JP6943086B2 - Curable resin composition and cured product - Google Patents

Curable resin composition and cured product Download PDF

Info

Publication number
JP6943086B2
JP6943086B2 JP2017167776A JP2017167776A JP6943086B2 JP 6943086 B2 JP6943086 B2 JP 6943086B2 JP 2017167776 A JP2017167776 A JP 2017167776A JP 2017167776 A JP2017167776 A JP 2017167776A JP 6943086 B2 JP6943086 B2 JP 6943086B2
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
polymerizable compound
group
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017167776A
Other languages
Japanese (ja)
Other versions
JP2019044055A (en
Inventor
辰宏 高橋
辰宏 高橋
晃哉 後藤
晃哉 後藤
西田 裕文
裕文 西田
野村 和宏
和宏 野村
鉄平 梅木
鉄平 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Nagase Chemtex Corp
Original Assignee
Yamagata University NUC
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Nagase Chemtex Corp filed Critical Yamagata University NUC
Priority to JP2017167776A priority Critical patent/JP6943086B2/en
Publication of JP2019044055A publication Critical patent/JP2019044055A/en
Application granted granted Critical
Publication of JP6943086B2 publication Critical patent/JP6943086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、導電性高分子を含む硬化性樹脂組成物、及び、それを用いた硬化物に関する。 The present invention relates to a curable resin composition containing a conductive polymer and a cured product using the same.

高い導電性を示す高分子材料として、ポリアニリン、ポリピロール、及びポリチオフェンなどの導電性高分子と、プロトン酸ドーパントとを組み合わせた高分子材料が注目されている。しかし、当該高分子材料は成形加工性に乏しく、その点での改善が求められていた。 As a polymer material exhibiting high conductivity, a polymer material in which a conductive polymer such as polyaniline, polypyrrole, and polythiophene is combined with a protonic acid dopant is attracting attention. However, the polymer material has poor molding processability, and improvement in that respect has been required.

特許文献1では、当該高分子材料の導電性を低下させることなく、成形加工性を向上させる試みが開示されている。この文献では、導電性高分子とプロトン酸ドーパントの組合せに対し、カチオン反応性基を有するモノマーとしてジビニルベンゼンなどのビニルモノマーを添加してなる熱硬化性の組成物が開示されている。この組成物は、加熱によりプロトン酸ドーパントがカチオン重合開始剤として作用して前記モノマーが重合することにより、導電性を示す硬化物を与えることが示されている。これにより、導電性高分子材料に熱硬化性を付与して、得られた成形体の機械的強度を向上させると記載されている。 Patent Document 1 discloses an attempt to improve molding processability without lowering the conductivity of the polymer material. This document discloses a thermosetting composition obtained by adding a vinyl monomer such as divinylbenzene as a monomer having a cationically reactive group to a combination of a conductive polymer and a protonic acid dopant. It has been shown that this composition gives a cured product exhibiting conductivity by the protonic acid dopant acting as a cationic polymerization initiator by heating and polymerizing the monomer. It is described that this imparts thermosetting property to the conductive polymer material and improves the mechanical strength of the obtained molded product.

この手法によると、たしかに導電性高分子材料は硬化性を示すようになり、その成形体の機械的強度を向上させることができるものの、その向上の程度は十分なものではなく、機械的強度のより一層の改善が求められていた。 According to this method, the conductive polymer material does show curability, and although the mechanical strength of the molded product can be improved, the degree of improvement is not sufficient, and the mechanical strength is not sufficient. Further improvement was required.

特開2015−10202号公報JP 2015-10202

本発明は、上記現状に鑑み、導電性を示しながら、優れた機械的強度を示す硬化物を与える、導電性高分子を含む硬化性樹脂組成物、及び、それを硬化させた硬化物を提供することを目的とする。 In view of the above situation, the present invention provides a curable resin composition containing a conductive polymer, which provides a cured product exhibiting excellent mechanical strength while exhibiting conductivity, and a cured product obtained by curing the curable resin composition. The purpose is to do.

本発明者らが鋭意検討した結果、導電性高分子及びプロトン酸ドーパントに対し、ビニル基及びフェニル環構造をそれぞれ2個以上含む化合物を配合してなる組成物が、硬化性を示し、得られる硬化物は導電性を保持しながら、優れた機械的強度を達成していることを見出し、本発明を完成するに至った。 As a result of diligent studies by the present inventors, a composition obtained by blending a conductive polymer and a protonic acid dopant with a compound containing two or more vinyl groups and two or more phenyl ring structures each exhibits curability. We have found that the cured product achieves excellent mechanical strength while maintaining conductivity, and have completed the present invention.

すなわち本発明は、導電性高分子(a)、プロトン酸ドーパント(b)、及び、下記一般式(1)又は(2)で表される重合性化合物(c)を含む、硬化性樹脂組成物に関する。 That is, the present invention is a curable resin composition containing a conductive polymer (a), a protonic acid dopant (b), and a polymerizable compound (c) represented by the following general formula (1) or (2). Regarding.

Figure 0006943086
Figure 0006943086

(各一般式中、Aは、同一または異なって、ベンゼン環構造を含むアリーレン基を表し、Rは、m価又はn価の有機基を表し、Xは、酸素原子、硫黄原子、NH、又はNR′を表す。R′は、一価の有機基を表す。mは2〜10の整数を表し、nは1〜5の整数を表す。)
各一般式中の置換基Rは、ベンゼン環構造を含むm価又はn価の有機基を表すことが好ましい。また、各一般式中の置換基Rは、アリル基を有するm価又はn価の有機基を表すことが好ましい。
(In each general formula, A represents an arylene group containing the same or different benzene ring structure, R represents an m-valent or n-valent organic group, and X represents an oxygen atom, a sulfur atom, NH, or NR'represents. R'represents a monovalent organic group. M represents an integer of 2 to 10 and n represents an integer of 1 to 5.)
The substituent R in each general formula preferably represents an m-valent or n-valent organic group containing a benzene ring structure. Further, the substituent R in each general formula preferably represents an m-valent or n-valent organic group having an allyl group.

