent/JP2019009289A/en
Application granted granted Critical
Publication of JP6948170B2 publication Critical patent/JP6948170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直流電路を流れる電流を限流する限流リアクトルに含まれる限流リアクトル用コア、限流リアクトルおよび限流リアクトル用コアの製造方法に関する。 The present invention relates to a core for a current limiting reactor, a current limiting reactor, and a core for a current limiting reactor included in a current limiting reactor that limits the current flowing through a DC electric circuit.

電磁式の引外し装置を備えた接点と限流リアクトルとが直列に接続された直流遮断器が知られている(例えば、特許文献1参照)。
引外し装置は、直流電路に流れる電流が所定の電流値を超えると、接点を開く。接点が開くと電流が遮断される。
この限流リアクトルは、主コイルと短絡コイルが共通のコアに巻かれている。主コイルは、直流電路に挿入されている。短絡コイルは、巻線の巻始めと巻終わりとが短絡されている。主コイルと短絡コイルとは電磁結合している。直流電路に短絡事故が起きたとき、この限流リアクトルは、引外し装置によって接点が開かれる所定の電流値付近まで直流電路の電流を迅速に増加させ、その電流値を超えると電流の増加を抑制する。
A DC circuit breaker in which a contact provided with an electromagnetic trip device and a current limiting reactor are connected in series is known (see, for example, Patent Document 1).
The trip device opens a contact when the current flowing through the DC electric circuit exceeds a predetermined current value. When the contact opens, the current is cut off.
In this current limiting reactor, the main coil and the short-circuit coil are wound around a common core. The main coil is inserted in the DC electric circuit. In the short-circuit coil, the winding start and winding end are short-circuited. The main coil and the short-circuit coil are electromagnetically coupled. When a short-circuit accident occurs in the DC circuit, this current limiting reactor quickly increases the current in the DC circuit to the vicinity of the predetermined current value at which the contacts are opened by the trip device, and when the current value is exceeded, the current increases. Suppress.

また、変圧器、モータ、発電機等は、コア(鉄心)とコイルを有する。コアは、電磁鋼板、ソフトフェライト、鉄粉等を材料として形成される。
変化する磁界中にコアが置かれると、磁束の変化を妨げるようにコア内に渦電流が生じ、熱として消費され損失(鉄損)となる。変圧器、モータ、発電機等の用途では、発熱を防止するためにも渦電流を抑制することが望ましい。そのため、例えば、表面に絶縁被膜を有する強磁性体粉末を圧縮・成形した圧粉磁心がコアの材料として用いられる(例えば、非特許文献1参照)。粒子の表面に形成された絶縁被膜により、粒子間の渦電流を抑制することができる。
Further, a transformer, a motor, a generator, etc. have a core (iron core) and a coil. The core is formed of an electromagnetic steel plate, soft ferrite, iron powder or the like as a material.
When the core is placed in a changing magnetic field, an eddy current is generated in the core so as to prevent the change in magnetic flux, and it is consumed as heat, resulting in loss (iron loss). In applications such as transformers, motors, and generators, it is desirable to suppress eddy currents in order to prevent heat generation. Therefore, for example, a dust core obtained by compressing and molding a ferromagnetic powder having an insulating film on the surface is used as a core material (see, for example, Non-Patent Document 1). The insulating coating formed on the surface of the particles can suppress eddy currents between the particles.

特開2016−181686号公報Japanese Unexamined Patent Publication No. 2016-181686

三谷宏幸、「次世代磁性材料「磁性鉄粉」への期待」、神戸製鋼技報、2015年、Vol.65、No.2、pp.12−15.Hiroyuki Mitani, "Expectations for Next Generation Magnetic Material" Magnetic Iron Powder "", Kobe Steel Technical Report, 2015, Vol. 65, No. 2, pp. 12-15.

