JP6942496B2 - Zoom lens and imaging device with it - Google Patents
Zoom lens and imaging device with it Download PDFInfo
- Publication number
- JP6942496B2 JP6942496B2 JP2017057115A JP2017057115A JP6942496B2 JP 6942496 B2 JP6942496 B2 JP 6942496B2 JP 2017057115 A JP2017057115 A JP 2017057115A JP 2017057115 A JP2017057115 A JP 2017057115A JP 6942496 B2 JP6942496 B2 JP 6942496B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- refractive power
- group
- zoom lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1455—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
- G02B15/145527—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -+-++
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/146—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
- G02B15/1465—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/177—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/69—Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
Description
本発明は、ズームレンズに関し、例えばデジタルカメラ、ビデオカメラ、TVカメラ、監視用カメラ、銀塩フィルム用カメラ等の撮像装置の撮像光学系として好適なものである。 The present invention relates to a zoom lens and is suitable as an image pickup optical system for an image pickup device such as a digital camera, a video camera, a TV camera, a surveillance camera, and a silver salt film camera.
従来、撮像装置(カメラ)に用いる撮像光学系には、より広範囲を1枚の画像に収めるべく広画角であること、そして全ズーム範囲及び全物体距離にわたり高い光学性能を有するズームレンズであることが求められている。また高精細な画像を得るために撮像時の手ぶれ等の振動より生ずる像ぶれによる画像の劣化を抑制する像ぶれ補正機能(防振機能)を有すること等が求められている。 Conventionally, the imaging optical system used for an imaging device (camera) is a zoom lens having a wide angle of view so as to fit a wider range in one image and having high optical performance over the entire zoom range and the entire object distance. Is required. Further, in order to obtain a high-definition image, it is required to have an image blur correction function (vibration isolation function) that suppresses image deterioration due to image blur caused by vibration such as camera shake during imaging.
従来、広画角化が容易なズームレンズとして、最も物体側に負の屈折力のレンズ群が位置するネガティブリード型のズームレンズが知られている(特許文献1)。またネガティブリード型で、光学系の一部のレンズを光軸に対して垂直方向の成分を持つ方向に移動させて像ぶれを補正する像ぶれ補正機能を備えた広画角のズームレンズが知られている(特許文献2、3)。
Conventionally, as a zoom lens that can easily widen the angle of view, a negative lead type zoom lens in which a lens group having a negative refractive power is located on the object side is known (Patent Document 1). In addition, a wide-angle zoom lens that is a negative lead type and has an image blur correction function that corrects image blur by moving a part of the lens of the optical system in the direction having a component in the direction perpendicular to the optical axis is known. (
特許文献1乃至3では物体側から像側へ順に、負、正、負、正の屈折力の第1レンズ群乃至第4レンズ群からなり、各レンズ群間隔を変化させてズーミングを行う4群ズームレンズを開示している。このうち特許文献2では、第3レンズ群全体を光軸に対して略垂直方向に移動して像ぶれ補正を行っている。特許文献3では第3レンズ群の一部のレンズ群で像ぶれを補正し、第2レンズ群の一部のレンズ群がフォーカシングを行っている。
In
負の屈折力のレンズ群が先行するネガティブリード型のズームレンズは、広画角化が比較的容易である。しかしながら、ネガティブリード型のズームレンズにおいて、撮像画角が100度程度になると、諸収差の補正が大変難しくなってくる。例えば像ぶれ補正の際に偏心収差の発生が多く、高い光学性能を得ることが大変難しくなってくる。 A negative lead type zoom lens preceded by a lens group having a negative refractive power is relatively easy to widen the angle of view. However, in a negative lead type zoom lens, when the imaging angle of view is about 100 degrees, it becomes very difficult to correct various aberrations. For example, eccentric aberration often occurs during image blur correction, and it becomes very difficult to obtain high optical performance.
ネガティブリード型のズームレンズにおいて広画角化を図りつつ、像ぶれ補正の際の偏心収差の発生が少なく、高い光学性能を維持するには、ズームタイプや各レンズ群の屈折力(パワー)等を適切に設定することが重要になってくる。またネガティブリード型のズームレンズにおいては、フォーカシングに際して収差変動が増大する傾向がある。フォーカシングに際しての収差変動を軽減するにはフォーカシングに際して2つのレンズ群を互いに異なった軌跡で移動させる所謂フローティング方式を用いるのが有効である。 In order to maintain high optical performance with less eccentric aberration during image blur correction while aiming for a wider angle of view with a negative lead type zoom lens, the zoom type and the refractive power (power) of each lens group, etc. It becomes important to set properly. Further, in a negative lead type zoom lens, aberration fluctuation tends to increase during focusing. In order to reduce aberration fluctuations during focusing, it is effective to use a so-called floating method in which two lens groups are moved by different trajectories during focusing.
しかしながらフローティング方式を用いてフォーカシングに際しての収差変動を軽減するにはフォーカシングに際して移動させるレンズ群及びレンズ群の移動方向等を適切に設定することが重要になってくる。 However, in order to reduce aberration fluctuations during focusing by using the floating method, it is important to appropriately set the lens group to be moved during focusing and the moving direction of the lens group.
本発明は、広画角で像ぶれ補正に際しても偏心収差の発生が少なく、またフォーカシングに際しての収差変動が少なく、全ズーム範囲及び全物体距離にわたり高い光学性能が容易に得られるズームレンズの提供を目的とする。 The present invention provides a zoom lens having a wide angle of view, less occurrence of eccentric aberration during image blur correction, less aberration fluctuation during focusing, and high optical performance can be easily obtained over the entire zoom range and the entire object distance. The purpose.
本発明のズームレンズは、物体側より像側へ順に配置された、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、一つ以上のレンズ群を含む後群より構成され、ズーミングに際して隣り合うレンズ群の間隔が変化するズームレンズであって、広角端における無限遠から至近距離へのフォーカシングに際して、前記第2レンズ群及び前記第3レンズ群が像側へ移動し、望遠端における無限遠から至近距離へのフォーカシングに際して、第2レンズ群が像側へ移動し、前記第3レンズ群が物体側へ移動し、像ぶれ補正に際して、前記第4レンズ群の少なくとも一部が光軸に垂直な方向の成分を含む方向へ移動することを特徴とする。 The zoom lens of the present invention has a first lens group having a negative refractive force, a second lens group having a positive refractive force, a third lens group having a negative refractive force, and a positive lens group arranged in order from the object side to the image side. A zoom lens consisting of a fourth lens group of refractive power and a rear group including one or more lens groups, and the distance between adjacent lens groups changes during zooming. When focusing from infinity to close range at the wide-angle end. , The second lens group and the third lens group move to the image side, and when focusing from infinity to a close distance at the telephoto end, the second lens group moves to the image side, and the third lens group moves to the object side. Go to, when the image blur compensation, at least a portion of the fourth lens group, wherein the moving direction containing a component in the direction perpendicular to the optical axis.
本発明によれば、広画角で像ぶれ補正に際しても偏心収差の発生が少なく、またフォーカシングに際しての収差変動が少なく、全ズーム範囲及び全物体距離にわたり高い光学性能が容易に得られるズームレンズが得られる。 According to the present invention, there is a zoom lens having a wide angle of view, less occurrence of eccentric aberration during image blur correction, less aberration fluctuation during focusing, and high optical performance can be easily obtained over the entire zoom range and the entire object distance. can get.
以下に、本発明のズームレンズ及びそれを有する撮像装置の実施の形態を添付の図面に基づいて説明する。 Hereinafter, embodiments of the zoom lens of the present invention and an imaging device having the same will be described with reference to the accompanying drawings.
本発明のズームレンズは、物体側より像側へ順に配置された、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群と、正の屈折力の第4レンズ群、1つ以上のレンズ群を含む後群より構成されている。ズーミングに際して隣り合うレンズ群の間隔が変化する。フォーカシングに際して少なくとも第3レンズ群が移動し、第4レンズ群の一部または全体よりなるレンズ系ISが像ぶれ補正に際して光軸に対して垂直方向の成分を含むように移動する。 The zoom lens of the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power arranged in order from the object side to the image side. It is composed of a fourth lens group having an optical power of 1 and a rear group including one or more lens groups. The distance between adjacent lens groups changes during zooming. At least the third lens group moves during focusing, and the lens system IS including a part or the whole of the fourth lens group moves so as to include a component in the direction perpendicular to the optical axis during image blur correction.
図1は、本発明における実施例1のズームレンズの広角端におけるレンズ断面図である。図2(A)、(B)は、本発明における実施例1のズームレンズの物体距離無限時の広角端と望遠端における縦収差図である。図3(A)、(B)は、本発明における実施例1のズームレンズの物体距離至近時(後述する数値データをmm単位で表したとき350mm、以下各実施例において同じ)の広角端と望遠端における縦収差図である。 FIG. 1 is a cross-sectional view of a zoom lens according to a first embodiment of the present invention at a wide-angle end. 2 (A) and 2 (B) are longitudinal aberration diagrams of the zoom lens of the first embodiment of the present invention at the wide-angle end and the telephoto end when the object distance is infinite. 3 (A) and 3 (B) show the wide-angle end of the zoom lens of the first embodiment of the present invention when the object distance is close (350 mm when the numerical data described later is expressed in mm, the same applies hereinafter in each embodiment). It is a longitudinal aberration diagram at the telephoto end.