重合性化合物(c)は、一般式(1)で表される重合性化合物であり、当該式中のXは、酸素原子を表すことが好ましい。導電性高分子(a)はポリアニリン又はポリアニリン誘導体であることが好ましい。プロトン酸ドーパント(b)は有機スルホン酸であることが好ましい。導電性高分子(a)とプロトン酸ドーパント(b)の合計と重合性化合物(c)との重量比が70:30〜20:80であることが好ましい。 The polymerizable compound (c) is a polymerizable compound represented by the general formula (1), and X in the formula preferably represents an oxygen atom. The conductive polymer (a) is preferably a polyaniline or a polyaniline derivative. The protonic acid dopant (b) is preferably an organic sulfonic acid. The weight ratio of the total of the conductive polymer (a) and the protonic acid dopant (b) to the polymerizable compound (c) is preferably 70:30 to 20:80.

また本発明は、前記硬化性樹脂組成物を硬化した硬化物にも関する。 The present invention also relates to a cured product obtained by curing the curable resin composition.

さらに本発明は、前記硬化物と繊維又はフィラーとを含む複合材料にも関する。 Furthermore, the present invention also relates to composite materials containing the cured product and fibers or fillers.

さらにまた、本発明は、前記硬化性樹脂組成物を繊維に含浸させた後、硬化させる工程を含む、複合材料の製造方法にも関する。 Furthermore, the present invention also relates to a method for producing a composite material, which comprises a step of impregnating a fiber with the curable resin composition and then curing the fiber.

本発明によれば、導電性を示しながら、優れた機械的強度を示す硬化物を与える、導電性高分子を含む硬化性樹脂組成物、及び、それを用いた硬化物を提供することができる。 According to the present invention, it is possible to provide a curable resin composition containing a conductive polymer, which gives a cured product exhibiting excellent mechanical strength while exhibiting conductivity, and a cured product using the same. ..

以下に本発明を詳述する。 The present invention will be described in detail below.

本発明に係る硬化性樹脂組成物は、導電性高分子(a)、プロトン酸ドーパント(b)、及び、下記一般式(1)又は(2)で表される重合性化合物(c)を含有する。 The curable resin composition according to the present invention contains a conductive polymer (a), a protonic acid dopant (b), and a polymerizable compound (c) represented by the following general formula (1) or (2). do.

導電性高分子(a)としては特に限定されないが、例えば、ポリアニリン、ポリピロール、ポリフェニレンビニレン、ポリチオフェン、及びそれらの誘導体等が挙げられる。なかでも、成形加工性に優れていることから、ポリアニリン又はその誘導体が好ましい。ポリアニリンにプロトン酸ドーパントがドーピングされると、該ドーパントがポリアニリン中のイミノ基と塩を形成する。これにより、ポリアニリンは導電性を示す状態に変化する。なお、ポリアニリン等の誘導体とは、ポリアニリン等の各高分子の骨格にアルキル基やエーテル基、スルホン酸基等の置換基を導入した導電性高分子をいう。そのような誘導体としては、各種市販品を利用することができる。例えば、ポリアニリン誘導体としては、スルホン酸基を有するポリアニリンが市販されており、ポリチオフェン誘導体としては、ポリ(3,4−エチレンジオキシチオフェン)が市販されている。導電性高分子(a)としては1種類のみを使用してもよいし、2種類以上を適宜組合せて使用してもよい。 The conductive polymer (a) is not particularly limited, and examples thereof include polyaniline, polypyrrole, polyphenylene vinylene, polythiophene, and derivatives thereof. Of these, polyaniline or a derivative thereof is preferable because it is excellent in molding processability. When polyaniline is doped with a protonic acid dopant, the dopant forms a salt with the imino group in the polyaniline. As a result, polyaniline changes to a state showing conductivity. The derivative such as polyaniline refers to a conductive polymer in which a substituent such as an alkyl group, an ether group, or a sulfonic acid group is introduced into the skeleton of each polymer such as polyaniline. As such a derivative, various commercially available products can be used. For example, as a polyaniline derivative, polyaniline having a sulfonic acid group is commercially available, and as a polythiophene derivative, poly (3,4-ethylenedioxythiophene) is commercially available. As the conductive polymer (a), only one type may be used, or two or more types may be appropriately combined and used.