特許文献1に記載の限流リアクトルでは、直流電路の短絡事故時のように突然大きな電圧が印加されて主コイルの生じる磁界が増加すると、短絡コイルに渦電流が生じる。この渦電流により生じる磁界に起因して、主コイルの電流(直流電路の電流)が所定の電流値付近まで迅速に増加し、その電流値を超えると電流の増加が抑制される。
しかし、限流リアクトルのコアに短絡コイルを外付けすると、限流リアクトルの形状が制限され、その製造コストが増加する。
また、変圧器、モータ、発電機等の用途で用いられるコアと異なり、限流リアクトルに含まれるコアは、より多くの渦電流を生じさせる方が望ましい。
In the current limiting reactor described in Patent Document 1, when a large voltage is suddenly applied and the magnetic field generated by the main coil increases, as in the case of a short-circuit accident in a DC electric circuit, an eddy current is generated in the short-circuit coil. Due to the magnetic field generated by this eddy current, the current of the main coil (current of the DC electric circuit) rapidly increases to the vicinity of a predetermined current value, and when the current value is exceeded, the increase of the current is suppressed.
However, if a short-circuit coil is externally attached to the core of the current limiting reactor, the shape of the current limiting reactor is limited and the manufacturing cost thereof increases.
Further, unlike the cores used in applications such as transformers, motors, and generators, it is desirable that the cores included in the current limiting reactor generate more eddy currents.

本発明の目的は、多くの渦電流を生じさせることができる限流リアクトル用コア、限流リアクトルおよび限流リアクトル用コアの製造方法を提供することである。 An object of the present invention is to provide a method for manufacturing a core for a current limiting reactor, a current limiting reactor, and a core for a current limiting reactor that can generate a large amount of eddy currents.

上記目的を達成するために、本発明の限流リアクトル用コアは、
磁性体で形成された限流リアクトル用コアであって、
前記磁性体よりも電気抵抗率の低い素材で形成された埋込部材であって、第1の主面から当該第1の主面に対向する第2の主面まで貫通する貫通孔を有する複数の埋込部材が埋め込まれており
前記埋込部材の貫通孔の方向と一致する第1の方向と、前記第1の方向に垂直な第2の方向と、前記第1および第2の方向に垂直な第3の方向の各方向において、複数の前記埋込部材が互いに間隔を空けて埋め込まれている
ことを特徴とする。
In order to achieve the above object, the core for limiting current reactor of the present invention is
A core for limiting current reactor made of magnetic material,
A plurality of embedded members formed of a material having an electrical resistivity lower than that of the magnetic material and having through holes penetrating from the first main surface to the second main surface facing the first main surface. It is embedded embedding member of,
A first direction that coincides with the direction of the through hole of the embedded member, a second direction that is perpendicular to the first direction, and a third direction that is perpendicular to the first and second directions. In the above, a plurality of the embedded members are embedded at intervals from each other .
It is characterized by that.

好ましくは、本発明の限流リアクトル用コアは、
前記磁性体が、鉄系であり、
前記埋込部材が、金、銀、銅、またはアルミニウムで形成されている、
ことを特徴とする。
Preferably, the core for the current limiting reactor of the present invention is
The magnetic material is iron-based and
The embedded member is made of gold, silver, copper, or aluminum.
It is characterized by that.

また、本発明の限流リアクトルは、
上述した限流リアクトル用コアと、
前記限流リアクトル用コアに巻かれたコイルと、
を備え、
前記コイルに電流が流れるときに生じる磁界が、前記埋込部材の前記第1の主面および第2の主面と鎖交する、
ことを特徴とする。
Further, the current limiting reactor of the present invention is
With the core for the current limiting reactor mentioned above,
The coil wound around the core for the current limiting reactor and
With
The magnetic field generated when an electric current flows through the coil interlinks with the first main surface and the second main surface of the embedded member.
It is characterized by that.

本発明によれば、限流リアクトル用コア内に多くの渦電流を生じさせることができる。 According to the present invention, a large amount of eddy current can be generated in the core for the current limiting reactor.

本発明の実施形態に係る限流リアクトルの一例を示す斜視図である。It is a perspective view which shows an example of the current limiting reactor which concerns on embodiment of this invention. 図1のコアのA−A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the core of FIG. 図1のコアの縦断面図である。It is a vertical sectional view of the core of FIG. 埋込部材に生じる渦電流とそれにより生じる磁束の一例を示す図である。図4(A)は、環状の埋込部材の一例を示す。図4(B)は矩形状の埋込部材の一例を示す。It is a figure which shows an example of the eddy current generated in the embedded member and the magnetic flux generated by it. FIG. 4A shows an example of an annular embedded member. FIG. 4B shows an example of a rectangular embedded member. コアの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a core.