図4A(A)、(B)は本発明における実施例1のズームレンズの物体距離無限時の広角端における無シフト時(基準状態時)、望遠端における無シフト時の像ぶれ補正時における横収差図である。図4B(C)、(D)は本発明における実施例1のズームレンズの広角端において0.3度の像振れ補正時、望遠端において0.3度の像ぶれ補正時における横収差図である。ここで無シフト時とは像ぶれ補正をしないときをいう。 4A and 4B show the lateral image of the zoom lens of the first embodiment of the present invention at the time of no shift (reference state) at the wide-angle end at infinite object distance and at the time of image blur correction at the telephoto end when there is no shift. It is an aberration diagram. 4B (C) and 4 (D) are lateral aberration diagrams at the wide-angle end of the zoom lens of Example 1 of the present invention at the time of correction of 0.3 degree image shake and at the telephoto end at the time of correction of 0.3 degree image shake. be. Here, the time of no shift means the time when the image blur correction is not performed.
図5は、本発明における実施例2のズームレンズの広角端におけるレンズ断面図である。図6(A)、(B)は、本発明における実施例2のズームレンズの物体距離無限時の広角端と望遠端における縦収差図である。図7(A)、(B)は、本発明における実施例2のズームレンズの物体距離至近時の広角端と望遠端における縦収差図である。 FIG. 5 is a cross-sectional view of the zoom lens of the second embodiment of the present invention at the wide-angle end. 6 (A) and 6 (B) are longitudinal aberration diagrams of the zoom lens of the second embodiment of the present invention at the wide-angle end and the telephoto end when the object distance is infinite. 7 (A) and 7 (B) are longitudinal aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of the second embodiment of the present invention when the object distance is close.
図8A(A)、(B)は本発明における実施例2のズームレンズの物体距離無限時の広角端における無シフト時(基準状態時)、望遠端における無シフト時の像ぶれ補正時における横収差図である。図8B(C)、(D)は本発明における実施例2のズームレンズの広角端において0.3度の像振れ補正時、望遠端において0.3度の像ぶれ補正時における横収差図である。 8A (A) and 8A (B) show laterality of the zoom lens of the second embodiment of the present invention at the time of no shift (reference state) at the wide-angle end when the object distance is infinite and at the time of image blur correction at the telephoto end when there is no shift. It is an aberration diagram. 8B (C) and 8B (D) are lateral aberration diagrams at the wide-angle end of the zoom lens of the second embodiment of the present invention at the time of 0.3 degree image shake correction and at the telephoto end at the time of 0.3 degree image shake correction. be.
図9は、本発明における実施例3のズームレンズの広角端におけるレンズ断面図である。図10(A)、(B)は、本発明における実施例3のズームレンズの物体距離無限時の広角端と望遠端における縦収差図である。図11(A)、(B)は、本発明における実施例3のズームレンズの物体距離至近時の広角端と望遠端における縦収差図である。 FIG. 9 is a cross-sectional view of the zoom lens of the third embodiment of the present invention at the wide-angle end. 10 (A) and 10 (B) are longitudinal aberration diagrams of the zoom lens of the third embodiment of the present invention at the wide-angle end and the telephoto end when the object distance is infinite. 11 (A) and 11 (B) are longitudinal aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of the third embodiment of the present invention when the object distance is close.
図12A(A)、(B)は本発明における実施例3のズームレンズの物体距離無限時の広角端における無シフト時(基準状態時)、望遠端における無シフト時の像ぶれ補正時における横収差図である。図12B(C)、(D)は本発明における実施例3のズームレンズの広角端において0.3度の像振れ補正時、望遠端において0.3度の像ぶれ補正時における横収差図である。図13は本発明の撮像装置の要部概略図である。 12A and 12A (B) show laterality of the zoom lens according to the third embodiment of the present invention at the time of no shift (reference state) at the wide-angle end at infinite object distance and at the time of image blur correction at the telephoto end when there is no shift. It is an aberration diagram. 12B (C) and 12B (D) are lateral aberration diagrams at the wide-angle end of the zoom lens of Example 3 of the present invention at the time of correction of 0.3 degree image shake and at the telephoto end at the time of correction of 0.3 degree image shake. be. FIG. 13 is a schematic view of a main part of the image pickup apparatus of the present invention.
各実施例のズームレンズはビデオカメラやデジタルビデオカメラそして銀塩フィルムカメラ等の撮像装置に用いられる撮像光学系(光学系)である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。レンズ断面図においてiは物体側からのレンズ群の順番を示し、Liは第iレンズ群である。LRは1つ以上のレンズ群を含む後群である。STは開口絞りである。ISは像ぶれ補正用のレンズ系である。 The zoom lens of each embodiment is an imaging optical system (optical system) used in an imaging device such as a video camera, a digital video camera, and a silver salt film camera. In the cross-sectional view of the lens, the left side is the object side (front) and the right side is the image side (rear). In the lens cross-sectional view, i indicates the order of the lens groups from the object side, and Li is the i-th lens group. The LR is a posterior group that includes one or more lens groups. ST is an aperture stop. IS is a lens system for image blur correction.
IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に、銀塩フィルム用カメラのときはフィルム面に相当する。矢印は広角端から望遠端へのズーミングにおける各レンズ群の移動軌跡を示している。フォーカスに関する矢印Fo、FLは無限遠から近距離へのフォーカシングに際してのレンズ群の移動方向を示す。像ぶれ補正に関する矢印は像ぶれ補正に際して、光軸に対し垂直方向の成分を含む方向に移動するレンズ系ISの移動方向を示す。 IP is an image plane, and when used as a shooting optical system for a video camera or digital still camera, it is used on the image pickup surface of a solid-state image sensor (photoelectric conversion element) such as a CCD sensor or CMOS sensor. Corresponds to the film surface. The arrows show the movement trajectory of each lens group during zooming from the wide-angle end to the telephoto end. The arrows Fo and FL related to focus indicate the moving direction of the lens group when focusing from infinity to a short distance. The arrow relating to the image blur correction indicates the moving direction of the lens system IS that moves in the direction including the component in the direction perpendicular to the optical axis during the image blur correction.
それぞれの縦収差図は、左から順に、球面収差、非点収差、歪曲、倍率色収差を表している。球面収差を示す図において、実線のdはd線(587.6nm)、二点破線のgはg線(435.8nm)を表している。また、非点収差を示す図において、実線のSはd線のサジタル方向、破線のMはd線のメリディオナル方向を表している。また、歪曲を示す図は、d線における歪曲を表している。倍率色収差を示す図においてgはg線を表している。FnoはFナンバーである。ωは半画角である。横収差図においてSはサジタル光線、Mはメリディオナル光線を表している。 Each longitudinal aberration diagram shows spherical aberration, astigmatism, distortion, and chromatic aberration of magnification in order from the left. In the figure showing spherical aberration, the solid line d represents the d line (587.6 nm), and the two-dot broken line g represents the g line (435.8 nm). Further, in the figure showing astigmatism, the solid line S represents the sagittal direction of the d line, and the broken line M represents the meridional direction of the d line. The figure showing the distortion shows the distortion on the d-line. In the figure showing chromatic aberration of magnification, g represents the g line. Fno is an F number. ω is a half angle of view. In the transverse aberration diagram, S represents a sagittal ray and M represents a meridional ray.
尚、以下の各実施例において広角端と望遠端は変倍用レンズ群が機構上、光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。前述した特許文献1は、物体側より像側へ順に配置された、負、正、負、正の屈折力の第1レンズ群乃至第4レンズ群よりなる4群ズームレンズである。全体としては、負の屈折力の第1レンズ群と、第2レンズ群以降の正の屈折力の合成レンズ群を配置する、レトロフォーカス型の屈折力配置であり、撮像画角100度を越える超広画角化の屈折力配置である。
In each of the following embodiments, the wide-angle end and the telephoto end refer to the zoom positions when the variable magnification lens group is mechanically located at both ends of a movable range on the optical axis. The above-mentioned
更に、広角端から望遠端へのズーミングに際し、負の屈折力のレンズ群と正の屈折力のレンズ群の間隔を狭めるショートズーム構成を基本としている。第2レンズ群以降を正、負、正の屈折力のレンズ群に分割し、間の負の屈折力のレンズ群を正の屈折力のレンズ群に対して相対的に像側に移動させることで、変倍を行いつつ、収差補正を行っている。レトロフォーカス型ズームレンズでは、フォーカシングに際しての収差変動が比較的小さい第1レンズ群を移動することで行うことが多い。近年では静音高速のフォーカス駆動を行うためにインナーフォーカス方式を用いているものが多い。 Further, when zooming from the wide-angle end to the telephoto end, the short zoom configuration is based on narrowing the distance between the lens group having a negative refractive power and the lens group having a positive refractive power. Dividing the second and subsequent lens groups into positive, negative, and positive refractive power lens groups, and moving the negative refractive power lens group in between to the image side relative to the positive refractive power lens group. So, while performing scaling, aberration correction is performed. In a retrofocus type zoom lens, it is often performed by moving a first lens group in which aberration fluctuation during focusing is relatively small. In recent years, many of them use the inner focus method to perform silent and high-speed focus drive.
例えば第2レンズ群でフォーカシングを行うと、望遠端において軸上光線の入射高hと広角端において軸外主光線の入射高h−が共に大きくなる。このため、フォーカシングによる収差変動を補正するのが困難となる。 For example, when focusing is performed with the second lens group, both the incident height h of the on-axis ray at the telephoto end and the incident height h-of the off-axis main ray at the wide-angle end become large. Therefore, it becomes difficult to correct the aberration fluctuation due to focusing.