プロトン酸ドーパント(b)としては特に限定されず、有機酸又は無機酸を使用することができる。導電性高分子の加工性を向上させる観点から、有機酸が好ましく、なかでも、立体障害の大きい部位を有する有機酸がより好ましい。有機酸としては特に限定されないが、例えば、有機スルホン酸、有機リン酸等が挙げられる。有機スルホン酸としては、例えば、ドデシルベンゼンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、ポリスチレンスルホン酸、アルキルナフタレンスルホン酸、アントラキノンスルホン酸、アルキルスルホン酸、ドデシルスルホン酸、樟脳スルホン酸、ジオクチルスルホコハク酸、ポルフィリンテトラスルホン酸、ポリビニルスルホン酸等が挙げられる。有機リン酸としては、例えば、プロピルリン酸、ブチルリン酸、ヘキシルリン酸、ポリエチレンオキシドドデシルエーテルリン酸、ポリエチレンオキシドアルキルエーテルリン酸等が挙げられる。中でも、有機スルホン酸が好ましく、特に、ドデシルベンゼンスルホン酸がより好ましい。プロトン酸ドーパント(b)としては1種類のみを使用してもよいし、2種類以上を適宜組合せて使用してもよい。 The protonic acid dopant (b) is not particularly limited, and an organic acid or an inorganic acid can be used. From the viewpoint of improving the processability of the conductive polymer, an organic acid is preferable, and among them, an organic acid having a portion having a large steric hindrance is more preferable. The organic acid is not particularly limited, and examples thereof include organic sulfonic acid and organic phosphoric acid. Examples of the organic sulfonic acid include dodecylbenzenesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, polystyrenesulfonic acid, alkylnaphthalenesulfonic acid, anthraquinonesulfonic acid, alkylsulfonic acid, dodecylsulfonic acid, cypress sulfonic acid, dioctylsulfosuccinic acid, and the like. Examples thereof include porphyrin tetrasulfonic acid and polyvinyl sulfonic acid. Examples of the organic phosphoric acid include propyl phosphoric acid, butyl phosphoric acid, hexyl phosphoric acid, polyethylene oxide dodecyl ether phosphoric acid, polyethylene oxide alkyl ether phosphoric acid and the like. Of these, organic sulfonic acid is preferable, and dodecylbenzene sulfonic acid is more preferable. As the protonic acid dopant (b), only one type may be used, or two or more types may be appropriately combined and used.

導電性高分子(a)とプロトン酸ドーパント(b)の配合比は特に限定されず、導電性及び硬化性の観点から適宜決定することができる。プロトン酸ドーパントが少なすぎると、重合性化合物(c)の重合反応が十分に進行しない恐れや、導電性が発揮されない恐れがある。また、プロトン酸ドーパントが多すぎると、室温で重合性化合物(c)の重合反応が開始してしまい、重合反応を制御できない恐れがある。この観点から、例えば、導電性高分子がポリアニリン又はポリアニリン誘導体である場合には、ポリアニリンの窒素原子と、プロトン酸ドーパントとのモル比が10:1〜1:2の範囲内にある配合比が好ましい。 The compounding ratio of the conductive polymer (a) and the protonic acid dopant (b) is not particularly limited, and can be appropriately determined from the viewpoint of conductivity and curability. If the amount of the protonic acid dopant is too small, the polymerization reaction of the polymerizable compound (c) may not proceed sufficiently, or the conductivity may not be exhibited. Further, if the amount of the protonic acid dopant is too large, the polymerization reaction of the polymerizable compound (c) starts at room temperature, and the polymerization reaction may not be controlled. From this point of view, for example, when the conductive polymer is polyaniline or a polyaniline derivative, the blending ratio of the nitrogen atom of polyaniline to the protonic acid dopant is in the range of 10: 1 to 1: 2. preferable.

本発明において、プロトン酸ドーパントは、導電性高分子を、導電性を示す状態に変化させることに加えて、重合性化合物(c)に対するカチオン重合開始剤として作用する。すなわち、プロトン酸ドーパントが有する一部の酸性基が重合性化合物(c)のビニル基を攻撃することで、重合性化合物(c)をカチオン重合させてその重合体を形成し、樹脂組成物の硬化を実現する。室温では、プロトン酸ドーパントは導電性高分子と塩を形成しているため、重合性化合物(c)のビニル基への作用は抑制されており重合反応は進行しない。しかし、約80℃以上に加熱すると、プロトン酸ドーパントが有する一部の酸性基が導電性高分子から脱離して、重合性化合物(c)のビニル基を攻撃するようになる。これによって、重合反応の進行を比較的低温の加熱処理によって容易に制御することが可能となる。 In the present invention, the protonic acid dopant acts as a cationic polymerization initiator for the polymerizable compound (c) in addition to changing the conductive polymer into a state exhibiting conductivity. That is, some acidic groups of the protonic acid dopant attack the vinyl group of the polymerizable compound (c) to cation-polymerize the polymerizable compound (c) to form a polymer thereof, thereby forming a resin composition. Achieve curing. At room temperature, since the protonic acid dopant forms a salt with the conductive polymer, the action of the polymerizable compound (c) on the vinyl group is suppressed and the polymerization reaction does not proceed. However, when heated to about 80 ° C. or higher, some acidic groups of the protonic acid dopant are desorbed from the conductive polymer and attack the vinyl groups of the polymerizable compound (c). This makes it possible to easily control the progress of the polymerization reaction by heat treatment at a relatively low temperature.

重合性化合物(c)は、カチオン反応性基であるビニル基を有する化合物であり、以下の一般式(1)又は(2)で表される化合物である。 The polymerizable compound (c) is a compound having a vinyl group which is a cationically reactive group, and is a compound represented by the following general formula (1) or (2).

Figure 0006943086
Figure 0006943086

各一般式において、Aは、ベンゼン環構造を含むアリーレン基を表す。当該ベンゼン環構造を含むアリーレン基としては、例えば、フェニレン基の他、ナフタレン、アントラセン、ビフェニル等から2個の水素原子を除いた2価の基が挙げられる。好ましくはフェニレン基である。上記式で示されているように、ビニル基は、Aによって表されるアリーレン基に結合しており、具体的には、アリーレン基中のベンゼン環構造に直接結合している。Aは各式中で複数個含まれるが、それら複数のAは、互いと同一であってもよいし、異なっていてもよい。 In each general formula, A represents an arylene group containing a benzene ring structure. Examples of the arylene group containing the benzene ring structure include a phenylene group and a divalent group obtained by removing two hydrogen atoms from naphthalene, anthracene, biphenyl and the like. It is preferably a phenylene group. As shown in the above formula, the vinyl group is bonded to the arylene group represented by A, and specifically, is directly bonded to the benzene ring structure in the arylene group. A plurality of A's are included in each formula, and the plurality of A's may be the same as or different from each other.