以下、本発明の実施形態に係る限流リアクトル用コア、限流リアクトルおよび限流リアクトル用コアの製造方法について図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。 Hereinafter, a method for manufacturing a current limiting reactor core, a current limiting reactor, and a core for limiting current reactor according to the embodiment of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, the common components are designated by the same reference numerals, and the repeated description will be omitted.

図1は、本発明の第1の実施形態に係る限流リアクトル1の構造の一例を示す。図2は、図1のA−A線断面図である。図3は、図1のコアの縦断面図である。図2と図3は、コアの内部構造の一例を示す。
限流リアクトル1は、コア10と、コイル20とを有する。
コイル20は、コア10に巻かれている。コイル20の一端と他端は、それぞれ端子T1と端子T2に接続される。コイル20は直流電路に挿入され、例えば端子T1から端子T2に向けて電流iが流れる。
FIG. 1 shows an example of the structure of the current limiting reactor 1 according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG. FIG. 3 is a vertical cross-sectional view of the core of FIG. 2 and 3 show an example of the internal structure of the core.
The current limiting reactor 1 has a core 10 and a coil 20.
The coil 20 is wound around the core 10. One end and the other end of the coil 20 are connected to the terminal T1 and the terminal T2, respectively. The coil 20 is inserted into a DC electric circuit, and a current i flows from the terminal T1 to the terminal T2, for example.

コア10は、磁性体で形成される。コア10は、ヨークY1と、ヨークY2と、脚部P1と、脚部P2とを有する。ヨークY1とヨークY2は対向している。脚部P1は、ヨークY1の左の端部とヨークY2の左の端部を連結する。脚部P2は、ヨークY1の右の端部とヨークY2の右の端部を連結する。
コイル20は、その一部、例えば脚部P1に巻かれる。
The core 10 is made of a magnetic material. The core 10 has a yoke Y1, a yoke Y2, a leg portion P1, and a leg portion P2. York Y1 and York Y2 face each other. The leg P1 connects the left end of the yoke Y1 and the left end of the yoke Y2. The leg P2 connects the right end of the yoke Y1 and the right end of the yoke Y2.
The coil 20 is wound around a part thereof, for example, the leg P1.

図2と図3に示すように、コア10は、その内部に多数の小さな埋込部材30が埋め込まれている。
図4に示すように、埋込部材30は、例えば環状または矩形状の部材である。埋込部材30は、第1の主面31と、それに対向する第2の主面32とを有し、所定の厚さである。埋込部材30は、第1の主面31から第2の主面32まで貫通する貫通孔33を有する。埋込部材30は、金、銀、銅、またはアルミニウムのような電気抵抗率の小さな素材で形成されている。埋込部材30は、例えば、金、銀、銅、またはアルミニウムのような金属の線でできたリング(輪)であってもよい。
As shown in FIGS. 2 and 3, the core 10 has a large number of small embedded members 30 embedded therein.
As shown in FIG. 4, the embedded member 30 is, for example, an annular or rectangular member. The embedded member 30 has a first main surface 31 and a second main surface 32 facing the first main surface 31 and has a predetermined thickness. The embedded member 30 has a through hole 33 penetrating from the first main surface 31 to the second main surface 32. The embedding member 30 is made of a material having a low electrical resistivity such as gold, silver, copper, or aluminum. The embedding member 30 may be, for example, a ring made of metal wire such as gold, silver, copper, or aluminum.

埋込部材30は、短絡コイルとして機能する。図1と図3に示すように、コイル20に電流iが流れると、コア10の内部に磁束Φmが生じる。図4に示すように、磁界Φmは、個々の埋込部材30の第1の主面31および第2の主面32と鎖交する。このとき、磁界Φmは埋込部材30の第1の主面31および/または第2の主面32とできるだけ垂直に近い角度で鎖交することが望ましい。
コイル20の電流iが変化する(すなわち、磁束Φmが変化する)と、埋込部材30に渦電流ieが流れる。埋込部材30の電気抵抗はコア10を形成する磁性体よりも小さいため、大きな渦電流ieが流れる。渦電流ieにより、磁束Φmの変化を抑制する向きに磁束Φeが生じる。このため、埋込部材30が無い場合に比べて磁束Φmが飽和しにくくなる。
The embedded member 30 functions as a short-circuit coil. As shown in FIGS. 1 and 3, when the current i flows through the coil 20, a magnetic flux Φm is generated inside the core 10. As shown in FIG. 4, the magnetic field Φm interlinks with the first main surface 31 and the second main surface 32 of each embedded member 30. At this time, it is desirable that the magnetic field Φm is interlinked with the first main surface 31 and / or the second main surface 32 of the embedded member 30 at an angle as close to vertical as possible.
When the current i of the coil 20 changes (that is, the magnetic flux Φm changes), an eddy current ie flows through the embedded member 30. Since the electric resistance of the embedded member 30 is smaller than that of the magnetic material forming the core 10, a large eddy current ie flows. Due to the eddy current ie, the magnetic flux Φe is generated in the direction of suppressing the change of the magnetic flux Φm. Therefore, the magnetic flux Φm is less likely to be saturated as compared with the case where the embedded member 30 is not provided.