そこで本発明者は、第2レンズ群の他に負の屈折力の第3レンズ群を補助的にフォーカシング移動することで、広角端において像面湾曲の変動、望遠端において球面収差の変動を共に小さくしている。一方で近年、広画角のズームレンズにおいては、像ぶれ補正機能(防振機能)を有することが要望されている。負、正、負、正の屈折力の第1レンズ群乃至第4レンズ群よりなる4群ズームレンズにおいて、像ぶれ補正をする際に、特許文献2にもあるように、有効径が小さくなる負の屈折力の第3レンズ群で行うのが有効である。
Therefore, the present inventor assists the focusing movement of the third lens group having a negative refractive power in addition to the second lens group to cause both fluctuations in curvature of field at the wide-angle end and fluctuations in spherical aberration at the telephoto end. I'm making it smaller. On the other hand, in recent years, a zoom lens having a wide angle of view is required to have an image blur correction function (vibration isolation function). In a 4-group zoom lens consisting of a 1st lens group to a 4th lens group having negative, positive, negative, and positive refractive powers, the effective diameter becomes smaller as described in
これは開口絞りに近いため軸外光線の入射高が低く、かつ正の屈折力の第2レンズ群で光線が収束されて、軸上光線の入射高も低くなるためである。即ち、第3レンズ群L3は、フォーカシング用の補助レンズ群としても、像ぶれ補正用のレンズ群としても適していることになる。しかしながら、物体距離の変化による収差変動が小さく、かつ像ぶれ補正機能を有する広画角のズームレンズを構成しようとすると、メカ構造的にこれらの構成を小型かつ簡易で構成することが困難になってくる。 This is because the incident height of the off-axis ray is low because it is close to the aperture diaphragm, and the ray is converged by the second lens group having a positive refractive power, and the incident height of the on-axis ray is also low. That is, the third lens group L3 is suitable as both an auxiliary lens group for focusing and a lens group for image blur correction. However, when trying to construct a zoom lens having a wide angle of view, which has a small aberration fluctuation due to a change in the object distance and has an image blur correction function, it becomes difficult to construct these configurations in a compact and simple manner mechanically. Come on.
そこで本発明では、まず、フォーカシング補助を、負の屈折力の第3レンズ群で行うようにしている。次に、正の屈折力の第4レンズ群を複数のレンズ群に分割し、物体側より軸上光線の入射高hが高い位置に正の屈折力のレンズ群(第4レンズ群)とし、それより像側に屈折力の弱いレンズ群を含む後群の2つのレンズ群に分割した。 Therefore, in the present invention, first, the focusing assist is performed by the third lens group having a negative refractive power. Next, the fourth lens group having a positive refractive power is divided into a plurality of lens groups to form a lens group having a positive refractive power (fourth lens group) at a position where the incident height h of the axial ray is higher than that on the object side. It was divided into two lens groups in the rear group, which included a lens group with a weaker refractive power on the image side.
正の屈折力の第4レンズ群は、開口絞りに近い位置となるため、軸外光線の入射高h−が小さくて軸上光線の入射高hが大きくなり、軸上光線の収差補正に適している。また、負の屈折力の第3レンズ群L3でアフォーカルになった軸上光線が入射するため、有効径が第3レンズ群L3と略同等になる。後群は、第4レンズ群の正の屈折力で軸上光線の入射高hが小さくなり、かつ開口絞りから離れた位置で軸外光線の入射高h−が高くなるため、軸外光束の収差補正に適している。 Since the fourth lens group having a positive refractive power is located near the aperture diaphragm, the incident height h-of the off-axis ray is small and the incident height h of the on-axis ray is large, which is suitable for correcting the aberration of the on-axis ray. ing. Further, since the axial light beam that is afocal in the third lens group L3 having a negative refractive power is incident, the effective diameter becomes substantially the same as that of the third lens group L3. In the rear group, the incident height h of the on-axis ray becomes small due to the positive refractive power of the fourth lens group, and the incident height h-of the off-axis ray becomes high at a position away from the aperture diaphragm. Suitable for aberration correction.
このような屈折力配置とした時、有効径が小さい正の屈折力の第4レンズ群を像ぶれ補正用のレンズ系ISとし、第4レンズ群で物体距離による収差変動の軽減と、像ぶれ補正を行っている。 With such a refractive power arrangement, the fourth lens group with a positive refractive power with a small effective diameter is used as the lens system IS for image blur correction, and the fourth lens group reduces aberration fluctuations due to object distance and image blur. I am making corrections.
以上の理由により、本発明のズームレンズは、物体側より像側へ順に配置された次のレンズ群より構成している。負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3と、正の屈折力の第4レンズ群L4、1つ以上のレンズ群を含む後群LRより構成している。 For the above reasons, the zoom lens of the present invention is composed of the following lens groups arranged in order from the object side to the image side. Negative refractive power first lens group L1, positive refractive power second lens group L2, negative refractive power third lens group L3, positive refractive power fourth lens group L4, one or more lenses It is composed of a posterior group LR including a group.
ズーミングに際して隣り合うレンズ群の間隔が変化する。フォーカシングに際して、少なくとも第3レンズ群L3が移動する。第4レンズ群L4の一部または全体のレンズ系ISが像ぶれ補正に際して光軸に対して垂直方向の成分を含むように移動する。即ち防振を行う。それにより、物体距離の変動による収差変動が小さく、かつ像ぶれ補正を良好に行うことができるズームレンズを得ている。 The distance between adjacent lens groups changes during zooming. At the time of focusing, at least the third lens group L3 moves. A part or the whole lens system IS of the fourth lens group L4 moves so as to include a component in the direction perpendicular to the optical axis at the time of image blur correction. That is, vibration isolation is performed. As a result, a zoom lens is obtained in which aberration fluctuations due to fluctuations in the object distance are small and image blur correction can be performed satisfactorily.
次に、本発明のズームレンズにおいて、より好ましい構成について、説明する。フォーカシングに際しては、第3レンズ群L3に加え、第2レンズ群L2の全体または一部が移動するのが良い。第2レンズ群L2は、望遠端において軸上光線の入射高hが高く、フォーカシング敏感度が高くなる。反面、広角端において軸外光線の入射高h−も高く、フォーカシングに際する収差変動を抑えにくくなる。このときの収差変動を第3レンズ群L3のフォーカシング移動により補正すると、最も効率的にフォーカシングと、そのときの収差変動を補正することができる。 Next, a more preferable configuration of the zoom lens of the present invention will be described. At the time of focusing, it is preferable that all or a part of the second lens group L2 moves in addition to the third lens group L3. In the second lens group L2, the incident height h of the axial light beam is high at the telephoto end, and the focusing sensitivity is high. On the other hand, the incident height h− of the off-axis ray is also high at the wide-angle end, and it becomes difficult to suppress the aberration fluctuation during focusing. If the aberration fluctuation at this time is corrected by the focusing movement of the third lens group L3, the focusing and the aberration fluctuation at that time can be corrected most efficiently.
広角端側において、無限遠から至近距離へのフォーカシングに際しては、第2レンズ群L2及び第3レンズ群L3が像側に移動するのが良い。これによれば第2レンズ群L2の移動で発生した像面湾曲を効果的に補正できるため、好ましい。また、望遠端側において無限遠から至近距離へのフォーカシングに際しては、第2レンズ群L2が像側に、第3レンズ群L3が物体側に移動するのが良い。これによれば、第2レンズ群L2の移動で発生した球面収差の変動を効果的に補正できるため、好ましい。 When focusing from infinity to a close distance on the wide-angle end side, it is preferable that the second lens group L2 and the third lens group L3 move to the image side. According to this, the curvature of field generated by the movement of the second lens group L2 can be effectively corrected, which is preferable. Further, when focusing from infinity to a close distance on the telephoto end side, it is preferable that the second lens group L2 moves to the image side and the third lens group L3 moves to the object side. According to this, the fluctuation of the spherical aberration generated by the movement of the second lens group L2 can be effectively corrected, which is preferable.
各実施例において第4レンズ群L4は2枚の正レンズと1枚の負レンズを有するのが良い。後群LRは正の屈折力のレンズ群を有し、後群LRに含まれる正の屈折力のレンズ群のうち最も物体のレンズ群LPは2枚の正レンズと1枚の負レンズを有するのが良い。実施例1において後群LRは正の屈折力の第5レンズ群より構成される。実施例2において後群LRは物体側より像側へ順に配置された負の屈折力の第5レンズ群L5、正の屈折力の第6レンズ群L6より構成されている。 In each embodiment, the fourth lens group L4 preferably has two positive lenses and one negative lens. The rear group LR has a lens group having a positive refractive power, and the lens group LP of the most object among the lens groups having a positive refractive power included in the rear group LR has two positive lenses and one negative lens. Is good. In Example 1, the rear group LR is composed of a fifth lens group having a positive refractive power. In the second embodiment, the rear group LR is composed of a fifth lens group L5 having a negative refractive power and a sixth lens group L6 having a positive refractive power arranged in order from the object side to the image side.
実施例3において、後群LRは物体側から像側へ順に配置された正の屈折力の第5レンズ群L5、負の屈折力の第6レンズ群L6より構成されている。各実施例において好ましくは次の条件式のうち1つ以上を満足するのが良い。広角端における後群LRの焦点距離をfRw、広角端における全系の焦点距離をfwとする。像ぶれ補正用のレンズ系ISの焦点距離をf4Sとする。第1レンズ群L1の焦点距離をf1、第2レンズ群L2の焦点距離をf2、第3レンズ群L3の焦点距離をf3とする。 In the third embodiment, the rear group LR is composed of a fifth lens group L5 having a positive refractive power and a sixth lens group L6 having a negative refractive power arranged in order from the object side to the image side. In each embodiment, it is preferable that one or more of the following conditional expressions are satisfied. Let fRw be the focal length of the rear group LR at the wide-angle end, and fw be the focal length of the entire system at the wide-angle end. The focal length of the lens system IS for image blur correction is f4S. Let the focal length of the first lens group L1 be f1, the focal length of the second lens group L2 be f2, and the focal length of the third lens group L3 be f3.