Rは、式(1)においてはm価の有機基を表し、式(2)においてはn価の有機基を表す。そのような有機基としては、炭化水素基、又は、内部にエーテル結合、エステル結合等を有する炭化水素基等が挙げられる。具体的には、ベンゼン、ビフェニル、ナフタレン等の芳香族化合物からm個の水素原子を除いたm価の基;ジシクロペンタジエン等の環状構造を有する有機化合物からm個の水素原子を除いたm価の基;ビスフェノール類から2個の水酸基を除いた2価の基;フェノールノボラック、又はクレゾールノボラックからm個の水酸基を除いたm価の基等が挙げられる。ここで、ビスフェノール類とは2個のヒドロキシフェニル基を有する化合物である限り特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールC、ビスフェノールS等が挙げられる。Rを表す有機基としては、ベンゼン環構造を含む有機基が好ましい。これにより、得られる硬化物の機械的強度をより高めることができる。 R represents an m-valent organic group in the formula (1) and represents an n-valent organic group in the formula (2). Examples of such an organic group include a hydrocarbon group, a hydrocarbon group having an ether bond, an ester bond, or the like inside. Specifically, an m-valent group obtained by removing m hydrogen atoms from aromatic compounds such as benzene, biphenyl and naphthalene; m obtained by removing m hydrogen atoms from an organic compound having a cyclic structure such as dicyclopentadiene. Valuable groups; divalent groups obtained by removing two hydroxyl groups from bisphenols; phenol novolac, m-valent groups obtained by removing m hydroxyl groups from cresol novolac, and the like. Here, the bisphenols are not particularly limited as long as they are compounds having two hydroxyphenyl groups, and examples thereof include bisphenol A, bisphenol F, bisphenol C, and bisphenol S. As the organic group representing R, an organic group containing a benzene ring structure is preferable. Thereby, the mechanical strength of the obtained cured product can be further increased.

また、Rを表す有機基は、1個又は複数個のアリル基を有する有機基であってもよく、これを好ましく使用することができる。そのような基としては、上で例示した有機基に1個又は複数個のアリル基を導入してなるm価の有機基が挙げられる。アリル基を有する有機基は、重合性化合物(c)の融点を低下させることができるので、常温又はそれに近い温度で他の成分と容易に混合することができる。さらに、本発明の硬化性樹脂組成物を常温又はそれに近い温度で容易に取り扱うことが可能になり、例えば本発明の硬化性樹脂組成物を繊維に含浸させる場合などに、含浸を円滑に行なうことができる。 Further, the organic group representing R may be an organic group having one or more allyl groups, and this can be preferably used. Examples of such a group include an m-valent organic group obtained by introducing one or more allyl groups into the organic group exemplified above. Since the organic group having an allyl group can lower the melting point of the polymerizable compound (c), it can be easily mixed with other components at room temperature or a temperature close to it. Further, the curable resin composition of the present invention can be easily handled at room temperature or a temperature close to that of the present invention. For example, when the curable resin composition of the present invention is impregnated into a fiber, the impregnation is smoothly performed. Can be done.

特に、Rを表す有機基としては、ベンゼン環構造及びアリル基の双方を含む有機基が好ましい。このような有機基の具体例としては、ジアリルビスフェノールAから2個の水酸基を除いた2価の基が挙げられるが、これに限定されない。 In particular, as the organic group representing R, an organic group containing both a benzene ring structure and an allyl group is preferable. Specific examples of such an organic group include, but are not limited to, a divalent group obtained by removing two hydroxyl groups from diallyl bisphenol A.

Xは、酸素原子、硫黄原子、NH、又はNR′を表す。R′は、一価の有機基を表す。R′としては窒素原子に結合し得る置換基であれば特に限定されず、例えば、メチル基、エチル基、プロピル基等のアルキル基、フェニル基、メチルフェニル基等のアリール基、ベンジル基等のアラルキル基等が挙げられる。Xとしては酸素原子が好ましい。 X represents an oxygen atom, a sulfur atom, NH, or NR'. R'represents a monovalent organic group. R'is not particularly limited as long as it is a substituent capable of bonding to a nitrogen atom, and for example, an alkyl group such as a methyl group, an ethyl group or a propyl group, an aryl group such as a phenyl group or a methylphenyl group, a benzyl group or the like. An aralkyl group and the like can be mentioned. Oxygen atom is preferable as X.

mは2〜10の整数を表し、nは1〜5の整数を表す。よって、一般式(1)又は(2)で表される化合物は、2〜10個のビニル基を有する化合物である。これらビニル基により、重合性化合物(c)はカチオン重合性を示す。 m represents an integer of 2 to 10 and n represents an integer of 1 to 5. Therefore, the compound represented by the general formula (1) or (2) is a compound having 2 to 10 vinyl groups. Due to these vinyl groups, the polymerizable compound (c) exhibits cationically polymerizable properties.

重合性化合物(c)は、カチオン重合可能なビニル基を2個以上有するため、重合による結合部位が多くなり、重合体をより高分子化することができ、架橋構造を形成することができるため、重合性化合物(c)が重合した後に得られる硬化物の強度を高めることができる。さらに、重合性化合物(c)は、ベンゼン環構造を少なくとも2個有するものであるため、重合性化合物(c)の重合体はより剛直になる。その結果、重合性化合物(c)が重合した後に得られる硬化物の強度をさらに高めることができる。 Since the polymerizable compound (c) has two or more cation-polymerizable vinyl groups, the number of bonding sites due to polymerization increases, the polymer can be further polymerized, and a crosslinked structure can be formed. , The strength of the cured product obtained after the polymerizable compound (c) is polymerized can be increased. Further, since the polymerizable compound (c) has at least two benzene ring structures, the polymer of the polymerizable compound (c) becomes more rigid. As a result, the strength of the cured product obtained after the polymerizable compound (c) is polymerized can be further increased.