埋込部材30を埋め込む位置とその密度は、コア10内における磁束Φmの抑制の程度に応じて調整される。例えば、図3に示すように、コイル20が巻かれている脚部P1以外のヨークY1とヨークY2と脚部P2とに埋込部材30を埋め込んでもよい。また、脚部P1に対向する脚部P2にのみ埋込部材30を埋め込んでもよい。ヨークY1とヨークY2と脚部P1と脚部P2全てに埋込部材30を埋め込んでもよい。
また、埋込部材30の外形を比較的小さくすることにより、コア10の形状の自由度を高くすることができる。
The position where the embedding member 30 is embedded and its density are adjusted according to the degree of suppression of the magnetic flux Φm in the core 10. For example, as shown in FIG. 3, the embedding member 30 may be embedded in the yoke Y1, the yoke Y2, and the leg P2 other than the leg P1 around which the coil 20 is wound. Further, the embedding member 30 may be embedded only in the leg portion P2 facing the leg portion P1. The embedding member 30 may be embedded in all of the yoke Y1, the yoke Y2, the leg portion P1, and the leg portion P2.
Further, by making the outer shape of the embedded member 30 relatively small, the degree of freedom in the shape of the core 10 can be increased.

コア10は、例えば、鉄粉のような磁性体の粒子を含む粉末の中に多数の埋込部材11を埋め込み、圧縮・成形して製造される。
コア10の製造に用いられる磁性体粉末は、粒子の表面に絶縁被膜が形成されたものであってもよいが、粒子の表面に絶縁被膜が形成されていないものが望ましい。表面に絶縁被膜が形成されていない粒子を用いて製造されたコア10は、粒子間にも渦電流が生じる。
The core 10 is manufactured by embedding a large number of embedded members 11 in a powder containing magnetic particles such as iron powder, and compressing and molding the core 10.
The magnetic powder used for producing the core 10 may have an insulating film formed on the surface of the particles, but it is desirable that the magnetic powder has no insulating film formed on the surface of the particles. In the core 10 manufactured by using particles having no insulating film formed on the surface, eddy currents are also generated between the particles.

コア10の製造に用いられる粉末の素材は、鉄系の磁性体であることが好ましい。例えば、純鉄、鉄−シリコン系合金、鉄−窒素系合金、鉄−ニッケル系合金、鉄−炭素系合金、鉄−ホウ素系合金、鉄−コバルト系合金、鉄−リン系合金、鉄−ニッケル−コバルト系合金および鉄−アルミニウム−シリコン系合金(センダスト合金)、鉄アモルファス系材料、微細結晶材料等の粉末を用いてコア10を製造することができる。 The powder material used in the production of the core 10 is preferably an iron-based magnetic material. For example, pure iron, iron-silicon alloy, iron-nitrogen alloy, iron-nickel alloy, iron-carbon alloy, iron-boron alloy, iron-cobalt alloy, iron-phosphorus alloy, iron-nickel The core 10 can be manufactured by using powders of a cobalt-based alloy, an iron-aluminum-silicon alloy (sendust alloy), an iron amorphous material, a fine crystal material, and the like.