このとき、次の条件式のうち1つ以上を満足するのが良い。
−0.1<fw/fRw<0.3 ・・・(1)
2.0<f4S/fw<6.0 ・・・(2)
1.0<−f1/fw<2.0 ・・・(3)
1.0<f2/fw<3.0 ・・・(4)
1.0<−f3/fw<4.0 ・・・(5)
At this time, it is preferable to satisfy one or more of the following conditional expressions.
−0.1 <fw / fRw <0.3 ・ ・ ・ (1)
2.0 <f4S / fw <6.0 ... (2)
1.0 <−f1 / fw <2.0 ... (3)
1.0 <f2 / fw <3.0 ... (4)
1.0 <-f3 / fw <4.0 ... (5)
次に前述の各条件式の技術的意味について説明する。条件式(1)は、後群LRの屈折力に関する。条件式(1)は第4レンズ群L4の正の屈折力との分担を適切に設定することで、第4レンズ群L4の小型化を図りつつ防振敏感度を効果的に得るためのものである。条件式(1)の上限値を超えると、第4レンズ群L4の正の屈折力が弱まり防振敏感度が小さくなり、像ぶれ補正を効果的に行うのが困難になる。条件式(1)の下限値を超えると、第4レンズ群L4への軸外光線の入射高h−が高くなるため、有効径が大きくなり、防振機構が大型化してしまうため、好ましくない。 Next, the technical meaning of each of the above conditional expressions will be described. The conditional expression (1) relates to the refractive power of the rear group LR. Conditional expression (1) is for effectively obtaining anti-vibration sensitivity while reducing the size of the fourth lens group L4 by appropriately setting the share of the fourth lens group L4 with the positive refractive power. Is. If the upper limit of the conditional expression (1) is exceeded, the positive refractive power of the fourth lens group L4 is weakened, the anti-vibration sensitivity is reduced, and it becomes difficult to effectively correct the image blur. If the lower limit of the conditional expression (1) is exceeded, the incident height h− of the off-axis light beam to the fourth lens group L4 becomes high, so that the effective diameter becomes large and the vibration isolation mechanism becomes large, which is not preferable. ..
条件式(1)の数値範囲は、より好ましくは、次の如く設定するのが良い。
0.0<fw/fRw<0.2 ・・・(1a)
即ち、後群LRの屈折力が正であると、レトロフォーカスの屈折力配置が強くなり、広角端を広画角化し易くなるため、好ましい。
The numerical range of the conditional expression (1) is more preferably set as follows.
0.0 <fw / fRw <0.2 ... (1a)
That is, when the refractive power of the rear group LR is positive, the refractive power arrangement of the retrofocus becomes strong, and it becomes easy to widen the angle of view at the wide-angle end, which is preferable.
条件式(2)は、像ぶれ補正用のレンズ系ISの屈折力を適切に設定し、防振敏感度を効果的に得るためのものである。条件式(2)の上限値を超えると、防振敏感度が低くなり過ぎ、像ぶれ補正の際のレンズ系ISのシフト量(移動量)が大きくなるため、好ましくない。条件式(2)の下限値を超えると、像ぶれ補正用のレンズ系ISの屈折力が強くなり過ぎ、像ぶれ補正の防振制御が困難になるため、好ましくない。 The conditional expression (2) is for appropriately setting the refractive power of the lens system IS for image blur correction and effectively obtaining the anti-vibration sensitivity. If the upper limit of the conditional expression (2) is exceeded, the anti-vibration sensitivity becomes too low, and the shift amount (movement amount) of the lens system IS at the time of image blur correction becomes large, which is not preferable. If the lower limit of the conditional expression (2) is exceeded, the refractive power of the lens system IS for image blur correction becomes too strong, and vibration isolation control for image blur correction becomes difficult, which is not preferable.
条件式(2)の数値範囲は、より好ましくは次の如く設定するのが良い。
2.5<f4S/fw<5.5 ・・・(2a)
条件式(3)、(4)、(5)は、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3の各レンズ群の屈折力を最適にし、諸収差の変動を抑えつつ全系の小型化を図るためのものである。
The numerical range of the conditional expression (2) is more preferably set as follows.
2.5 <f4S / fw <5.5 ... (2a)
The conditional equations (3), (4), and (5) optimize the refractive power of each lens group of the first lens group L1, the second lens group L2, and the third lens group L3, while suppressing fluctuations in various aberrations. This is to reduce the size of the entire system.
条件式(3)の上限値を超えると、第1レンズ群L1の負の屈折力が弱すぎて(負の屈折力の絶対値が小さすぎて)、広角端を広画角化するのが困難になる。条件式(3)の下限値を超えると、第1レンズ群L1の負の屈折力が強すぎて(負の屈折力の絶対値が大きくなり過ぎて)、広角端においてサジタル像面湾曲と歪曲収差が増大し、これらの諸収差の補正が困難になる。 When the upper limit of the conditional expression (3) is exceeded, the negative refractive power of the first lens group L1 is too weak (the absolute value of the negative refractive power is too small), and the wide-angle end is widened. It will be difficult. When the lower limit of the conditional equation (3) is exceeded, the negative refractive power of the first lens group L1 is too strong (the absolute value of the negative refractive power becomes too large), and the sagittal curvature of field and distortion at the wide-angle end. Aberrations increase, making it difficult to correct these aberrations.
条件式(4)の上限値を超えると、第2レンズ群L2の正の屈折力が弱過ぎて、十分なズーム比を得るのが困難になる。条件式(4)の下限値を超えると、第2レンズ群L2の正の屈折力が強すぎて、望遠端において非点収差の補正が困難になる。 If the upper limit of the conditional expression (4) is exceeded, the positive refractive power of the second lens group L2 is too weak, and it becomes difficult to obtain a sufficient zoom ratio. If the lower limit of the conditional expression (4) is exceeded, the positive refractive power of the second lens group L2 is too strong, and it becomes difficult to correct astigmatism at the telephoto end.
条件式(5)の上限値を超えると、第3レンズ群L3の負の屈折力が弱過ぎて、第2レンズ群L2と第3レンズ群L3の間隔変化による変倍比を十分に確保するのが困難になる。条件式(5)の下限値を超えると、第3レンズ群L3の負の屈折力が強過ぎて、望遠端において球面収差が過補正となるため、好ましくない。 When the upper limit of the conditional expression (5) is exceeded, the negative refractive power of the third lens group L3 is too weak, and a sufficient magnification ratio due to a change in the distance between the second lens group L2 and the third lens group L3 is secured. Becomes difficult. If the lower limit of the conditional expression (5) is exceeded, the negative refractive power of the third lens group L3 is too strong, and spherical aberration is overcorrected at the telephoto end, which is not preferable.
好ましくは条件式(3)乃至(5)の数値範囲を次の如く設定するのが良い。
1.2<−f1/fw<1.8 ・・・(3a)
1.3<f2/fw<2.5 ・・・(4a)
1.3<−f3/fw<3.5 ・・・(5a)
It is preferable to set the numerical range of the conditional expressions (3) to (5) as follows.
1.2 <−f1 / fw <1.8 ... (3a)
1.3 <f2 / fw <2.5 ... (4a)
1.3 <-f3 / fw <3.5 ... (5a)
次に各実施例において好ましい構成について説明する。後群LRは正の屈折力のレンズ群を有し、後群LRに含まれる正の屈折力のレンズ群のうち最も物体側に配置されたレンズ群をレンズ群LPとする。広角端から望遠端へのズーミングに際し、第4レンズ群と、レンズ群LPの間隔が、狭まると良い。それによれば、広角端で第4レンズ群L4とレンズ群LPの間隔が空き、第4レンズ群L4での軸外主光線の入射高h−を小さくすることが出来、像ぶれ補正用のレンズ系ISの有効径を小さくすることが容易となる。 Next, a preferable configuration will be described in each embodiment. The rear group LR has a lens group having a positive refractive power, and the lens group arranged closest to the object side among the lens groups having a positive refractive power included in the rear group LR is referred to as a lens group LP. When zooming from the wide-angle end to the telephoto end, it is preferable that the distance between the fourth lens group and the lens group LP is narrowed. According to this, there is a gap between the fourth lens group L4 and the lens group LP at the wide-angle end, the incident height h-of the off-axis main ray at the fourth lens group L4 can be reduced, and the lens for image blur correction. It becomes easy to reduce the effective diameter of the system IS.
第4レンズ群L2が2枚の正レンズと、1枚の負レンズを有すると良い。像ぶれ補正の際の収差(防振収差)を補正するためには、単レンズではなく、異符号のレンズを有することが好ましく、かつ正の屈折力を効果的に得るには、負レンズよりも正レンズの枚数を多くすることが好ましい。特に第4レンズ群L4は、2枚の正レンズと、1枚の負レンズの3枚のレンズで構成することが、全系の小型化を図るのに好ましい。 It is preferable that the fourth lens group L2 has two positive lenses and one negative lens. In order to correct the aberration (vibration-proof aberration) at the time of image blur correction, it is preferable to have a lens having a different sign instead of a single lens, and in order to effectively obtain a positive refractive power, it is better than a negative lens. It is also preferable to increase the number of positive lenses. In particular, it is preferable that the fourth lens group L4 is composed of three lenses, two positive lenses and one negative lens, in order to reduce the size of the entire system.