本発明において、重合性化合物(c)の配合量は、得られる硬化物が示す導電性と強度を考慮して適宜決定することができる。しかし、重合性化合物(c)が少なすぎると、硬化性が低下し、また硬化物の強度も低下する傾向があり、逆に多すぎると、硬化物の導電性が低下する傾向がある。これらの点を考慮して、重合性化合物(c)の配合量は、導電性高分子(a)とプロトン酸ドーパント(b)の合計と重合性化合物(c)との重量比が70:30〜20:80の範囲内になる量であることが好ましく、より好ましくは60:40〜40:60である。 In the present invention, the blending amount of the polymerizable compound (c) can be appropriately determined in consideration of the conductivity and strength of the obtained cured product. However, if the amount of the polymerizable compound (c) is too small, the curability tends to decrease and the strength of the cured product tends to decrease, and conversely, if the amount of the polymerizable compound (c) is too large, the conductivity of the cured product tends to decrease. In consideration of these points, the blending amount of the polymerizable compound (c) is such that the total weight ratio of the conductive polymer (a) and the protonic acid dopant (b) and the polymerizable compound (c) is 70:30. The amount is preferably in the range of ~ 20:80, more preferably 60:40 to 40:60.

本発明では、プロトン酸ドーパントが、加熱によりカチオン重合反応を開始するカチオン重合開始剤として作用するため、プロトン酸ドーパントは、導電性高分子のドーパント成分としての機能に加え、カチオン重合開始剤としての機能も有する。このため、本発明の硬化性樹脂組成物には、プロトン酸ドーパント以外のカチオン重合開始剤を添加する必要はない。他のカチオン重合開始材を配合しないことで、重合反応の制御が容易になる。 In the present invention, since the protonic acid dopant acts as a cationic polymerization initiator that initiates a cationic polymerization reaction by heating, the protonic acid dopant serves as a cationic polymerization initiator in addition to the function as a dopant component of the conductive polymer. It also has a function. Therefore, it is not necessary to add a cationic polymerization initiator other than the protonic acid dopant to the curable resin composition of the present invention. By not blending other cationic polymerization initiators, it becomes easy to control the polymerization reaction.

本発明に係る硬化性樹脂組成物は、本発明の効果を奏するものである限り、導電性高分子(a)、プロトン酸ドーパント(b)、及び、重合性化合物(c)以外の成分を含有するものであってもよい。そのような成分としては、例えば、相溶化剤、分散剤、消泡剤、可塑剤、反応性希釈剤等が挙げられる。また、導電性高分子(a)以外の熱硬化性樹脂や、熱可塑性樹脂を含有してもよい。 The curable resin composition according to the present invention contains components other than the conductive polymer (a), the protonic acid dopant (b), and the polymerizable compound (c) as long as the effects of the present invention are exhibited. It may be something to do. Examples of such components include compatibilizers, dispersants, defoamers, plasticizers, reactive diluents and the like. Further, a thermosetting resin other than the conductive polymer (a) or a thermoplastic resin may be contained.

本発明に係る硬化性樹脂組成物は、その製造方法が特に限定されるものではないが、例えば、導電性高分子(a)とプロトン酸ドーパント(b)を常法により混合した後、重合性化合物(c)を添加してさらに混合することで製造することができる。 The method for producing the curable resin composition according to the present invention is not particularly limited, but for example, the conductive polymer (a) and the protonic acid dopant (b) are mixed by a conventional method and then polymerized. It can be produced by adding the compound (c) and further mixing it.

各成分が混合されてなる硬化性樹脂組成物は、加熱することにより重合性化合物(c)が重合することで、硬化し、硬化物を与えることができる。加熱時の温度は特に限定されないが、例えば80〜140℃程度、好ましくは90〜120℃である。また、硬化に要する加熱時間も特に限定されず、適宜決定すればよいが、例えば30分間〜4時間程度である。加熱にあたっては、樹脂組成物を所定の形状に成形して加熱しながら加圧することで、所定の形状を有する成形物を得ることができる。 The curable resin composition in which each component is mixed can be cured by polymerizing the polymerizable compound (c) by heating to give a cured product. The temperature at the time of heating is not particularly limited, but is, for example, about 80 to 140 ° C., preferably 90 to 120 ° C. Further, the heating time required for curing is not particularly limited and may be appropriately determined, but is, for example, about 30 minutes to 4 hours. In heating, a molded product having a predetermined shape can be obtained by molding the resin composition into a predetermined shape and pressurizing while heating.

また、本発明の硬化性樹脂組成物は、繊維強化プラスチックなどの複合材料を構成する樹脂マトリックス成分として使用することができる。具体的には、本発明の複合材料としては、本発明の硬化性樹脂組成物にフィラーや繊維を分散させたり、本発明の硬化性樹脂組成物を繊維に含浸させた後、樹脂組成物を硬化させて得られた複合材料が挙げられる。フィラーとしては特に限定されず、有機フィラー、無機フィラーいずれも使用することができる。繊維としても特に限定されず、例えば、炭素繊維、ガラス繊維、アルミナ繊維、硼素繊維等のセラミックス繊維;芳香族ポリアミド、超高分子量ポリエチレン等から形成された有機合成繊維が挙げられる。フィラーや繊維は1種類のみを使用してもよいし、2種類以上を組み合わせて使用してもよい。なかでも、本発明の硬化性樹脂組成物は好適に繊維に含浸することができるので、繊維の集合体と複合化した、いわゆるセミプレグやプリプレグや、繊維強化プラスチック(FRP)が好ましい。 Further, the curable resin composition of the present invention can be used as a resin matrix component constituting a composite material such as a fiber reinforced plastic. Specifically, as the composite material of the present invention, a filler or a fiber is dispersed in the curable resin composition of the present invention, or the fiber is impregnated with the curable resin composition of the present invention, and then the resin composition is used. Examples thereof include composite materials obtained by curing. The filler is not particularly limited, and either an organic filler or an inorganic filler can be used. The fiber is not particularly limited, and examples thereof include ceramic fibers such as carbon fiber, glass fiber, alumina fiber, and boron fiber; and organic synthetic fiber formed from aromatic polyamide, ultra-high molecular weight polyethylene, and the like. Only one type of filler or fiber may be used, or two or more types may be used in combination. Among them, since the curable resin composition of the present invention can be preferably impregnated into fibers, so-called semipregs and prepregs composited with an aggregate of fibers and fiber reinforced plastics (FRP) are preferable.