図5は、コア10の製造方法の一例を示す。
コア10を製造する際には、まず、磁性体の粒子を含む粉末を、その中に複数の埋込部材30を埋め込みながら、金型に投入する(S1)。ここで、粉末に含まれる粒子は、その表面に絶縁被膜が形成されていないものが望ましい。次に、埋込部材30が埋め込まれた粉末をプレス機で圧縮し、成形する(S2)。
コア10が圧縮・成形された後に、埋込部材30が変形したとても、それが閉道をなしている限り問題はない。
また、圧縮・成形中に埋込部材30が変形することを防ぐために、ヨークY1とヨークY2と脚部P1と脚部P2とを別々に角柱として圧縮・成形により製造し、その後に4個の角柱を矩形に接合することとしてもよい。この場合、圧縮・成形の際に角柱の長手方向に沿って力を加えることにより、埋込部材30の第1の主面31と第2の主面32に垂直に力が加わることとなり、埋込部材30の変形を防ぐことができる。
FIG. 5 shows an example of a method for manufacturing the core 10.
When manufacturing the core 10, first, powder containing magnetic particles is put into a mold while embedding a plurality of embedded members 30 in the powder (S1). Here, it is desirable that the particles contained in the powder do not have an insulating film formed on the surface thereof. Next, the powder in which the embedding member 30 is embedded is compressed by a press and molded (S2).
After the core 10 was compressed and molded, the embedding member 30 was deformed so much that there is no problem as long as it is closed.
Further, in order to prevent the embedded member 30 from being deformed during compression / molding, the yoke Y1, the yoke Y2, the leg portion P1 and the leg portion P2 are separately manufactured as prisms by compression / molding, and then four pieces are manufactured. The prisms may be joined into a rectangle. In this case, by applying a force along the longitudinal direction of the prism during compression / molding, a force is applied perpendicularly to the first main surface 31 and the second main surface 32 of the embedding member 30, and the embedding member 30 is embedded. It is possible to prevent the inclusion member 30 from being deformed.

なお、上述した実施形態では矩形状のコア10の例を示したが、これに限らず、コア10は棒状や環状等他の形状であってもよい。また、上述した実施形態では環状または矩形状の埋込部材30の例を示したが、これに限らず、渦電流を生じる形状であれば、埋込部材30は他の形状であってもよい。 In the above-described embodiment, an example of the rectangular core 10 is shown, but the core 10 is not limited to this, and the core 10 may have another shape such as a rod shape or an annular shape. Further, in the above-described embodiment, an example of the annular or rectangular embedded member 30 is shown, but the present invention is not limited to this, and the embedded member 30 may have another shape as long as it has a shape that generates an eddy current. ..

本発明によれば、限流リアクトル用コア内に多数の短絡コイル(埋込部材)が配置されるため、多くの渦電流が生じる。更に、表面に絶縁被膜が形成されていない粒子を用いて製造されたコアは、粒子間にも渦電流が生じる。従って、本発明に係る限流リアクトル用コアは、短絡コイルを外付けしなくても、直流電路の短絡事故時のように突然大きな電圧が印加されたとき、コイルの電流(直流電路の電流)を所定の電流値付近まで迅速に増加させ、その電流値を超えると電流の増加を抑制することができる。
また、多数の短絡コイルが並列に配置されるため、限流リアクトル用コアの周波数特性が向上する。
According to the present invention, since a large number of short-circuit coils (embedded members) are arranged in the core for the current limiting reactor, a large amount of eddy current is generated. Further, in a core manufactured by using particles having no insulating film formed on the surface, eddy currents are also generated between the particles. Therefore, the current limiting reactor core according to the present invention does not need to attach an external short-circuit coil, but when a large voltage is suddenly applied as in the case of a short-circuit accident of a DC electric circuit, the current of the coil (current of the DC electric circuit). Can be rapidly increased to near a predetermined current value, and when the current value is exceeded, the increase in current can be suppressed.
Further, since a large number of short-circuit coils are arranged in parallel, the frequency characteristics of the current limiting reactor core are improved.

以上、本発明の実施形態について説明したが、設計または製造上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。 Although the embodiments of the present invention have been described above, various modifications and combinations required due to design or manufacturing convenience and other factors are described in the inventions and embodiments of the invention described in the claims. It is included in the scope of the invention corresponding to the specific example.