レンズ群LPが2枚の正レンズと、1枚の負レンズを有すると良い。軸外収差を良好に補正するためには、単レンズではなく、異符号のレンズを有することが好ましく、かつ正の屈折力を効果的に得るには、負レンズよりも正レンズのレンズ枚数を多くすることが好ましい。広角端から望遠端のズーミングに際し、第1レンズ群L1と第2レンズ群L2の間隔が狭まり、第2レンズ群L2と第3レンズ群L3の間隔が広がり、第3レンズ群L3と第4レンズ群L4の間隔が狭まると良い。 It is preferable that the lens group LP has two positive lenses and one negative lens. In order to satisfactorily correct off-axis aberrations, it is preferable to have a lens having a different sign instead of a single lens, and in order to effectively obtain a positive refractive power, the number of lenses of a positive lens is larger than that of a negative lens. It is preferable to increase the number. When zooming from the wide-angle end to the telephoto end, the distance between the first lens group L1 and the second lens group L2 is narrowed, the distance between the second lens group L2 and the third lens group L3 is widened, and the distance between the third lens group L3 and the fourth lens is widened. It is preferable that the interval between the groups L4 is narrowed.
本発明のズームレンズは、例えば物体側より順に、負、正、負、正、正の屈折力の第1レンズ群L1乃至第5レンズ群L5よりなる5群ズームレンズが適用できる。この他、負、正、負、正、負、正の屈折力の第1レンズ群L1乃至第6レンズ群L6よりなる6群ズームレンズや、負、正、負、正、正、負の屈折力の第1レンズ群L1乃至第6レンズ群L6よりなる6群ズームレンズ等が適用できる。 As the zoom lens of the present invention, for example, a five-group zoom lens composed of a first lens group L1 to a fifth lens group L5 having negative, positive, negative, positive, and positive refractive powers can be applied in order from the object side. In addition, a 6-group zoom lens consisting of the 1st lens group L1 to the 6th lens group L6 with negative, positive, negative, positive, negative, and positive refractive power, and negative, positive, negative, positive, positive, and negative refraction. A 6-group zoom lens or the like composed of the first lens group L1 to the sixth lens group L6 of power can be applied.
ここで、レンズ群とは、光学系の最前面または、前方に隣接するレンズとの間隔がズーミングで変化する面から、光学系の最後面または、後方に隣接するレンズとの間隔がズーミングで変化する面までを言う。 Here, the lens group means that the distance between the frontmost surface of the optical system or the lens adjacent to the front surface changes by zooming, and the distance between the rearmost surface of the optical system or the lens adjacent to the rear side changes by zooming. Say up to the side to do.
以下、各実施例における構成について説明する。実施例1は、物体側より像側へ順に配置された次のレンズ群より構成されている。負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5(レンズ群LP)より構成されている。広角端における撮像画角は102.38度であり、ズーム比が3.91の5群ズームレンズである。 Hereinafter, the configuration in each embodiment will be described. The first embodiment is composed of the following lens groups arranged in order from the object side to the image side. Negative power first lens group L1, positive power second lens group L2, negative power third lens group L3, positive power fourth lens group L4, positive power first It is composed of 5 lens groups L5 (lens group LP). This is a 5-group zoom lens with an imaging angle of view of 102.38 degrees at the wide-angle end and a zoom ratio of 3.91.
フォーカシングに際しては、第2レンズ群L2がズーム全域で、像側に移動し、フォーカシング敏感度を効果的に得ている。また、フォーカシングに際して第3レンズ群L3が広角端寄りでは像側に、望遠端寄りでは物体側に移動する。これにより、それぞれ広角側において像面湾曲の変動を、望遠側において球面収差の変動を補正している。 At the time of focusing, the second lens group L2 moves to the image side in the entire zoom range, and the focusing sensitivity is effectively obtained. Further, during focusing, the third lens group L3 moves toward the image side near the wide-angle end and toward the object side near the telephoto end. As a result, fluctuations in curvature of field are corrected on the wide-angle side and fluctuations in spherical aberration are corrected on the telephoto side.
像ぶれ補正用のレンズ系ISは、第4レンズ群L4よりなる。第4レンズ群L4と第5レンズ群L5が、条件式(1)、(2)を満たすことで、第4レンズ群L4の有効径の増大を抑えつつ、第4レンズ群L4で軸上光束の収差を、第5レンズ群L5で軸外光束の収差を効果的に補正している。 The lens system IS for image blur correction includes a fourth lens group L4. By satisfying the conditional equations (1) and (2), the fourth lens group L4 and the fifth lens group L5 suppress the increase in the effective diameter of the fourth lens group L4, and the axial light beam in the fourth lens group L4. The aberration of the off-axis light beam is effectively corrected by the fifth lens group L5.
広角端から望遠端へのズーミングに際して、第4レンズ群L4と第5レンズ群L5の間隔が狭まるように移動しており、それにより広角端において第4レンズ群L4と第5レンズ群L5の軸外光線の入射高h−の差を大きくし、小径化を容易にしている。また、広角端から望遠端へのズーミングに際して、第1レンズ群L1と第2レンズ群L2の間隔が狭まり、第2レンズ群L2と第3レンズ群L3の間隔が広まり、第3レンズ群L3と第4レンズ群L4の間隔が狭まることで、変倍を効果的に行っている。 When zooming from the wide-angle end to the telephoto end, the distance between the 4th lens group L4 and the 5th lens group L5 is narrowed, so that the axes of the 4th lens group L4 and the 5th lens group L5 are narrowed at the wide-angle end. The difference in the incident height h-of the external light is increased, facilitating the reduction in diameter. Further, when zooming from the wide-angle end to the telephoto end, the distance between the first lens group L1 and the second lens group L2 is narrowed, the distance between the second lens group L2 and the third lens group L3 is widened, and the third lens group L3 By narrowing the distance between the fourth lens group L4, scaling is effectively performed.
また、第4レンズ群L4と第5レンズ群L5は、共に2枚の正レンズと1枚の負レンズから成っており、共に小型化を保ちながら、第4レンズ群L4では偏芯収差を軽減し、第5レンズ群L5では軸外収差を効果的に抑えている。また、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3は、それぞれ条件式(3)、(4)、(5)を満たしており、それにより、全系の小型化を図りつつ、高い光学性能を得ている。 Further, the 4th lens group L4 and the 5th lens group L5 are both composed of two positive lenses and one negative lens, and while maintaining miniaturization, the fourth lens group L4 reduces eccentric aberration. However, in the fifth lens group L5, off-axis aberration is effectively suppressed. Further, the first lens group L1, the second lens group L2, and the third lens group L3 satisfy the conditional expressions (3), (4), and (5), respectively, thereby reducing the size of the entire system. At the same time, it has obtained high optical performance.
実施例2は、物体側より像側へ順に配置された、次のレンズ群より構成されている。負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4、負の屈折力の第5レンズ群L5、正の屈折力の第6レンズ群L6(レンズ群LP)より構成されている。広角端における撮像画角は102.38度であり、ズーム比が3.91倍の6群ズームレンズである。 The second embodiment is composed of the following lens groups arranged in order from the object side to the image side. Negative refractive power first lens group L1, positive refractive power second lens group L2, negative refractive power third lens group L3, positive refractive power fourth lens group L4, negative refractive power first It is composed of 5 lens groups L5 and a 6th lens group L6 (lens group LP) having a positive refractive power. It is a 6-group zoom lens with an imaging angle of view of 102.38 degrees at the wide-angle end and a zoom ratio of 3.91 times.
広角端から望遠端へのズーミングに際して第4レンズ群L4と、第6レンズ群L6の間隔が、狭まるように移動しており、それにより広角端において第4レンズ群L4と第6レンズ群L6の軸外光線の入射高h−の差を大きくし、全系の小径化を容易にしている。実施例2における、各レンズ群の構成や光学作用は、実施例1と同様である。 When zooming from the wide-angle end to the telephoto end, the distance between the 4th lens group L4 and the 6th lens group L6 is narrowed, so that the 4th lens group L4 and the 6th lens group L6 are moved at the wide-angle end. The difference in the incident height h− of the off-axis light beam is increased, and the diameter of the entire system can be easily reduced. The configuration and optical action of each lens group in Example 2 are the same as those in Example 1.
実施例3は、物体側より像側へ順に配置された次のレンズ群より構成されている。負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5(レンズ群LP)、負の屈折力の第6レンズ群L6より構成されている。広角端における撮像画角は106.02度であり、ズーム比3.56の6群ズームレンズである。実施例3における、各レンズ群の構成や光学作用は、実施例1と同様である。 Example 3 is composed of the following lens groups arranged in order from the object side to the image side. Negative refractive power first lens group L1, positive refractive power second lens group L2, negative refractive power third lens group L3, positive refractive power fourth lens group L4, positive refractive power first It is composed of five lens groups L5 (lens group LP) and a sixth lens group L6 having a negative refractive power. The imaging angle of view at the wide-angle end is 106.02 degrees, and it is a 6-group zoom lens with a zoom ratio of 3.56. The configuration and optical action of each lens group in Example 3 are the same as those in Example 1.
次に実施例1乃至3に示したズームレンズを撮像装置に適用した実施例を図13を用いて説明する。図13は、一眼レフカメラの要部概略図である。図13において10は実施例1乃至3のズームレンズ1を有する撮像光学系である。ズームレンズ1は保持部材である鏡筒2に保持されている。20はカメラ本体であり、撮像光学系10からの光束を上方に反射するクイックリターンミラー3、撮像光学系10の像形成装置に配置された焦点板4より構成されている。
Next, an example in which the zoom lens shown in Examples 1 to 3 is applied to the image pickup apparatus will be described with reference to FIG. FIG. 13 is a schematic view of a main part of the single-lens reflex camera. In FIG. 13,
更に焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5、その正立像を観察するための接眼レンズ6などによって構成されている。7は感光面であり、CCDセンサやCMOSセンサ等のズームレンズによって形成される像を受光する固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。
Further, it is composed of a
実施例1乃至3にて説明した利益は本実施例に開示したような撮像装置において効果的に享受される。撮像装置としてクイックリターンミラー3のないミラーレスの一眼レフカメラにも同様に適用できる。
The benefits described in Examples 1 to 3 are effectively enjoyed in the imaging apparatus as disclosed in this Example. The same applies to a mirrorless single-lens reflex camera that does not have a
以上、本発明の好ましい撮像光学系の実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。 Although examples of the preferred imaging optical system of the present invention have been described above, it goes without saying that the present invention is not limited to these examples, and various modifications and changes can be made within the scope of the gist thereof.