本発明の複合材料を製造する方法としては特に限定されないが、例えば、本発明の硬化性樹脂組成物とフィラーとを機械的に攪拌混合した後で熱成形する方法や、上記樹脂組成物と繊維の集合体とをコーティング法などにより複合化して、セミプレグやプリプレグを作製する方法、さらに、当該セミプレグやプリプレグを積層して、SMCプレスなどの熱プレス法や、オートクレーブ法などによりFRPを成形する方法等が挙げられる。また、本発明の硬化性樹脂組成物と繊維の集合体を用いて、ハンドレアップ法、スプレーアップ法、注入RTM法、フィラメントワインディング(FW)法などにより直接FRPを作製することもできる。 The method for producing the composite material of the present invention is not particularly limited, and for example, a method of mechanically stirring and mixing the curable resin composition and the filler of the present invention and then thermoforming, or the above-mentioned resin composition and fiber. A method of producing a semi-preg or a prepreg by synthesizing the aggregates of And so on. Further, using the curable resin composition of the present invention and an aggregate of fibers, FRP can be directly produced by a hand-reup method, a spray-up method, an injection RTM method, a filament winding (FW) method or the like.

本発明の複合材料は、硬化性樹脂組成物を樹脂マトリックス成分とするものであるので、導電性を有していながら、優れた機械的強度を有するものである。また、本発明の樹脂組成物は、熱硬化性を示すものであるので、従来の熱成形法によって、導電性を有する複合材料を製造できるという利点がある。 Since the composite material of the present invention contains a curable resin composition as a resin matrix component, it has excellent mechanical strength while having conductivity. Further, since the resin composition of the present invention exhibits thermosetting property, there is an advantage that a conductive composite material can be produced by a conventional thermoforming method.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(合成例1)
セパラブルフラスコに対し、原料のジアリルビスフェノールA(DA−BPA)と、溶媒としてジメチルスルホキシド(DMSO)を加え、室温にて5分間撹拌した。次に、撹拌中の系中に対し、あらかじめ2.0当量の水酸化カリウムを用いて作製した60%の水酸化カリウム水溶液を加えた。その後、フラスコを70℃のオイルバスに浸し、系中の温度が安定するまで撹拌を行った。引き続き、撹拌中の系中に対し、滴下ロートを用いて、2.02当量のビニルベンジルクロライド(VBC)を滴下した。そのまま、滴下終了時から2時間撹拌させ、反応させた。その後、系中に蒸留水を加えることで、反応を停止させ、撹拌を停止した。引き続き、サンプルを分液ロートに移し、トルエンを用いて抽出作業を行ったのち、5%の水酸化カリウム水溶液、蒸留水を用いて洗浄作業を行った。その後、サンプルをナスフラスコに移しエバポレーターを用いて濃縮を行うことで溶媒を除去し、目的物である黄色液体のジアリルビスフェノールA型スチレン誘導体(DA−BPAS)を収率90%で得た。
(Synthesis Example 1)
The raw material diallyl bisphenol A (DA-BPA) and dimethyl sulfoxide (DMSO) as a solvent were added to the separable flask, and the mixture was stirred at room temperature for 5 minutes. Next, a 60% potassium hydroxide aqueous solution prepared in advance using 2.0 equivalents of potassium hydroxide was added to the system being stirred. Then, the flask was immersed in an oil bath at 70 ° C., and stirring was performed until the temperature in the system became stable. Subsequently, 2.02 equivalents of vinyl benzyl chloride (VBC) was added dropwise to the stirring system using a dropping funnel. As it was, it was stirred for 2 hours from the end of dropping to react. Then, distilled water was added to the system to stop the reaction and stop stirring. Subsequently, the sample was transferred to a liquid separation funnel, an extraction operation was performed using toluene, and then a washing operation was performed using a 5% potassium hydroxide aqueous solution and distilled water. Then, the sample was transferred to an eggplant flask and concentrated using an evaporator to remove the solvent, and the target yellow liquid diallyl bisphenol A type styrene derivative (DA-BPAS) was obtained in a yield of 90%.

Figure 0006943086
Figure 0006943086

(比較例1)
エメラルディンベース(EB)状態のポリアニリン(株式会社レグルス製) 2.2gにドデシルベンゼンスルホン酸 5.1gを加え、自転公転ミキサー(ARE−310;シンキー社製)を用いて室温で30秒間撹拌した後、ロールミル処理を行うことで、ペースト状の混合物を得た。このペースト状の混合物にジビニルベンゼン 7.3gを加え、自転公転ミキサーを用いて室温で20分間撹拌することで、ジビニルベンゼン中にポリアニリンA−ドデシルベンゼンスルホン酸複合体が良分散したペースト状のポリアニリン組成物を得た。
(Comparative Example 1)
5.1 g of dodecylbenzene sulfonic acid was added to 2.2 g of polyaniline (manufactured by Regulus Co., Ltd.) in an emeraldine-based (EB) state, and the mixture was stirred at room temperature for 30 seconds using a rotation revolution mixer (ARE-310; manufactured by Shinky Co., Ltd.). After that, it was subjected to a roll mill treatment to obtain a paste-like mixture. 7.3 g of divinylbenzene was added to this paste-like mixture, and the mixture was stirred at room temperature for 20 minutes using a rotating revolution mixer. As a result, polyaniline A-dodecylbenzenesulfonic acid complex was well dispersed in divinylbenzene. The composition was obtained.