1…限流リアクトル、10…コア、20…コイル、30…埋込部材、31…埋込部材の第1の主面、32…埋込部材の第2の主面、33…埋込部材の貫通孔 1 ... current limiting reactor, 10 ... core, 20 ... coil, 30 ... embedded member, 31 ... first main surface of embedded member, 32 ... second main surface of embedded member, 33 ... embedded member Through hole

Claims (3)

磁性体で形成された限流リアクトル用コアであって、
前記磁性体よりも電気抵抗率の低い素材で形成された埋込部材であって、第1の主面から当該第1の主面に対向する第2の主面まで貫通する貫通孔を有する複数の埋込部材が埋め込まれており
前記埋込部材の貫通孔の方向と一致する第1の方向と、前記第1の方向に垂直な第2の方向と、前記第1および第2の方向に垂直な第3の方向の各方向において、複数の前記埋込部材が互いに間隔を空けて埋め込まれている
ことを特徴とする限流リアクトル用コア。
A core for limiting current reactor made of magnetic material,
A plurality of embedded members formed of a material having an electrical resistivity lower than that of the magnetic material and having through holes penetrating from the first main surface to the second main surface facing the first main surface. It is embedded embedding member of,
A first direction that coincides with the direction of the through hole of the embedded member, a second direction that is perpendicular to the first direction, and a third direction that is perpendicular to the first and second directions. In the above, a plurality of the embedded members are embedded at intervals from each other .
A core for a current limiting reactor that is characterized by this.
前記磁性体が、鉄系であり、
前記埋込部材が、金、銀、銅、またはアルミニウムで形成されている、
ことを特徴とする請求項1に記載の限流リアクトル用コア。
The magnetic material is iron-based and
The embedded member is made of gold, silver, copper, or aluminum.
The core for a current limiting reactor according to claim 1.
請求項1または請求項2に記載の限流リアクトル用コアと、
前記限流リアクトル用コアに巻かれたコイルと、
を備え、
前記コイルに電流が流れるときに生じる磁界が、前記埋込部材の前記第1の主面および第2の主面と鎖交する、
ことを特徴とする限流リアクトル。
The core for limiting current reactor according to claim 1 or 2.
The coil wound around the core for the current limiting reactor and
With
The magnetic field generated when an electric current flows through the coil interlinks with the first main surface and the second main surface of the embedded member.
A current limiting reactor characterized by that.
JP2017123900A 2017-06-26 2017-06-26 Core for current limiting reactor and current limiting reactor Active JP6948170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123900A JP6948170B2 (en) 2017-06-26 2017-06-26 Core for current limiting reactor and current limiting reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123900A JP6948170B2 (en) 2017-06-26 2017-06-26 Core for current limiting reactor and current limiting reactor

Publications (2)

Publication Number Publication Date
JP2019009289A JP2019009289A (en) 2019-01-17
JP6948170B2 true JP6948170B2 (en) 2021-10-13

Family

ID=65029711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123900A Active JP6948170B2 (en) 2017-06-26 2017-06-26 Core for current limiting reactor and current limiting reactor

Country Status (1)

Country Link
JP (1) JP6948170B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005287A (en) * 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd Inductance component and electronic apparatus employing it
WO2014188662A1 (en) * 2013-05-21 2014-11-27 パナソニックIpマネジメント株式会社 Coil structure
CN107430930A (en) * 2015-03-23 2017-12-01 Ntn株式会社 Inductor and protection circuit

Also Published As

Publication number Publication date
JP2019009289A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US9959965B2 (en) Packaging structure of a magnetic device
JP2012526384A (en) Magnetic component and method of manufacturing the magnetic component
JP2003309024A (en) Coil encapsulating magnetic component and method of manufacturing the same
JP2009004670A (en) Drum-type inductor and its manufacturing method
US6734771B2 (en) Inductor component having a permanent magnet in the vicinity of magnetic gap
JP2016506626A (en) Induction core
JPWO2018235539A1 (en) Coil parts
JP6948170B2 (en) Core for current limiting reactor and current limiting reactor
CN108780693A (en) Magnetic element
US20170040100A1 (en) Core piece and reactor
JP2006294733A (en) Inductor and its manufacturing method
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP5189637B2 (en) Coil parts and power supply circuit using the same
JP2007165623A (en) Choke coil
JP4291566B2 (en) Composite core
JP6668113B2 (en) Inductor
JP2021019104A (en) Reactor device
KR102310477B1 (en) Inductor and producing method of the same
JP2016025273A (en) Winding component
JP2001052945A (en) Closed magnetic path inductor and manufacture thereof
JP7296047B2 (en) Reactor
JP2013197570A (en) Composite magnetic core, reactor, and power supply device
JP6890225B2 (en) Inductor parts
JP2016225590A (en) Inductor for current-limiting circuit
JP2008153611A (en) Ignition coil and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210917

R150 Certificate of patent or registration of utility model

Ref document number: 6948170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150