以下に実施例1乃至3に対応する数値データ1乃至3を示す。各数値データにおいてiは物体側からの面の順番を示す。数値データにおいてriは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より順に第i番目のレンズ厚及び空気間隔、ndiとνdiは各々物体側より順に第i番目のレンズの材料の屈折率とアッベ数である。BFはバックフォーカスである。レンズ全長は第1レンズ面から最終レンズ面までの距離にバックフォーカスの値を加えた距離である。
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、rを近軸曲率半径、kを円錐定数、各非球面係数をA4、A6、A8、A10、A12としたとき、 The aspherical shape is the X-axis in the optical axis direction, the H-axis in the direction perpendicular to the optical axis, the direction of light travel is positive, r is the radius of curvature of the near axis, k is the conical constant, and each aspherical coefficient is A4, A6, A8. , A10, A12,
で与えるものとする。各非球面係数における「e±xx」は「×10±xx」を意味している。各非球面は面データにおいて面番号の右側に「*」印を付して示している。 It shall be given in. “E ± xx” in each aspherical coefficient means “× 10 ± xx ”. Each aspherical surface is indicated by a "*" mark on the right side of the surface number in the surface data.
各数値データにおけるr13、r20は設計上用いたダミー面である。また前述の各条件式と数値データの関係を表1に示す。
R13 and r20 in each numerical data are dummy surfaces used in the design. Table 1 shows the relationship between each of the above conditional expressions and the numerical data.
(数値データ1)
単位 mm
面データ
面番号 r d nd νd 有効径
1* 1082.538 2.50 1.88300 40.8 57.50
2 22.895 14.52 40.83
3* -48.107 2.00 1.58313 59.4 40.78
4* 319.118 0.52 40.08
5 45.216 4.05 1.85478 24.8 40.30
6 100.401 (可変) 39.79
7* 41.193 2.40 1.76385 48.5 24.70
8 142.453 1.10 1.85478 24.8 24.18
9 31.969 3.43 1.60311 60.6 23.05
10 -384.344 0.15 22.69
11 44.048 3.25 1.76385 48.5 22.59
12 -82.325 (可変) 22.50
13 ∞ 1.00 18.62
14 241.786 0.80 1.77250 49.6 17.48
15 29.322 2.51 16.47
16 -35.973 0.80 1.69680 55.5 16.26
17 28.446 2.88 1.84666 23.8 16.58
18 -240.753 (可変) 16.78
19(絞り) ∞ (可変) 17.11
20 ∞ (可変) 17.56
21 32.886 5.14 1.43875 94.9 18.04
22 -21.947 0.15 18.06
23 -44.992 4.14 1.56732 42.8 17.71
24 -14.266 1.10 1.85026 32.3 17.89
25 -64.960 (可変) 19.05
26 38.105 5.59 1.49700 81.5 22.57
27 -32.233 0.15 22.82
28 -92.171 1.40 1.91082 35.3 22.55
29 26.230 4.09 1.78472 25.7 22.68
30* 110.219 22.91
(Numerical data 1)
Unit mm
Surface data Surface number rd nd νd Effective diameter
1 * 1082.538 2.50 1.88300 40.8 57.50
2 22.895 14.52 40.83
3 * -48.107 2.00 1.58313 59.4 40.78
4 * 319.118 0.52 40.08
5 45.216 4.05 1.85478 24.8 40.30
6 100.401 (variable) 39.79
7 * 41.193 2.40 1.76385 48.5 24.70
8 142.453 1.10 1.85478 24.8 24.18
9 31.969 3.43 1.60311 60.6 23.05
10 -384.344 0.15 22.69
11 44.048 3.25 1.76385 48.5 22.59
12 -82.325 (variable) 22.50
13 ∞ 1.00 18.62
14 241.786 0.80 1.77250 49.6 17.48
15 29.322 2.51 16.47
16 -35.973 0.80 1.69680 55.5 16.26
17 28.446 2.88 1.84666 23.8 16.58
18 -240.753 (variable) 16.78
19 (Aperture) ∞ (Variable) 17.11
20 ∞ (variable) 17.56
21 32.886 5.14 1.43875 94.9 18.04
22 -21.947 0.15 18.06
23 -44.992 4.14 1.56732 42.8 17.71
24 -14.266 1.10 1.85026 32.3 17.89
25 -64.960 (variable) 19.05
26 38.105 5.59 1.49700 81.5 22.57
27 -32.233 0.15 22.82
28 -92.171 1.40 1.91082 35.3 22.55
29 26.230 4.09 1.78472 25.7 22.68
30 * 110.219 22.91
非球面データ
第1面
K = 0.00000e+000 A 4= 1.72478e-005 A 6=-3.45899e-008 A 8= 4.50788e-011 A10=-3.27350e-014 A12= 1.02158e-017
第3面
K = 0.00000e+000 A 4= 2.19296e-005 A 6= 2.34566e-008 A 8=-1.51995e-010 A10= 1.41757e-013
第4面
K = 0.00000e+000 A 4= 3.10095e-005 A 6= 3.98058e-009 A 8=-2.25553e-010 A10= 3.11124e-013 A12=-7.83414e-017
第7面
K = 0.00000e+000 A 4=-6.02960e-006 A 6= 6.86222e-009 A 8=-7.64620e-011 A10= 1.87577e-013
第30面
K = 0.00000e+000 A 4= 1.52401e-005 A 6= 1.16486e-008 A 8=-4.85550e-011 A10= 3.85095e-013
各種データ
ズーム比 3.91
広角 中間 望遠
焦点距離 17.40 35.00 67.98
Fナンバー 3.23 4.10 5.85
半画角(度) 51.19 31.73 17.65
像高 21.64 21.64 21.64
レンズ全長 168.46 152.31 168.39
BF 38.38 53.37 84.83
d 6 38.98 11.93 1.23
d12 1.50 8.17 14.71
d18 12.54 10.50 1.35
d19 1.00 1.15 1.80
d20 7.00 0.00 0.00
d25 5.39 3.52 0.80
ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -23.36 23.59 2.50 -16.60
2 7 26.68 10.33 3.24 -3.13
3 13 -29.49 7.99 1.98 -4.02
4 21 69.51 10.53 -0.64 -7.51
5 26 134.38 11.23 -6.97 -13.18
Aspherical data first surface
K = 0.00000e + 000 A 4 = 1.72478
Third side
K = 0.00000e + 000 A 4 = 2.19296
4th side
K = 0.00000e + 000 A 4 = 3.10095
7th page
K = 0.00000e + 000 A 4 = -6.02960
30th page
K = 0.00000e + 000 A 4 = 1.52401
Various data Zoom ratio 3.91
Wide-angle medium telephoto focal length 17.40 35.00 67.98
F number 3.23 4.10 5.85
Half angle of view (degrees) 51.19 31.73 17.65
Image height 21.64 21.64 21.64
Lens overall length 168.46 152.31 168.39
BF 38.38 53.37 84.83
d12 1.50 8.17 14.71
d18 12.54 10.50 1.35
d19 1.00 1.15 1.80
d20 7.00 0.00 0.00
d25 5.39 3.52 0.80
Zoom lens group Data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -23.36 23.59 2.50 -16.60
2 7 26.68 10.33 3.24 -3.13
3 13 -29.49 7.99 1.98 -4.02
4 21 69.51 10.53 -0.64 -7.51
5 26 134.38 11.23 -6.97 -13.18
(数値データ2)
単位 mm
面データ
面番号 r d nd νd 有効径
1* 15601.425 2.50 1.88300 40.8 57.84
2 22.927 14.52 40.85
3* -49.062 2.00 1.58313 59.4 40.78
4* 359.739 0.21 40.22
5 45.800 4.07 1.85478 24.8 40.45
6 104.042 (可変) 39.95
7* 43.399 2.34 1.76385 48.5 24.63
8 119.609 1.10 1.85478 24.8 24.06
9 31.702 3.66 1.60311 60.6 22.95
10 -301.786 0.15 22.73
11 41.661 3.60 1.76385 48.5 22.42
12 -80.663 (可変) 22.27
13 ∞ 1.00 17.51
14 -1227.899 0.80 1.77250 49.6 16.28
15 31.173 2.34 15.91
16 -39.901 0.80 1.69680 55.5 15.94
17 28.311 2.92 1.84666 23.8 16.50
18 -179.014 (可変) 16.70
19(絞り) ∞ (可変) 16.49
20 ∞ (可変) 17.23
21 34.210 4.81 1.43875 94.9 17.41
22 -22.290 0.15 17.40
23 -47.218 3.90 1.56732 42.8 16.99
24 -14.789 1.10 1.85026 32.3 16.96
25 -45.788 (可変) 17.72
26 -61.667 1.00 1.84666 23.8 18.09
27 2656.197 (可変) 18.62
28 29.750 5.34 1.49700 81.5 22.08
29 -44.557 0.15 22.37
30 712.118 1.40 1.91082 35.3 22.35
31 19.346 4.88 1.78472 25.7 22.25
32* 83.456 22.43
(Numerical data 2)
Unit mm
Surface data Surface number rd nd νd Effective diameter
1 * 15601.425 2.50 1.88300 40.8 57.84
2 22.927 14.52 40.85
3 * -49.062 2.00 1.58313 59.4 40.78
4 * 359.739 0.21 40.22
5 45.800 4.07 1.85478 24.8 40.45
6 104.042 (variable) 39.95
7 * 43.399 2.34 1.76385 48.5 24.63
8 119.609 1.10 1.85478 24.8 24.06
9 31.702 3.66 1.60311 60.6 22.95
10 -301.786 0.15 22.73
11 41.661 3.60 1.76385 48.5 22.42
12 -80.663 (variable) 22.27
13 ∞ 1.00 17.51
14 -1227.899 0.80 1.77250 49.6 16.28
15 31.173 2.34 15.91
16 -39.901 0.80 1.69680 55.5 15.94
17 28.311 2.92 1.84666 23.8 16.50
18 -179.014 (variable) 16.70
19 (Aperture) ∞ (Variable) 16.49
20 ∞ (variable) 17.23
21 34.210 4.81 1.43875 94.9 17.41
22 -22.290 0.15 17.40
23 -47.218 3.90 1.56732 42.8 16.99
24 -14.789 1.10 1.85026 32.3 16.96
25 -45.788 (variable) 17.72
26 -61.667 1.00 1.84666 23.8 18.09
27 2656.197 (variable) 18.62