このポリアニリン組成物を金型に入れ、ホットプレス機を用いて120℃で2時間、2MPaで加熱圧縮し、ポリアニリン組成物を硬化させた。得られた硬化物について、インストロン万能試験機を用いて曲げ試験を行なった。3つのサンプルについて最大点強度及び弾性率を測定し、それらの平均値を求めたところ、最大点強度の平均値は9.3MPa、弾性率の平均値は485MPaであった。 This polyaniline composition was placed in a mold and heated and compressed at 120 ° C. for 2 hours at 2 MPa using a hot press to cure the polyaniline composition. The obtained cured product was subjected to a bending test using an Instron universal testing machine. The maximum point strength and elastic modulus were measured for the three samples, and the average value thereof was obtained. As a result, the average value of the maximum point strength was 9.3 MPa and the average value of the elastic modulus was 485 MPa.

また、得られた硬化物を1日冷凍した後、常法に従いLoresta GP MCP−600(三菱ケミカルアナリテック製)を用いて導電率を測定したところ、導電率は約1.0S/cmであった。 Further, after freezing the obtained cured product for one day, the conductivity was measured using Loresta GP MCP-600 (manufactured by Mitsubishi Chemical Analytech) according to a conventional method, and the conductivity was about 1.0 S / cm. rice field.

(実施例1)
エメラルディンベース(EB)状態のポリアニリン(株式会社レグルス製) 2.2gにドデシルベンゼンスルホン酸 5.1gを加え、自転公転ミキサー(ARE−310;シンキー社製)を用いて室温で30秒間撹拌した後、ロールミル処理を行うことで、ペースト状の混合物を得た。このペースト状の混合物にジアリルビスフェノールA型スチレン誘導体(DA−BPAS) 7.3gを加え、自転公転ミキサーを用いて室温で20分間撹拌することで、ジアリルビスフェノールA型スチレン誘導体(DA−BPAS)中にポリアニリンA−ドデシルベンゼンスルホン酸複合体が良分散したペースト状のポリアニリン組成物を得た。
(Example 1)
5.1 g of dodecylbenzene sulfonic acid was added to 2.2 g of polyaniline (manufactured by Regulus Co., Ltd.) in an emeraldine-based (EB) state, and the mixture was stirred at room temperature for 30 seconds using a rotation revolution mixer (ARE-310; manufactured by Shinky Co., Ltd.). After that, it was subjected to a roll mill treatment to obtain a paste-like mixture. 7.3 g of diallyl bisphenol A type styrene derivative (DA-BPAS) is added to this paste-like mixture, and the mixture is stirred at room temperature for 20 minutes using a rotation / revolution mixer to prepare the diallyl bisphenol A type styrene derivative (DA-BPAS). A paste-like polyaniline composition in which the polyaniline A-dodecylbenzene sulfonic acid complex was well dispersed was obtained.

このポリアニリン組成物を金型に入れ、ホットプレス機を用いて120℃で2時間、2MPaで加熱圧縮し、ポリアニリン組成物を硬化させた。比較例1と同様に曲げ試験を行ったところ、最大点強度の平均値は17.1MPa、弾性率の平均値は664MPaであり、比較例1より曲げ強度に優れていることが分かった。 This polyaniline composition was placed in a mold and heated and compressed at 120 ° C. for 2 hours at 2 MPa using a hot press to cure the polyaniline composition. When the bending test was performed in the same manner as in Comparative Example 1, the average value of the maximum point strength was 17.1 MPa and the average value of the elastic modulus was 664 MPa, and it was found that the bending strength was superior to that of Comparative Example 1.

また、得られた硬化物を1日冷凍した後、常法に従いLoresta GP MCP−600(三菱ケミカルアナリテック製)を用いて導電率を測定したところ、導電率は約1.0S/cmであり、比較例1における導電率と同程度であった。
Further, after freezing the obtained cured product for one day, the conductivity was measured using Loresta GP MCP-600 (manufactured by Mitsubishi Chemical Analytech) according to a conventional method, and the conductivity was about 1.0 S / cm. , It was about the same as the conductivity in Comparative Example 1.

Claims (10)