28 29.750 5.34 1.49700 81.5 22.08
29 -44.557 0.15 22.37
30 712.118 1.40 1.91082 35.3 22.35
31 19.346 4.88 1.78472 25.7 22.25
32 * 83.456 22.43
非球面データ
第1面
K = 0.00000e+000 A 4= 1.70800e-005 A 6=-3.44155e-008 A 8= 4.53701e-011 A10=-3.26163e-014 A12= 9.94081e-018
第3面
K = 0.00000e+000 A 4= 2.22219e-005 A 6= 2.37055e-008 A 8=-1.55335e-010 A10= 1.39414e-013
第4面
K = 0.00000e+000 A 4= 3.07204e-005 A 6= 4.00756e-009 A 8=-2.24106e-010 A10= 3.11696e-013 A12=-8.42451e-017
第7面
K = 0.00000e+000 A 4=-5.78948e-006 A 6= 6.56533e-009 A 8=-7.64738e-011 A10= 1.86535e-013
第32面
K = 0.00000e+000 A 4= 1.56394e-005 A 6= 1.05029e-008 A 8= 2.39788e-011 A10= 8.06022e-014
各種データ
ズーム比 3.91
広角 中間 望遠
焦点距離 17.40 35.00 68.00
Fナンバー 3.33 4.24 6.03
半画角(度) 51.19 31.72 17.65
像高 21.64 21.64 21.64
レンズ全長 168.42 153.33 168.42
BF 38.34 53.18 83.69
d 6 39.99 12.25 1.00
d12 1.50 7.54 14.08
d18 12.67 9.81 1.31
d19 0.42 1.18 1.80
d20 7.00 0.00 0.00
d25 0.80 1.03 1.00
d27 2.96 3.59 0.80
ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -23.27 23.29 2.37 -16.43
2 7 26.24 10.85 3.52 -3.18
3 13 -30.48 7.86 1.59 -4.29
4 21 50.81 9.96 1.66 -5.07
5 26 -71.17 1.00 0.01 -0.53
6 28 69.48 11.77 -3.54 -10.13
Aspherical data first surface
K = 0.00000e + 000 A 4 = 1.70800
Third side
K = 0.00000e + 000 A 4 = 2.22219
4th side
K = 0.00000e + 000 A 4 = 3.07204
7th page
K = 0.00000e + 000 A 4 = -5.78948
32nd page
K = 0.00000e + 000 A 4 = 1.56394
Various data Zoom ratio 3.91
Wide-angle medium telephoto focal length 17.40 35.00 68.00
F number 3.33 4.24 6.03
Half angle of view (degrees) 51.19 31.72 17.65
Image height 21.64 21.64 21.64
Lens overall length 168.42 153.33 168.42
BF 38.34 53.18 83.69
d12 1.50 7.54 14.08
d18 12.67 9.81 1.31
d19 0.42 1.18 1.80
d20 7.00 0.00 0.00
d25 0.80 1.03 1.00
d27 2.96 3.59 0.80
Zoom lens group Data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -23.27 23.29 2.37 -16.43
2 7 26.24 10.85 3.52 -3.18
3 13 -30.48 7.86 1.59 -4.29
4 21 50.81 9.96 1.66 -5.07
5 26 -71.17 1.00 0.01 -0.53
6 28 69.48 11.77 -3.54 -10.13
(数値データ3)
単位 mm
面データ
面番号 r d nd νd 有効径
1* 1084.469 2.50 1.88300 40.8 56.21
2 21.813 14.52 39.24
3* -48.199 2.00 1.58313 59.4 39.16
4* 561.232 2.81 38.75
5 51.960 4.09 1.85478 24.8 38.69
6 213.703 (可変) 38.25
7* 40.774 2.12 1.76385 48.5 20.17
8 166.001 1.10 1.85478 24.8 20.11
9 34.376 3.16 1.60311 60.6 20.00
10 -107.825 0.15 20.07
11 601.187 1.96 1.76385 48.5 20.06
12 -75.283 (可変) 20.03
13 ∞ 1.00 17.60
14 -99.694 0.80 1.77250 49.6 17.39
15 200.761 1.58 17.23
16 -40.224 0.80 1.69680 55.5 17.17
17 27.028 3.00 1.84666 23.8 17.58
18 -846.135 (可変) 17.74
19(絞り) ∞ (可変) 17.69
20 ∞ (可変) 18.31
21 35.591 5.96 1.43875 94.9 18.53
22 -22.048 0.15 18.64
23 -52.502 4.57 1.56732 42.8 18.26
24 -14.145 1.10 1.85026 32.3 18.35
25 -76.958 (可変) 19.58
26 35.779 5.76 1.49700 81.5 22.45
27 -30.590 (可変) 22.63
28 -94.603 1.40 1.91082 35.3 22.05
29 24.777 3.84 1.78472 25.7 21.97
30* 78.225 22.09
(Numerical data 3)
Unit mm
Surface data Surface number rd nd νd Effective diameter
1 * 1084.469 2.50 1.88300 40.8 56.21
2 21.813 14.52 39.24
3 * -48.199 2.00 1.58313 59.4 39.16
4 * 561.232 2.81 38.75
5 51.960 4.09 1.85478 24.8 38.69
6 213.703 (variable) 38.25
7 * 40.774 2.12 1.76385 48.5 20.17
8 166.001 1.10 1.85478 24.8 20.11
9 34.376 3.16 1.60311 60.6 20.00
10 -107.825 0.15 20.07
11 601.187 1.96 1.76385 48.5 20.06
12 -75.283 (variable) 20.03
13 ∞ 1.00 17.60
14 -99.694 0.80 1.77250 49.6 17.39
15 200.761 1.58 17.23
16 -40.224 0.80 1.69680 55.5 17.17
17 27.028 3.00 1.84666 23.8 17.58
18 -846.135 (variable) 17.74
19 (Aperture) ∞ (Variable) 17.69
20 ∞ (variable) 18.31
21 35.591 5.96 1.43875 94.9 18.53
22 -22.048 0.15 18.64
23 -52.502 4.57 1.56732 42.8 18.26
24 -14.145 1.10 1.85026 32.3 18.35
25 -76.958 (variable) 19.58
26 35.779 5.76 1.49700 81.5 22.45
27 -30.590 (variable) 22.63
28 -94.603 1.40 1.91082 35.3 22.05
29 24.777 3.84 1.78472 25.7 21.97
30 * 78.225 22.09
非球面データ
第1面
K = 0.00000e+000 A 4= 1.82387e-005 A 6=-3.59579e-008 A 8= 4.56631e-011 A10=-3.17843e-014 A12= 9.48005e-018
第3面
K = 0.00000e+000 A 4= 2.10364e-005 A 6= 2.19620e-008 A 8=-1.46769e-010 A10= 1.16028e-013
第4面
K = 0.00000e+000 A 4= 3.05338e-005 A 6=-3.23851e-010 A 8=-2.35501e-010 A10= 3.18960e-013 A12=-7.73326e-017
第7面
K = 0.00000e+000 A 4=-3.85934e-006 A 6= 8.83188e-009 A 8=-1.32403e-010 A10= 4.41636e-013
第30面
K = 0.00000e+000 A 4= 1.98233e-005 A 6= 2.57991e-008 A 8=-7.68344e-011 A10= 5.66997e-013
各種データ
ズーム比 3.56
広角 中間 望遠
焦点距離 16.30 35.10 58.00
Fナンバー 3.23 4.28 5.99
半画角(度) 53.01 31.65 20.46
像高 21.64 21.64 21.64
レンズ全長 168.43 153.18 168.42
BF 38.25 55.24 83.36
d 6 46.87 11.51 1.00
d12 1.50 11.22 14.10
d18 3.22 6.13 1.45
d19 3.31 2.15 1.80
d20 7.00 0.00 0.00
d25 3.14 1.35 0.80
d27 0.80 1.23 1.56
ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -26.31 25.91 0.28 -23.28
2 7 35.74 8.48 2.31 -2.90
3 13 -44.46 7.18 1.83 -3.29
4 21 76.46 11.77 -1.53 -9.09
5 26 34.17 5.76 2.14 -1.83
6 28 -39.72 5.24 1.30 -1.54
Aspherical data first surface
K = 0.00000e + 000 A 4 = 1.82387
Third side
K = 0.00000e + 000 A 4 = 2.10364
4th side
K = 0.00000e + 000 A 4 = 3.05338
7th page
K = 0.00000e + 000 A 4 = -3.85934
30th page
K = 0.00000e + 000 A 4 = 1.98233
Various data Zoom ratio 3.56
Wide-angle medium telephoto focal length 16.30 35.10 58.00
F number 3.23 4.28 5.99
Half angle of view (degrees) 53.01 31.65 20.46
Image height 21.64 21.64 21.64
Lens overall length 168.43 153.18 168.42
BF 38.25 55.24 83.36
d12 1.50 11.22 14.10
d18 3.22 6.13 1.45
d19 3.31 2.15 1.80
d20 7.00 0.00 0.00
d25 3.14 1.35 0.80
d27 0.80 1.23 1.56
Zoom lens group Data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -26.31 25.91 0.28 -23.28
2 7 35.74 8.48 2.31 -2.90
3 13 -44.46 7.18 1.83 -3.29
4 21 76.46 11.77 -1.53 -9.09
5 26 34.17 5.76 2.14 -1.83
6 28 -39.72 5.24 1.30 -1.54
L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群
L4 第4レンズ群 L5 第5レンズ群
LR 後群 Fo フォーカスレンズ群 FL フォーカスレンズ群
IS 像ぶれ補正用のレンズ系
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L5 5th lens group LR rear group Fo focus lens group FL focus lens group IS lens system for image blur correction
Claims (13)
広角端における無限遠から至近距離へのフォーカシングに際して、前記第2レンズ群及び前記第3レンズ群が像側へ移動し、
望遠端における無限遠から至近距離へのフォーカシングに際して、第2レンズ群が像側へ移動し、前記第3レンズ群が物体側へ移動し、
像ぶれ補正に際して、前記第4レンズ群の少なくとも一部が光軸に垂直な方向の成分を含む方向へ移動することを特徴とするズームレンズ。 A first lens group with a negative refractive power, a second lens group with a positive refractive power, a third lens group with a negative refractive power, and a fourth lens group with a positive refractive power arranged in order from the object side to the image side. A zoom lens composed of a rear group including one or more lens groups, and the distance between adjacent lens groups changes during zooming.