導電性高分子(a)、プロトン酸ドーパント(b)、及び、下記一般式(1)又は(2)で表される重合性化合物(c)を含む、硬化性樹脂組成物。
Figure 0006943086
(各一般式中、Aは、同一または異なって、ベンゼン環構造を含むアリーレン基を表し、Rは、m価又はn価の有機基を表し、Xは、酸素原子、硫黄原子、NH、又はNR′を表す。R′は、一価の有機基を表す。mは2〜10の整数を表し、nは1〜5の整数を表す。)
A curable resin composition containing a conductive polymer (a), a protonic acid dopant (b), and a polymerizable compound (c) represented by the following general formula (1) or (2).
Figure 0006943086
(In each general formula, A represents an arylene group containing the same or different benzene ring structure, R represents an m-valent or n-valent organic group, and X represents an oxygen atom, a sulfur atom, NH, or NR'represents. R'represents a monovalent organic group. M represents an integer of 2 to 10 and n represents an integer of 1 to 5.)
各一般式中の置換基Rは、ベンゼン環構造を含むm価又はn価の有機基を表す、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the substituent R in each general formula represents an m-valent or n-valent organic group containing a benzene ring structure. 各一般式中の置換基Rは、アリル基を有するm価又はn価の有機基を表す、請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the substituent R in each general formula represents an m-valent or n-valent organic group having an allyl group. 重合性化合物(c)は、一般式(1)で表される重合性化合物であり、当該式中のXは、酸素原子を表す、請求項1〜3のいずれか一項に記載の硬化性樹脂組成物。 The curable compound (c) according to any one of claims 1 to 3, wherein the polymerizable compound (c) is a polymerizable compound represented by the general formula (1), and X in the formula represents an oxygen atom. Resin composition. 導電性高分子(a)はポリアニリン又はポリアニリン誘導体である、請求項1〜4のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the conductive polymer (a) is a polyaniline or a polyaniline derivative. プロトン酸ドーパント(b)は有機スルホン酸である、請求項1〜5のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, wherein the protonic acid dopant (b) is an organic sulfonic acid. 導電性高分子(a)とプロトン酸ドーパント(b)の合計と重合性化合物(c)との重量比が70:30〜20:80である、請求項1〜6のいずれか一項に記載の硬化性樹脂組成物。 The item according to any one of claims 1 to 6, wherein the weight ratio of the total of the conductive polymer (a) and the protonic acid dopant (b) to the polymerizable compound (c) is 70:30 to 20:80. Curable resin composition. 請求項1〜7のいずれか一項に記載の硬化性樹脂組成物を硬化した硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 7. 請求項8に記載の硬化物と繊維又はフィラーとを含む複合材料。 A composite material containing the cured product according to claim 8 and a fiber or a filler. 請求項1〜7のいずれか一項に記載の硬化性樹脂組成物を繊維に含浸させた後、硬化させることを特徴とする、複合材料の製造方法。
A method for producing a composite material, which comprises impregnating a fiber with the curable resin composition according to any one of claims 1 to 7 and then curing the fiber.
JP2017167776A 2017-08-31 2017-08-31 Curable resin composition and cured product Active JP6943086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167776A JP6943086B2 (en) 2017-08-31 2017-08-31 Curable resin composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167776A JP6943086B2 (en) 2017-08-31 2017-08-31 Curable resin composition and cured product

Publications (2)

Publication Number Publication Date
JP2019044055A JP2019044055A (en) 2019-03-22
JP6943086B2 true JP6943086B2 (en) 2021-09-29

Family

ID=65813702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167776A Active JP6943086B2 (en) 2017-08-31 2017-08-31 Curable resin composition and cured product

Country Status (1)

Country Link
JP (1) JP6943086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059791A (en) * 2018-10-09 2020-04-16 国立大学法人 東京大学 Composition for formation of thermally cured body, thermally cured body and structure having thermally cured body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344165B1 (en) * 1986-12-29 1991-09-25 AlliedSignal Inc. Thermoset polymers of styrene terminated tetrakis phenols
JPH0431409A (en) * 1990-05-29 1992-02-03 Showa Highpolymer Co Ltd Curable resin composition
JPH07124866A (en) * 1993-10-27 1995-05-16 Showa Highpolymer Co Ltd Heat resist resin bound grinding wheel
JP2004175950A (en) * 2002-11-27 2004-06-24 Sumitomo Bakelite Co Ltd Thermoset resin composition
JP2008214587A (en) * 2007-03-07 2008-09-18 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, and composite formed from the same
JP5473650B2 (en) * 2010-02-08 2014-04-16 三菱レイヨン株式会社 Resin composition, prepreg using the same, and fiber-reinforced composite material
KR20140029272A (en) * 2012-08-30 2014-03-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 Aromatic vinylbenzylether compound, and curable composition containing the same
JP6241647B2 (en) * 2013-07-01 2017-12-06 国立大学法人山形大学 Method for producing heat-cured conductive polymer composition
JP6281862B2 (en) * 2013-12-03 2018-02-21 国立大学法人山形大学 Method for producing conductive polymer composite

Also Published As

Publication number Publication date
JP2019044055A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US9815235B2 (en) Controlling crosslinking density and processing parameters of phthalonitriles
CN104105693B (en) Benzoxazine and the compositions containing benzoxazine
KR102393692B1 (en) Thermosetting resin composition
KR101932861B1 (en) Polymerizable Composition
EP2880079B1 (en) Synthesis of and curing additives for phthalonitriles
Kim Thermal characteristics of basalt fiber reinforced epoxy-benzoxazine composites
KR102089401B1 (en) Compound
US8981036B2 (en) Synthesis of and curing additives for phthalonitriles
US10870728B2 (en) Phthalonitrile resin
WO2016109399A1 (en) Benzoxazines and compositions containing the same
US20140275472A1 (en) Synthesis of and curing additives for phthalonitriles
JP6943086B2 (en) Curable resin composition and cured product
JPWO2017187783A1 (en) Thermosetting resin composition, cured product, molding material, and molded article
Nechausov et al. Thermosetting matrices for composite materials based on allyl/propagryl substituted novolac resins
EP2231781B1 (en) Curing composition and cured product prepared by using the same
Zhang et al. Toughening benzoxazines with hyperbranched polymeric ionic liquids: Effect of cations and anions
KR102071910B1 (en) Compound
WO2015183518A1 (en) Synthesis of and curing additives for phthalonitriles
KR102056099B1 (en) Phthalonitrile compound
CN113563719A (en) Ternary resin blends
JP2009242471A (en) Phenolic compound, phenolic resin, phenolic resin composition, and phenolic resin molding material
JPH0340056B2 (en)
JPH037206B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6943086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250