When focusing from infinity to a close distance at the wide-angle end , the second lens group and the third lens group move toward the image side.
When focusing from infinity to a close distance at the telephoto end, the second lens group moves to the image side, and the third lens group moves to the object side.
In the image blur compensation, the zoom lens, which comprises moving in a direction including the component perpendicular least partially on the optical axis of the fourth lens group.
−0.1<fw/fRw<0.3
なる条件式を満足することを特徴とする請求項1に記載のズームレンズ。 When the focal length of the rear group at the wide-angle end is fRw and the focal length of the entire system at the wide-angle end is fw.
-0.1 <fw / fRw <0.3
The zoom lens according to claim 1, wherein the zoom lens satisfies the conditional expression.
2.0<f4S/fw<6.0
なる条件式を満たすことを特徴とする請求項1又は2に記載のズームレンズ。 When the focal length of the moving portion in the fourth lens group for image blur correction is f4S and the focal length of the entire system at the wide-angle end is fw.
2.0 <f4S / fw <6.0
The zoom lens according to claim 1 or 2 , wherein the zoom lens satisfies the conditional expression.
1.0<−f1/fw<2.0
なる条件式を満たすことを特徴とする請求項1乃至3の何れか一項に記載のズームレンズ。 When the focal length of the first lens group is f1 and the focal length of the entire system at the wide-angle end is fw,
1.0 <-f1 / fw <2.0
The zoom lens according to any one of claims 1 to 3 , wherein the zoom lens satisfies the conditional expression.
1.0<f2/fw<3.0
なる条件式を満たすことを特徴とする請求項1乃至4の何れか一項に記載のズームレンズ。 When the focal length of the second lens group is f2 and the focal length of the entire system at the wide-angle end is fw,
1.0 <f2 / fw <3.0
The zoom lens according to any one of claims 1 to 4 , wherein the zoom lens satisfies the conditional expression.
1.0<−f3/fw<4.0
なる条件式を満たすことを特徴とする請求項1乃至5の何れか一項に記載のズームレンズ。 When the focal length of the third lens group is f3 and the focal length of the entire system at the wide-angle end is fw,
1.0 <-f3 / fw <4.0
The zoom lens according to any one of claims 1 to 5 , wherein the zoom lens satisfies the conditional expression.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057115A JP6942496B2 (en) | 2017-03-23 | 2017-03-23 | Zoom lens and imaging device with it |
US15/924,748 US10495861B2 (en) | 2017-03-23 | 2018-03-19 | Zoom lens and image pickup apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057115A JP6942496B2 (en) | 2017-03-23 | 2017-03-23 | Zoom lens and imaging device with it |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018159823A JP2018159823A (en) | 2018-10-11 |
JP2018159823A5 JP2018159823A5 (en) | 2020-04-30 |
JP6942496B2 true JP6942496B2 (en) | 2021-09-29 |
Family
ID=63582518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017057115A Active JP6942496B2 (en) | 2017-03-23 | 2017-03-23 | Zoom lens and imaging device with it |
Country Status (2)
Country | Link |
---|---|
US (1) | US10495861B2 (en) |
JP (1) | JP6942496B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6980430B2 (en) | 2017-06-28 | 2021-12-15 | キヤノン株式会社 | Zoom lens and image pickup device with it |
JP6904853B2 (en) | 2017-08-30 | 2021-07-21 | キヤノン株式会社 | Zoom lens and imaging device with it |
JP7238701B2 (en) * | 2019-08-29 | 2023-03-14 | 株式会社ニコン | Optical system and optical device |
JP7218692B2 (en) * | 2019-08-29 | 2023-02-07 | 株式会社ニコン | Variable Magnification Optical System and Optical Device |
JP7373371B2 (en) * | 2019-11-27 | 2023-11-02 | 株式会社タムロン | Zoom lens and imaging device |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1039210A (en) | 1996-07-24 | 1998-02-13 | Nikon Corp | Zoom lens |
US6285509B1 (en) * | 1997-12-25 | 2001-09-04 | Canon Kabushiki Kaisha | Zoom lens and display apparatus having the same |
JP4989152B2 (en) | 2006-08-11 | 2012-08-01 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5045267B2 (en) * | 2007-06-27 | 2012-10-10 | コニカミノルタアドバンストレイヤー株式会社 | Zoom lens and imaging device |
JP5528211B2 (en) * | 2010-05-24 | 2014-06-25 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
US8908273B2 (en) | 2010-09-21 | 2014-12-09 | Nikon Corporation | Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens |
JP2012247687A (en) | 2011-05-30 | 2012-12-13 | Nikon Corp | Photographic lens, optical apparatus with the photographic lens, and method of manufacturing photographic lens |
JP5930895B2 (en) * | 2012-07-18 | 2016-06-08 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5988756B2 (en) * | 2012-08-06 | 2016-09-07 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6207139B2 (en) * | 2012-09-21 | 2017-10-04 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6061618B2 (en) | 2012-10-30 | 2017-01-18 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5777592B2 (en) | 2012-11-06 | 2015-09-09 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6071465B2 (en) | 2012-11-22 | 2017-02-01 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6172947B2 (en) | 2013-01-11 | 2017-08-02 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5658811B2 (en) * | 2013-01-25 | 2015-01-28 | パナソニックIpマネジメント株式会社 | Zoom lens system, interchangeable lens device and camera system |
JP6253364B2 (en) | 2013-11-22 | 2017-12-27 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6566646B2 (en) | 2014-03-31 | 2019-08-28 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6289219B2 (en) | 2014-04-01 | 2018-03-07 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP6501495B2 (en) | 2014-11-06 | 2019-04-17 | キヤノン株式会社 | Zoom lens and imaging device having the same |
CN107407794B (en) * | 2015-01-30 | 2020-07-17 | 株式会社尼康 | Variable magnification optical system and optical apparatus |
JPWO2016121927A1 (en) * | 2015-01-30 | 2017-10-12 | 株式会社ニコン | Zoom lens, optical device, and method of manufacturing zoom lens |
JP6628240B2 (en) * | 2015-08-10 | 2020-01-08 | キヤノン株式会社 | Zoom lens and imaging device having the same |
US10126536B2 (en) | 2016-02-24 | 2018-11-13 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
JP6818429B2 (en) | 2016-05-06 | 2021-01-20 | キヤノン株式会社 | Zoom lens and imaging device with it |
JP6373298B2 (en) | 2016-06-01 | 2018-08-15 | キヤノン株式会社 | Optical system and imaging apparatus having the same |
-
2017
- 2017-03-23 JP JP2017057115A patent/JP6942496B2/en active Active
-
2018
- 2018-03-19 US US15/924,748 patent/US10495861B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10495861B2 (en) | 2019-12-03 |
US20180275370A1 (en) | 2018-09-27 |
JP2018159823A (en) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4865239B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6942496B2 (en) | Zoom lens and imaging device with it | |
JP4976867B2 (en) | Zoom lens and imaging apparatus having the same | |
US10126523B2 (en) | Zoom lens and image pickup apparatus having the same | |
JP5053750B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5836654B2 (en) | Zoom lens and imaging apparatus having the same | |
US8736971B2 (en) | Zoom lens and image pickup apparatus including the same | |
JP5274228B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4695912B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6300577B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6391315B2 (en) | Zoom lens and imaging apparatus having the same | |
US11314064B2 (en) | Zoom lens and image pickup apparatus | |
JP5774055B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2005215385A (en) | Zoom lens and imaging device having same | |
US10571670B2 (en) | Zoom lens and image pickup apparatus including the same | |
JP2013003240A5 (en) | ||
JP2006058584A (en) | Zoom lens and imaging device incorporating it | |
JP2020181071A (en) | Optical system and image capturing device having the same | |
US20030189763A1 (en) | Zoom lens and image pickup apparatus | |
JP2017146393A (en) | Zoom lens and imaging device having the same | |
JP6016500B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5730134B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5523279B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2016014819A (en) | Zoom lens and imaging device having the same | |
JP7013194B2 (en) | Zoom lens and image pickup device with it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200318 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210908 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6942496 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |